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Abstract We present analytical and numerical solu-
tions for spatiotemporal chirped solitary waves in the
generalized (3+1)-dimensional nonlinear Schrödinger
equation with varying sources under different modu-
lated diffraction and potential functions. Our analytical
approach provides a general formula that enables us to
generate various types of solitary waves by introducing
specific functional forms into the designed diffraction
and potential profiles. We investigate the compressed,
breathing, and quasiperiodic solitary wave solutions,
discussing their characteristics and physical applica-
tions in relevant fields.Additionally,we explore numer-
ical solutions where parameters can be arbitrarily cho-
sen, encompassing both snakelike and J-shaped solitary
waves. The results demonstrate that transverse and lon-
gitudinal structures of these solitarywaves can be effec-
tively manipulated by appropriately tuning the diffrac-
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tion, potential strength, and source term. Furthermore,
we numerically investigate solution stability by adding
initial white noise; our simulations show that propaga-
tion shapes of the solitary waves are preserved.
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1 Introduction

The nonlinear Schrödinger equation (NLSE) is one of
the most important models in the field of nonlinear
science. It describes the behavior of wave packets in
various physical systems, including optical fibers [1],
Bose–Einstein condensations (BECs) [2], plasmas [3],
and hydrodynamics [4]. The NLSE has been exten-
sively studied over the years due to its importance in
understanding complex phenomena such as solitons
[5], periodic solitary waves [6], and localized waves
[7,8]. Researchers have used various analytical and
numerical techniques to investigate the properties of
solutions to this equation under different conditions [9–
13]. Analytical solutions refer to mathematical expres-
sions that provide an exact description of the NLSE,
often involving special functions or series expansions.
In contrast, numerical solutions rely on computational
methods to approximate the NLSE using algorithms
and simulations, making them useful for studying com-
plex systems where analytical solutions may not be

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-024-09376-3&domain=pdf
http://orcid.org/0000-0001-5165-0765


8466 J.-R. He et al.

readily available. The NLSE in (1 + 1)-dimensions
[(1 + 1)-D] is integrable through inverse scattering
technique [14], while it is non-integrable in (2 + 1)-
D. Nevertheless, there are still several exact analytical
andnumerical solutions for theNLSEavailable through
various techniques [15,16]. Moreover, the (3 + 1)-D
NLSE has recently gained increasing interest in non-
linear optics due to its ability to support spatiotem-
poral solitons or light bullets—structures that remain
localized along the coordinate axis while maintaining
their shape during propagation in a nonlinear medium
[17,18]. For instance, the properties and stability of
3D spatiotemporal optical solitons in NLSE supported
by full or low-dimensional optical lattices have been
discussed in Ref. [19]. Analytical light bullet solutions
to the generalized (3 + 1)-D NLSE with distributed
coefficients have been found by F-expansion and bal-
ance principle method [20]. Three-dimensional rogue
waves to the (3 + 1)-D inhomogeneous NLSE with
variable coefficients and parabolic potential have been
obtained by symmetry technique [21]. Analytical spa-
tiotemporal soliton solutions to (3 + 1)-dimensional
cubic-quintic NLSE with distributed coefficients have
been presented inRef. [22].Various kinds of spatiotem-
poral solitons on cnoidal wave backgrounds in media
with different distributed transverse diffraction and dis-
persion have been derived in Ref. [23]. Moreover, in
Refs. [24,25] the authors explore spatiotemporal local-
ized modes and analytical light-bullet solutions of a
(3 + 1)-D NLSE with inhomogeneous diffraction or
dispersion and nonlinearity under the presence of har-
monic and parity-time-symmetric potentials. Addition-
ally, Refs. [26–29] investigate (3+1)-D analytical trav-
elingwave and solitary solutions for varying diffraction
and potential functions.

In addition to the aforementioned research, the
investigation of dual-core fiber amplifiers is also highly
prevalent [30–32]. The behavior of these amplifiers can
be approximately described by employing the NLSE
with a varying source. In (1 + 1)-D, the self-similar
transformations have yielded several exact analytical
solutions for the NLSE with varying sources [33–35].
The dynamics and nonlinear tunneling effect of snake-
like self-similar solutions in grating dual-core waveg-
uide amplifiers with different profiles have been inves-
tigated in Refs. [36–39]. Propagation characteristics
of ultrashort self-similar periodic waves and similari-
tons in an inhomogeneous optical medium with vary-
ing sources and modulated coefficients have been stud-

ied in Ref. [40]. In (3 + 1)-D, exact asymptotic spa-
tiotemporal optical self-similar solutions in a dual-core
waveguide with an external source have been presented
both analytically and numerically in Ref. [41]. Spa-
tiotemporal optical solitons in the dual-core waveguide
amplifiers with different modulated dispersions have
been studied in Ref. [42]. Detailed discussions on var-
ious types of analytical light bullet solutions in dual-
core media with dispersion-decreasing profiles can be
found inRefs. [43,44]. It should be noted that theNLSE
with varying sources can also be found in BECs [45],
where many types of exact nonautonomous matter-
wave solutions were reported. A review of the spa-
tiotemporal engineering of exact solutions generated
through explicit transformations from various NLSE
models is presented in Ref. [46].

