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Abstract Utilizing the Riemann-Hilbert (RH) appro
ach, we shed light on the spectral structure of a defo-
cusing shifted nonlocal NLS equation with a space-
shifted parameter from which we derive its soliton
solutions. The spectral structure involves the scatter-
ing data and their corresponding symmetry relations.
Firstly, by performing spectral analysis of the corre-
sponding Lax pair, we explore in detail the spectral
structure of the defocusing shifted nonlocal NLS equa-
tion. It is shown that the zeros of the RH problem of
the defocusing shifted nonlocal NLS equation do not
allow for purely imaginary ones, which is rather dif-
ferent from its focusing counterpart. Secondly, based
on the revealed spectral structure, the even-order soli-
ton solutions of the defocusing shifted nonlocal NLS
equation are rigorously obtained. Thirdly, the dynami-
cal properties underlying the obtained soliton solutions
are analyzed and then graphically illustrated by high-
lighting the role that the space-shifted parameter plays.
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1 Introduction

It is well-known that the following coupled system of
nonlinear evolution equations with two potential func-
tions q = q(x, t), r = r(x, t),

iqt (x, t) = qxx (x, t) − 2q2(x, t)r(x, t), (1.1a)

−irt (x, t) = rxx (x, t) − 2r2(x, t)q(x, t), (1.1b)

comes as a compatibility condition of the celebrated
Ablowitz–Kaup–Newell–Segur (AKNS) spectral prob-
lem [1]. Therefore, the coupled system (1.1) is usually
referred to as the AKNS “(q, r) system” in the litera-
ture. Also is known that the physically and mathemati-
cally significant nonlinear Schrödinger (NLS) equation
[2]:

iqt (x, t) = qxx (x, t) − 2εq2(x, t)q∗(x, t), ε = ∓1,

(1.2)

is a symmetry reduction of the AKNS “(q, r) system”
(1.1). In fact, if r = εq∗, the AKNS “(q, r) system”
(1.1) exactly reduces to the NLS Eq. (1.2). In (1.2),
q(x, t) represents a complex-valued function of x, t ,
the symbol i denotes the imaginary unit, and the aster-
isk ∗ is the complex conjugation. The NLS Eq. (1.2)
appears in many physical contexts, such as nonlin-
ear fiber optics, plasma physics, magneto-static spin
waves, deep water waves, and others. Mathematically,
the NLS Eq. (1.2) is known to be integrable by the
inverse scattering transform (IST) from which soliton
solutions can be found. In addition, other integrability
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properties, such as infinite number of conserved quan-
tities, the Hamiltonian structure, and so on, have also
been discovered for (1.2). We also note that the cases
ε = ∓1 in the NLSEq. (1.2) represent the focusing and
the defocusing nonlinearities, respectively. The defo-
cusing case of (1.2), compared with its focusing coun-
terpart, does not admit soliton solutions that vanish at
infinity. In fact, the defocusingNLS equation, i.e., (1.2)
with ε = 1, admits soliton solutions which have the
nontrivial background intensity.

In 2013, an integrable nonlocal type soliton equation
[3]:

iqt (x, t) = qxx (x, t) − 2εq2(x, t)q∗(−x, t), ε = ∓1,

(1.3)

