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Abstract In this paper, the output feedback stabiliza-
tion problem is investigated for a class of low-order
stochastic nonlinear time-delay systemswith the lower-
triangular form, where the powers of chained integra-
tors are arbitrary real numbers between 0 and 1, and
the multiple time-vary delays act on each system state.
Because of the existence of low-order nonlinear terms,
the system is not feedback linearizable and differen-
tiable. Based on an extended adding a power integrator
approach and a stability theory of stochastic continu-
ous systems, an output feedback controller is system-
atically designed to ensure the global strong asymp-
totic stability of the closed-loop system. In the con-
troller design, the negative effect of the multiple time-
varying delays is counteracted by skillfully construct-
ing a novel Lyapunov–Krasovskii functional, and the
observer gains are determined by developing a recur-
sive selection procedure. Finally, two numerical exam-
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ples are provided to verify the effectiveness of the pro-
posed method.
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Abbreviations

LKF Lyapunov–Krasovskii functional
SNTDS Stochastic nonlinear time-delay system
HOS High-order system
AAPI Adding a power integrator
LOS Low-order systems
GSS Global strong stability
NGC Nonlinear growth condition
SWP Standard Wiener process
GSSP Globally strongly stable in probability
GSASP Globally strongly asymptotically stable

in probability

1 Introduction

There are many kinds of reasons that can lead to time
lag in a practical system, such as delayed measure-
ments, signal transmissions and some intrinsic prop-
erties of the system. For the sake of reflecting the
real time lag and achieving some special objectives,
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time delays are often used in actual system model-
ing [1]. Therefore, the study of time-delay dynamic
systems is not just of great significance in engineer-
ing applications but also poses a fundamental chal-
lenge for mathematical theory. There are many impor-
tant results in this filed. For example, Lyapunov sta-
bility theory was extended to time-delay systems by
Krasovskii in 1959, which results in the well-known
Lyapunov–Krasovskii functional (LKF)-based method
[2]. Later, to avoid the manipulation of functionals,
another important stability analysis approach called
Razumikhin theorem-based method was proposed by
Razumikhin [3]. Noteworthily, the early study on
time-delay systems mainly focused on linear systems
(e.g., [4,5]). In the last two decades, nonlinear time-
delay systems have attracted more attention. Lots of
research results have emerged for solving the rele-
vant problems with the help of Krasovskii’s or Razu-
mikhin’s approach. Examples include [6–8] and refer-
ence therein. Furthermore, because stochastic phenom-
ena exist widely in the real world, stochastic nonlinear
time-delay systems (SNTDSs) have gradually become
a research hotspot in nonlinear control field in recent
years; see, for instance [9–14].

As we known, the systems with lower-triangular
structure are very important research objectives in non-
linear systems domain due to the fact that not only
they are able to model many practical systems but
also lots of general nonlinear systems can be trans-
formed into a system with lower-triangular form by
a differential homeomorphism transformation under
some conditions [15]. The backstepping method pro-
posed by Kokotovic et al. (see [16,17]), is one of
the most useful techniques for solving control prob-
lems of the lower-triangular nonlinear systems with the
strict-feedback structure in various scenarios includ-
ing stochastic and time-delay cases [18–23]. How-
ever, the systems processed by using this technique
must meet the requirement of fully or partially feed-
back linearization andhave linear virtual control inputs.
The high-order systems (HOS) [24,25] that have been
focused on for many years are a typical class of lower-
triangular nonlinear systems not meeting the above
requirements. Fortunately, by using the homogeneous
domination approach [26] and the adding a power inte-
grator (AAPI) technique [27], many interesting results
on the feedback control problem of the HOS with
stochastic disturbance have been obtained. Particu-
larly, combining the LKF-based method, stabilization

of high-order SNTDSs by state feedback control was
considered by authors in [28–31].Meanwhile, by intro-
ducing state-observer approaches the stabilizing prob-
lem of high-order SNTDSs via output feedback control
was investigated in [32–35]. In the present paper, sta-
bilization of low-order SNTDSs will be further stud-
ied, which is generally considered to be the nonsmooth
counterpart of high-order SNTDSs.

It should be noted that several practical systems can
be modeled by using the low-order system (LOS) in
engineering practice, such as the liquid-level system
with interaction [36], the regenerative chatter system
[37] and the cascade chemical system [38]. Because
the LOS cannot be feedback linearized, stabilization
of such system cannot be handled by using the stan-
dard backstepping technique. In addition, due to the
powers of chained integrator being less than one, the
LOS is only continuous but completely nondifferen-
tiable even not satisfying the Lipschitz condition. From
a technique point of view, it is more difficult to stabilize
a LOS than stabilize a HOS. Nevertheless, there have
been lots of important results focusing on this prob-
lem. For example, in [39], Qian et al. described the
conditions of achieving global strong stability (GSS)
of continuous systems having multiple solutions, and
a planar low-order system was used as an illustrative
example. Later, for a class of low-order nonlinear sys-
tems, Ref. [40] investigated the finite-time stabilization
problem by developing an efficient recursive design
procedure, Ref. [41] addressed the GSS of a class of
low-order nonlinear systems by proposed multi-rate
sampling controller, and Ref. [42] dealt with the out-
put feedback control problem of the LOS described
with the p-normal form. In the stochastic setting, Ref.
[43] discussed the finite-time stabilization for the LOS
with stochastic disturbances bymaking use of theAAPI
technique and stochastic stability criterion. The same
problem was investigated in Ref. [44] where stochastic
inverse dynamics are considered in the system. How-
ever, there are no any results on low-order SNTDSs up
to now.

The literature review on the study of SNTDSs men-
tioned above is summarized in Table 1. Based on this
observation, we focus on an interesting problem in the
present work. That is, how to construct an output feed-
back control law to guarantee stability of low-order
SNTDSs where each system state is affected by multi-
ple time-varying delays? Clearly, because of the intrin-
sic characteristics of low-order nonlinear systems, it is a
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Table 1 A brief summarization of the literature review

Objects Refs. [9–14] Refs. [18–23] Refs. [28–35] Refs. [40–44]
SNTDSs Strict-feedback SNTDSs High-order SNTDSs Low-order systems

MethodsQualitative theory of
stochastic functional
differential equation;
Krasovskii’s or
Razumikhin’s approach.

Lyapunov–Krasovskii
functional approach;
backstepping recursive design
method; stochastic stability
theory.

Stochastic
Lyapunov–Krasovskii
stability theory; AAPI
technique; homogeneous
domination approach.

Global strong stability theory in
the sense of Kurzweil;
nonsmooth feedback control
approach;

Results Some conditions on the
existence of solutions and
some criteria on the
stability of systems are
proposed.

Some sufficient conditions
guaranteeing the stability in
probability of the resulting
systems are provided.

State-feedback or
output-feedback control
schemes are designed to
ensure the stability of the
closed-loop systems.

Nonsmooth feedback
stabilizers are constructed;
there are very few results on
lower-order SNTDSs.

difficult task to address the problem. To be specific, the
following three difficulties will be encountered when
designing an output feedback controller. First, the low-
order nonlinear terms lead to that the considered sys-
tem in our paper is merely continuous but nonsmooth.
Thus, the existing methods developed in Refs. [32–35]
cannot be directly used to address the problem because
some smoothness of systems is required in these meth-
ods. Second, compared with delay-free nonlinear sys-
tems, there are more difficulties to stabilize a nonlin-
ear system with time delays. Although the some sta-
bilization results with regard to the LOS have been
obtained in Refs. [40–44], it is clearly that they cannot
be suitable for the LOS with time delays. Third, there
is no doubt that the simultaneous appearance of mul-
tiple time-varying delays, unmeasured state variables,
stochastic disturbances and low-order nonlinear terms
will greatly increase the difficulties of solving the prob-
lem. In this technique note, we prepare for developing
a new design technique to achieve the stabilization of
low-order SNTDSsbyovercoming the difficultiesmen-
tioned above.