In the aforementioned research on the (3 + 1)-D
NLSE, few scholars have simultaneously considered
the influence of external potentials and source terms on
the equation. In fact, external potential and source term
are indispensable factors in many physical systems in
the real world. For example, in quantum mechanics,
electrons are affected by external potentials whenmov-
ing under electric or magnetic fields [47]; while in
fields such as optical fiber communication, it is nec-
essary to consider possible external influences during
the propagation of light waves [48]. Therefore, for the
(3 + 1)-D NLSE and other related equations, incor-
porating both external potential and source term is a
highly important and challenging task. This can pro-
vide a more accurate description of real physical sys-
tems and offer more effective and reliable numerical
simulation tools for relevant fields. Furthermore, most
of the previous studies on the (3 + 1)-D NLSE have
assumed that the diffraction coefficients are modulated
equally in both transverse and longitudinal directions.
However, in practical applications, diffractionmayvary
along different directions. Therefore, it is crucial to
investigate the impact of diffraction coefficients under
different transverse and longitudinal modulations on
soliton propagation. This will help deepen our under-
standing of the complex dynamics and behaviors exhib-
ited by nonlinear systems. Specifically, in terms of
transverse modulation, we can adjust the diffraction
coefficients by changing the intensity distribution of
input beams or designing spatial filters [1]. This can
effectively reduce or eliminate waveform distortions
caused by diffraction and improve soliton transmission
efficiency. On the other hand, longitudinal modulation
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involves controlling properties of themedium itself and
external field strengths. For example, using current or
temperature to modify refractive index distribution is
a common method in optical fiber communication sys-
tems [49]. By selecting appropriate methods for lon-
gitudinal modulation and combining them with suit-
able feedback mechanisms, optical signals can be sta-
bly transmitted at expected speeds. In addition, it is of
paramount importance to consider the different modu-
lations of external potentials in both transverse and lon-
gitudinal directions within the context of BECs [2], as
we are aware that external potentials play a crucial role
in the formation and characteristics of BECs. In terms
of transverse modulation, the behavior of the conden-
sate system can be influenced by changing the interac-
tion strength between particles through external poten-
tials. For example, introducing periodic potential fields
into an optical lattice can generate Bloch oscillations,
thereby achieving transitions between superfluidity and
normal solid states [50]. Additionally, local or nonlo-
cal control methods can be employed to alter the cou-
pling between particles within the system, thus affect-
ing its dynamic behavior. As for longitudinal modula-
tion, external potentials can control the characteristics
of the condensate system by varying parameters such
as particle number and temperature [51]. For instance,
introducing radiation fields into a magneto-optical trap
enables effective control over atomic numbers, while
adjusting parameters like radiation field intensity and
frequency allows fine-tuning of temperature distribu-
tion and coherence length within the condensate sys-
tem.

Based on the above considerations, in this paper we
will explore the analytical and numerical solutions of
the generalized (3+ 1)-D NLSE with distributed coef-
ficients and a varying source term under different trans-
verse and longitudinal modulations for diffraction and
potential functions. To our knowledge, this model has
not been studied so far for obtaining spatiotemporal
solutions. Compared with the results in Refs. [41–44],
we pay more attention to the effects of different trans-
verse and longitudinal modulations on the propagation
of (3 + 1)-D spatiotemporal solutions. These studies
are crucial and interesting, and they provide answers
for manipulating soliton shapes in different directions.
In Sect. 2, we propose the generalized (3+1)-D model
and solution method to obtain spatiotemporal chirped
solitary wave solutions. In Sect. 3, we provide a gen-
eral formula that allows us to generate various types

of analytical solitary waves by introducing the specific
functional form into the designed diffraction and poten-
tial profiles. We then present some interesting solu-
tions including compressed, breathing, and quasiperi-
odic solitarywaves, discussing their characteristics and
physical applications in relevant fields. In Sect. 4, we
explore the numerical solutions for cases where param-
eters can be arbitrarily chosen and present two phys-
ically relevant examples demonstrating snakelike and
J-shaped solitary waves. Furthermore, we numerically
investigate the stability of these solutions. Section 5
concludes the main findings of this paper.

2 The (3 + 1)-D model and solution method

The generalized (3+1)-D NLSEwith distributed coef-
ficients and a varying source term under different trans-
verse and longitudinal modulations for diffraction and
potential functions can be written as:

iut + 1

2

[
β1(t)

(
uxx + uyy

) + β2(t)uzz
]

+ 1

2

[
f1(t)

(
x2 + y2

)
+ f2(t)z

2
]
u + γ (t)|u|2u

= ig(t)

2
u + s(t) exp[iφ(x, y, z, t)], (1)

where u ≡ u(x, y, z, t) is the wave function to be
solved. In BECs, x, y, and z are position coordi-
nates, and t is time. The functions β1(t) and β2(t)
represent the diffraction coefficients associated with
distinct transverse coordinates x, y, and longitudinal
coordinate z. γ (t) is the nonlinearity coefficient, and
g(t) is the gain or loss coefficient. f j (t)( j = 1, 2)
denotes the strength of the harmonic potential, and
s(t) exp[iφ(x, y, z, t)] describes the transport of atoms
from a reservoir to a waveguide in BECs [52]. In the
context of nonlinear optics, t represents the propaga-
tion distance, f j (t) characterizes the type of the graded-
indexmedium, and s(t) exp[iφ(x, y, z, t)] is attributed
to the built-in asymmetry of the dual-core optical fiber
amplifiers [33,36]. If β1(t) = β2(t) = β(t) and
f1(t) = f2(t) = 0, Eq. (1) serves as the governing
equation in [43,44], where analytical bright light bul-
let solutions were explored by means of self-similar
transformations. If s(t) = 0, Eq. (1) serves as the gov-
erning equation in [53],where spatiotemporal breathers
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of 3DNLSEwith different transverse diffractions were
found.