was proposed and studied by Ablowitz and Mussli-
mani via imposing a novel nonlocal symmetry reduc-
tion r(x, t) = εq∗(−x, t) in theAKNS“(q, r) system”
(1.1). This is rather surprising since many researchers
generally believe that it is not easy to obtain intrin-
sically new integrable systems in soliton theory. Via
the nonlocal NLS Eq. (1.3), the solution states at posi-
tions x and −x are directly coupled, which is reminis-
cent of quantum entanglement between pairs of par-
ticles in quantum mechanics. It has been shown that
as a nonlocal reduction of the AKNS “(q, r) system”
(1.1), the nonlocal NLS Eq. (1.3) still admits Lax pair
formulation, has an infinite number of conservation
laws. It is also easy to check that the nonlocal NLS
Eq. (1.3) is invariant under the parity-time transfor-
mation: x → −x, t → −t as well as complex con-
jugation. In this sense, the nonlocal NLS Eq. (1.3) is
said to be parity-time (PT ) symmetric which is a hot
topic in modern physics [4]. Significantly, the nonlo-
cal NLS Eq. (1.3) can also be viewed as asymptotic
quasi-momochromatic reductions of some other non-
linear evolution systems [5]. Moreover, the relations
between the nonlocal NLS Eq. (1.3) and other phys-
ically important equations were established in [6,7].
In the literature, many classical tools for local soli-
ton equations have been extended to the nonlocal NLS
Eq. (1.3), such as the IST, the Riemann–Hilbert (RH)
approach, theDarboux transformation, theHirota bilin-
ear method, and others [8–14]. Nowadays, the study
of nonlocal type soliton equations has become a hot
research direction and has attracted considerable inter-
ests in integrable theory [15–21].

What is more interesting is that, after the discov-
ery of the nonlocal NLS Eq. (1.3), Ablowitz and Mus-

slimani subsequently in 2021 further introduced the
shifted versions of the nonlocal NLS Eq. (1.3) [22],
which are now referred to as the focusing shifted non-
local NLS equation:

iqt (x, t) = qxx (x, t) + 2q2(x, t)q∗(x0 − x, t), (1.4)

and the defocusing shifted nonlocal NLS equation:

iqt (x, t) = qxx (x, t) − 2q2(x, t)q∗(x0 − x, t), (1.5)

by imposing the shifted nonlocal symmetry reductions
r(x, t) = −q∗(x0 − x, t) and r(x, t) = q∗(x0 − x, t),
respectively, in theAKNS“(q, r) system” (1.1). InEqs.
(1.4)–(1.5), x0 is an arbitrary real parameter denoting
the space shift. Obviously, when x0 is set to be zero,
Eqs. (1.4)–(1.5) will reduce back to their correspond-
ing standard unshifted nonlocal NLSEq. (1.3). Regard-
ing the focusing shifted nonlocal NLS Eq. (1.4), the
IST method and single- and two-soliton solutions for
it were studied in [22]. Subsequently, three types of
Darboux transformations and general soliton solutions
for (1.4) were presented in [23]. In addition, several
reduction techniques for (1.4) based on Hirota bilinear
formulation and RH approach were studied in [24–26].
Very recently, multiple double-pole solitons and mul-
tiple negaton-type solitons were derived for (1.4) via a
long-wave technique [27]. However, to our knowledge,
there are rare results about the defocusing shifted non-
localNLSEq. (1.5) apart from the reduction techniques
investigated by using the bilinear approach in [24,25].

In this paper, we shall focus on the defocusing
shifted nonlocal NLS Eq. (1.5) in the framework of
RH approach. It is known that the RH approach is a
modern version of IST for integrable soliton equations.
Though the IST method in the perspective of RH prob-
lem for the focusing shiftedNLSEq. (1.4) was revealed
in [22], whether the RH approach applies to the defo-
cusing shifted NLS Eq. (1.5) was still an open prob-
lem. Moreover, it has been shown that the focusing and
the defocusing cases of the unshifted nonlocal NLS
Eq. (1.3) share different spectral structures, and thus
their RH approaches differ from each other [28]. Hence
we are motivated that the defocusing shifted nonlocal
NLS Eq. (1.5) with general x0 might have diverse spec-
tral structures compared with its focusing counterpart
(1.4). In turn, their soliton solutions might also be dif-
ferent. This paper will focus on these aspects.

