
REVIEW

Improved frequency sweep modeling method based
on model prediction output error for rub-impact rotor
system

Ningyuan Cui . Yang Liu . Haiying Liang . Kuiyuan Bao . Yue Shan .

Chunyue Gao

Received: 22 May 2023 / Accepted: 29 February 2024 / Published online: 14 April 2024

� The Author(s), under exclusive licence to Springer Nature B.V. 2024

Abstract This study considers the identification of

the Nonlinear Auto-Regressive with eXogenous

Inputs (NARX) models of the rotor systems, in which

the identified NARX model may sometimes fail. By

incorporating rotor response signals at different speeds

into the modeling process using an Extended Forward

Orthogonal Regression (EFOR) algorithm. This way,

the data information involved in identification is more

abundant, but this is still not enough. To completely

solve the issue, an identification method based on

Model Prediction Output (MPO) error is proposed in

this paper. Which can filter all possible identification

results during the identification process based onMPO

error, thereby avoiding potential failed identification

results and obtaining the optimal solution. The

proposed method improves the accuracy of NARX

model identification and reduces the need for profes-

sional knowledge. The simulation and experimental

cases of a rub-impact rotor system are presented to

illustrate the application and the effectiveness of the

new identification approach.

Keywords Polynomial NARX model � Rotor-
bearing system � Rub fault � Data-driven model �
Model predict output

1 Introduction

In practice, most mechanical systems are significantly

affected by nonlinearity, with rotor systems being

particularly significant [1]. In the process of studying

the nonlinear characteristics and diagnosing faults of

rotor systems, regardless of the research scheme adopted,

the first step is to study the modeling methods of rotor

systems [2–4].Oneof themost commonlyusedmodeling

methods for rotor systems is the finite element method.

Ren et al. [5] analyzed the stability andHopf instability of

the periodic motion of the complex rotor-bearing system

with coupled faults. Mereles et al. [6] achieved finite

element analysis of a high-dimensional rotor foundation

system with bearing oil film as the nonlinear source.

Briend et al. [7] analyzed the dynamic instability caused

by imbalanced mass, support rotation, the coupling

between both phenomena by Timoshenko beam

elements.

However, as modern machinery becomes increas-

ingly complex and traditional methods become inad-

equate [8], more and more scholars are paying

attention to data-driven models. This method is called

system identification, and its numerical model can be

established just by measuring the input and output data
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of the system, making it possible to model very

complex systems. In the 1980s, Billings proposed a

Nonlinear Auto-Regressive with eXogenous inputs

(NARX)model based on the Volterra series model [9].

The most commonmethod for building NARXmodels

is the Forward Regression Orthogonal Least Square

(FROLS) algorithm [10]. Asgari et al. [11] established

and validated the NARX model for heavy-duty single

shaft gas turbines. Fravolini et al. [12] completed

robust fault detection of the air data system by NARX

model.

In general, NARX model identification always

chooses random signals as system inputs because

random signals contain more information in the

frequency domain, which can ensure the accuracy of

modeling results. However, the excitation force used

to identify rotor systems is usually generated by an

unbalanced mass on the rotor, which is a harmonic

excitation [13]. Ma et al. [14] used the sweep signal

generated during the acceleration process as input

signals to establish the NARX model. Long Jin et al.

[15] proposed a time-domain swept frequency mod-

eling method for rotor bearing systems, which

improves the reliability of modeling by incorporating

system input and output data at different speeds into

calculations. This algorithm is similar to the Extended

Forward Orthogonal Regression (EFOR) algorithm

for parameter dependent NARX modelling [16],

except that the relevant parameter is speed. Luo

Zhong et al. proposed a frequency domain sweeping

modeling method [17, 18] for rotor systems, which

also integrates information from multiple rotational

speeds to improve the success rate of identification.

The above studies have all focused on the selection

of important model terms, but the number of model

terms in the NARXmodel is also crucial. In traditional

methods, the determination of the number of model

terms relies on the Error Reduction Rate (ERR)

criterion, just like the selection of terms. The ERR

value of one model term reflects the accuracy of this

term’s one step ahead accuracy [19]. It only focuses on

the contribution rates of one model term, without

evaluating the accuracy of the NARX model itself. As

a result, when using traditional methods to identify

rotor systems, the identification models often lack

accuracy or even fail due to overfitting or underfitting.

