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Abstract Dynamic models are important for devel-

oping gear diagnostics methods since they allow

physical phenomena occurring during operation to be

studied in a relatively simple environment. The main

challenge in gear modeling is the calculation of the

time-variant gear mesh stiffness, and this challenge is

even greater in helical gears. The mechanism of helical

gears is more complex than in spur gears; the helix angle

both adds an axial component to the contact force and

also makes the contact line three-dimensional. This

study suggests a novel dynamic model for helical gear

vibrations that combines an existing validated dynamic

model for spur gears with a unique extension for helical

gears. The extension is based on a common method

called ‘‘multi-slice’’, according to which the helical

tooth width is divided into infinitesimal slices, and each

slice is treated as spur tooth. The suggested model

introduces a novel implementation of the multi-slice

method that overcomes the aforementioned challenges

with only few parameters and calculations, depends on

the tooth geometry. Furthermore, for the first time in

helical gear modeling, the manufacturing profile errors

are integrated to the model to generate scatter in the data

that can better reflect the reality. The model is validated

experimentally and for two different test-rigs by a

qualitative comparison of the RMS of the vibration

signal. The simulations and the measured data show

similar behavior at different ranges of rotational speed

and applied load, emphasizing the potential inherent in

the model for future work on gear fault diagnosis.

Keywords Helical gear model � Gear mesh

stiffness � Vibration signature � Model validation �
Tooth profile error � Multi-slice method

1 Introduction

Gears are essential component in rotating machinery

for transmitting power between shafts. There are

various types of gears, including spur, helical, bevel,

planetary, and etc., each suitable for different applica-

tions. Spur gears are probably the most elementary gear

type, and most of the existing methods for gear

diagnostics and prognostics are focused on them

[1–3]. Helical gears are widely used across numerous

industries such as transportation, aerospace, and the

military, offering more quiet operation and can work in

harsher conditions due to their high contact ratios

compared to spur gears. Vibration analysis is the most

common approach for health monitoring of gears [4–8]

and is implemented in many studies [9–11]. The

vibration data could be either measured from experi-

ments or simulated by dynamic models [1]. Dynamic
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models are necessary for understanding the physical

phenomena ocuring during meshing and their mani-

festation in the vibration signal. The simulated signal is

usually ‘‘clean’’ from noise sources that are

inevitable in a real system, e.g., transmission path,

background noise, and effects of other components.

Therefore, it makes it easier to isolate the effects of

operational conditions, faults, backlash, surface rough-

ness, etc. on the dynamic response, and to analyze their

impact on the behavior of the vibration signature.

However, an experimental study would be limited due

to the noise that may obscure the physical phenomena

and would also be expensive and time consuming since

a large number of cases would need to be considered.

When developing a dynamic model, it is important to

balance simplicity and reality [12]. On one hand, the

selected model must accurately reflect the physics of

the desired system and express the dynamic response in

healthy and damaged statuses, while on the other hand,

physical assumptions simplify its construction. Nev-

ertheless, a reliable model validation is required for a

better generalization from simulation to reality [13].

This study sets innovative milestones for helical gear

diagnostics, which currently mainly exist for spur

gears, from three different aspects: novel approaches

for dynamic modelling, experimental validation, and a

fundamental study of the effects of the operational

conditions on the vibration signature.

Many studies have been dedicated to the develop-

ment of dynamic models based on Euler–Lagrange

equations of motion for non-conservative systems;

however, most of these, as explained above, are focused

on spur gears [12, 14]. The first analytical model was

suggested by Ozguven et al. [15], which modeled the

spur gear pair as a simple mass-spring system with a

single degree of freedom (DOF), considering the

dynamic meshing force. Over the years, more complex

and realistic models have been introduced, allowing six

degrees of freedom (DOFs) for each wheel, and

considering additional rotating elements, e.g., shafts

and bearings [14]. The main challenge in gear modeling

is the calculation of the time-variant gear mesh stiffness

(GMS). This challenge becomes even more complex

for helical gears, as the contact line in helical gears is

three-dimensional, as opposed to the planar pressure

line in spur gears. The contact ratio in spur gears is in a

range between 1 and 2, meaning that the number of

meshing pairs varies periodically from one pair to two

pairs along the pressure line, as illustres Fig. 1. For

simplicity, Chaari et al. [16] and Kim et al. [17]

assumed that the GMS in each stage is constant and,

therefore, behaves like a square wave. Yang et al. [18]

suggested calculating the GMS based on the beam

theory. The tooth is simulated as a cantilever beam

subjected to axial compressive stress, bending stress,

and Hertzian contact stress, all which contribute to the

total GMS. Sainsot et al. [19] added to the GMS the

contribution of the fillet foundation, followed by Chen

et al. [20], who added the contribution of shear stress.