This paper is organized as follows. In Sect. 2, we
shall perform spectral analysis of the Lax pair of the
defocusing shifted nonlocal NLS Eq. (1.5). Particu-
larly, we explore in detail the spectral structure of the
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defocusing shifted nonlocal NLS Eq. (1.5). It will be
shown that the zeros of the RH problem of the defo-
cusing shifted nonlocal NLS Eq. (1.5) do not allow for
purely imaginary ones, which is rather different from
that of its focusing counterpart (1.4). Moreover, based
on the revealed spectral structure, the even-order soli-
ton solutions of the defocusing shifted nonlocal NLS
Eq. (1.5) will be rigorously obtained. In addition, the
dynamical properties underlying the obtained soliton
solutions will be analyzed and then graphically illus-
trated by highlighting the role that the space-shifted
parameter x0 plays. Section 3 gives our conclusions.

2 RH approach

In this section, by employing theRH approach [29–42],
we intend to perform spectral analysis and then derive
soliton solutions for the defocusing shifted nonlocal
NLS Eq. (1.5). It is known the RH approach heavily
relies on the RH problem constructed via the corre-
sponding Lax pair.

2.1 Lax pair and RH problem

An important property of the AKNS spectral theory is
that a reduced version of a Lax-integrable equation is
still integrable admitting the corresponding Lax pair
formulation. Therefore, we can obtain the Lax pair
of the defocusing shifted nonlocal NLS Eq. (1.5) by
imposing the defocusing shifted nonlocal symmetry
reduction: r(x, t) = q∗(x0 − x, t) in that of the AKNS
“(q, r) system” (1.1) [22],

�x = U�, �t = V�, (2.1)

in which � = �(x, t, λ) is a matrix function of the
complex spectral parameter λ, and

U = iλσ3 + Q,

V = 2iλ2σ3 + 2λQ + i(Q2 + Qx )σ3,

with

Q = Q(x, t) =
(

0 q(x, t)
q∗(x0 − x, t) 0

)
,

σ3 =
(
1 0
0 −1

)
.

Indeed, one can check that the compatibility condition
of (2.1), �xt = �t x , yields the zero-curvature equa-
tion, Ut − Vx + [U,V] = 0, which exactly gives the
defocusing shifted nonlocal NLS Eq. (1.5). This equa-
tion belongs to the shifted nonlocal reverse-space type

since the evolution of the field depends on both the val-
ues at (x, t) and (x0−x, t). Based on the Lax pair (2.1),
we shall perform spectral analysis and then derive soli-
ton solutions for the defocusing shifted nonlocal NLS
Eq. (1.5).

Toperformspectral analysis conveniently on theLax
pair (2.1), we first introduce a newmatrix spectral func-
tion J = J (x, t, λ) defined as

� = J E, E = eiλσ3x+2iλ2σ3t . (2.2)

Using (2.2), the Lax pair (2.1) can be rewritten in
another form

Jx = iλ[σ3, J ] + QJ, Jt = 2iλ2[σ3, J ] + Q̃ J,

(2.3)

where Q is the potential matrix in (2.1), and Q̃ =
2λQ + i(Q2 + Qx )σ3.

Since the defocusing shifted nonlocal NLS Eq. (1.5)
comes as a reduction of the AKNS “(q, r) system”
(1.1), the procedure for deriving an RH problem for
sufficiently decaying potentials is similar as that of the
unreduced AKNS “(q, r) system” (1.1). In fact, we
can establish an RH problem for the defocusing shifted
nonlocal NLS Eq. (1.5) as
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

P−(λ)P+(λ)

=
(

1 s12(0, λ)e2iλx+4iλ2t

r21(0, λ)e−2iλx−4iλ2t 1

)
, λ ∈ R,

P1(λ) → I, λ ∈ C
+ → ∞,

P2(λ) → I, λ ∈ C
− → ∞,

(2.4)

by following theway to arrive at theRHproblem for the
AKNS “(q, r) system” (1.1) [29]. In the RH problem
(2.4), P+(λ) is the limit of an analytic matrix function
P1(λ) from the left-hand side ofR, P−(λ) is the limit of
another analytic matrix function P2(λ) from the right-
hand side of R, while the symbol I denotes the 2 ×
2 identity matrix. The asymptotic states in (2.4) are
canonical normalization conditions of the RH problem,
while s12(0, λ), r21(0, λ) are two reflection coefficients
defined on the real λ-axis at the initial states. In fact,
the two sectionally analytic matrix functions P1(λ) and
P2(λ) are constructed as