Based on the above analysis, in this paper, the

Model Prediction Output (MPO) error is used as the

basis for determining the number of model terms. The

proposed method is based on the speed-dependent

EFOR algorithm, in which the selected model terms

are used as a sub-model to calculate its MPO error

during the iteration process. After iterating to a certain

extent, the sub-model with the smallest is selected as

the identification result. In this way, the problem of

poor model accuracy or divergence due to overfitting

or underfitting can be effectively avoided, and it can be

ensured that the identified model will be the optimal

model that can be obtained. Simulations and experi-

ments on the rotor system demonstrate the feasibility

of the proposed method. The work provides an

important basis for the analytical study and fault

diagnosis of the nonlinear rotor system.

This paper is organized as follows. Section 2 briefly

introduces the traditional EFOR algorithm; Sect. 3

uses a rotor system with a rub-impact fault as a

numerical case to illustrate the problems of EFOR

algorithm based on AERR criterion in practice; Sect. 4

introduces the proposed improved EFOR algorithm

based on MPO and analyzes its advantages over

traditional algorithms; In Sect. 5, the effectiveness of

the proposed method is verified using the numerical

examples proposed earlier; An experimental applica-

tion of the proposed method is presented in Sect. 6;

Sect. 7 summarizes the conclusion.

2 Speed dependent EFOR algorithm

Considering the input and output data of the rotor

system at multiple speeds through the speed-depen-

dent EFOR algorithm can provide more information

for system identification. This can improve the

reliability of rotor system NARX model identification

to some extent.

A polynomial structured speed dependent NARX

model can be represented as:

yðtÞ ¼ h0ðxÞ þ
Xn

i1¼1

hi1ðxÞxi1ðtÞþ
Xn

i1¼1

Xn

i2¼i1

hi1i2ðxÞxi1ðtÞxi2ðtÞ þ :::

þ
Xn

i1¼1

:::
Xn

il¼il�1

hi1i2:::ilðxÞxi1ðtÞ:::xilðtÞ

ð1Þ

where hi is the model structure coefficient; l is the

highest order of the nonlinear system polyno-

mial;n = ny ? nu, ny and nu are the maximum time
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delay of the system output sequence and input

sequence, respectively; xm(t) is the delay term of the

input sequence and output sequence:

xmðtÞ ¼
yðt � mÞ 1�m� ny
uðt � ðm� nyÞÞ ny þ 1�m� ny þ nu

�

ð2Þ

Assuming that there are R different rotational

speeds separately driving the system, R pairs of input–

output dataset will be generated. To enable the

modeling process to contain all rotational speed

information, a candidate terms dictionary is estab-

lished for each pair of input–output datasets:

Pr ¼ pr;1; pr;2; :::; pr;M
� �

¼

pr;1ðkÞ pr;2ðkÞ . . . pr;MðkÞ
pr;1ðk þ 1Þ pr;2ðk þ 1Þ . . . pr;Mðk þ 1Þ
..
. ..

. . .
. ..

.

pr;1ðNÞ pr;2ðNÞ . . . pr;MðNÞ

2

66664

3

77775

ð3Þ

where pr,m(t),(t = k,k ? 1,…,N) is the sampling value

of the model term pr,m at time t. One of model terms

pr,m is composed of elements or combinations of

products between elements in a vector [x1(t),x2(-

t),…,xm(t)]. And it can be calculated that there are a

total of M = (n ? l)!/(n!l!) candidate model terms.

P is a matrix composed of model terms. The subscript r

represents the corresponding r-th excitation speed.

In order to avoid the interference caused by the

mutual coupling between various regression terms to

the subsequent calculation, it is necessary to orthog-

onalize the candidate dictionary according to Schmidt

orthogonalization method[20].