We seek the solution to Eq. (1) in the following form

u(x, y, z, t) = p(t)�(�) exp[iφ(x, y, z, t)], (2)

where

� = k(t)x + l(t)y + m(t)z + h(t), (3)

φ(x, y, z, t) = c1(t)(x
2 + y2) + c2(t)z

2

+ b1(t)(x + y) + b2(t)z + φ0(t). (4)

Here p(t), k(t), l(t),m(t), h(t), c1(t), c2(t), b1(t),
b2(t) and φ0(t) are parameter functions to be deter-
mined. Substituting Eqs. (2)–(4) into Eq. (1), we can
derive a set of equations:

dk

dt
+ 2c1β1k = 0, (5)

dl

dt
+ 2c1β1l = 0, (6)

dm

dt
+ 2c2β2m = 0, (7)

dh

dt
+ β1b1(k + l) + β2b2m = 0, (8)

dc1
dt

+ 2c21β1 − f1
2

= 0, (9)

dc2
dt

+ 2c22β2 − f2
2

= 0, (10)

db1
dt

+ 2c1β1b1 = 0, (11)

db2
dt

+ 2c2β2b2 = 0, (12)

dp

dt
+ (2c1β1 + c2β2)p − gp

2
= 0, (13)

dφ0

dt
+ b21β1 + 1

2
b22β2 + μ[β1(k

2 + l2) + β2m
2] = 0,

(14)

γ p2 − σ [β1(k
2 + l2) + β2m

2] = 0, (15)

s − s0 p[β1(k
2 + l2) + β2m

2] = 0. (16)

This holds true only if Eq. (1) can be transformed into
the following ordinary differential equation

1

2

d2�

d�2 + μ� + σ�3 − s0 = 0, (17)

where μ is the eigenvalue, s0 is the source ampli-
tude, and σ = ±1 determines whether the nonlinear-
ity exhibits self-focusing (σ = 1) or self-defocusing
(σ = −1).

Defining two auxiliary functions κ1 = exp(−2
∫ t
0 c1

β1dt) and κ2 = exp(−2
∫ t
0 c2β2dt), we get

k(t) = k0κ1, l(t) = l0κ1, m(t) = m0κ2,

b1(t) = b10κ1, b2(t) = b20κ2, (18)

h(t) = h0 − b10(k0 + l0)
∫ t

0
β1κ

2
1 dt

− b20m0

∫ t

0
β2κ

2
2 dt. (19)

The amplitude can be determined by solving
Eq. (13):

p(t) = p0κ1
√

κ2 exp

(
1

2

∫ t

0
gdt

)
, (20)

and the parameter φ0(t) is given by

φ0(t) = φ10 −
[
b210 + μ

(
k20 + l20

)] ∫ t

0
β1κ

2
1 dt

−
(
1

2
b220 + μm2

0

)∫ t

0
β2κ

2
2 dt. (21)

The subscript “0” represents the initial value of a given
function at t = 0.

It is clear that both γ (t) and s(t) can be effectively
solved by utilizing Eqs. (15) and (16):

γ (t) = σ

p20

[
β1

κ2

(
k20 + l20

)
+ β2κ2

κ2
1

m2
0

]

× exp

(
−

∫ t

0
gdt

)
, (22)

s(t) = s0 p0κ1
√

κ2

[
β1κ

2
1 (k20 + l20) + β2κ

2
2m

2
0

]

× exp

(
1

2

∫ t

0
gdt

)
, (23)

which implies that γ (t) and s(t) are not arbitrary but
rather depend on β(t) and g(t). Taking into account
Eqs. (22) and (23), we can derive a constraint condition
thatmust be satisfied by the coefficients of Eq. (1) using
the present method:

s(t) = s0 p
3
0σ

−1κ3
1κ

3/2
2 γ exp

(
3

2

∫ t

0
gdt

)
. (24)

Equation (17) stands out as a particularly fascinating
one due to its many exact solutions, ranging from the
elegant simplicity of trigonometric function solutions
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Table 1 Explicit constraint conditions on the parameters σ,μ, s0, P , and Q for the bright and dark solutions

σ μ s0 P Q F

(1) 1 4δ2+4δ+3
4δ(δ+1)

2δ+1
4δ(δ+1)

√−δ(δ+1)
2δ+1

2
√−δ(δ+1)

− δ(2δ+3)
2
√−δ(δ+1)

sech

(2) −1 − 3δ2+2δ+3
4δ − δ3+δ2−δ−1

4(−δ)3/2
3δ+1
2
√−δ

− δ(δ+3)
2
√−δ

tanh

to themore complex and nuanced elliptic function solu-
tions [38,54]. However, perhapsmost intriguing are the
soliton solutions—which can maintain their shape and
speed even after colliding with other solitons or obsta-
cles. For this purpose, we write the exact solution of
ordinary differential equation (17) as:

�(�) = [P + QF2(�)]/[1 + δF2(�)], (25)

where P, Q and δ are constants satisfying Pδ−Q �= 0,
and the function F can be selected from Table 1.

It should be noted that there may be some restric-
tions on the value of δ as indicated in Table 1. When
F = sech (bright soliton), we choose δ ∈ (−1,−0.5)∪
(−0.5, 0); when F = tanh (dark soliton), we choose
δ ∈ (−1, 0). These soliton solutions exhibit different
profiles for different regions of source amplitude δ. One
can obtain U-shaped profile solutions as source ampli-
tude δ → 0, and W-shaped profile solutions as source
amplitude δ → −1.

The final solution for u then is

u(x, y, z, t) = p0κ1
√

κ2

× exp

(
1

2

∫ t

0
gdt

)
P + QF2(�)

1 + δF2(�)

× exp{i[c1(t)(x2 + y2) + c2(t)z
2

+ b1(t)(x + y) + b2(t)z + φ0(t)]}.
(26)

3 Analytical spatiotemporal chirped solitary waves
to Eq. (1) with different profiles

From Eqs. (18)–(23) one can see that the attainment
of self-consistent solutions of the system is contingent
upon successfully resolving κ1 and κ2, which depends
on parameters c j (t) and β j (t). To solve this problem,
onewouldhave to solveEqs. (9)–(10),which are known
as the Riccati differential equations for c j (t). However,
these two equations can only be solved analytically for
specific choices of β j (t) and f j (t). In this section we
consider four cases for the selection of β j (t) and f j (t):

Case 1. β j (t) = β j0 and f j (t) = f j0, correspond-
ing to extended solitary waves.