The analytical formula for the fillet foundation’s

contribution to the GMS was developed under the

assumption of a single tooth engagement [19]. Recent

studies have claimed this contribution is over signifi-

cant as a result of the coupling between meshing teeth

and suggest correction coefficients accordingly

[21–23]. The beam theory method is more accurate

than the square wave assumption and it currently the

most commonly used analytical approach for calculat-

ing the GMS [1, 12, 14].

It is worth mentioning that finite element model (FEM)

is another widely used method for the GMS calculation

[24–26], but, the Achilles heel of this method is its

requirement for massive computational power. However,

for helical gear FEMs method was the first that suggest a

sulotion to model the GMS. Anderson et al. [27] used a

four-DOF model and calculated the GMS using FEM,

considering the meshing force along the contact line.

Zhang et al. [28] proposed a more complex model with 12

DOFs (six DOFs for each wheel) and also used a FEM to

calculate the GMS. In addition, they also considered

eccentricity errors. Yan et al. [29] presented a FEM based

on [28] and suggested a new, simple, and more efficient

mathematical method for the GMS calculation, showing

similar results. However, most of the presented studies

which used FEM did not validate the results experimen-

tally, thus, compromising the reliability of the model. In

the last decade analytical methods that suggest how to

calculate the GMS in helical gear start to appear. Velex

et al. [30] presented the analytical equations of motion for

a single DOF and for four DOFs for helical gear, but did

not suggest how to calculate the GMS. Wei et al. [31] and

Wang et al. [32] introduced a method to calculate the

GMS analytically by dividing the helical tooth width into

infinitesimal slices, where each slice is considered as a

spur tooth that contributes to the GMS according to the

beam theory [20]. This method has become a common

approach for GMS calculation in helical gear [33–38] and

in this study, it is referred as the ‘‘multi-slice’’ method. In
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this paper, we address the calculation of the GMS with a

novel and simple interpretation to the common method

that requires less calculations and only few parameters of

the inspected transmission.

Most of the reviewed studies for both spur and

helical gear considered only an ideal tooth profile

regardless of inevitable tooth profile errors, e.g.,

manufacturing errors, eccentricity, and tooth relief.

Chen et al. [39] addressed to the tooth profile errors

resulting from tip and crown relief for spur gear and

showed their significant effects on the calculation of

the GMS. Mucchi et al. [40] and Dadon et al. [13] have

also studied spur gears and considered manufacturing

errors in the tooth profile when calculating the

excitation force. Specifically, they treated these errors

as a displacement input that was multiplied by the gear

mesh stiffness (GMS). Wang et al. [32] considered

profile error in a helical gear model and showed the

sensitivity of the slice method to different tooth widths

and profile corrections (e.g., tip relief and crown

relief). In this study, for the first time in helical gear

modeling, the profile errors caused by the

manufacturing errors are incorporated into the

dynamic model. In this study, three main contributions

are presented:

1. The calculation of GMS is approached with a

novel and elegant interpretation of the multi-slice

method, which deals with the variable three-

dimensional contact line, employing fewer calcu-

lations and relying on only a few parameters of the

inspected transmission.

2. For the first time in helical gear modeling, profile

errors generated by manufacturing are incorpo-

rated into the dynamic model. It is shown that

profile errors have a significant impact on the

model results, enhancing the resemblance of the

simulated signal to reality.

3. For the first time, a fundamental physical inves-

tigation has been conducted on a helical gear

model, enabling the testing of the vibration

signature’s sensitivity under various conditions.

This is highly beneficial for practical applications

and future fault diagnosis.

driving

engagement

meshing pair

GM
S

Cycle

drivingmeshing 
pair

separated 
tooth

driving

new engagement

meshing pair

Fig. 1 Qualitative

illustration of the GMS

periodical behavior
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This study presents a new dynamic model for

helical gears consisting of four sections. In Sect. 2, the

proposed model is explained in detail, introducing the

novel modeling method, followed by the calculation of

the time-variant gear mesh stiffness and consideration

of the profile error due to manufacturing errors.

Section 3 presents the two test rigs used for model

validation. Then a study that examined the effect of the

operation conditions on the vibration signature is

presented, followed by a comparison of the results

between the model and the experiments. Finally,

Sect. 4 concludes and summarizes this work.

2 Dynamic model for helical gear

Dynamic models for helical gear are more challeng-

ing, compared to those of conventional spur gears[1].

In this study, we used a realistic and validated dynamic

model for spur gears proposed by Dadon et al.[13] and

extended its validation for helical gears by a novel

approache for the common ‘‘multi-slice’’ method. The

model for the spur gears is based on Euler–Lagrange

equations of motion for non-conservative systems, as

shown in Eq. (1). The wheels are considered as rigid

discs that are each connected to a torsional shaft

supported by linear bearings. The input shaft is

connected to a motor, and the output shaft is connected

to a brake which applies a quasi-static load. The

dynamic system is assumed to have 13 DOFs,

including six DOFs for each wheel (three linear and

three angular displacements) and the angular displace-

ment of the brake, as shows Fig. 2. x is the vector of

generalized coordinates given by Eq. (2). The calcu-

lation of the time-varying GMS along the contact line,

making the model non-linear solved numerically. In

addition, the model integrates the geometric profile

errors of the teeth in the excitation force vector,

considering them as a displacement input multiplied

by the GMS.