P1 = ([J+]1, [J−]2), P2 =
(

[J−1+ ]1
[J−1− ]2

)
, (2.5)

where each [J±]l (l = 1, 2) denotes the l-th column of
the Jost solutions J± = J±(x, t, λ) of (2.3) satisfying
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J± → I as x → ±∞, and each [J−1± ]l (l = 1, 2) rep-
resents the l-th row of the matrix inverse J−1± . In fact,
J± are uniquely determined by the Volterra integral
equations [29]

J+(x, t, λ)

= I −
∫ +∞

x
eiλσ3(x−ξ)Q(ξ, t)J+(ξ, t, λ)e−iλσ3(x−ξ)dξ,

J−(x, t, λ)

= I +
∫ x

−∞
eiλσ3(x−ξ)Q(ξ, t)J−(ξ, t, λ)e−iλσ3(x−ξ)dξ.

2.2 Scattering data and symmetry relations

In this section, we shall explore the scattering data and
the corresponding symmetry relations determined by
the Lax pair (2.3). Indeed, these are the core aspects in
the RH approach. Generally, we assume the RH prob-
lem (2.4) is an irregular one which means that det P1
and det P2 have certain zeros in their analytic domains.
Notice that the potential matrix Q = Q(x, t) in (2.3)
satisfies the following symmetry relation

Q∗(x0 − x, t) = −σ−1Q(x, t)σ, σ =
(

0 1
−1 0

)
.

(2.6)

Then using the symmetry relation (2.6) and the Lax
pair (2.3), we can arrive at the symmetry relations of
P1 = P1(x, t, λ) and P2 = P2(x, t, λ), respectively

P∗
1 (x0 − x, t,−λ∗) = σ−1P1(x, t, λ)σ, λ ∈ C

+,

(2.7)

P∗
2 (x0 − x, t,−λ̂∗) = σ−1P2(x, t, λ̂)σ, λ ∈ C

−,

(2.8)

which are the key relations for establishing the sym-
metry relations of the scattering data. In fact, it fol-
lows from the symmetry relations (2.7)–(2.8) that the
zeros of det P1 and det P2 appear as (λl ,−λ∗

l ) and
(λ̂l ,−λ̂∗

l ) coupled types, where l is an integer. Corre-
spondingly, we shall consider the kernels Ker (P1(λl)),
Ker (P1(−λ∗

l )), Ker (P2(λ̂l)), Ker (P2(−λ̂∗
l )), which

are spanned by column vectors vl = vl(x, t), νl =
νl(x, t) and row vectors v̂l = v̂l(x, t), ν̂l = ν̂l(x, t),
respectively,

P1(λl)vl = 0, v̂l P2(λ̂l) = 0, (2.9)

P1(−λ∗
l )νl = 0, ν̂l P2(−λ̂∗

l ) = 0. (2.10)

Using the Lax pair (2.3), the vectors vl and v̂l can be
readily calculated as

vl = eθlσ3vl,0, v̂l = v̂l,0e
θ̂lσ3 , (2.11)

in which θl = θl(x, t) = iλl x + 2iλ2l t, θ̂l = θ̂l(x, t) =
−i λ̂l x − 2i λ̂2l t, and vl,0, v̂l,0 are complex column and
row vectors, respectively. Obviously, vl,0, v̂l,0 are inde-
pendent of x, t . However, they rely on the space-shifted
parameter x0. In a parallel way, the vectors νl and ν̂l
can also be obtained from the Lax pair (2.3) as

νl = eϑlσ3νl,0, ν̂l = ν̂l,0e
ϑ̂lσ3 , (2.12)

where ϑl = ϑl(x, t) = i(−λ∗
l )x + 2i(−λ∗

l )
2t, ϑ̂l =

ϑ̂l(x, t) = −i(−λ̂∗
l )x − 2i(−λ̂∗

l )
2t, and νl,0, ν̂l,0 are

complex column and row vectors, respectively. Simi-
larly, νl,0, ν̂l,0 are independent of x, t , but they depend
on the space-shifted parameter x0. Here we normally
scale the second components of all vl,0, v̂l,0, νl,0, ν̂l,0
as 1 without loss of generality, i.e.,

vl,0 = (αl , 1)
T , v̂l,0 = (α̂l , 1),

νl,0 = (βl , 1)
T , ν̂l,0 = (β̂l , 1).