Assuming the iteration proceeds to step n, for

m = li,i = 1,2,…,n, calculate:

wðnÞ
r;m ¼ pr;m �

Xn�1

j¼1

pr;m;wr;i

� �

wr;i;wr;i

� �wj; m ¼ 1; 2; :::;M

ð4Þ

gðnÞr;m ¼
yr;w

ðnÞ
r;m

D E

w
ðnÞ
r;m;w

ðnÞ
r;m

D E ; m ¼ 1; 2; :::;M ð5Þ

AERRðnÞ
m ¼ 1

R

XR

l¼1

g
ðnÞ2
l;m w

ðnÞ
r;m;w

ðnÞ
r;m

D E

yr; yrh i � 100% ð6Þ

ln ¼ argmaxfmjAERRðnÞ
m g; 1�m�M ð7Þ

where �; �h i represents the inner product of a vector.
Let wr,n = wr,ln, gr,n = gr,ln, AERRn = AERR(n)

ln.

The above is the method for selecting important

model term in one step iteration. How to terminate

iterations is another key issue and the focus of this

study.

For traditional methods, when calculating to step

M0, if the Error to Signal Ratio (ESR) meets the

following conditions, the iteration terminates:

ESR ¼ 1�
XM0

m

AERRm � q ð8Þ

where q is called the error threshold, which is a very

small value that needs to be selected based on

experience. Ideally, the size of the q value directly

determines the length and accuracy of the model.

However, due to the characteristics of rotor systems,

this approach often fails to achieve the desired results

in model identification for rotor systems. This will be

reflected in the numerical examples that follow.

Finally, through inverse Schmidt orthogonaliza-

tion, the NARX model of the rotor system with a

unified model structure can be obtained:

yðkÞ ¼
XM0

m

hmðxÞpmðkÞ ð9Þ

hmðxÞ ¼
XN

n¼0

bm;nx
n ð10Þ

where hm(x) is the coefficient of the model term

corresponding to the speed, which can be determined

by the least squares method based on the coefficient

matrix hr,m and the speed vector x = [x1,x2,…,xR].

3 Problem statement

In this section, a single disk rotor system with rubbing

faults is selected for study. The principle diagram of

friction is shown in Fig. 1, and the schematic diagram

of the finite element model is shown in Fig. 2.where

O1 represents the center of the stationary rotor; O2
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represents the center of the rotor when rub occurs; O3

represents the center of the rotor if no rub occurs;

U represents the amount of deformation between the

rotor and stator when rub occurs; d0 represents the

initial clearance between the rotor and stator; x is the

rotational speed of the rotor; kr and k are the contact

stiffness and friction coefficient between the rotor and

stator, respectively.

The entire rotor system is divided into 11 shaft

segments, totaling 12 nodes. The disk has a diameter

of 70mm and is located on the 6th shaft segment. Two

rolling bearings are located at both ends of the shaft,

and the friction fault occurred on the 8th shaft

segment. Here, the motion of the rolling element

inside the bearing is ignored and represented by

equivalent stiffness and damping.

The shaft segment is simulated using Timoshenko

beam elements. In the Timoshenko beam element,

each element has two nodes, and each node has 4

degrees of freedom. The generalized coordinates of

the beam element are represented as:

q ¼ xA; yA; hxA ; hYA ; xB; yB; hxB ; hYBð ÞT ð11Þ

Due to the short duration of the collision in the rotor

system, it can be approximated that a linear deforma-

tion occurs between the stator and rotor, i.e., the

friction is proportional to the normal force at the point

of contact. As shown in Fig. 1, FN represents the

normal frictional force, FT represents the tangential

frictional force, and its specific expression is as

follows:

FN ¼ 0 r\d0
FN ¼ ðr � d0Þkr r� d0
FT ¼ kFN

8
<

: ð12Þ

In the Cartesian coordinate system, the rubbing

force can also be expressed as:

Fxðx; yÞ
Fyðx; yÞ

( )
¼ �Hðr

� d0Þ
r � d0ð Þkr

r

1 �k
k 1

� �
x

y

( )

ð13Þ

In the equation, r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
represents the radial

displacement of the rotor, H(�) is the Heaviside

function, defined as:

HðxÞ ¼ 1; x� 0

0; x\0

�
ð14Þ

Therefore, the dynamic equation of a rub-impact

rotor can be expressed as:

M €xþ ðC þ GÞ _xþ Kx ¼ FUx þ Fxðx; yÞ
M €yþ ðC þ GÞ _yþ Ky ¼ FUy þ Fyðx; yÞ

�
ð15Þ

where M is the mass matrix, C is the damping matrix,

G is the gyro matrix, andK is the stiffness matrix of the

rotor system; FUx,FUy,Fx(x,y),Fy(x,y) are the unbal-

anced force vectors and friction force vectors along the

x and y directions, respectively.