M €xþ C _xþ K xð Þ � x ¼ Fex ð1Þ

x ¼ xg; yg; zg; hg;ug;wg; xp; yp; zp; hp;up;wp; hb
� �T

ð2Þ

where M is the diagonal mass matrix, C is the damping

matrix, K is the non-linear structural stiffness matrix,

Fex is the excitation force vector, x is the vector of the

generalized coordinates, g and p represent the gear and

pinion wheel, respectively, and b represent the brake.

2.1 Definition of the contact line in helical gears

When a pair of involute gears is engaged, the contact

occurs on the contact line and the contact point moves

along the contact line. Unlike spur gears, helical gear

teeth are twisted along a helical path in the axial

direction, making the contact line three dimensional.

Figure 3 illustrates the pinion’s face width, showing

the difference between the contact line during meshing

in the spur gear and helical gear. In both cases, the

mesh starts from the initial contact point (ICP) on the

involute profile (located on the base circle or slightly

above) and ends at the tooth tip, as presents Fig. 3.

However, in the spur gear, the length of the contact

line is constant (spread over the entire tooth width),

while in the helical gear, the contact line changes its

length due to the helix angle. There are three stages

describing the contact from tooth engagement to tooth

separation:

• Stage 1—Growth phase (green)—At the begin-

ning, the contact line grows monotonically as the

mesh continues until reaching its maximal length

in the toot tip.

• Stage 2—Constant phase (yellow)—The maximal

length obtained after the growth phase remains

constant as the mesh continues and ‘‘moves’’ along

the tooth width until the ICP is exits the contact

line.

• Stage 3—Shrinkage phase (red)—At the end, the

contact line shrinks monotonically as the mesh

continues until tooth separation.

2.2 The ‘‘multi-slice’’ method for helical gears

As discussed previously, the ‘‘multi-slice’’ has

become the common method for the calculation of

the GMS along the variant three-dimensional contact

line [31–38]. The ‘‘multi-slice’’ method suggests

dividing the helical tooth width into infinitesimal

slices, considering each slice as a spur gear tooth.

After discretization, the GMS is calculated for each

slice separately according to the beam theory [20],

assuming that the distributed contact force along the

contact line is perpendicular to the teeth width, and the

shear force between the slices is negligible. The GMS
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of each slice is treated as a spring. The springs along

the tooth width are assumed to be connected in

parallel. The equivalent GMS of a tooth pair is the sum

of all spring stiffnesses, i.e., the GMS of all slices.

Figure 4 illustrates the concept of the multi-slice

method including the discretization of the helical

contact line and analogy to a set of springs connected

in parallel.

The primary challenge with implementing the

multi-slice method lies in addressing the varying

length and position of the three-dimensional contact

line along the mesh. To achieve the equivalent GMS, it

is crucial to consistently identify the slices that

Fig. 2 The simulated

system

b) Spur gear contact lines

a)  Spur gear tooth c)  Helical gear tooth

d) Helical gear contact lines

Fig. 3 Differences between the contact line in a spur gear (a, b) and helical gear (c, d)
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participate in the meshing cycle at the ith time step,

denoted as hi. There are various approaches for this

calculation. One method involves calculating the

instantaneous pressure angle of each tooth slice to

identify the participating slices [31, 32]. However, this

approach requires solving complex equations for all

slices at each time step to evaluate the transverse

operating pressure angle of the gear pair. Another

approach, presented in reference [38], determines the

participating slices by computing the equivalent mesh

force for each slice at each time step and selecting only

those with force values greater than zero. Both of these

approaches require extensive calculations at each time

step, as reported in the published literature. In this

study, we propose a novel approach that requires only

a few straightforward calculations at each time step.

Table 1 describes the formulas used to calculate the

indices of the participating slices for each phase

(growth, constant, and shrinkage), where Wslice is the

slice width, and W is the tooth width. Notice that the

brackets de notate the ceiling operation. Figure 5

illustrates the relevant parameters for this task. The

tooth axis and width are represented by the X and Z

axes, respectively. Contact lines are marked with blue

dashed lines for all three phases. Note that after

reaching the tooth tip at the end of the growth phase,

the intersection of the contact lines with the X-axis in

the constant and shrinkage phases is located outside of

the tooth. Nevertheless, these intersection points are

crucial for calculating the indices of the participating

slices. Initially, the maximum tooth width in contact,

denoted as Wmax, is calculated according to Eq. (3),

and this calculation is performed only once. A

geometric parameter Wconti is then calculated for each

time step, defined by the tooth height in hi and the

helix angle b, as presented Eq. (4).