For symmetry relations of vl , v̂l , νl , ν̂l , we have from
(2.7) that ν∗

l (x0−x, t) = Cσ−1vl(x, t), and from (2.8)

that ν̂∗
l (x0 − x, t) = Ĉ v̂l(x, t)σ , where C, Ĉ are com-

plex constants independent of x, t, x0. Therefore, we
finally arrive at

αlβ
∗
l = −e−2iλl x0 , (2.13)

α̂l β̂
∗
l = −e2i λ̂l x0 . (2.14)

From Eqs. (2.13)–(2.14), we know that αl , α̂l , βl , β̂l
are all nonzero. Furthermore, (2.13)–(2.14) imply that
the following conclusions about the zeros of det P1
and det P2 for the defocusing shifted nonlocal NLS
Eq. (1.5).

Proposition 1 The defocusing shifted nonlocal NLS
Eq. (1.5) does not allow for purely imaginary zeros
for det P1 and det P2.

Proof On the one hand, if det P1 has the purely imag-
inary zero λl = iηl (ηl > 0), then −λ∗

l = λl . In this
situation, we have αl = βl , and thus, (2.13) becomes
|αl |2 = −e2ηl x0 which is a contradictionwith |αl |2 > 0
sinceαl �= 0. On the other hand, if det P2 has the purely
imaginary zero λ̂l = i η̂l (η̂l < 0), then −λ̂∗

l = λ̂l .
Consequently, we have α̂l = β̂l . Thus, (2.14) would
be |α̂l |2 = −e−2η̂l x0 which is a contradiction with
|α̂l |2 > 0 since α̂l �= 0. �	
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2.3 Soliton solutions

In what follows, we shall derive soliton solutions for
the defocusing shifted nonlocal NLS Eq. (1.5) under
general initial conditions. To this end, we assume that
det P1(λ) has N pairs of zeros (λ j , λN+ j ) in C

+ with
λN+ j = −λ∗

j and λ j being not purely imaginary,

while det P2(λ) has N pairs of zeros (λ̂ j , λ̂N+ j ) inC−
with λ̂N+ j = −λ̂∗

j and λ̂ j being not purely imaginary.
Now, inspired by the restrictions in (2.13)–(2.14), we
assume that the kernels of det P1(λ j ) anddet P2(λ̂ j ) are
spanned by the column vectors v j and the row vectors
v̂ j , respectively, i.e., P1(λ j )v j = 0 and v̂ j P2(λ̂ j ) = 0,
where

v j = eθ jσ3v j,0, v̂ j = v̂ j,0e
θ̂ jσ3 , 1 ≤ j ≤ 2N ,

(2.15)

in which θ j = θ j (x, t) = iλ j x + 2iλ2j t, θ̂ j =
θ̂ j (x, t) = −i λ̂ j x − 2i λ̂2j t , and

v j,0 = (α j , 1)
T ,

vN+ j,0 =
(

−e2iλ
∗
j x0

α∗
j

, 1

)T

, 1 ≤ j ≤ N , (2.16)

v̂ j,0 = (α̂ j , 1),

v̂N+ j,0 =
⎛
⎝−e−2i λ̂∗

j x0

α̂∗
j

, 1

⎞
⎠ , 1 ≤ j ≤ N , (2.17)

where λ j ∈ C
+ and λ̂ j ∈ C

− are free complex-valued
parameters.