Case 2. Either β j (t) or f j (t) is a function while
the other is a constant, corresponding to compressed
solitary waves.

Case 3. β j (t) = β j0F(t) and f j (t) = f j0F(t),
corresponding to breathing solitary waves.

Case 4. β j (t) = β j0Fj (t) and f j (t) = f j0Fj (t),
corresponding to quasiperiodic solitary waves.

In the above, β j0 and f j0 are constants, while F(t)
and Fj (t) are arbitrary functions. These type of solitary
waves are very useful in nonlinear systems. For exam-
ple, the compressed solitary waves can be applied to
the design of soliton compressors associated with the
generation of high-power ultrashort pulses. The breath-
ing solitary waves can provide insights into how energy
is transferred and distributed within a system and are
also related to conservation laws and stability analy-
sis. By studying these solitary waves, we can make a
deeper understanding of wave propagation phenomena
and their applications in optics and condensed matter
physics.

In case 1,weobtain c j (t) = 1
2

√
f j0
β j0

tanh(
√

f j0β j0t)

and κ j (t) = sech
(√

f j0β j0t
)
, which results in analyti-

cal extended solutions in the formof solitarywaves.We
will not go into details here. For the sakeof clarity, in the
subsequent discussion, we distinguish solitary waves
into U-shaped and W-shaped profiles based on their
distinct transverse and longitudinal modulations in the
x , y, and z directions; similarly, we distinguish solitary
waves as compressed, breathing, quasiperiodic, snake-
like, and J-shaped profiles depending on their propaga-
tion dynamics with respect to t . It is worth noting that
both U-shape and W-shape profiles are ubiquitous and
can be observed in various scenarios.

3.1 Compressed solitary wave solutions

We now discuss case 2 where either β j (t) or f j (t) is
a function while the other is a constant. As an exam-

123



8470 J.-R. He et al.

ple, we choose β j (t) = β j0 exp(−αt) and f j (t) = 1,
where α ∈ R. Here we discuss the case for α > 0,
corresponding to the dispersion-decreasing nonlinear
media [55]. With this, we obtain

c j (t) = − 1

2
√

β j0

I0

[
2
√

β j0

α
exp

(−α
2 t

)]

I1

[
2
√

β j0

α
exp

(−α
2 t

)] , (27)

and

κ j (t) = I−1
1

[

2

√
β j0

α
exp

(
−α

2
t
)]

exp
(α

2
t
)

, (28)

where I0 and I1 are the zero-order and first-order mod-
ified Bessel functions of the first kind, respectively.
Then the expressions of other parameters and coef-
ficients can be derived from Eqs. (18)–(23), and the
analytical spatiotemporal solitary waves to Eq. (1) can
be obtained by inserting these solved parameters into
Eq. (26). The solitary waves and corresponding pro-
files of chirp c j (t), amplitude p(t), nonlinearity γ (t),
and source s(t) are depicted in Fig. 1. These solitary
waves exhibit different transverse structures for differ-
ent value region of source amplitude s0. In our study,we
have carefully selected four distinct s0 values to inves-
tigate the fascinating properties of the solitary waves.
The U-shaped bright solitary wave (s0 = −8.4493), as
shown in Fig. 1e, is a remarkable phenomenon that
exhibits a localized wave packet with an amplitude
peak at its center. This type of solitary wave has been
extensively studied in various fields such as optics and
fluid dynamics due to its unique characteristics. The
W-shaped bright solitary wave (s0 = 10.5173, Fig. 1g)
is another intriguing type of localized wave packet
that possesses multiple peaks within its structure. The
U-shaped dark solitary wave (s0 = 8.0659, Fig. 1f)
exhibits a dip in intensity at its center while main-
taining positive background intensity levels around
it; the W-shaped dark solitary wave (s0 = 0.0035,
Fig. 1h) displays an even more intricate structure with
multiple dips and humps within its profile. It can be
seen from the figure that the chirp function exhibits a
monotonic decrease, while the amplitude p(t) shows a
monotonic increase. For nonlinearity coefficient, when
the solution is a bright solitary wave, it monotoni-
cally decreases to zero; when solved for a dark soli-
tary wave, it monotonically increases to zero. Except
for the s(t) corresponding to U-shaped bright solitary
waves, which demonstrates a monotonic decrease, all

other types of solitary waves’ associated s(t) exhibit a
monotonic increase. Moreover, we find that the width
of the solitary wave decreases as t increases while its
amplitude increases, indicating a continuous compres-
sion process. This compression results in an increase in
the solitary wave’s amplitude, making it more powerful
than its original form, which may be useful in design
of soliton compressors associated with the generation
of high-power ultrashort pulses.

It is worth noting that selecting β j (t) = 1 and
f j (t) = f j0 exp(−αt) still results in a solitary solution
expressed as Bessel functions, albeit an extended one.
Moreover, alternative choices such as setting β j (t) = 1
and f j (t) = 1+ f j0 cos(t)may lead to analytical solu-
tions in terms of Mathieu functions to Eq. (1), which
are also extendedwaves.Wewill not delve into it exten-
sively here.