Wmax ¼ Xtip � XICP

� �
cot bð Þ ð3Þ

Wconti ¼ X hið Þ � XICPð Þcot bð Þ ð4Þ

2.3 Calculation of the stiffness of a single tooth

pair

According to the multi-slice method, each slice is

treated as a spur tooth with a width of Wslice, meaning

that the calculation of the GMS of each slice is

performed based on the beam theory for spur gears

similarly [13]. Equation (5) describes the calculation

of the total equivalent stiffness of a single pair tooth at

the ith cycle point ke hið Þ, using Table 1 for the range of

slices to consider. Equation (6) presents the formula

for the equivalent stiffness kei;n of the nth slice at the ith

cycle point, composed of the Hertzian contact stiffness

(kh) that describes in Eq. (7), and of a set of stiffnesses

for each wheel separately as shows in Eqs. (8)–(11),

respectively: bending stiffness (kb), shear stiffness

(ks), axial compressive stiffness (ka), and fillet foun-

dation stiffness (kf ).

ke hið Þ ¼
Xsend i

n¼sstart i

kei;n ð5Þ

1

kei;n
¼ 1

kh
þ
X2

j¼1

1

kbj
þ 1

ksj
þ 1

kaj
þ 1

kf j
ð6Þ

1

kh
¼ 4ð1 � m2Þ

pEWslice
ð7Þ

Tooth width

slice

Fig. 4 Illustration of the multi-slice method for helical gears

Table 1 Formulas for the start and end indices of the slices in contact

Phase Wconti range Slice start index (sstart i) Slice end index (sendi)

Growth Wcont i 2 0;Wcontmaxð Þ 1 dWcont i=Wslicee
Constant Wcont i 2 Wcontmax ;Wð Þ dWcont i=Wslicee � dWcontmax=Wslicee dWcont i=Wslicee
Shrinkage Wcont i 2 W ;W þWcontmaxð Þ dWcont i=Wslicee � dWcontmax=Wslicee W=Wsliced e
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1

kb
¼

Z X hið Þ

0

M2
z Iyy þ 2MzMyIyz þM2

yIzz

EðIyyIzz � I2
yzÞ

dx ð8Þ

1

ks
¼

Z X hið Þ

0

0:6cos2 að Þ
GWslicey xð Þ dx ð9Þ

1

ka
¼

Z X hið Þ

0

sin2 að Þ
EAðxÞ dx ð10Þ

1

kf
¼ cos2 að Þ

EWslice
L�

u

Sf

� �2

þM� u

Sf
þ P�½1 þ Q�tan2 að Þ�

" #

ð11Þ

where j ¼ 1; 2 represents the gear and the pinion. E, G,

and m are the Young modulus, shear modulus, and

Poisson’s ratio, respectively. My and Mz are the

internal bending moments, Iyy, Izz, and Iyz are the

second moments of area, y xð Þ is the tooth height, AðxÞ
is the cross-section area, and a is the pressure angle.

X hið Þ is the distance of the contact point from the

dedendum circle as demonstrates Fig. 6.a. The param-

eters L�;M�;P�;Q� are polynomial functions

described in detail in the Appendix (Table 6) [13]. u

is the distance from the dedendum circle to the

intersection between the meshing force line and the

tooth axis, while Sf is the arc length of the tooth along

the dedendum circle, as illustrates Fig. 6.b.

Finally, the total GMS is calculated after understanding

which slices are in contact, according to Table 1, and what

theequivalent stiffnessofeachslice is, according toEq. (5).

Figure 7 presents a colormap showing the contribution of

each slice to the total stiffness of a tooth pair from tooth

engagement to tooth separation. We can identify the three

phases in Fig. 7, i.e., the increasing number of slices in

contact in the growth phase, the ‘‘moving’’ and constant

contact line in the constant phase, and the decreasing

number of slices in the shrinkage phase.

2.4 Calculation of the total GMS

The calculation of the GMS for a single tooth pair

serves as the basis for determining the overall GMS.

Recall that one of the assumption is that the contact

line is treated as a set of springs connected in parallel.