Using the prescribed conditions (2.15)–(2.17) of the
scattering data, we can explicitly solve the RH prob-
lem (2.4) in the reflectionless case, i.e., s12(0, λ) =
r21(0, λ), as

P1(λ) = I −
2N∑
k=1

2N∑
j=1

vk(M−1)k j v̂ j

λ − λ̂ j
,

P2(λ) = I +
2N∑
k=1

2N∑
j=1

vk(M−1)k j v̂ j

λ − λk
, (2.18)

where M = (mkj )2N×2N with mkj = v̂kv j

λ j−λ̂k
. More-

over, P1(λ) satisfies

P1,x (λ) = iλ[σ3, P1(λ)] + Q̄P1(λ), (2.19a)

P1,t (λ) = 2iλ2[σ3, P1(λ)]
+(

2λQ̄ + i(Q̄2 + Q̄x )σ3
)
P1(λ), (2.19b)

where Q̄ = −i[σ3, P(1)
1 ] with P(1)

1 = P(1)
1 (x, t) being

determined by

P1(λ) = I + λ−1P(1)
1 + λ−2P(2)

1 + · · · , λ → ∞.

(2.20)

Nowweshall prove that Q̄ = (Q̄k j )2×2 = −i[σ3, P(1)
1 ]

keeps the same matrix structure of Q as in the original
Lax pair (2.3) such that the system (2.19) also con-
stitutes a Lax pair for the defocusing shifted nonlocal
NLS Eq. (1.5). This means that we have to prove that(
P(1)
1

)∗
12

(x0 − x, t) =
(
P(1)
1

)
21

(x, t), (2.21)

with (P(1)
1 )kl denoting the (k, l)-entry of P(1)

1 which
is determined in (2.20). In fact, it is not difficult to
check that P1(λ) given in (2.18) satisfies the symmetry
relation:

P∗
1 (x0 − x, t,−λ∗) = σ−1P1(x, t, λ)σ, λ ∈ C

+,

(2.22)

where σ =
(

0 1
−1 0

)
. Then, we obtain from the expan-

sion (2.20) as well as (2.22) that(
P(1)
1

)∗
(x0 − x, t) = −σ−1

(
P(1)
1

)
(x, t)σ. (2.23)

Using the relation (2.23), one can easily check that the
desired relation (2.21) holds. Consequently, the sys-
tem (2.19) indeed defines a Lax pair for the defocusing
shifted nonlocal NLS Eq. (1.5). As a result,

q(x, t) = Q̄12 = −2i
(
P(1)
1

)
12

, (2.24)

yields a soliton solution of the defocusing shifted non-
local NLS Eq. (1.5). To write out the soliton solutions
(2.24) explicitly, we get from the form of P1(λ) in
(2.18) and its expansion (2.20), that the matrix func-
tion P(1)

1 can be found as

P(1)
1 = −

2N∑
k=1

2N∑
j=1

vk v̂ j (M
−1)k j . (2.25)

Then, substituting (2.25) into (2.24), we finally obtain
an explicit 2N -soliton solution of the defocusing
shifted nonlocal NLS Eq. (1.5) as

q(x, t) = 2i
N∑

k=1

2N∑
j=1

αke
θk−θ̂ j (M−1)k j

− 2i
2N∑

k=N+1

2N∑
j=1

e2iλ
∗
k−N x0

α∗
k−N

eθk−θ̂ j (M−1)k j ,

(2.26)
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where M = (mkj )2N×2N with mkj = v̂kv j

λ j−λ̂k
in which

v̂k and v j take the expressions in (2.15).

Remark 1 The representation (2.26) is said to be a 2N -
soliton solution since det P1 and det P2 possess 2N
zeros, respectively. That is to say, the soliton solutions
expressed as (2.26) are in even orders. This is remark-
ably different compared with the focusing shifted non-
local NLS Eq. (1.4). In fact, as aforementioned, the
zeros of the RH problem of the defocusing shifted non-
local NLS Eq. (1.5) cannot be allow for purely imagi-
nary ones, while those of its focusing counterpart (1.4)
do can [22].