3.2 Breathing solitary wave solutions

More general situation is that both β j (t) and f j (t) are
functions of t . We next provide a general formula that
can generate various types of solitary waves and then
proceed to discuss cases 3 and 4 separately. Assuming
β j (t) = β j0Fj (t) and f j (t) = f j0Fj (t), we have

c j (t) = 1

2

√
f j0
β j0

tanh

[√
f j0β j0

∫
Fj (t)dt

]
, (29)

then the auxiliary function

κ j (t) = sech

[√
f j0β j0

∫
Fj (t)dt

]
. (30)

According to formula (29), as long as we substitute
the specific functional form of Fj (t) into it, we can
obtain the solution of c j (t), and then solve for κ j (t)
fromEq. (30) and determine other parameters and coef-
ficients in the system using Eqs. (18)–(23). Finally, by
substituting these solutions into Eq. (26), we can obtain
various types of analytical solitary waves. Therefore,
we provide a general formula (29) that enables the gen-
eration of various types of solitary waves by inputting
the specific functional form of Fj (t) into it.

Let us consider case 3, where β j (t) and f j (t) have
the same functional forms but with different ampli-
tudes. This can be viewed as the special case when
Fj (t) = F(t) in formula (29). Two typical functional
forms of F(t) are selected to produce some novel soli-
tary wave solutions for Eq. (1): (i) F(t) = cos(ωt), and
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Fig. 1 Compressed solitary waves and system parameters in the
case of β j (t) = β j0 exp(−αt) and f j (t) = 1. a Profiles of
chirp functions c1(t) (blue solid line), c2(t) (red dashed line),
and amplitude (green dash-dotted line) as functions of t . b Pro-
files of nonlinearity for bright solitary wave (blue solid line) and
dark solitary wave (red dashed line). c and d Source s(t) vs t .
These curves correspond to different types of solitary waves:
U-shaped bright solitary wave (blue solid line,s0 = −8.4493),

U-shaped dark solitary wave (red dashed line, s0 = 8.0659),
W-shaped bright solitary wave (green dashed-dotted line, s0 =
10.5173), and W-shaped dark solitary wave (magenta solid line,
s0 = 0.0035). e–h Chirped solitary waves as functions of t : e
U-shaped bright solitary wave, f U-shaped dark solitary wave,
g W-shaped bright solitary wave, and h W-shaped dark solitary
wave. The parameters are p0 = β10 = 1, β20 = 3, b10 = b20 =
1, α = 0.5, k0 = l0 = m0 = 1, h0 = 0, and g = 0

(ii) F(t) = Jn(υt), where ω, υ ∈ R, and Jn is the n-
order Bessel function of the first kind. The former case
is usually relevant for periodic systems that involve dis-
persion or diffraction management in nonlinear media
[56], and it holds significance for stabilizing the breath-
ing solutions. The latter case, Bessel modulation, may
be useful for stabilization of higher dimensional soli-
tons in optical lattices [57].

When the system is modulated by the cosine func-

tion F(t) = cos(ωt), we get c j (t) = 1
2

√
f j0
β j0

tanh
[√

f j0β j0

ω
sin(ωt)

]
and κ j (t) = sech

[√
f j0β j0

ω
sin(ωt)

]
. Figure2a–d show the profiles of

chirp c j (t), amplitude p(t), nonlinearity γ (t), and
source s(t) vs t . These solitary waves again exhibit
the aforementioned four types of structures in the dis-
tinct transverse and longitudinal directions for different
ranges of source amplitude s0, as shown in Fig. 2e–h.
Besides, all the solutions display breathing structures
with respect to t . Thismeans that their properties repeat
themselves after certain intervals of t . Such periodic-
ity adds another layer of interest to their already fas-
cinating behavior. In Fig. 2, we find that this breath-
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Fig. 2 Breathing solitary
waves and system
coefficients in the case of
F(t) = cos(ωt). The setup
is the same as in Fig. 1,
except for
f10 = 1, f20 = 2, and
ω = 2

ing period is π/ω. Additionally, the amplitude of solu-
tions attains its maximum value p0 at t = nπ/ω and

minimum value p0sech
( 1

ω

)3/2
at t = (2n + 1)π/2ω,

where n = 0, 1, 2, . . .. This breathing behavior can be
attributed to the periodic variation of the chirp func-
tions c j (t), which affects the amplitude and phase of
solutions through their dependence on κ j (t), b j (t), and
φ0(t). Therefore, our selection of these four s0 val-
ues provides us with a comprehensive understanding
of different types of solitary waves and their underly-
ing physics in BECs and nonlinear optics.

Secondly, we consider the system with Bessel mod-
ulation F(t) = Jn(υt). For simplicity, we restrict our-
self to the order n = 1. In this case, we have c j (t) =
− 1

2

√
f j0
β j0

tanh

[√
f j0β j0

υ
J0(υt)

]
, which results in

κ j (t) = sech

[√
f j0β j0

υ
J0(υt)

]
. Figure3 shows the

profiles of chirp c j (t), amplitude p(t), nonlinearity

γ (t), and source s(t), accompanied by the correspond-
ing solitary wave solutions. From Fig. 3a we see that
the chirp and amplitude first increase and then oscil-
late periodically, and the oscillation amplitude keeps
decreasing. In addition, we observe that the nonlin-
earity γ (t) and source s(t) exhibit periodic oscilla-
tions around the initial position, and the amplitude of
these oscillations gradually diminishes, as shown in
Fig. 3b–d. It can be seen fromFig. 3e–h that the solitary
wave solutions oscillate quasiperiodically with respect
to t , i.e., they are quasibreathing solutions. For a given
real number n, Jn(t) has an infinite number of real
zeros, and there is a relation dJ0(t)/dt = −J1(t).
Thus, the extreme points of J0(t) are the zeros of
J1(t). Based on this property, we calculate that the
amplitude of solutions attains its maximum value at
about t = (ν − 1/4)π and minimum value at about
t = (ν + 1/4)π , where ν = 0, 1, 2, . . .. Addition-
ally, we also find that the global minimum amplitude in
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Fig. 3 Quasibreathing
solitary waves and system
coefficients in the case of
F(t) = Jn(υt). The setup is
the same as in Fig. 2, except
for b10 = b20 = 0.5 and
υ = 1

Fig. 3 is approximately 0.522. Furthermore, our find-
ings indicate that an increase in n leads to a longer
oscillation period and wider initial width for the solu-
tions, while an increase in υ results in a shorter oscilla-
tion period and narrower initial width for the solutions.
This suggests the possibility of controlling the oscil-
lation period and initial width of the quasibreathing
solutions.