Therefore, the total GMS is a combination of the

stiffnesses of all of the tooth pairs in contact, and

depends on the contact ratio (e) of the inspected

transmission. The contact ratio is a key parameter

here, since it determines the duration in a meshing

cycle that a tooth pair contributes to the total GMS, as

well as the number of tooth pairs in contact and their

position along the contact line. Equation (12) defines

the position of each tooth pair in a single meshing

cycle iteratively, depending on the contact ratio. The

calculation of the total GMS is presented in Eq. (13) as

the sum of ke (equivalent stiffness) associated with

each meshing pair (zero padding is applied if needed to

match dimensions). Notice that a meshing cycle starts

from a tooth engagement and ends at a successive

tooth engagement because of the periodic nature of the

GMS. Therefore, the total GMS of an entire cycle (i.e.,

ICP

�p

Fig. 5 Definition of the

parameters required to

calculate the indices of the

slices in contact
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one shaft rotation) would be a concatenation of z

duplicated mesh cycles. Figure 8 concludes the flow

of the calculation of the total GMS. It is evident that

the GMS in helical gears exhibits a different behavior

compared to that of spur gears, as illustrated in Fig. 1,

as expected. The less sharp transitions in the GMS of

helical gears justify the quiet behavior expected in the

vibration signal, providing a credible legitimacy to

modifying the existing model for spur gears.

hmeshh ¼ h� 1ð Þ � 1

z
� min h� 1

z
; e� 1

z

� �� 	

ð12Þ

GMS hð Þ ¼
Xdee

h¼1

ke hmeshhð Þ ð13Þ

where hmeshh is the range of cycle of the hth tooth pair

that contributes to the total GMS, z is the number of

teeth on the wheel, e is the contact ratio, and ke is the

equivalent stiffness of a single pair tooth at a specific

cycle point.

2.5 Analysis of the GMS nature in helical gear

The GMS in helical gear is mostly dependent on the

total length of the contact line of all the tooth pairs that

mesh (i.e., the total number of slices), rather than the

number of the tooth pairs that are in contact like in the

spur gear, as demostrates Fig. 1. In other words, in

helical gears, we cannot claim intuitively that the more

tooth pairs that are in contact, the higher the GMS will

be. It is important to understand that the behavior of the

GMS should differ from one transmission to another,

depending on the contact ratio (e). The contact ratio

determines the maximum number of teeth that engage

and the number of sequential events that affect on the

GMS behavior. Here we explain through the trans-

mission presented in Table 2 (e ffi 2:65) the physical

Fig. 6 a Qualitative illustration of the tooth as a cantilever; b definition of geometric parameters for the fillet foundation stiffness

Fig. 7 A colormap describing the contribution of each slice to

the total stiffness of a single tooth pair according to the multi-

slice method. (Color figure online)
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phenomena with which one can examine the GMS.

The GMS is described as four sequential events,

marked by dashed lines in Fig. 8b, c.

Event 1: When a new tooth pair engages, there are

three tooth pairs in contact overall (due to the contact

ratio): the new pair (pairp) is in its growth phase,

raising the total GMS. The second pair (pairp�1) is in

its constant phase, contributing the same stiffness, and

the third pair (pairp�2) is in its shrinkage phase,

lowering the total GMS. The total number of slices in

contact remains constant, since for every slice that is

attaching, there is another one detaching. Therefore,

the variation in the total GMS is relatively small, and

the general trend is determined by the difference

between the stiffnesses of the attached and the

detached slices. This event continues until pairp�2

separates (marked by blue dashed lines).

Event 2: From this event and on, there are only two

tooth pairs in contact. The only difference between

this event and Event 1 is the absence of tooth pair in

the shrinkage phase; therefore, there is a monotonous

increase in the overall GMS. This event continues

until pairp�1 starts its shrinkage phase (marked by

yellow dashed lines).

Event 3: In this event, there is a tradeoff between

the increasing stiffness in the growth phase of pairp

Meshing cycle

Cycle

GM
S GM

S

Cycle
GM

S

GM
S

Fig. 8 A qualitative scheme describing the calculation of the GMS: a The equivalent stiffness of a single tooth pair; b breaking the

stiffness into segments with length of 1/z cycles; c the total GMS of 1/z cycles; d the total GMS for a complete shaft cycle
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and the decreasing stiffness in the shrinkage phase of

pairp�1. This event continues until pairp starts its

constant phase (marked by green dashed lines).

Event 4: This event is the ‘‘negative’’ of Event 2,

i.e., a monotonous decrease in the overall GMS. It

continues until a new pair (pairpþ1) engages (marked

by red dashed lines).

2.6 Manufacturing geometric profile errors

(Surface roughness)

In the real world, gears have imperfect tooth profile due to

inevetible errors in the manufacturing process. This error

affects the vibration signature and generate scattering in

the data [13, 40, 41]. Therefore the actual tooth surface

need to be consider in the dynamic model in order to

enhance is applicability to real-world systems. To the best

of the authors knowledge, the dynamic models developed

for helical gears to date, neglect the deviations of the tooth

profile that caused by manufacturing errors [31–37]. The

calculation of these errors is described in Eqs. (14)–(16),

based on the work of Mucchi et al. [40] and Dadon et al.

[13] for spur gear modeling according to the DIN-3962

standard [42]. Recall that according to the multi-slice

method, where each slice is considered as a spur tooth, we

can use the profile error modeling for spur gears. The

profile errors are generated for both pinion and gear wheel

teeth separately and consist of deterministic and random

terms describing the deviations of the involute profile [13].