The main contributions of our paper include:

• The output feedback stabilization of low-order
SNTDSs is first considered in the present paper.
Based on the AAPI technique of lower-triangular
systems and the stability theory of stochastic con-
tinuous systems, an output feedback stabilizer is
constructed via developing an efficient recursive
design method for low-order SNTDSs.

• For the purpose of counteracting the negative effect
of multiple time-varying delays, we skillfully con-
struct an appropriate LKF in the design process
which plays a crucial role in system analysis. Note

that it is different from the results developed for
high-order SNTDSs in [28–35].

• The powers of chained integrators for the low-order
systems studied in the published papers, such as
[40,41,43,44], are restricted to the positive odd
rational numbers. The present paper removes this
restriction. That is, the powers of integrators can be
any real numbers between 0 and 1.

• Motivated by the work of [40,42], a new reduced-
order observer is proposed to produce the estimated
values of unmeasured system states. In addition,
a recursive selection procedure is developed, and
the desired observer gains can be determined by
following the procedure.

The present work is organized as follows. The low-
order SNTDS considered in our paper, the concepts
related to GSASP and some useful lemmas are intro-
duced in Sect. 2. The detailed design process of our out-
put feedback stabilizer and the stability analysis of the
closed-loop system are provided in Sect. 3. An example
of numerical simulation and an example of application
to a practical system are given for the proposed meth-
ods in Sect. 4. Some conclusions and future works are
stated in Sect. 5.

Throughout the paper, the symbols R,Rm and R
+

are used to represent the real number set, the m-
dimensional Euclidian space and the positive real num-
ber set, respectively. For a matrix A, the symbol AT

represents the transpose of A. Furthermore, Tr(A) is
used for denoting the trance of A if A is square. The
symbol || · || denotes the Frobenius norm of matrixes
or vectors, and especially we use the symbol | · | to
denote the absolute value. [·]r is defined as sgn(·)|·|r for
r ∈ R. CbF0

([−h, 0];Rn) denotes the family of all F0-
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measurable and continuousRn-value random variables
X = {X (ω) : −h ≤ ω ≤ 0}. The symbols Ik and Nk

denote the index sets {2, 3, . . . , k} and {1, 2, . . . , k},
respectively. To be simple, the argument of a function
is sometime omitted. For example, we sometimes use
d(·) or d to denote d(s).

2 Problem statement and preliminaries

The SNTDS with the following Itô formalism is con-
sidered in this paper
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dx1 = ([x2]r + f1(x̄1, x̄1d)
)
dt + gT1 (x̄1, x̄1d)dw,

dx2 = ([x3]r + f2(x̄2, x̄2d)
)
dt + gT2 (x̄2, x̄2d)dw,

...

dxn = ([u]r + fn(x̄n, x̄nd)
)
dt + gTn (x̄n, x̄nd)dw,

y = x1,

(1)

where the power of the chained integrators r (0 < r <

1) is an arbitrary real number, w ∈ R
m represents a

standardWiener process (SWP), and u is control input.
x = (x1, x2, . . . , xn)T , which is unmeasurable except
for x1, represents the system state. For every i ∈ Nn ,
x̄i = (x1, x2, . . . , xi )T , x̄id = (x1d , x2d , . . . , xid)T ,
where the symbol xid represents the delayed state
xi

(
t − di (t)

)
. The functions di (t) : R+ → [0, hi ], sat-

isfying the conditions ḋi (t) ≤ vi < 1 with the positive
constant numbers vi , i ∈ Nn , denote the time-varying
state delays. The initial data of the system are taken as
x(θ) = {φ(θ) : −h ≤ θ ≤ 0} ∈ CbF0

([−h, 0];Rn),
where h = max{h1, h2, . . . , hn}. At the end, for every
i ∈ Nn , fi : Ri × R

i → R satisfying fi (0, 0) = 0 is
continuous and called thedrift term, and gi : Ri×R

i →
R
m satisfying gi (0, 0) = 0 is continuous and called the

diffusion term.
If gi (·) = 0 and di (t) = 0, system (1)will be a deter-

ministic LOS, whose chained integrators have powers
greater than 0 but less than 1. Notably, it is a nonsmooth
counterpart of a deterministic HOS. Since the powers
of chained integrator are between 0 and 1, the system is
not feedback linearizable and differentiable. This char-
acteristic coupling with the effects of stochastic distur-
bances, unmeasured states and time delays will make
the controller designmore difficult. In this paper, a new
design technique is developed to overcome the difficul-
ties and achieve the output feedback control of system
(1). For achieving this aim, we have Assumption 1 for
system (1).

Assumption 1 There are constants ai > 0 and bi > 0,
i ∈ Nn , such that

| fi (x̄i , x̄id)| ≤ ai

i∑

j=1

(|x j |r + |x jd |r ),

||gi (x̄i , x̄id)|| ≤ bi

i∑

j=1

(|x j | r+1
2 + |x jd | r+1

2 ).

Remark 1 In Liu [43] and Huang [45], the drift
terms fi (x̄i , x̄id) = fi (x̄i ) and the diffusion terms
gi (x̄i , x̄id) = gi (x̄i ), which are independent of time
delays. That is, Assumption 3.1 in [43] and Assump-
tion 2 in [45], which is called the nonlinear growth
condition (NGC), are special cases of Assumption 1
of the present paper when xid = 0, i ∈ Nn . Clearly,
our assumption is capable of being used for more gen-
eral stochastic systems and it is a more general NGC.
It should be noted that NGC are commonly used in
the study of nonlinear systems. Many papers have dis-
cussed the significance and rationality of the NGC, to
name just a few, see [43,45,46] etc.

Consider the general SNTDS

dx(t) = μ
(
x(t), x(t − τ(t)), t

)
dt

+ σ T (
x(t), x(t − τ(t)), t

)
dw(t), t ≥ 0,

(2)

with τ(t) satisfying 0 ≤ τ(t) ≤ τM . w(t) is an m-
dimensional SWP. μ : R

n × R
n → R

n and σ :
R
n × R

n → R
m×n are continuous functions and sat-

isfy μ(0, 0, t) = 0, σ(0, 0, t) = 0. The initial con-
dition is taken as {x(θ) : −τM ≤ θ ≤ 0} = ϕ ∈
CbF0

([−τM , 0];Rn). System (2) always has a solution
in theweak sense, but it may not be unique [47] because
the (local) Lipschitz condition cannot be satisfied by
the coefficients. This implies that the stability prob-
lem of system (2) cannot be solved by using the clas-
sical stochastic system theory (see [48,49]), since the
uniqueness of solution is always needed in the applica-
tion of this theory. Inspired by the deterministic analogs
in [50,51] and the delay-free analog in [52,53], the
classical stochastic stability concept has been slightly
extended in [54] so that it can be applied tomore general
SNTDSs. Inwhat follows, GSSP andGSASP represent
the abbreviation of “globally strongly stable in proba-
bility” and “globally strongly asymptotically stable in
probability,” respectively.
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Definition 1 ([54]). The trivial solution x = 0 of sys-
tem (2) is GSSP, if there is a class-K function γx (·)
such that Px {|x(t)| ≤ γx (||ϕ||)} ≥ 1 − ε holds for
any ε > 0 and weak solution x(t), where t ≥ 0, ϕ ∈
CbF0

([−τM , 0];
R
n)\{0} with ||ϕ|| = sup{|x(θ)| : −τM ≤ θ ≤ 0}.

Furthermore, if Px {limt→+∞ ||x(t)|| = 0} = 1 holds
for any weak solution x(t), it is said to be GSASP.

Lemma 1 ([54]). Suppose that there exist a positive
definite function V (x) ∈ C2 satisfying V (x) → ∞ as
||x || → ∞, and a nonnegative function W (x) ∈ C0,
such that

L V (x) � ∂V (x)

∂x
μ

(
x(t), x(t − τ(t))

)

+ 1

2
Tr

{

σ
(
x(t), x(t − τ(t))

)∂2V (x)

∂x2

σ T (
x(t), x(t − τ(t))

)
}

≤ −W
(
x(t)

)
, (3)

then system (2) is GSSP at x = 0. Furthermore, it is
GSASP at x = 0 in the case of W (x) being positive
definite.