Assume excitation speed x [ [1200:1400]rpm, the

difference between adjacent two excitation speeds is

dx = 10rpm. Therefore, there are a total of 21

different input–output data sets. In this study, the

friction clearance is set d0 = 140lm. The rotor

simulation result at 1300 rpm is shown in Fig. 3

To simulate the actual application, 50 dB Gaussian

white noise is added to the output signal. Now, the

EFOR algorithm is used to find the top ten important

Fig. 1 Schematic diagram of the rotor rub–impact

Fig. 2 Schematic diagram of single disk rotor systemwith rotor

rub-impact
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model terms without considering the iteration termi-

nation problem, and the results are shown in Table 1:

It can be seen that the AERR values are very small

for each model term except for the first one. The

identification results are therefore extremely sensitive

to changes in q values. In the traditional approach, the

selection of the q value needs to be done empirically.

This makes it very difficult in practice to build the

optimal NARX model.

For example, two NARX models are built with 8

and 9 model terms respectively. When verifying speed

x = 1300rpm, the two models are shown in Table 2:

The ESR values of these two NARX models are

0.00799% and 0.00779%, respectively. According to

the AERR criterion, the fitting accuracy of these two

models should exceed 99.99%, and there should be no

significant difference between the two models.

However, the MPO validation results for these two

models suggest otherwise:

Obviously, although the ESR values of the two

NARX models are small enough, their MPO valida-

tion results are not ideal and cannot fit the original

signal at all. Even the NARX model with 8 model

terms are divergent.

Furthermore, although the NARX model with 9

model terms as shown in Fig. 4b is convergent, this is

the validation result at 1300rpm. As shown in Fig. 5,

the model does not converge when the validation

speed is 1250rpm:

In summary, a sufficiently small ESR value some-

time cannot guarantee a sufficiently high model fitting

accuracy. This is one of the major reasons why there

are often failed results in NARX model identification

of rotor systems.

Fig. 3 Simulation results of rubbing rotor, x = 1300rpm

Table 1 The top 10 model

terms identified by the

EFOR algorithm

Nos. Terms AERR ESR

1 y(k-1) 9.9538 9 10–1 4.6188 9 10–3

2 y(k-2) 4.4931 9 10–3 1.2572 9 10–4

3 y(k-3)*y(k-3)*y(k-3) 1.4999 9 10–5 1.1072 9 10–4

4 u(k-1)*y(k-4)*y(k-4) 1.5302 9 10–5 9.5416 9 10–5

5 u(k-4)*u(k-4)*u(k-4)*y(k-4) 3.7050 9 10–6 9.1711 9 10–5

6 u(k-1)*u(k-2)*y(k-4) 3.6361 9 10–6 8.8075 9 10–5

7 y(k-3) 4.3233 9 10–6 8.3752 9 10–5

8 u(k-4)*u(k-4)*y(k-1)*y(k-1) 3.8187 9 10–6 7.9933 9 10–5

9 y(k-2)*y(k-2)*y(k-2)*y(k-2) 2.0734 9 10–6 7.7860 9 10–5

10 y(k-1)*y(k-1)*y(k-3)*y(k-4) 1.0248 9 10–5 6.7612 9 10–5
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4 EFOR algorithm based on model prediction

output

Through the aforementioned analysis, it is found that

the traditional EFOR algorithm has the problem of

difficulty in obtaining the optimal NARX model. The

main reason is that the AERR criterion cannot reflect

the overall fitting accuracy of the NARXmodel. Based

on this judgment, an improved EFOR algorithm based

on MPO error is introduced in this section.