The total geometric profile error e tð Þ is the sum of the

errors of each wheel, as presents in Eq. (17).

ewheel Ds tð Þð Þ ¼ fHaDs tð Þ þ ff

2
sin 2pnDs tð Þ þ /ð Þ

þ Err � randðtÞ
ð14Þ

sp tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

p � R2
b

q
ð15Þ

Ds tð Þ ¼ sp tð Þ � sICP

stip � sICP

ð16Þ

e tð Þ ¼ epinion tð Þ þ egear tð Þ ð17Þ

where the parameters f Ha and f f are the profile angle

deviation and the profile form deviation, respectively,

according to the DIN-3962 standard [42]. The param-

eters n and / represent the number of sinusoid cycles

of the deterministic term and its phase component,

respectively. The random term is multiplied by the

parameter Err which is proportional to the surface

roughness grade. The parameters sp tð Þ and Ds tð Þ are

geometric terms determined by the radius to a point

along the involute profile Rp and the base radius Rb, as

illustrates Fig. 9. After calculating the profile errors of

all the slices, the total profile errors of a meshing tooth

pair can be calculated, according to the same princi-

ples describing the GMS in Fig. 8. In this work, we

assume that the manufacturing process follows the

DIN-3692 standard and that the variation along the

tooth width is negligible. Additionally, we assume that

these errors are negligible compared to the ideal gear

body-induced deflection, and therefore, they are not

Table 2 Parameters of the

simulated helical gear

transmission (KHK)

Pinion Gear

Tooth number zp ¼ 18 zg ¼ 35

Component mass kg½ � m2 ¼ 0:43 m1 ¼ 2:17

Transverse moment of inertia kgm2½ � I2 ¼ 1:4 � 10�4 I1 ¼ 1:7 � 10�3

Polar moment of inertia kgm2½ � Ip;2 ¼ 1:8 � 10�4 Ip;1 ¼ 2:8 � 10�3

Shaft diameter m½ � D2 ¼ 0:025 D1 ¼ 0:025

Shaft length m½ � L2 ¼ 0:43 L1 ¼ 0:34

Module mm½ � 3

Tooth width mm½ � 25

Pressure angle 20	

Helix angle 21:5	

Contact ratio (eÞ 2:65

Young’s modulus ðGPaÞ 210

Poisson’s ratio 0:28
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considered in the GMS calculation. Figure 10 illus-

trates the tooth profile errors in a colormap for each

slice along a meshing cycle. We can notice the flip in

the values of the profile errors between the gear and the

pinion, which can be explained by the fact that the ICP

on the pinion meshes with the tip of the gear; hence,

the errors go in opposite directions along a meshing

cycle. Furthrmore It can be noticed from Fig. 10 that

each random line in the helix angle (bÞ has a constant

value, demonstrating the assumption that the profile is

constant along the tooth width.

The inspected transmission in this study (shown in

Sect. 3.1) corresponds to the surface quality DIN7

[42]. Figure 11 compares the vibration signature along

the rotation of the pinion between an ideal profile and a

DIN7 profile, showing the significant effect of the

tooth deviations. In the case where the profile errors

are considered, the vibration level increases, and the

signal becomes more random, thus, better reflecting a

real gear transmission. The profile errors add scatter-

ing to the data, which may be utilized for generating

large and diverse database for training [43].

3 Model validation

The model validation process is necessary to deter-

mine its robustness and reliability. We validated the

dynamic model experimentally, by comparing the

simulated signals to vibration signals measured from

designated test rigs. Recall that a model is ‘‘clean’’

from noise sources affecting the measured signal, e.g.,

background noises, other components contributing to

the dynamic response, and mostly the transmission

path to the sensor [13]. Therefore, our validation

strategy focuses on the examination of the frequency

spectrum, along with the comparison of trends in

features extracted from both simulated and experi-

mental data.

3.1 Experimental test rigs

Two experimental test rigs were used for the validation.

The first apparatus included an open single stage helical

gear transmission produced by KHK GearsTM (called the

KHK test rig), and the second included an industrial single-
Fig. 9 Definition of the geometric parameters required for the

profile error calculation

Fig. 10 A qualitative illustration for the profile error calculation of the a pinion and b gear wheels
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stage sealed helical gearbox produced by MotovarioTM

(called the Motovario test rig) [44]. Both transmissions

were manufactured with a fine surface roughness (DIN-7).