Remark 2 In classical stochastic system theory, there
are two types of available approaches to deal with
the problem of stability and stabilization for SNTDSs,
namely the LKF approach [48] and the Lyapunov–
Razumikhin function approach [49]. When one uses
these two methods, the existence and uniqueness of
strong solutions for SNTDSs are always required, that
is, the considered systems must satisfy the (locally)
Lipschitz condition. Clearly, they cannot be applied to
system (2), because the drift and diffusion terms of
system (2) are only continuous but non-Lipschitz. Def-
inition 1 and Lemma 1 can be viewed as an extension of
stability theory for SNTDSs developed in [48], which
are applicable to more general SNTDSs.

Remark 3 Definition 1 provides two stability notions
for nonsmooth stochastic system (2), namely the global
strong stability in probability and the global strong
asymptotic stability in probability. Both types of sta-
bility describe the asymptotic behavior of the trajecto-
ries of the system or the stability behavior of the trivial
solution x = 0 of the system as time goes to infinity.
The difference between them is that the latter not only
requires each weak solution to satisfy the former, but
also requires them to eventually converge to zero.

The following lemmasprovide several useful inequal-
ities which are necessary in what follows.

Lemma 2 ([55]). Let a, b > 1 with 1
a + 1

b = 1. For
any v,w ∈ R, we have

|vw| ≤ 1

a
|v|a + 1

b
|w|b. (4)

Lemma 3 ([55]). Let 0 < α < 1. For any v ≥ −1, we
have

(1 + v)α ≤ 1 + αv. (5)

Lemma 4 ([51]). For any v,w ∈ R and a, b, c ∈ R
+,

we have

|v|a |w|b ≤ a

a + b
c|v|a+b + b

a + b
c− a

b |w|a+b. (6)

Lemma 5 ([56]). For any v,w ∈ R and γ ≥ 1, the
following inequalities hold

v + w|γ ≤2γ−1|vγ + wγ |, (7)

|[v] 1
γ − [w] 1

γ | ≤21−
1
γ |v − w| 1γ . (8)

Lemma 6 ([57]). For any v1, v2, . . . , vn, c ∈ R
+, it is

true that

(v1+v2+· · ·+vn)
c≤max{nc−1, 1}(vc1+vc2+· · ·+vcn).

(9)

In particular, when c = 2, we have (v1 + v2 + · · · +
vn)

2 ≤ n(v21 + v22 + · · · + v2n).

Lemma 7 Let ε ∈ (0, 1) and v ∈ R. For any real
number s ∈ (0, 1), we have

[v]s + [1 − v]s > −ε2|v|1+s + (2s − 1)ε1−s . (10)

Proof First, consider the case when |v| ≤ 1. Letting
F(v) = [v]s + [1 − v]s , we have F ′(v) = s|v|s−1 −
s(1 − v)s−1. Clearly, when −1 ≤ v < 1

2 , F
′(v) > 0

and when 1
2 ≤ v < 1, F ′(v) < 0, that is to say,

F(v) is strictly monotonically increasing on [−1, 1
2 )

and strictly monotonically decreasing on [ 12 , 1). Thus,
it follows from F(0) = F(1) that F(v) have a min-
imum at v = −1 on the set {v : |v| ≤ 1}. Since
0 < ε1−s < 1, a direct calculation yields
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F(v) + ε2|v|1+s ≥ F(v) ≥ F(−1) = 2s − 1

> ε1−s(2s − 1).

Namely, inequality (10) holds when |v| ≤ 1.
Next, we consider the case when |v| > 1. According

to Lemma 2, we have

[v]s + [1 − v]s + ε2|v|s+1

= (
([v]s + [1 − v]s) 1+s

2
) 2
1+s + (

(ε2|v|1+s)
1−s
2

) 2
1−s

≥ 1+s

2

(
([v]s+[1−v]s) 1+s

2
) 2
1+s+1−s

2

(
(ε2|v|1+s) 1−s

2
) 2
1−s

≥ ([v]s + [1 − v]s) 1+s
2 (ε2|v|1+s)

1−s
2

= (
([v]s + [1 − v]s)|v|1−s) 1+s

2 ε1−s . (11)

LetG(v) = ([v]s+[1−v]s)|v|1−s . Then, the derivative
of G(v) is capable of being calculated as

G ′(v) = (
sgn(v)|v| + sgn(1 − v)|1 − v|s |v|1−s)′

= 1 − s
∣
∣1

v
− 1

∣
∣s−1 − (1 − s)

∣
∣1

v
− 1

∣
∣s . (12)

Since 1
v

− 1 < 0, Eq. (12) can be further calculated as
G ′(v) = 1+| 1

v
−1|s−1( 1

v
− s

v
−1). From Lemma 3, it

is easy to see (1− 1
v
)1−s ≤ 1− 1

v
+ s

v
. Thus, we can get

that G ′(v) < 0 on the set {v : |v| > 1}. This implies
that G(v) ≥ min{G(−1),G(+∞)} = min{2s − 1, s}.
Clearly, Lemma 3 yields 2s − 1 < s. So, we have
G(v) ≥ 2s − 1. Applying this result to inequality (11),
we can get that inequality (10) holds when |v| > 1. �	
Remark 4 It should be pointed that an inequality sim-
ilar to inequality (10) has been introduced in Ref. [58]
where the power s must be expressed as the fraction
form with positive odd numerators and denominators.
In Lemma 7, we provide a new version without this
requirement on the power s and give the corresponding
proof. Inequality (10) is crucial in the observer design
for system (1).

3 Dynamic output feedback stabilizer design

Because only output signal y = x1 ismeasured,wewill
construct an observer-based stabilizer to deal with the
stabilization of low-order SNTDS (1) in this section.
Under Assumption 1, the construction process of the
controller is divided into three parts.

3.1 State feedback design

In the first part, a state feedback control law is designed
by extending the AAPI technique. Notably, to solve the
obstacles arisen from the multiple delays, a novel LKF
will be introduced in the controller design.

For the x1-subsystem of (1), choose a Lyapunov–
Krasovskii functional V1(x1) = k1

2 x
2
1 + a1

1−v1

∫ t
t−d1

|x1(s)|r+1ds, k1 > 0, and two coordinate transforma-
tions ξ1 = x1, ξ1d = x1d . According to Lemmas 2 and
6, we have

L V1(x1)

= k1ξ1
([x2]r+ f1

)+1

2
k1||g1||2

+ a1
1−v1

(|ξ1|r+1−|ξ1d |r+1(1−ḋ1)
)

≤ k1ξ1
([x2]r −[x∗

2 ]r ) + k1ξ1[x∗
2 ]r

+ k1a1|ξ1|
(|ξ1|r +|ξ1d |r

)

+ 1

2
k1b

2
1

(|ξ1| r+1
2 + |ξ1d | r+1

2
)2+ a1

1−v1
|ξ1|r+1−a1|ξ1d |r+1

≤ k1ξ1
([x2]r−[x∗

2 ]r )+k1ξ1[x∗
2 ]r +(k1a1+k1b21+

a1
1−v1

)|ξ1|r+1

+ k1a1|ξ1||ξ1d |r − P11|ξ1d |r+1

≤ k1ξ1
([x2]r − [x∗

2 ]r ) + k1ξ1[x∗
2 ]r + l111|ξ1|r+1, (13)

where P11 = k1b21−a1 and l111 = k1a1+k1b21+ a1
1−v1

+
k1a1
1+r (

(a1−k1b21)(1+r)
rk1a1

)−r . Design x∗
2 = −β1ξ1 with β1 =

( c11+l111
k1

) 1
r > 0 and the arbitrary constant c11 >

0. Since k1ξ1[x∗
2 ]r = k1sgn(ξ1)|ξ1|sgn(x∗

2 )|x∗
2 |r =

−(c11 + l111)|x1|r+1, it follows from (13) that

L V1(x1) ≤ −c11|ξ1|r+1 + k1ξ1
([x2]r − [x∗

2 ]r
)
. (14)

Generally, for the (x1, x2, . . . , xi−1)-subsystem of
system (1), assume thatwecanfindVi−1(x1, x2, . . . , xi )
and two sets of coordinate transformations

ξ j = x j − x∗
j , ξ jd = x jd − x∗

jd , j ∈ Ni , (15)

where x∗
j = −β j−1ξ j−1, x∗

jd = −β j−1ξ j−1,d with
β0 = 0 and β j , ci−1, j > 0, j ∈ Ni−1, such that

L Vi−1(x1, x2, . . . , xi−1)

≤ −
i−1∑

j=1

ci−1, j |ξ j |r+1 + ki−1ξi−1([xi ]r − [x∗
i ]r ).