In order to avoid the absolute value difference

caused by the signal amplitude, this paper introduces

the Normalized Mean Square Error (NMSE) to

evaluate the MPO validation results of each sub-

model [21, 22]:

Table 2 NARX model

with 8 and 9 terms
NARX model with 8 terms NARX model with 9 terms

Coefficient Term Coefficient Term

1.7214 y(k-1) 1.6877 y(k-1)

-0.4672 y(k-2) -0.4187 y(k-2)

-1.8169 y(k-3)*y(k-3)*y(k-3) -1.6452 y(k-3)*y(k-3)*y(k-3)

0.1516 u(k-1)*y(k-4)*y(k-4) 0.1499 u(k-1)*y(k-4)*y(k-4)

-0.0002 u(k-4)*u(k-4)*u(k-4)*y(k-4) -0.0004 u(k-4)*u(k-4)*u(k-4)*y(k-4)

-0.0036 u(k-1)*u(k-2)*y(k-4) -0.0038 u(k-1)*u(k-2)*y(k-4)

-0.2474 y(k-3) -0.2651 y(k-3)

0.0062 u(k-4)*u(k-4)*y(k-1)*y(k-1) 0.0133 u(k-4)*u(k-4)*y(k-1)*y(k-1)

– – -1.0324 y(k-2)*y(k-2)*y(k-2)*y(k-2)

Fig. 4 MPO validation results: a Model predicted output of the NARX model with 8 terms. b Model predicted output of the NARX

model with 9 terms

Fig. 5 Model predicted output of the NARX model with 9

terms when x = 1250rpm
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NMSE¼

PN

t¼1

yNARXðtÞ � yðtÞ½ �

PN

t¼1

yNARXðtÞ½ �2
ð16Þ

where yNARX(t) represents the predicted output of the

target NARX model, and y(t) represents the actual

output of the sampled system.

Due to the differences in the results of NARX

models at different excitation speeds, it is necessary to

conduct MPO validation for all excitation speeds and

calculate the Average NMSE (ANMSE) values during

modeling.

The EFOR identification algorithm based on MPO

is shown in Fig. 6, which can be summarized as

follows:

1 Parameter settings: Set the maximum input delay

nu, the maximum output delay ny, the highest order

l of the model, and the maximum number of model

termsMmax. To ensure that the computation is not

too complex,Mmax should not be too large, and to

ensure a sufficiently accurate NARXmodel can be

obtained, Mmax should also not be too small.

2 Select model terms: Significant model terms were

selected stepwise based on the AERR criterion.

For each new model term, all the selected model

terms are formed into a sub-model, and the sub-

model is validated by MPO and its ANMSE value

is calculated. Until the number of selected model

terms reaches Mmax.

3 Select the optimal model: First, all sub-models that

diverged at certain RPMs were excluded. Then,

the MPO errors of the remaining sub-models are

calculated at different excitation speeds. Finally,

the submodel with the smallest ANMSE value is

selected as the final identification result.

Compared with traditional algorithms, the EFOR

algorithm based on MPO has the following

advantages:

1 As the iteration progresses, the ESR value of the

current model always decreases. But MPO error is

not. This means that ANMSE can better reflect the

fitting error of the current model than ESR.

2 The MPO validation results are used to select the

optimal potential identification results, which

solves the problem of overfitting or underfitting

that often occurs in traditional methods.

3 The identification process no longer relies on a

priori knowledge, which effectively reduces the

dependence on specialized knowledge for NARX

modeling and improves the practicality and effi-

ciency of NARX model identification.

5 Numerical case study

As mentioned earlier, assume excitation speed

x [ [1200:1400]rpm, the difference between adjacent

two excitation speeds is dx = 10rpm, and the friction

clearance is set d0 = 140lm. Set the identification

parameters: the maximum delay of input and output is

nu = ny = 4, the highest order of the model l = 4, and

the maximum number of terms of the model Mmax-

= 22. The model identification of the rotor finite

element model established in Sect. 3 is carried out

using the MPO-based EFOR algorithm, and the results

are shown in Table 3 and Fig. 7.