The driving pinion wheel was connected to the input shaft

driven by a controlled three-phase motor produced by

ABBTM. The driven gear wheel was connected to the

output shaft and subjected to a torsional torque, applied by a

hydraulic piston fixed pump (A2F0) produced by Rexroth,

Bosch GroupTM. In the KHK test rig, both shafts were

supported by two rolling bearings held by support brackets,

while in the Motovario test rig, both shafts were supported

by a single bearing, sealed, and dipped in grease. A

DytranTM 3053B2 three-axial piezoelectric accelerometer

measured the vibrations, and a HoneywellTM 3010AN

magnetic pick-up speed sensor measured the shaft rota-

tional speed. Both sensors were connected to a National

InstrumentTM (NI) data acquisition system via PXI-4496

module. The experiments examined the effects of different

operating conditions, i.e., speed and load, on the vibration

signature of a healthy gearbox. The experimental programs

for both test rigs are presented in Table 3. Figures 12 and

13 present schematic sketches and photographs of the

experimental test rigs. The parameters of the test rigs are

presented in Tables 2 and 4.

3.2 Convergence test

The suggested multi-slice method is dependent on the

slice width, which is a key parameter. As the slice width

becomes smaller, the assumption that it behaves like a

spur gear becomes more accurate. However, its also

increases the computational time and power required. To

balance the trade-off between analysis accuracy and

computation time, the slice width was determined using a

convergence test that investigated the relationship

between the slice width, discretization error, analysis

accuracy, and computation time. The convergence anal-

ysis is based on the error of the total GMS and the

simulated vibration signal, separately. Each error is

defined as the difference between the results obtained

for a specific slice width and the finest slice width tested.

Different slice widths in the range of 10 - 1000 lm were

examined for the KHK gear parameters, as presented in

Table 2. A significant discretization error was obtained

for large slice widths, and the error reduced sharply until

convergence under a 1% error at a slice width of

approximatly 15 lm, as shows Fig. 14a. The same

behavior was obtained for both the errors of the GMS

and the simulated vibration signal. Figure 14b shows how

the computational time increases as the slice width

increases. In this research, the number of simulations

Fig. 11 A comparison of

the vibration signal for a an

ideal profile and b a DIN7

profile

Table 3 Experimental program

KHK test rig Motovario test rig

Input speed [rps] f15; 30; 45g f15; 30; 50g
Load [Nm] f5; 15g f5; 15; 25g
Repetition 8 6
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Fig. 12 KHK test rig: a qualitative scheme; b photograph
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Fig. 13 Motovario test rig: a qualitative scheme; b photograph

Table 4 Parameters of the

simulated helical gear

transmission (Motovario)

Pinion Gear

Tooth number zp ¼ 19 zg ¼ 59

Component mass kg½ � m2 ¼ 0:063 m1 ¼ 0:238

Transverse moment of inertia kgm2½ � I2 ¼ 1:3 � 10�4 I1 ¼ 6:6 � 10�5

Polar moment of inertia kgm2½ � Ip;2 ¼ 2:7 � 10�4 Ip;1 ¼ 1:3 � 10�4

Shaft diameter m½ � D2 ¼ 0:016 D1 ¼ 0:019

Shaft length m½ � L2 ¼ 0:15 L1 ¼ 0:15

Module mm½ � 1:1

Tooth width mm½ � 13

Pressure angle 20	

Helix angle 25	

Contact ratio (eÞ 3:4

Young’s modulus GPa½ � 210

Poisson’s ratio 0:28
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needed was relatively small, and the accuracy of the

model was the main purpose. Thus, in this research, the

slice width was determined to be 15lm based on the

criterion of minimal error, presents in Fig. 14a.

3.3 Effects of the operation conditions

The vibration signature is likely to be impact by the

operation conditions [13, 45]. A validation will be

achieved if both the simulated vibration signals and

the experimental data show approximately similar

behavior under different operating conditions, i.e.

rotational speed, load and the surface roughness.

However, the range of the operating conditions in the

experiments was limited by the motor and hydraulic

pump working ranges. Therefore, we used the

dynamic model to examine the effects of the operating

conditions in wide ranges of speed and load [45].

Simulated data of the KHK gear transmission was

generated by the model for different combination of

speed (15–100 rps), load (5–350 Nm), and surface

roughness (ideal profile and DIN7), three drawing of

profile errors for each combination. Figure 15 presents

the RMS of the signals versus load for ideal and DIN-7

profiles, where different colors represent different

speeds. The RMS increased significantly as the speed

increased for both profiles. However, at some speed

changes, the impact was more significant; for exam-

ple, the difference from 60 to 80 rps was much higher

than from 45 to 60 rps. This is probably due to the

effect of the system’s natural frequencies that amplify

different areas depending on the spectrum signal’s

speed [45]. Moreover, the RMS of the ideal profile

increased at a moderate rate as the load increased,

while the DIN7 profile masked the effects of the load,

especially at low loads. Table 5 summarizes the

conclusions deduced from the analysis of the effects of

the operational conditions on the vibration signature.