3.3 Quasiperiodic solitary wave solutions

Finally, we consider case 4 where F1(t) and F2(t)
have different functional forms, which will produce
more general solitary waves. In this case, f1(t) and
β1(t) in Eq. (9) can have different functional forms
from f2(t) and β2(t) in Eq. (10). The implica-
tion arises that the modulation profiles of diffrac-
tion and external potential differ in the transverse and
longitudinal directions. As an example, we choose
F1(t) = cos(ωt) and F2(t) = J1(υt). In this case we

have c1(t) = 1
2

√
f10
β10

tanh
[√

f10β10
ω

sin(ωt)
]
, c2(t) =

− 1
2

√
f20
β20

tanh
[√

f20β20
υ

J0(υt)
]
, κ1(t) = sech

[√
f10β10
ω

sin(ωt)
]
and κ2(t) = sech

[√
f20β20
υ

J0(υt)
]
.

This different modulation in transverse and longitudi-
nal directions will lead to the amplitude

p(t) = p0sech

[√
f10β10

ω
sin(ωt)

]

× sech

[√
f20β20

υ
J0(υt)

]1/2
exp

(
1

2

∫ t

0
gdt

)
.

(31)

In Fig. 4, we present the modulation profiles of sys-
tem parameters and corresponding solitary waves for
the bright solution. It can be observed that the chirp
function c1(t) exhibits periodic variations, while the
chirp function c2(t) first increases and then oscillates
quasiperiodically.As shown inFig. 4b, the amplitude of
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Fig. 4 Quasiperiodic solitary waves and system coefficients in
the case of F1(t) = cos(ωt) and F2(t) = J1(υt). aProfiles of the
chirp c1(t) (blue solid line) and c2(t) (red dashed line) as func-
tions of t . b Amplitude of the solitary wave as a function of t . c
Nonlinearityγ (t), andd source s(t) (blue solid line forU-shaped,
red dashed line for W-shaped) for the bright solution. Middle

row: U-shaped solutions for e |u(x, 0, 0, t)|2, f |u(0, y, 0, t)|2,
and g |u(0, 0, z, t)|2. Bottom row: W-shaped solutions for h
|u(x, 0, 0, t)|2, i |u(0, y, 0, t)|2, and j |u(0, 0, z, t)|2. The param-
eters are p0 = b10 = b20 = υ = 1, k0 = 1, l0 = 0.8,m0 =
1, f10 = β10 = 1, f20 = β20 = 1.2, ω = 3, h0 = g = 0

solution initially increases and then varies quasiperiod-
icallywith respect to t . For nonlinearityγ (t) and source
s(t), they all oscillate quasiperiodically with respect to
t . The intensity distribution of the bright solution is pre-
sented in Fig. 4e–j. Figure4e–g display the structures
ofU-shaped solitarywaves in x−t, y−t , and z−t coor-
dinates, respectively. Figure4h–j display the structures
of W-shaped solitary waves in x − t, y − t , and z − t
coordinates, respectively. It is evident that these solitary
waves evolve quasiperiodically with respect to t , owing
to the combinedmodulations of cosine andBessel func-
tions. Notably, despite having the same amplitudes,
the widths of these waves exhibit distinct evolution-
ary characteristics in the transverse and longitudinal
directions due to the different modulation profiles of

F1(t) and F2(t). For instance, the width of the waves
increases from Fig. 4h–j, indicating a clear manifesta-
tion of this modulation.

The aforementioned examples illustrate that the soli-
tary wave solutions can be acquired through the modu-
lations of diffraction β j (t) and potential strength f j (t)
via the function Fj (t). Theoretically, there are infinite
options of Fj (t) available. Other novel solitary solu-
tions and their properties can also be studied in the
same way as described above.

The stability of the found solitary waves can be
tested by numerical simulations using a split-step beam
propagation method, since 3D solutions may be sta-
bilized in some cases [20,58–60]. We take the ana-
lytical solutions in the case of F(t) = cos(ωt) and
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Fig. 5 a Numerical
simulations of solitary
waves chosen from Fig. 2g
at y = 1, z = 2 were
conducted for the case of
F(t) = cos(ωt), except for
β10 = 1, β20 = 1.01, f10 =
1, and f20 = 1.02. b
Numerical simulations of
solitary waves chosen from
Fig. 3g at y = 1, z = 2 were
conducted for the case of
F(t) = Jn(υt), except for
β10 = 1, β20 = 1.01, f10 =
1, and f20 = 1.02. From left
to right, t = 2, 6, and 10. A
1% white noise is included
in the initial data. c, d Are
the 3D plots of (a) and (b),
respectively. Only the
dependence on x is shown
for 3D case

F(t) = Jn(υt) as examples to run numerical experi-
ments to Eq. (1), with initial field coming fromEq. (26).
A 1% white noise is added to the initial data during the
simulations. The numerical results are shown in Fig. 5,
where we fixed y = 1, z = 2 to observe the evolution
of solutions in x−t coordinates. Figure5a, b display the
profiles of solitary waves at t = 2, 6, and 10 in the case
of F(t) = cos(ωt) and F(t) = Jn(υt), respectively. It
should be noted that the evolution of the solutions in
y − z and t − z coordinates can also be simulated by
fixing the coordinates of the other two axes. To compre-
hensively observe the evolution of solitary waves, we
present 3D plots depicting their evolutions in Fig. 5c, d.
The numerical experiment was conducted up to t = 10
in Fig. 5c and up to t = 20 in Fig. 5d, with no obvious
collapse phenomenon observed.