(16)
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Next, we will prove that formula (16) still holds
for the (x1, x2, . . . , xi )-subsystem. In fact, choose a
Lyapunov–Krasovskii functional for the subsystem

Vi (x1, x2, . . . , xi )

=Vi−1+ki
2

ξ2i +K
i−1∑

j=1

∫ t

t−d j

|ξ j |r+1(s)ds

+ ai
1−vi

∫ t

t−di
|ξi |r+1(s)ds

with arbitrary positive constants ki and K . Based on
coordinate transformation (15), a simple calculation
obtains that

L Vi (x1, x2, . . . , xi )

= L Vi−1 + ki ξi
([xi+1]r + fi +

i−1∑

j=1

Bi j ([x j+1]r + f j )
)

+ki
2

||gi+
i−1∑

j=1

Bi j g j ||2+K
i−1∑

j=1

|ξ j |r+1−K
i−1∑

j+1
|ξ jd |r+1(1−ḋ j )

+ ai
1 − vi

|ξi |r+1 − ai
1 − vi

|ξid |r+1(1 − ḋi )

≤−
i−1∑

j=1
ci−1, j|ξ j |r+1+ki−1ξi−1

([xi ]r−[x∗
i ]r)+ki ξi

([xi+1]r−[x∗
i+1]r

)

+ ki ξi [x∗
i+1]r + ki ξi

(
fi +

i∑

j=1

Bi j ([x j+1]r + f j )
)

+ ki
2

||gi +
i−1∑

j=1

Bi j g j ||2 + K
i−1∑

j=1

|ξ j |r+1

−K
i−1∑

j=1
(1−v j )|ξ jd |r+1+ ai

1−vi
|ξi |r+1−ai |ξid |r+1, (17)

where Bi j = βi−1βi−2 · · ·β j , j ∈ Ni−1.
Wewill investigate the terms on the right of inequal-

ity (17). According to coordinate transformation (15),
Assumption 1, Lemmas 5 and 6, it follows that

ki
2

||gi +
i−1∑

j=1

Bi j g j ||2

≤ ki ||gi ||2 + ki (i − 1)
i−1∑

j=1

Bi j ||g j ||2

≤ 2iki b
2
i

i∑

j=1

(|x j |r+1 + |x jd |r+1)

+ 2(i − 1)ki

i−1∑

j=1

jb2j B
2
i j

j∑

m=1

(|xm |r+1 + |xmd |r+1)

≤ 2r ki

i−1∑

j=1

(b̄i j + βr+1
j b̄i, j+1)(|ξ j |r+1 + |ξ jd |r+1)

+ 2r ki b̄i i (|ξi |r+1 + |ξid |r+1). (18)

where b̄i j = 2iki a2i + 2(i − 1)
∑i−1

m= j mB2
imb

2
m, j ∈

Ni . Substituting (18) into (17) yields

L Vi (x1, x2, . . . , xi )

≤ −
i−1∑

j=1

ci−1, j |ξ j |r+1 + ki−1ξi−1([xi ]r − [x∗
i ]r )

+ kiξi ([xi+1]r − [x∗
i+1]r ) + kiξi [x∗

i+1]r

+ kiξi
(
fi +

i∑

j=1

Bi j ([x j+1]r + f j )
)

+
i−1∑

j=1

li j1ξ
r+1
j +hi1ξ

r+1
i −

i−1∑

j=1

Pi jξ
r+1
jd −Piiξ

r+1
id ,

(19)

where li j1 = K + 2r ki
∑

(b̄i j + βr+1
j b̄i, j+1), hi1 =

ai
1−vi

+ 2r ki b̄i i , Pi j = K (1 − vi ) − 2r ki (b̄i j +
βr+1
j b̄i, j+1), j ∈ Ni−1, and Pii = ai − 2r ki b̄i i . For

the second term, by using (6) and (8), we can get

ki−1ξi−1([xi ]r − [x∗
i ]r )

≤ 21−r ki−1|ξi−1||ξi |r ≤ li,i−1,2|ξi−1|r+1+hi2|ξi |r+1,
(20)

where li,i−1,2, hi2 > 0 are two constants. Similarly, it
follows from Assumption 1 and Lemma 4 that

kiξi
(
fi +

i∑

j=1

Bi j ([x j+1]r + f j )
)

≤ ki |ξi |
(
ai

i∑

j=1

|x j |r + |x jd |r ) +
i−1∑

j=1

Bi j
([x j+1]r

+ a j

j∑

m=1

(|xm |r + |xmd |r )
))
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≤ki |ξi |
i∑

j=1

(
b̃i j (|ξ j |r+βr

j−1|ξ j−1|r )

+b̂i j (|ξ jd |r+βr
j−1|ξ j−1,d |r )

)

≤
i−1∑

j=1
li j3|ξ j |r+1+hi3|ξi |r+1+

i−1∑

j=1
Pi j |ξ jd |r+1+Pii |ξid |r+1,

(21)

where for any j ∈ Ni−1, b̂i j = ai + ∑i−1
m= j am Bim ,

b̂i i = ai , b̃i j = ai + Bi, j−1 + ∑i−1
m= j am Bim , b̃i i =

ai + Bi,i−1, and li j3, hi3 > 0 are constants. Then,
substituting (20) and (21) into (19) results in

L Vi (x1, x2, . . . , xi )

≤ −
i−1∑

j=1

ci j |ξ j |r+1 + kiξi ([xi+1]r − [x∗
i+1]r )

+ (hi1 + hi2 + hi3)|ξi |r+1 + kiξi [x∗
i+1]r , (22)

where ci j = ci−1, j − li j1 − li j3 > 0, j ∈
Ni−2, and ci,i−1 = ci−1,i−1 − li,i−1,1 − li,i−1,2 −
li,i−1,3 > 0. By designing x∗

i+1 = −βiξi with βi =
(
cii+hi1+hi2+hi3

ki
)
1
r > 0 and the arbitrary positive con-

stant cii , it follows that

L Vi (x1, x2, . . . , xi )

≤ −
i∑

j=1

ci j |ξ j |r+1 + kiξi
([xi+1]r − [x∗

i+1]r
)
. (23)

The induction proof above shows that (16) holds for
every i ∈ Nn . Thus, for system (1), we can choose

Vn(x1, x2, . . . , xn)

= Vn−1 + kn
2

ξ2n + K
n−1∑

j=1

∫ t

t−d j

|ξ j (s)|r+1ds

+ an
1 − vn

∫ t

t−dn
|ξn(s)|r+1ds

with kn > 0, and design x∗
n+1 = −βnξn with βn =

( cnn+hn1+hn2+hn3
kn

)
1
r > 0 and the arbitrary positive con-

stant cnn , such that

L Vn(x1, x2, . . . , xn)

≤ −
n∑

j=1

cnj |ξ j |r+1 + knξn([u]r − [x∗
n+1]r ). (24)

Remark 5 It is noted that the multiple time-varying
delays di (t) need to satisfy ḋ(t) ≤ vi < 1 with the
positive constant numbers vi , i ∈ Nn . This constraint
condition on time delays is necessary in our controller
design, which has wide applications in the study of
time-delay systems, such as [21,30]. It means that the
change of the time delays is relatively slow. From the
designprocess above,we can see thatvi , i ∈ Nn greatly
effect the performance of the controller and cannot be
too close to one in practice.