The NARX model with 19 model terms is the best

NARX model among all potential identification

results. The ANMSE value of this optimal model is

8.5755 9 10–4, and the total AERR is 99.9956%. This

NARX model can be represented as:

yðkÞ ¼ h1ðxÞyðk � 1Þ þ h2ðxÞyðk � 2Þ þ :::

þ h19ðxÞuðk � 3Þ2uðk � 4Þyðk � 3Þ ð17Þ

From Table 3, it can be seen that the NARX sub-

models containing 6 to 15model terms all diverge, and

in fact, most of them are not able to maintain

convergence at all excitation speeds. While the other

non-optimal sub-models are convergent, they are all

also significantly less accurate than the optimal sub-

model. These suboptimal NARX models are easily

obtained if conventional methods are used.

For example, if the traditional method is used for

modeling, and q = 6 9 10–5 is set, then the NARX

model obtained from the identification will contain 13
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model terms. This model is dispersive at the validation

rotational speed of 1300 rpm as shown in Fig. 8.

Alternatively, setting q = 5 9 10–5, the obtained

model contains 17 model terms, and its MPO valida-

tion error ANMSE value is 3.7620 9 10–3. This

model is a relatively easy to obtain identification

result, but still has a certain accuracy gap compared

with the optimal model. The comparison of the MPO

validation results of this model with the optimal model

is shown in Fig. 9.

In contrast, the NARX model built with the

proposed method can fit the signal characteristics of

the rotor system well.

6 Experiment

In order to obtain the displacement response data

required to identify the NARX model of the rotor

friction system at various speeds, a rotor test bench is

Fig. 6 The flowchart of the

identification process with

the EFOR algorithm based

on MPO
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Table 3 Modeling results

of EFOR algorithm based

on MPO

No term AERR ANMSE of sub-model

1 y(k-1) 9.9538 9 10–1 Unavailable

2 y(k-2) 4.4931 9 10–3 1.0096 9 10?2

3 y(k-3)y(k-3)y(k-3) 1.4999 9 10–5 5.1710

4 u(k-1)y(k-4)y(k-4) 1.5302 9 10–5 1.9499 9 10–1

5 u(k-4)u(k-4)u(k-4)y(k-4) 3.7050 9 10–6 3.2632

6 u(k-1)u(k-2)y(k-4) 3.6361 9 10–6 Divergence

7 y(k-3) 4.3233 9 10–6 Divergence

8 u(k-4)u(k-4)y(k-1)y(k-1) 3.8187 9 10–6 Divergence

9 y(k-2)y(k-2)y(k-2)y(k-2) 2.0734 9 10–6 Divergence

10 y(k-1)y(k-1)y(k-3)y(k-4) 1.0248 9 10–5 Divergence

11 u(k-1)u(k-2)y(k-3) 3.8815 9 10–6 Divergence

12 y(k-4)y(k-4)y(k-4) 2.3032 9 10–6 Divergence

13 y(k-1)y(k-2) 3.6911 9 10–6 Divergence

14 y(k-3)y(k-4)y(k-4) 2.3357 9 10–6 Divergence

15 y(k-1)y(k-1)y(k-1) 1.6145 9 10–6 Divergence

16 y(k-1)y(k-3)y(k-3)y(k-3) 3.1402 9 10–6 4.1766 9 10–3

17 y(k-3)y(k-3)y(k-4) 3.3025 9 10–6 3.7620 9 10–3

18 y(k-4) 2.3654 9 10–6 1.0698 9 10–2

19 u(k-3)u(k-3)u(k-4)y(k-3) 1.2663 9 10–6 8.5755 3 10–4

20 u(k-1)u(k-1)y(k-1)y(k-1) 4.0436 9 10–6 1.3138 9 10–3

21 u(k-1)u(k-1)y(k-1) 2.3268 9 10–6 2.5958 9 10–3

22 u(k-1)u(k-1)y(k-1)y(k-2) 1.5374 9 10–6 6.4080 9 10–3

Fig. 7 MPO validation results of NARX model when x = 1300rpm
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constructed as shown in Fig. 10. The required har-

monic excitation in the experiment is achieved by the

imbalance added to the disk. Adjust the rotor speed

through a speed controller, measure the vibration

displacement response of the rotor in the vertical

direction through an eddy current sensor, collect the

sensor voltage signal through the NI-9234 acquisition

card, and finally save the experimental data through

the Labview software program. The severity of

friction in the experiment is controlled by adjusting

the number of feed turns of the friction bolt.