2.4 Dynamical behaviors

Note that the form of the 2N -soliton solution (2.26) is
not obvious to analyze its underlying dynamical behav-
iors. To reveal the properties of the 2N -soliton solution
(2.26), we first rewrite it in an equivalent form, i.e., a
ratio of two determinants:

q(x, t)

= −2i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 α1eθ1 · · · αNeθN − e2iλ
∗
1x0

α∗
1

eθN+1 · · · − e2iλ
∗
N x0

α∗
N

eθ2N

e−θ̂1 m11 · · · m1,N m1,N+1 · · · m1,2N
...

...
. . .

...
...

. . .
...

e−θ̂N mN ,1 · · · mN ,N mN ,N+1 · · · mN ,2N

e−θ̂N+1 mN+1,1 · · · mN+1,N mN+1,N+1 · · · mN+1,2N
...

...
. . .

...
...

. . .
...

e−θ̂2N m2N ,1 · · · m2N ,N m2N ,N+1 · · · m2N ,2N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m11 · · · m1,N m1,N+1 · · · m1,2N
...

. . .
...

...
. . .

...

mN ,1 · · · mN ,N mN ,N+1 · · · mN ,2N

mN+1,1 · · · mN+1,N mN+1,N+1 · · · mN+1,2N
...

. . .
...

...
. . .

...

m2N ,1 · · · m2N ,N m2N ,N+1 · · · m2N ,2N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (2.27)

where θ̂k = −i λ̂k x − 2i λ̂2k t, θ j = iλ j x + 2iλ2j t ,

λN+ j = −λ∗
j , λ̂N+ j = −λ̂∗

j , and mkj = v̂kv j

λ j−λ̂k
with

v̂k, v j given in (2.15).

In order to explore the 2N -soliton solution (2.27),
we take N = 1 as an representative example, which
corresponds to a two-soliton solution for the defocus-
ing shifted nonlocal NLS Eq. (1.5). According to the
spectral structure revealed in (2.15)–(2.17), we investi-
gate the soliton dynamical behaviors underlying (2.27)
by selecting the following lists of parameters:

λ1 = 0.3 + 0.4i, λ̂1 = 0.4 − 0.8i,

α1 = 1, α̂1 = i, (2.28)

λ1 = 0.3 + 0.4i, λ̂1 = 0.3 − 0.8i,

α1 = 1, α̂1 = i, (2.29)

λ1 = 0.3 + 0.4i, λ̂1 = 0.2 − 0.4i,

α1 = 1, α̂1 = i, (2.30)

λ1 = 0.3 + 0.4i, λ̂1 = 0.3 − 0.4i,

α1 = 0.6i, α̂1 = −0.8i, (2.31)

λ1 = 0.3 + 0.4i, λ̂1 = 0.3 − 0.4i,

α1 = 0.6i α̂1 = 0.8i. (2.32)
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Fig. 1 Two-soliton solutions via (2.27) with N = 1 and (2.28). a singular collapsing two-soliton behavior with x0 = −5, b singular
collapsing two-soliton behavior with x0 = 0, c singular collapsing two-soliton behavior with x0 = 5

Fig. 2 Two-soliton solutions via (2.27) with N = 1 and (2.29). a singular collapsing two-soliton behavior with x0 = −5, b singular
collapsing two-soliton behavior with x0 = 0, c singular collapsing two-soliton behavior with x0 = 5

Fig. 3 Two-soliton behaviors via (2.27) with N = 1 and (2.30).
a analytic exponentially-growing or decaying two-soliton behav-
ior with x0 = −5, b analytic exponentially-growing or decay-

ing two-soliton behavior with x0 = 0, c analytic exponentially-
growing or decaying two-soliton behavior with x0 = 5

In fact, the parameters in (2.28)–(2.30) respectively
satisfy: (I) Re λ1 �= Re λ̂1 and Im λ1 �= −Im λ̂1,
(II) Re λ1 = Re λ̂1 and Im λ1 �= −Im λ̂1, (III)
Re λ1 �= Re λ̂1 and Im λ1 = −Im λ̂1. Corresponding
to (2.28) and (2.29), the two-soliton solutions are sin-
gular periodic solitons that collapse repeatedly which
are shown in Figures 1 and 2. It is demonstrated in