3.2 Reduced-order observer design

In this part, a reduced-order state observer will be
introduced to estimate the unmeasurable system states
xi , i ∈ In . Let ẑi = x̂i − si−1 x̂i−1, i ∈ In , where
x̂1 = x1 and s j > 1, j ∈ Nn−1 are dynamic gains to
be determined later. Construct the following dynamic
observer equation to generate ẑi , i ∈ In
{ ˙̂zi = [x̂i+1]r − si−1[x̂i ]r , i ∈ In−1,˙̂zn = [u]r − sn−1[x̂n]r . (25)

For any i ∈ In , the estimator x̂i of xi can be obtained by
x̂i = ẑi +si−1 x̂i−1. Meanwhile, let zi = xi −si−1xi−1,
and define an error variable ei = zi − ẑi . According to
dynamic systems (1) and (25), we can get that
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dei =
(
([xi+1]r −[x̂i+1]r )+( fi −si−1 fi−1)−si−1([xi ]r

−[x̂i ]r )
)
dt+(

gi − si−1gi−1
)Tdw, i ∈ In−1,

den =(
( fn−sn−1 fn−1)−sn−1([xn]r − [x̂n]r )

)
dt

+(
gn−sn−1gn−1

)T dw.

(26)

For error system (26), construct aLyapunov–Krasovskii
functional

U (e2, e3, . . . , en)=
n∑

i=2

mi

2
e2i

+
n∑

i=1

wi

1−vi

∫ t

t−di
|ξi (s)|r+1ds

with arbitrary positive constants mi and wi . A simple
calculation yields

LU (e2, e3, . . . , en)

=
n−1∑

i=2

miei
([(xi+1]r−[x̂i+1]r

)
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−
n∑

i=2

miei si−1
([xi ]r−[x̂i ]r

)

+
n∑

i=2

miei
(
fi − si−1 fi−1

)

+ 1

2

n∑

i=2

mi ||gi − si−1gi−1||2

+
n∑

i=1

wi

1 − vi

(|ξi |r+1 − |ξid |r+1(1 − ḋi )
)
. (27)

Consider the first term of (27). According to inequality
(8) we obtain that

n−1∑

i=2

miei
([(xi+1]r − [x̂i+1]r

)

≤ 21−r
n−1∑

i=2

mi |ei | |xi+1 − x̂i+1|r . (28)

For the second term of (27), we rewrite it as the
following form

−
n∑

i=2

miei si−1
([xi ]r − [x̂i ]r

)

= −
n∑

i=2

miei si−1
([xi ]r − [xi − ei ]r )

)

−
n∑

i=2

miei si−1
([xi − ei ]r − [x̂i ]r

)
. (29)

For any i ∈ In , assuming that ei �= 0, let v = xi
ei

, ε =
s
− 1

r+1
i−1 and s = r . Then, according to Lemma 7, it fol-
lows that

− miei si−1
([xi ]r − [xi − ei ]r )

≤ mis
r−1
r+1
i−1 |xi |r+1 − (2r − 1)mis

2r
r+1
i−1 |ei |r+1. (30)

Clearly, inequality (30) holds when ei = 0. In addition,
with the help of x̂i = xi − ei − si−1(xi−1 − x̂i−1) and
Lemma 5, we can get that

− miei si−1
([xi − ei ]r − [x̂i ]r

)

≤ 21−rmi s
r+1
i−1 |ei | |xi−1 − x̂i−1|r . (31)

Substituting (30) and (31) into (29) gives rise to

−
n∑

i=2

miei si−1
([xi ]r − [x̂i ]r

)

≤
n∑

i=2

mis
r−1
r+1
i−1 |xi |r+1 −

n∑

i=2

mi H(si−1)|ei |r+1

+ 21−r
n∑

i=2

mis
r+1
i−1 |ei | |xi−1 − x̂i−1|r , (32)

where H(si−1) = (2r − 1)s
2r
r+1
i−1 . For the forth term of

(27), by using Assumption 1, Lemma 6 and coordinate
transformation (15), we have the following estimation

1

2

n∑

i=2

mi ||gi − si−1gi−1||2

≤
n∑

i=2

mi
(||gi ||2 + s2i−1||gi−1||2

)

≤
n∑

i=2

mi

(
2ib2i

i∑

j=1

(|x j | r+1
2 + |x jd | r+1

2 )2

+ 2(i − 1)b2i−1s
2
i−1

i−1∑

j=1

(|x j | r+1
2 + |x jd | r+1

2 )2
)

≤
n∑

i=2

( i−1∑

j=1

Ri j (si−1)|ξ j |r+1 + Rii |ξi |r+1

+
i−1∑

j=1

Ri j (si−1)|ξ jd |r+1 + Rii |ξid |r+1
)
, (33)

where Ri j (si−1) = 2r+1mi
(
ib2i +(i−1)s2i−1b

2
i−1

)(
1+

β j
)r+1

, j ∈ Ni−2, Ri,i−1(si−1) = 2r+1mi
(
ib2i + (i −

1)s2i−1b
2
i−1 + ib2i β

r+1
i−1

)
and Rii = 2r+1mi ib2i . Let

λi1(si ,
si+1, . . . , sn−1) = Rii + Ri+1,i (si ) + Ri+2,i (si+1) +
· · · + Rni (sn−1), i ∈ Nn−1 with R11 = 0 and λn1 =
Rnn . Then, formula (33) can be further expressed as

1

2

n∑

i=2

mi ||gi − si−1gi−1||2

≤
n∑

i=1

λi1(si , si+1, . . . , sn−1)
(|ξi |r+1 + |ξid |r+1),

(34)
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where λi1(si , si−1, . . . , sn−1) are nonnegative func-
tions of si , si−1, . . . , sn−1, i ∈ Nn−1 and λn1 is a posi-
tive constant. For the last term of (27), it follows from
ḋi (t) ≤ vi < 1, i ∈ Nn that

n∑

i=1

wi

1 − vi

(|ξi |r+1 − |ξid |r+1(1 − ḋi )
)

≤
n∑

i=1

λi2|ξi |r+1 −
n∑

i=1

wi |ξid |r+1, (35)

whereλi2 = wi
1−vi

> 0, i ∈ Nn . Substituting (28), (32),
(34) and (35) into (27), we have

LU (e2, e3, . . . , en)

≤
n∑

i=2

mis
r−1
r+1
i−1 |xi |r+1 −

n∑

i=2

mi H(si−1)|ei |r+1

+21−r
( n−1∑

i=2
mi |ei ||xi+1−x̂i+1|r+

n∑

i=2
mis

r+1
i−1 |ei ||xi−1−x̂i−1|r

)

+
n∑

i=1

(
λi1(si , si+1, . . . , sn−1) + λi2

)|ξi |r+1

−
n∑

i=1

Qi |ξid |r+1 +
n∑

i=2

miei
(
fi − si−1 fi−1

)
, (36)

where Qi = wi − λi1(si , si+1, . . . , sn−1), i ∈ Nn .
For the first term of (36), according to (7) and (15)

it follows that

n∑

i=2

mis
r−1
r+1
i−1 |xi |r+1

≤ 2r
n∑

i=2

mis
r−1
r+1
i−1

(|ξi |r+1 + βr+1
i−1 |ξi−1|r+1)

=
n∑

i=1

λi3(si−1, si )|ξi |r+1, (37)

whereλi3(si−1, si ) = 2r
(
mis

r−1
r+1
i−1+mi+1s

r−1
r+1
i βr+1

i

)
, i ∈

Nn with s0 = sn = 0. By using the variable transfor-
mations xi = zi + si−1xi−1, x̂i = ẑi + ŝi−1 x̂i−1 and
ei = zi − ẑi , for any i ∈ In , we have

xi − x̂i =ei +si−1ei−1+si−1si−2ei−2+si−1si−2· · ·s2e2.
(38)

Thismeans that for any i ∈ In , xi − x̂i can be expressed
as the linear combination of e2, e3, . . . , ei . Based on
(6), (9) and (38), for the third term of (36), we have