By turning the knob of the speed controller, the

displacement response of the rubbing rotor was

measured at 10 different speeds between 1500 and

1700rpm. An input signal with a speed of

x = 1605rpm was used to validate the identified

model. The identification results are shown in Tables 4

and 5. The predicted outputs are compared to the real

output in both the time and frequency domains, as

shown in Fig. 11.

The MPO validation results show good agreement

between the model outputs and the actual signals. The

proposed method effectively avoids suboptimal and

divergent potential identification results and yields the

optimal NARX model that may be obtained.

7 Conclusions

Considering that the NARX model identification

method has the problem of unsuccessful identification

for rotor systems, an improved EFOR identification

Fig. 8 MPO validation results of NARX model identified by

traditional method, q = 6 9 10–5

Fig. 9 MPO validation of suboptimal model and optimal model

Fig. 10 Rotor fixed point rubbing fault test bench
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algorithm based on the rotational speed related EFOR

algorithm is proposed in this study. Compared with the

original EFOR algorithm, the improved algorithm

checks all possible identification results based on the

MPO error during the iteration process, and outputs

the optimal NARX model among them. This not only

effectively solves the problem of identification failure,

but also avoids the poor model accuracy due to

overfitting or underfitting, and ensures the accuracy

and reliability of NARX model identification.

Both numerical simulations and experimental stud-

ies demonstrate the effectiveness and reliability of the

proposed method. The results show that the improved

EFOR algorithm successfully avoids the failure model

Table 4 identification

results (x = 1605rpm)
No. term coefficient AERR ANMSE

1 y(k-1) 6.6769 9 10–1 9.9796 9 10–1 —–

2 y(k-6) -5.9261 9 10–2 1.9090 9 10–3 6.9727

3 y(k-2) 3.2114 9 10–1 1.6755 9 10–5 6.5708

4 u(k-1) -2.9587 9 10–3 7.8070 9 10–6 5.9705 9 10–1

5 u(k-6) -3.1532 9 10–3 1.0066 9 10–5 3.9773 9 10–2

6 u(k-1)y(k-6) 9.0006 9 10–3 2.4061 9 10–6 3.4172 9 10–2

7 u(k-1)y(k-1)y(k-1) 7.9564 9 10–2 4.5487 9 10–6 1.5817 9 10–2

8 u(k-1)y(k-1)y(k-3) -6.9940 9 10–2 2.4922 9 10–6 1.5812 9 10–2

9 u(k-1)u(k-1)u(k-1) 1.1718 9 10–4 1.7860 9 10–6 2.1113 9 10–2

10 y(k-1)y(k-2)y(k-5) -4.9402 9 10–1 2.5484 9 10–6 2.9923 9 10–2

11 u(k-2)u(k-6)u(k-6) 5.1610 9 10–5 5.5868 9 10–6 1.4415 9 10–2

12 u(k-6)y(k-6) -3.9071 9 10–2 4.1011 9 10–6 1.2818 9 10–2

13 u(k-1)y(k-1) 3.3090 9 10–2 3.8765 9 10–6 Divergence

14 y(k-5) 3.7405 9 10–2 1.2315 9 10–6 Divergence

15 u(k-6)y(k-1)y(k-1) -1.6705 9 10–2 5.1648 9 10–7 3.2506 9 10–4

16 y(k-1)y(k-3)y(k-4) 3.7935 9 10–1 4.5745 9 10–7 3.1978 9 10–4

Fig. 11 Comparison of the responses of the rotor system in the horizontal direction (x = 1605rpm): a in the time-domain; b in the

frequency-domain
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and suboptimal model and obtains the optimal results

when the identification is performed for rotor systems.

More importantly, this process is done automatically

by the algorithm without additional manual adjust-

ment. The results of this study show the promise of the

improved EFOR algorithm for system analysis and

diagnosis in engineering practice.
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