4 Numerically found solitary wave solutions to
Eq. (1)

In this section, we shall investigate the properties of
spatiotemporal chirped solitary waves by allowing for
arbitrary choices of the functional forms of β j (t) and
f j (t). In this case, solving Eqs. (9) and (10) requires a
meticulous numerical approach. We will consider two
physically relevant examples byusing theRunge–Kutta

method to demonstrate some interesting solitary wave
solutions for Eq. (1) in numerical forms.

4.1 Snakelike solitary wave solutions

The first example we consider pertains to the periodic
variation of f j (t), a phenomenon commonly observed
in BECs for time-dependent harmonic potentials. In
this case, β j (t) is also chosen as a periodic function. In
accordance with physical reality, we assume that they
have the same oscillation frequency:

f1(t) = 0.1 cos(0.5t), f2(t) = 0.3 cos(0.5t),

β1(t) = 0.1 sin(0.5t), β2(t) = 0.3 sin(0.5t). (32)

Obviously, f j (t) and β j (t) do not have the same func-
tional form, so we need to solve Eqs. (9) and (10)
numerically. The numerical calculations were carried
out based on the Runge–Kutta method, working with
initial data c1(0) = c2(0) = 0.

In Fig. 6, we present the numerically found soli-
tary waves and modulation profiles of system parame-
ters in this case for the bright solution. As can be seen
from Fig. 6a, the chirp functions vary periodically with
the increase of t . The situation with respect to ampli-
tudes is somewhat complex. There exists a critical gain
value, gc, which results in three possible scenarios for
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Fig. 6 Numerically found solitary waves and mod-
ulation profiles of system parameters in the case of
f1(t) = 0.1 cos(0.5t), f2(t) = 0.3 cos(0.5t), β1(t) =
0.1 sin(0.5t), β2(t) = 0.3 sin(0.5t). a Profiles of the chirp
c1(t) (open circles) and c2(t) (squares) as functions of t . b
Amplitude of the solitary wave as a function of t . c Nonlinearity
γ (t), and d source s(t) (squares for U-shaped, open circles
for W-shaped) for the bright solution. Middle row: U-shaped

solutions for e |u(x, 0, 0, t)|2 with k0 = l0 = m0 = 1,
f |u(0, y, 0, t)|2 with k0 = 1, l0 = 0.8,m0 = 1, and g
|u(0, 0, z, t)|2 with k0 = l0 = 1,m0 = 0.3. Bottom row: W-
shaped solutions for h |u(x, 0, 0, t)|2 with k0 = l0 = m0 = 1,
i |u(0, y, 0, t)|2 with k0 = 1, l0 = 0.8,m0 = 1, and
j |u(0, 0, z, t)|2 with k0 = l0 = 1,m0 = 0.3. Here,
p0 = b10 = b20 = 1, h0 = 0, g = 0.106, the initial data
for Eqs.(9) and (10) are c1(0) = c2(0) = 0

the peak amplitude: (i) p(t) grows with periodic oscil-
lation for increasing t (g > gc); (ii) p(t) decreases
with periodic oscillation for increasing t (g < gc); (iii)
p(t) exhibits approximately periodic oscillations for
increasing t (g = gc). In cases (i) and (ii), the solitary
waves display either compressing or spreading behav-
ior while maintaining a linear chirp. In case (iii), one
can obtain solitary waves with only periodically oscil-
lating amplitudes, not going to extinction or infinity.
Let us direct our attention to this particular set of solu-
tions. To determine the value of gc, we perform a curve
fitting analysis of the κ1

√
κ2 term in Eq. (20), which

represents an attenuation function of oscillating struc-

tures. The fitting results indicate that κ1
√

κ2 tends to
exp(−0.053t), thus resulting in gc ≈ 0.106. Therefore,
if we choose g = 0.106 in this case, there are only peri-
odic oscillations on p(t), as depicted in Fig. 6b. As for
the nonlinearity and source, Fig. 6c, d, it is seen that
they oscillate periodically with the oscillation ampli-
tude decreasing over t . Meanwhile, Fig. 6e–j demon-
strate the intensity profiles of the numerically found
bright solutions, which demonstrate snakelike behav-
iors with respect to t . Figure6e–g display the structures
ofU-shaped solitarywaves in x−t, y−t , and z−t coor-
dinates, respectively. Figure6h–j display the structures
ofW-shaped solitarywaves in x−t, y−t , and z−t coor-
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dinates, respectively. Due to the different amplitudes of
oscillationbetweenκ1 andκ2, the solitarywaves exhibit
distinct evolutionary properties in different coordinate
directions. A very interesting phenomenon is that we
can control the initial moving direction of the solutions
by appropriately selecting b10 and b20. When both b10
and b20 are negative, the solitary waves initially prop-
agate toward the left; when they are both positive, the
solitary waves initially propagate toward the right. If
b10 and b20 have opposite signs, the initial propagation
direction of the solitary waves depends on their relative
magnitudes.

4.2 J-shaped solitary wave solutions

We will now shift our focus to the scenario in which
β j (t) is modeled by an exponential function, while
f j (t) remains expressed as per Eq. (32):

f1(t) = 0.1 cos(0.5t), f2(t) = 0.3 cos(0.5t),

β1(t) = 0.1 exp(−0.2t), β2(t) = 0.3 exp(−0.2t).
(33)

In this case, Eqs. (9) and (10) were solved numerically
with initial data c1(0) = c2(0) = 0.