21−r
( n−1∑

i=2

mi |ei ||xi+1− x̂i+1|r +
n∑

i=2
mi s

r+1
i−1 |ei ||xi−1− x̂i−1|r

)

= 21−rm2|e2||e3 + s2e2|r + 21−r
n−1∑

i=3

mi |ei |
(|ei+1 + si ei

+ si si−1ei−1 + · · · + si si−1 · · · s2e2|r + sr+1
i−1 |ei−1

+ si−2ei−2 + si−2si−3ei−3 + · · · + si−2si−3 · · · s2e2|r
)

+ 21−rmns
r+1
n−1|en ||en−1 + sn−2en−2 + sn−2sn−3en−3

+ · · · + sn−2sn−3 · · · s2e2|r

≤
n−1∑

i=2

σi1(si , si+1, . . . , sn−1)|ei |r+1 + σn1|en |r+1

�
n∑

i=2

σi1(si , si+1, . . . , sn−1)|ei |r+1, (39)

where σi1(si , si+1, . . . , sn−1) are nonnegative func-
tions of the gains si , si+1, . . . , sn−1, i ∈ Nn−1 and σn1
is a positive constant. Next, we concentrate on the last
term of (36). In fact, by usingAssumption 1, coordinate
transform (15) and Lemma 5, it follows that

n∑

i=2

miei ( fi − si−1 fi−1)

≤
n∑

i=2

mi |ei |
(
ai

i∑

j=1

(|x j |r+|x jd |r
)+si−1ai−1

i−1∑

j=1

(|x j |r+|x jd |r
))

≤
n∑

i=2

mi |ei |
( i−1∑

j=1

Ai j (si−1)
(|ξ j |r +|ξ jd |r

)+Aii
(|ξi |r+|ξid |r

))
,

(40)

where Ai j (si−1) = (ai +si−1ai−1)(1+βr
j ), j ∈ Ni−2,

Ai,i−1(si−1) = si−1ai + ai (1 + βr
i−1) and Aii = ai .

According to Lemma 4, inequality (40) can be further
calculated as

n∑

i=2

miei ( fi − si−1 fi−1)

≤
n∑

i=2

( i−1∑

j=1

(
Āi j (si−1)|ξ j |r+1 Ãi j (si−1)|ξ jd |r+1

)

+ Āii |ξi |r+1 + Ãii |ξid |r+1 +
i∑

j=1

Âi j |ei |r+1
)
, (41)
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where Āi j (si−1), Ãi j (si−1), j ∈ Ni−1 are appropriate
nonnegative functions of si−1, and Āii , Ãii , Âi j , j ∈
Ni are appropriate positive constants. For any i ∈ Nn ,
let λi4(si , si+1, . . . , sn−1) = ∑n

j=i+1 Ā ji (s j−1)+ Āii

with Ā11 = 0 and λn4 = Ānn , and choose appropriate
Ãi j (si−1) and Ãii such that Qi = ∑n

j=i+1 Ã ji (s j−1)+
Ãii with Ã11 = 0 and Qn = Ãnn . Then, it follows that

n∑

i=2

miei ( fi − si−1 fi−1)

≤
n∑

i=1

λi4(si , si+1, . . . , sn−1)|ξi |r+1 +
n∑

i=1

Qi |ξid |r+1

+
n∑

i=2

σi2|ei |r+1, (42)

where σi2 = ∑i
j=1 Âi j , i ∈ In . Substituting (37), (39)

and (42) into (36) yields

LU (e2, e3, . . . , en)

≤
n∑

i=1

(
λi1(si , si+1, . . . , sn−1) + λi2 + λi3(si−1, si )

+ λi4(si , si+1, . . . , sn−1)
)|ξi |r+1 +

n∑

i=2

(−mi H(si−1)

+ σi1(si , si+1, . . . , sn−1) + σi2
)|ei |r+1. (43)

3.3 Main results

Based on the design obtained in Sects. 3.1 and 3.2
above, we give the main stabilization results for system
(1) in the third part. Output feedback stabilizer, stability
analysis and the procedure of selecting dynamic gains
si , i ∈ Nn−1 will be provided here.

Theorem 1 Consider system (1) under Assumption
1. There exists an output feedback control law u =
u(y, x̂2, . . . , x̂n)with dynamic observer (25), such that
the closed-loop system is GSASP at x = 0.

Proof By using the system output y and the state esti-
mations x̂i , i ∈ In generated by (25), we construct the
following controller for system (1)

u = −βnξn(y, x̂2, . . . , x̂n)

= −(βn x̂n + βnβn−1 x̂n−1 + · · · + βnβn−1 · · · β2 x̂2

+ βnβn−1 · · · β1y) (44)

To investigate the stochastic stability of (1)–(44), the
Lyapunov–Krasovskii functional V = Vn(x1, x2, · · · ,

xn) + U (e1, e2, . . . , en) is chosen for the system.
According to (24) and (43), the differential of V is
given as

L V = L Vn(x1, x2, . . . , xn) + LU (e1, e2, . . . , en)

≤
n∑

i=1

( − cni + λi1(si , si+1, . . . , sn−1) + λi2

+ λi3(si−1, si )λi4(si , si+1, . . . , sn−1)
)|ξi |r+1

+
n∑

i=2

( − mi H(si−1) + σi1(si , si+1, . . . , sn−1)

+ σi2
)|ei |r+1 + knξn([u]r − [x∗

n+1]r ). (45)

From the state feedback controller design, we can see
that x∗

n+1 = −βnξn = −(βnxn + βnβn−1xn−1 + · · · +
βnβn−1 · · ·β2x2 + βnβn−1 · · ·β1y. Thus, according to
Lemma 5, (44) and (38), we have

knξn([u]r − [x∗
n+1]r )

≤ 21−r kn|ξn| |u − x∗
n+1|r

= 21−r kn|ξn| |βn(xn − x̂n) + βnβn−1(xn−1 − x̂n−1)

+ · · · + βnβn−1 · · · β2(x2 − x̂2)|r

= 21−r kn|ξn|
∣
∣
∣

n−1∑

i=2

Li (si , si+1, . . . , sn−1)ei +Lnen
∣
∣
∣
r
,

(46)

where Li (si , si+1, . . . , sn−1) = βnsn−1sn−2 · · · si +
βnβn−1
sn−2 · · · si + · · · + βnβn−1βn−2 · · · βi , i ∈ In−1 and
Ln = βn . It follows from Lemmas 4 and 6 that inequal-
ity (46) is further rewritten as

knξn([u]r − [x∗
n+1]r )

≤ λn5|ξn|r+1 +
n∑

i=2

σi3(si , si+1, . . . , sn−1)|ei |r+1,

(47)

where λn5, σn3 are two appropriate positive constants
and σi3(si , si+1, . . . , sn−1), i ∈ In−1 are nonnegative
functions of si , si+1, . . . , sn−1. Let λi5 = 0, i ∈ Nn−1.
Then, substituting (47) into (45) yields
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L V ≤
n∑

i=1

( − cni + λi1(si , si+1, . . . , sn−1) + λi2

+ λi3(si−1, si )+λi4(si , si+1,· · ·, sn−1)+λi5
)|ξi |r+1

+
n∑

i=2

( − mi H(si−1) + σi1(si , si+1, . . . , sn−1)

+ σi2 + σi3(si , si+1, . . . , sn−1)
)|ei |r+1. (48)

Now, by using inequality (48), we recursively select
the dynamic gains si , i ∈ Nn−1 such that LW < 0
holds. First, for numbers μn > 0 and ρn > 0 we select
appropriate sn−1 such that the following condition is to
be satisfied
{−cnn + λn1 + λn2 + λn3(sn−1) + λn4 + λn5 ≤ −μn,

−mnH(sn−1) + σn1 + σn2 + σn3 ≤ −ρn .