3.4 Model validation results

The model validation involved a comprehensive

analysis of the frequency spectrum and a qualitative

comparison between the RMS of simulated signals

derived from the model and the RMS of measured

signals obtained from experiments. The simulation

matrix included the same combinations of rotational

speed, torsional load, and surface roughness as the

experiments, marked in black rectangle in Fig. 15 and

presented in Table 3. Notice that the measured signals

were affected by the transmission path, background

noises, other components contributing to the dynamic

response and the sensor’s location, unlike the simu-

lations; therefore, we did not expect to obtain exactly

similar results, e.g., the same energy levels (not

necessarily even the same scale). First, we conduct the

analysis of the frequency spectrum. A standard

vibration signature of a helical gear transmission is

characterized by peaks occurring at harmonics of the

gear mesh frequency, surrounded by multiple equally

spaced sidebands, representing amplitude modulation

and frequency modulation of the output and input shaft

speeds. Figure 16 presents representative spectra for

both simulated and experimental vibration signatures

of the anticipated transmissions. The vibration signal

spectrum is determined by calculating the power

spectral density in the order domain, where frequency

is normalized according to the output speed. This

normalization means that the gear mesh harmonics are

depicted as integer multiples of the gear’s number of

teeth (see Tables 2 and 4). Observing both the

simulated and experimental spectra, it is evident that

Fig. 14 Convergence test:

a discretization error of the

simulated vibration signal as

a function of the number of

slices per mm;

b computational time as a

function of the number of

slices per mm
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the gear mesh harmonics (indicated by blue lines) are

appropriately recognized. Additionally, the antici-

pated surrounding sidebands, signifying amplitude

modulation and frequency modulation of the output

and input shaft speeds, are consistently present in both

spectra (marked with orenge and gray dashed lines,

respectively). Discrepancies in the background line

can be attributed to variations in the transmission path

and natural frequencies, which differ between exper-

iments and simulations. These differences have a

notable impact on the spectrum, as it is significantly

amplified around the group of natural frequencies [45].

Therefore, from the spectrum examinations, we can

conclude that the behavior of the characteristic

frequency of the gear transmission is similar between

the simulated and measured vibration signatures.

Fig. 15 The effect of speed and load on the vibration signal: a ideal profile, b DIN7

Table 5 Effect of

operational conditions on

the vibration signal

Profile Error Rotational Speed Load

Ideal Significant effect Moderate effect

DIN-7 Significant effect Low loads—no effect, High loads—moderate effect
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Second, Fig. 17 compares the RMS of the signals for

different speeds and loads between the simulated and

experimental results obtained from both the Moto-

vario and KHK test rigs. For both the simulation and

the experiments, we notice very similar behavior, i.e.,

the RMS increased with an increase in speed while the

load had a small effect. Therefore, these results

correspond to the conclusions in Table 5, meaning

that the natural behavior of the vibration signals was

similar for different transmissions. The presented

analysis suggests that the dynamic model is valid

and reflects the vibration signature of an actual gear

transmission with high reliability.

4 Conclusion

This study introduces a dynamic model for helical gear

vibrations. The main challenge with helical gear

modeling is the contact analysis along the three-

dimensional line of action due to the helix angle. The

suggested model is based on a realistic dynamic model,

validated for spur gear, that is extended to helical gears

by a simplified novel implementation of the multi-slice

method. The helical tooth width is divided into

infinitesimal slices, considering each slice as a spur

tooth. By a comprehensive contact analysis based on

the tooth geometry and the contact ratio, the model

calculates the effective stiffnesses of the slices during a

meshing cycle, thus overcoming the challenge of the

time variant three-dimensional contact line.

A fundamental analysis of the non-linear gear mesh

stiffness sheds new light on the physical phenomena

occurring during gear operation, which can be gener-

alized to any desired helical gear transmission. In

addition, for the first time, the manufacturing profile

errors in helical gears are modeled, by utilizing the

principles of the multi-slice method to generalize the

existing method for spur gears. A convergence test is

performed in order to determine the slice width that

obeys the model assumptions with the most reasonable

tradeoff between accuracy and computational power.

Fig. 16 Frquency

spectrum: a Motovario

transmisions—where the

black line represents the

experimental spectrum and

the magenta line

corresponds to the

simulation spectrum,

b KHK transmisions where

the black line represents the

experimental spectrum and

the magenta line

corresponds to the

simulation spectrum
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The model is validated by a qualitative comparison

of the RMS of the vibration signal between simula-

tions and measurements; the behavior of the RMS is

similar for different ranges of speed and load. In

addition, the sensitivity of the vibration signature is

examined for wide ranges of speed and load at

different surface qualities, showing high sensitivity

of the gear characteristics to speed and moderate

sensitivity to loads within the inspected range in the

experiment.

The proposed model has two main benefits; first, it

offers a robust tool for studying the mechanism of

helical gears. Second, by adding scattering to the data,

the model will be able to generate large database of

realistic simulations for training learning algorithms.

Moreover, the proposed model may be utilized for

simulating different fault types, with which we could

examine their effects on the dynamic response, and in

the future, develop tools to estimate their severity.
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