In Fig. 7, we present the numerically found solitary
waves and modulation profiles of system parameters
for the bright solution. It is seen that the chirp functions
exhibit periodic variationswith respect to t , as shown in
Fig. 7a. There are three possible scenarios for the peak
amplitude: (i) p(t) first decreases and then increases to
infinity for g > 0; (ii) p(t) decreases to zero for g < 0;
(iii) p(t) first decreases and then increases to a constant
for g = 0 (see Fig. 7b). Solitary waves in cases (i) and
(ii) will either propagate infinitely or dissipate com-
pletely. As t → ∞, one can obtain solitary waves with
constant amplitudes in case (iii), which may be useful
for the stabilization of waves in nonlinear media. For
nonlinearity γ (t), it monotonically decreases to zero
when solved for a bright solution. As for the source
s(t), Fig. 7d, when the solution takes a U-shaped pro-
file, it exhibits monotonic increase toward zero; con-
versely, when the solution takes a W-shaped profile,
it demonstrates monotonic decrease toward zero. The
intensity distribution of the bright solution obtained
through numerical calculation is presented in Fig. 7e–j.
It is noteworthy that the trajectories of these solutions
follow a “J” pattern with respect to t . Furthermore, we

discover that the appropriate selection of values for b10
and b20 can effectivelymanipulate the orientation of the
“J” shape. Specifically, when both b10 and b20 are neg-
ative, the “J” shape is oriented toward the right; when
both are positive, it points to the left.Whenb10 = −b20,
the “J” shape disappears and a straight line is formed
for bright solutions. Figure7e–g display the structures
ofU-shaped solitarywaves in x−t, y−t , and z−t coor-
dinates, respectively. Figure7h–j display the structures
of W-shaped solitary waves in x − t, y − t , and z − t
coordinates, respectively. The parameters in the figure
are chosen as p0 = b10 = b20 = 1, h0 = 0, g = 0.
Note that the solitary waves exhibit distinct evolution-
ary properties in different coordinate directions due to
the different amplitudes of oscillation between κ1 and
κ2.

We have presented only two physically relevant
examples involving bright solutions. In fact, the same
process applies to the dark solutions as well. Further-
more, numerical solutions of Eqs. (9) and (10) can
be obtained for any given values of β j (t) and f j (t),
thereby enabling the acquisition of spatiotemporal soli-
tary wave solutions in numerical form for Eq. (1),
encompassing both bright and dark scenarios. From
Eqs. (18) and (20), it can be seen that the transverse
structure of solitary waves can be regulated by manip-
ulating κ1, while the longitudinal structure can be con-
trolled by adjusting κ2; both factors significantly influ-
ence the amplitude of solitary waves. This is exactly
howwewant tomanipulate the shape of solitary waves.
The aforementioned conclusion is applicable to both
analytical and numerical solutions. In addition,we have
added an initial perturbation to the numerical solutions,
such as white noise, and observed that the propagation
shapes of the solitary waves are still preserved.

5 Conclusions

In conclusion, we have successfully obtained spa-
tiotemporal chirped solitary waves in both analyti-
cal and numerical forms for the generalized (3 + 1)-
D NLSE with varying sources under different mod-
ulated diffraction and potential functions. Concern-
ing the analytical solutions, we have presented a gen-
eral formula [Eq. (29)] that enables the generation of
various types of solitary waves by introducing a spe-
cific functional form of Fj (t). Some intriguing solu-
tions, such as compressed, breathing, and quasiperi-
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Fig. 7 Numerically found solitary waves and mod-
ulation profiles of system parameters in the case of
f1(t) = 0.1 cos(0.5t), f2(t) = 0.3 cos(0.5t), β1(t) =
0.1 exp(−0.2t), β2(t) = 0.3 exp(−0.2t). a Profiles of the
chirp c1(t) (open circles) and c2(t) (squares) as functions
of t . b Amplitude of the solitary wave as a function of t . c
Nonlinearity γ (t), and d source s(t) (squares for U-shaped,
open circles for W-shaped) for the bright solution. Middle row:

U-shaped solutions for e |u(x, 0, 0, t)|2 with k0 = l0 = m0 = 1,
f |u(0, y, 0, t)|2 with k0 = 1, l0 = 0.8,m0 = 1, and g
|u(0, 0, z, t)|2 with k0 = l0 = 1,m0 = 0.3. Bottom row: W-
shaped solutions for h |u(x, 0, 0, t)|2 with k0 = l0 = m0 = 1,
i |u(0, y, 0, t)|2 with k0 = 1, l0 = 0.8,m0 = 1, and
j |u(0, 0, z, t)|2 with k0 = l0 = 1,m0 = 0.3. Here,
p0 = b10 = b20 = 1, h0 = 0, g = 0, the initial data for
Eqs. (9) and (10) are c1(0) = c2(0) = 0

odic solitary waves, have been thoroughly investigated.
The characteristic properties of these solitary solutions,
including chirp, width, amplitude, periodicity, as well
as their physical applications relevant to the field have
been extensively discussed. Furthermore, we have con-
ducted comprehensive numerical investigations on the
properties of solitary waves with arbitrary choices of
functional forms for β j (t) and f j (t). Two physically
relevant examples were considered using the Runge–
Kutta method to demonstrate fascinating trajectories
of snakelike and J-shaped solitary waves. Addition-
ally, it has been discovered that transverse and longi-
tudinal structures of these solitary waves can be effec-

tively manipulated by appropriately tuning the diffrac-
tion β j (t), potential strength f j (t), and source term
s(t). We carefully selected four distinct values for s0
to obtain bright and dark-type solitary waves with both
U-shaped profiles and W-shaped profiles. In addition,
an examination on stability was performed through
numerical simulations by adding initial white noise
which demonstrated that propagation shapes of soli-
tary waves remain preserved.
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