Based on sn−1 fixed above, taking two real numbers
μn−1 > 0 and ρn−1 > 0 we select appropriate sn−2

such that
⎧
⎨

⎩

−cn,n−1 + λn−1,1(sn−1)+λn−1,2+λn−1,3(sn−2, sn−1)

+λn−1,4(sn−1) ≤ −μn−1,

−mn−1H(sn−2)+σn−1,1(sn−1)+σn2+σn−1,3(sn−1)≤−ρn−1.

Following this process until step n − 2, we have fixed
n − 2 dynamic gains sn−1, sn−2, . . . , s2. Now, we take
three real numbers μ1 > 0, μ2 > 0 and σ2 > 0, and
select appropriate s1 such that the following three con-
ditions hold
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−cn2 + λ21(s2, s3 . . . , sn−1) + λ22 + λ23(s1, s2)
+λ24(s2, s3 . . . , sn−1) ≤ −μ2,

−m2H(s1) + σ21(s2, s3, . . . , sn−1) + σ22
+σ23(s2, s3, . . . , sn−1) ≤ −ρ2,

−cn1 + λ11(s1, s2 . . . , sn−1) + λ12 + λ13(s1)
+λ14(s1, s2 . . . , sn−1) ≤ −μ1.

Based on the selection of the gains above, (48)
becomes

L V ≤ −
n∑

i=1

μi |ξi |r+1 −
n∑

i=2

ρ j |ei |r+1 < 0. (49)

Let W = ∑n
i=1 μi |ξi |r+1 + ∑n

i=2 ρ j |ei |r+1. Clearly,
W is nonnegative, continuous and positive definite.
So, from formula (49) and Lemma 1 we can see that
closed-loop system (1)–(44) is GSASP by selecting the
dynamic gains appropriately.

Remark 6 For system (1), Sect. 3 provides a systemical
design method of the output feedback controller and a

recursive selection procedure of the dynamic observer
gains. According to the proof of Theorem 1, the n − 1
pending gains si , i ∈ Nn−1 can be effectively selected,
under which the stability of the resulting systemwill be
achieved. It should be noted that the 4n − 2 adjustable
parameters mi , wi , μi and σi can make the selection
of the gains more flexible. Furthermore, for the sake of
increasing the flexibility and convenience of the con-
troller, the 2n + 1 adjustable parameters K , ki and cii
are introduced in the construction of LKF candidates
Vi , i ∈ Nn . From the construct process, we can see
that a better performance of the proposed control strat-
egy may be obtained by properly selecting them. The
system variables and these parameters are described
in Table 2. In addition, it follows from Sect. 3 that the
information of the bounds ai and bi in Assumption
1 is only required rather than the functions fi (·) and
gi (·), i ∈ Nn in the design of our controller (44). This
indicates that even if the functions fi (·) and gi (·) have
some uncertainty, it will not affect the design process
of the controller. That is to say, the proposed control
scheme in our paper has a certain degree of robustness
to uncertainties of the system.

Remark 7 When the system parameters are deter-
mined, the proposed control algorithm can be divided
into three main steps. First, the estimators x̂i (k) of
unmeasurable system states are computed by the equa-
tion x̂i (k) = ẑi (k) + si−1 x̂i−1(k), i ∈ In . Second,
by using the measured values y(k) of the system out-
put and the estimators x̂i (k), i ∈ In , the control input
u(k) can be computed from (44). Third, according to
Eq. (25), the values of the state observer ẑi (k + 1), i ∈
In , at time k + 1 are calculated in regard to u(k), y(k)
and x̂i (k), i ∈ In . Meanwhile, the states of the original
system at time k + 1 are updated by using the control
input u(k). From the calculation process above, it can
be seen that the computational cost of the proposed
method in our paper is low. To illustrate this point, the
function tic-toc in MATLAB is used to measure the
computation time in simulation examples of Sect. 4.

Remark 8 In Sect. 3, we developed a recursive design
method that yields an output feedback stabilizer for
low-order SNTDSs. This stabilizer is comprised of a
state feedback controller and a reduced-order observer.
It should be noted that the present paper is first to pro-
vide a solution to the stabilization problemof low-order
SNTDSs. Compared with the recent works in [43,44],
where low-order stochastic nonlinear systems are con-
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Table 2 List of system
variables and adjustable
parameters

System variables Adjustable parameters

xi System states K Affect the value of β j

xid Delayed states ki Affect the value of β j

x̂i Estimated states cii Affect the value of β j

x∗
i Virtual controllers si Affect the value of u

ẑi Observer states mi Affect selection of s j
ei Error variables wi Affect selection of s j
y System output μi Affect selection of s j
u Control input σi Affect selection of s j

sidered and the corresponding stabilization problems
in different scenarios have been solved, time-varying
delays of the system states are taken into account in
our work. This is one of main reasons for the diffi-
culty in solving the problem. Although there are lots of
research results on some special stochastic time-delay
systems, such as [21–23] for strict-feedback SNTDSs,
and [32–35] for high-order SNTDSs, it is still a diffi-
cult task to address the problem for low-order SNTDSs
due to the intrinsic characteristics of such systems. For
example, the backstepping-based design method com-
monly used in Refs. [21,22] cannot be applied to our
work because low-order SNTDSs are not feedback lin-
earizable. Meanwhile, the AAPI-based design method
used in Refs. [33,35] also cannot be directly applied to
our work because low-order SNTDS (1) is continuous
but nondifferentiable. An appropriate LKF and a new
reduced-order observer are developed to successfully
overcome the obstacles in the present paper. In a sense,
compared with the existing achievements mentioned
above, the advantage of our work is to be able to solve
the output feedback stabilization problem of low-order
SNTDSs under some conditions.

4 Simulation example

In order to verify the effectiveness of the feedback con-
trol method developed in Sect. 3, we provide an illus-
trative example in this section.

Example 1 Consider a planar low-order SNTDS

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dx1 = [x2] 34 dt + 1
16 cos(x1x1d)dt + 1

8 [x1]
7
8 dw,

dx2 = [u] 34 dt + 1
9 sin(x2) cos(x2d)dt+ 1

10 sin(x1 + x2d)dw,

y = x1,
(50)

where xi = xi (t) are system states, xid = xi
(
t − di

)

are delayed states, and di = di (t) are time-varying
delays of the system, i = 1, 2. Take d1(t) = 0.1(1 +
sin(t)) and d2(t) = 0.2(1 − cos(t)). Clearly, system
(50) satisfies Assumption 1 with r = 3

4 , a1 = 1
16 , b1 =

1
8 , a2 = 1

9 , b2 = 1
10 , and the conditions ḋi (t) ≤ vi <

1, i = 1, 2 with v1 = 1
10 , v2 = 1

5 . Assuming that only
the output signal y can be measurable, we now apply
the proposed control method to construct a stabilizer
for system (50).

For the x1-subsystem of (50), choose V1(x1) =
k1
2 x

2
1 + 5

72

∫ t−d1
t |x1(s)| 74 ds with k1 > 0. It follows

that x∗
2 = −β1x1 with β1 = ( c11+l111

k1
)
4
3 where

c11 > 0 and l111 = 5
75 + 5k1

64 + k1
28 (

7
3k1

− 7
12 )

− 3
4 .

For whole system (50), let ξ2 = x2 − x∗
2 , ξ2d =

x2d − x∗
2d , and choose V2(x1, x2) = V1(x1) + k2

2 ξ22 +
K

∫ t−d1
t |ξ1(s)| 74 ds + 5

36

∫ t−d2
t |ξ2(s)| 74 ds with k2 >

0, K > 0. We construct a state feedback controller
u = u(x1, x2) = −β2x2 − β2β1x1 with β2 =
( c22+h21+h22+h23

k2
)
4
3 where c22 is an arbitrary positive
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constant, h21 = 5
36 + 1

252
3
4 k2, h22 = 3

72
9
12 k1 and h23 =

( 2
63 (1+β

3
4
1 )+ 1

9 +β1 + 4
7β1(1+β

3
4
1 )

)
k2 + 4

63 (1+β
3
4
1 )

k2
(

21

2k2(1+β
3
4
1 )

( 9
10K − ( 1

25 + 1
5β

2
1 + 1

252
3
4 β

7
4
1 )k2

))− 3
4 +

4
63k2

( 7
3k2

− 21
252

3
4
)− 3

4 + 1
28k1β1

(
56

3k2β1

( 9
10K − ( 1

25 +
1
5β

2
1 + 1

252
3
4 β

7
4
1 )k2

))− 3
4
.