Fig. 1a-c that each right-propagation collapsing soliton
decreases in its amplitude, while each left-propagation
collapsing soliton increases in its amplitude. In con-
trast, in Fig. 2a–c, each right-propagation collapsing
soliton increases in its amplitude, while each left-
propagation collapsing soliton decreases in its ampli-
tude. Remarkably different from the singular profiles in
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Fig. 4 Two-soliton behaviors via (2.27) with N = 1 and (2.31). a singular bell-type two-soliton interaction with x0 = −5, b singular
bell-type two-soliton interaction with x0 = 0, c singular bell-type two-soliton interaction with x0 = 5

Fig. 5 Two-soliton behaviors via (2.27) with N = 1 and (2.32). a analytic bell-type two-soliton interaction with x0 = −5, b analytic
bell-type two-soliton interaction with x0 = 0, c analytic bell-type two-soliton interaction with x0 = 5

Figs. 1 and 2, the two-soliton interactions correspond-
ing to (2.30) are analytic exponentially-growing or
decaying typeswhich are clearly shown in Fig. 3. Obvi-
ously, the two-soliton interactions revealed in Figs. 1,
2 and 3 have the properties that the two individual soli-
tons change their forms before and after their interac-
tions. That is to say, the two-soliton collisions are non-
regular for the parameters in (2.28)–(2.30). Compara-
tively, the parameters in (2.31)–(2.32) obey the condi-
tions: Re λ1 = Re λ̂1 and Im λ1 = −Im λ̂1. The dif-
ference for (2.31) and (2.32) lies in the different selec-
tions of α̂1. Consequently, the two-soliton solutions for
(2.31)–(2.32) evolve as Figs. 4 and 5, which are all reg-
ular since the individual solitons do not change their
respective forms before and after the collisions. How-
ever, due to the different choices of α̂1, the two-soliton
solutions in Fig. 4 are singular bell types, while those
in Fig. 5 are analytic bell types. Regarding the role that
the space-shifted parameter x0 plays in the two-soliton
solutions corresponding to (2.28)–(2.32), we highlight
that the space-shifted parameter x0 affects the inter-
action positions which can be clearly seen in Figs. 1,

2, 3, 4 and 5 where x0 is selected as x0 = −5, 0, 5,
respectively.

3 Conclusions

Byextending theRHapproach to the defocusing shifted
nonlocal NLS Eq. (1.5), we have explored and revealed
the spectral structure of the equation, i.e., the scatter-
ing data and the their corresponding symmetry rela-
tions. Then soliton solutions in even orders are rigor-
ously derived for the defocusing shifted nonlocal NLS
Eq. (1.5). We showed that the zeros of the RH problem
of the defocusing shifted nonlocal NLS Eq. (1.5) do
not allow for purely imaginary ones, which is different
from the focusing shifted nonlocal NLS Eq. (1.4) [22].
Finally, by selecting five representative lists of parame-
ters, we explored the dynamical properties underlying
the obtained solitons and then graphically illustrated
them by highlighting the role that the space-shifted
parameter x0 plays. The graphical illustrations show
that the defocusing shifted nonlocal NLS Eq. (1.5) pos-
sesses diverse soliton dynamical behaviors which stem

123



Spectral structure and even-order soliton solutions 7403

from its particular spectral structure revealed in (2.15)–
(2.17). Before ending this paper, we point out that it
is also meaningful to investigate the long-time behav-
iors of the solutions of (1.5) by performing asymptotic
analysis of the corresponding RH problem (2.4) by uti-
lizing the Deift-Zhou method [43,44]. In addition, it
is also possible to study other aspects of the defocus-
ing shifted nonlocal NLS Eq. (1.5), such as the bright
or dark soliton solutions [45–47], the neural network-
based symbol calculationmethod [48–50], the Painlevé
integrability properties [51,52], and others. These are
left for future discussions.
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