Next, we construct an observer for unmeasurable
state x2. The symbol x̂2 denotes the estimated value of
x2. Let ẑ2 = x̂2−s1y, where s1 > 1 is the dynamic gain
needing to be selected. Consider the following observer
system

˙̂z2 = [u] 34 + s1[ẑ2 + s1x1] 34 . (51)

By using the variable substitution x̂2 = ẑ2 + s1x1,
dynamic equation (51) generates the estimated state x̂2.
Furthermore, substituted x̂2 for x2 in u = u(x1, x2), we
get the desired controller

u = u(y, x̂2) = −β2 x̂2 − β2β1y. (52)

Thenumerical simulation resultswere obtained accord-
ing to the Euler-Maruyama technique [59] in the MAT-
LAB environment (MATLABR2020b). The initial val-
ues of the original system and the observer system are
set to be (x1(0), x2(0)) = (−0.6, 0.7) and ẑ2(0) = 0.8,
respectively. In order to illustrate the influence of the
adjustable parameters K , k1, k2, c11 and c22 on con-
troller (52), the detailed experimental data with the dif-
ferent parameter values are described in Table 3. It can
be seen from the table that the values of β1, β2 and s1
can be changed by adjusting these parameters, which
means that better performance of the system may be
achieved by selecting proper parameter values.

We choose the first set of parameter values for simu-
lation display. Namely, take K = 0.05, k1 = 0.1, k2 =
0.01, c11 = 0.2 and c22 = 0.1. Based on the selection

procedure provided in Sect. 3.3, the dynamic gain is
selected as s1 = 20. β1 and β2 can be calculated as 3.9
and182.01, respectively. Figures 1, 2 and3demonstrate
the simulation results. From the numerical results, it
follows that system (50) is GSASP at (x1, x2) = (0, 0)
under proposed control scheme (51)–(52). By using the
function tic-tok in MATLAB, the computation time is
measured as 0.024s.

Example 2 Consider the liquid-level systemwith inter-
action (see [36]) shown in Fig. 4. Suppose that tank 1
and tank 2 have the same capacitances of c. The liquid
levels of two tanks are H1 and H2, respectively, and
their steady-state liquid levels are all H̄ . Note that the
difference of H1 and H2 at a certain moment will lead
to the change of the flow rates Q1 and Q2, which can
be described as

Q1 =
{
p1|H2 − H1| 12 , H2 ≤ H1

−p1|H2 − H1| 12 , H2 > H1
(53)

and

Q2 = p2H
1
2
2 , (54)

where p1 and p2 are resistance coefficients of the cor-
responding valves. Assume that Q is inflow rate of the
system. The goal is to adjust Q such that both H1 and
H2 asymptotically converge to the steady state H̄ . Let

x1 = H1−H̄ , x2 = H2−H1 and [u] 12 = 1
c Q− 1

c p2 H̄
1
2 .

When considering random disturbances and multiple
time-varying delays, the dynamic of the liquid levels
of the tanks 1 and 2 can be described as

⎧
⎪⎨

⎪⎩

dx1= 1
c p1[x2]

1
2 dt + 1

2 |x1d |
3
4 dw,

dx2=[u] 12 dt + ϕ(x̄2, x̄2d)dt + 1
2 |x2d |

3
4 dw,

y = x1,

(55)

Table 3 Experimental data with the different parameter values

K k1 k2 c11 c22 β1 β2 s1

0.05 0.1 0.01 0.2 0.1 3.9 182.01 20

0.01 0.2 0.05 0.4 0.5 3.2 84.3 55

0.08 0.4 0.08 0.6 0.2 2.13 41.06 30

0.3 0.08 0.03 0.01 1 1.1 155.56 80
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Fig. 1 The state trajectories of the closed-loop system

Fig. 2 The state trajectory of the observer system and the controller evolutions

Fig. 3 The Wiener process and the associated white Gaussian noise
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where ϕ(x̄2, x̄2d) = − 2
c p1[x2]

1
2 − 1

c p2(x1d + x2d +
H̄)

1
2 + 1

c p2 H̄
1
2 and x1d = x1

(
t −d1(t)

)
, x2d = x2

(
t −

d2(t)
)
, d1(t) = 0.1cos2(t), d2(t) = 0.1sin2(t) + 0.2.

It is clear that system (55) satisfies Assumption 1 with
r = 1

2 , and the condition ḋi (t) ≤ vi < 1, i = 1, 2
with v1 = 1

5 , v2 = 1
5 . When only the output signal y

is measurable, the proposed approach in the previous
sections can be used to solve the stabilization problem
of the system.

A state feedback controller is designed firstly for
system (55) by using the proposed approach, i.e.,

u = u(x1, x2) = −β2x2 − β1β2x1, (56)

where β1 = ( c
k1 p1

)
1
r
(
c11 + k1b21 + a1

1−v1
+ k1a1 + k1a1

1+r

(
(1+r)(a1−k1b21)

k1a1r
)−r

) 1
r and β2 = k

− 1
r

2 (c22 + h21 +
21−r r k̄1

1+r + a2
1−v2

)
1
r with h21 = k2

r+1 (a2β
r
1 + p1

c βr+1
1 )+

k2(a2 + p1
c β1) + 1

r+1k2a2(1 + βr
1)(

r+1
r )−r

(
K (1−v1)−2r k2β

r+1
1 −k2β2

1
k2a2(1+βr

1)
)−r+ k2a2

r+1 (
(a2−2r k2)(r+1)

rk2a2
)−r . For

the unmeasurable state x2, the estimated value can be
taken as x̂2 = ẑ2 + s1x1,, where ẑ is generated by the
dynamic

˙̂z2 = [u] 12 + 1

c
p1k1s1[ẑ2 + s1x1] 12 . (57)

Using x̂2 in place of x2 in (56), we get an output
feedback stabilizer u = u(y, x̂2) = −β2 x̂2 − β1β2y.
In the simulation, the initial conditions are given as
x1(0) = 0.3, x2(0)−0.4 and ẑ2(0) = 0.6. The dynamic
gain is given as s1 = 28. The other simulation parame-
ters are given as K = 0.5, k1 = 0.6, k2 = 0.08, c11 =
1.2, c22 = 1.7. The simulation results are shown in
Figs. 5, 6 and 7. It can be seen that system (53) is stabi-
lized by the proposed output feedback control scheme.

5 Conclusions

In this technical paper, we dealt with the stabilization
problem by using an output feedback approach for a
class of low-order SNTDSs where the powers of inte-
grators can be arbitrarily taken on the interval (0, 1). In
order to overcome the difficulties arisen from the low-
order nonlinearities, stochastic disturbers and multiple
time-varying delays, we generalize the classical AAPI

Fig. 4 The liquid-level system with interaction

Fig. 5 The trajectory of system output y

Fig. 6 The trajectories of x2 and ẑ2

approach [27] and the observer design method intro-
duced in [40] to construct an output feedback stabi-
lizer. A novel LKF was skillfully chosen in the con-
troller design, and the observer gains can be recursively
selected to guarantee the GSASP of the resulting sys-
tem at the trivial solution.
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Fig. 7 The trajectory of control input u

A meaningful work for further study is to extend
the results obtained in this paper to a more general
class of low-order SNTDSswith the different powers of
chained integrator. In fact, the authors have attempted
to solve the problem. But there are still some technical
difficulties that cannot be tackled. Moreover, another
work that deserves attention in the future is how to deal
with the sampled-data stabilization problem of low-
order SNTDSs. Clearly, it is a more difficult problem
because some information and properties of the system
will be lost due to sampling. A new design scheme
based on the method proposed in our paper needs to be
developed to solve the problem.
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