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Abstract Mixed-mode oscillations (abbreviated as

MMOs) belong to a typical kind of fast/slow dynam-

ical behavior, and how to investigate the mechanism is

an important problem in nonlinear dynamics. In this

paper, we explore the MMOs induced by the bifurca-

tion delay phenomenon and twist of the trajectories in

space based on a coupled system consisting of a Van

der Pol system and a Duffing oscillator with two

potential wells. Regarding the low-frequency external

excitation as a generalized state variable, we obtain the

traditional fast and slow subsystems. Appling the

equilibrium analysis and bifurcation theory, the

stability critical conditions of the equilibrium and

the generation conditions of fold and Hopf bifurcation

are also presented. To analyze the critical conditions

clearly, the two-parameter bifurcation and one-pa-

rameter bifurcation diagrams are performed by using

numerical simulation method. The bifurcation char-

acteristics are studied, especially the effects of

parameter d on the bifurcation structures. We find

that the fast subsystem performs different dynamical

behaviors such as fold bifurcation of limit cycles,

period-doubling bifurcations, inverse-period-doubling

bifurcations and chaos, when parameter d is taken at

different values. By using phase diagrams, time series,

maximum Lyapunov exponent diagrams, three-di-

mensional phase diagrams and superimposed dia-

grams, the mechanisms of the MMOs are investigated

numerically in detail. The Hopf bifurcation delay can

lead the trajectories to arrive at the vector fields of the

equilibrium point and limit cycles. In addition, the

chaotic behaviors can be found on the route of period

doubling, which lead to the chaotic spiking-state-

oscillations types. Our findings are helpful to under-

stand the generation of the MMOs and intensify the

understanding of some special dynamical behaviors on

the MMOs.

Keywords MMOs � Coupled Van der Pol–Duffing

system � Bifurcation � Hopf bifurcation delay � Chaos

1 Introduction

In the fields of science and engineering, many

nonlinear systems often involve multiple timescale

effect, such as nervous systems [1, 2], circuit models

[3, 4], energy harvesters [5, 6] and laser oscillators

[7, 8]. MMOs, as a typical dynamical behavior

induced by the multiple timescale effect, represented

by an alternation between the small-amplitude static

oscillations (SASOs) and large-amplitude dynamical
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waves (LADWs), are often observed in many fast/

slow nonlinear systems [9–11]. Generally, the SASOs

correspond to the trajectory moving in the vector fields

of the stable equilibrium points or the small-amplitude

limit cycles, while the LADWs are corresponding to

the trajectory vibrating in the attraction domain of the

large-amplitude limit cycles. Two important dynam-

ical behaviors related to theMMOs, i.e., the dynamical

behaviors of the SASOs that result in the LADWs and

the dynamical behavior of the LADWs that result in

the SASOs, can be noted [12–14]. Moreover, the

SASOs are commonly known as the quiescent state,

and the LADWs are referred to the spiking state.

The MMOs were first discovered by Van der Pol in

1926 [15], but due to the lack of the effective

analytical method, the study of the MMOs was not

received sufficient attention at that time. In 1952,

Hodgkin and Huxley established a nonlinear ordinary

differential system with three fast and one slow

subsystems, which could successfully reconstruct the

MMOs in the experimental observations. From the-

n on, the research on the MMOs has been becoming a

hot topic. Many analytical methods have been intro-

duced to explore the mechanisms of different MMOs,

such as experimental analysis [16, 17], numerical

simulation [18, 19], geometrical singular perturbation

method [20, 21] and fast/slow analysis method

[22, 23]. Based on these methods, many different

patterns of the MMOs are investigated. For example,

Sharma et al. [24] reported the aperiodic MMOs and

synchronized MMOs in the experiments on an active

camphor rotor. Liu and Liu [25] investigated the

MMOs induce by the canard phenomenon by using the

geometrical singular perturbation method. Kouayep

et al. [26] explored the mechanisms of the periodic

MMOs, chaotic MMOs and chaotic pulse-package

vibrations experimentally. Bao et al. [27] discussed

the generation of the chaotic MMOs, periodic MMOs

and chaotic tonic-spiking in the 3D Morris-Lecar

neuron model. Most of the MMOs that have been

obtained are induced by the time-domain multiscale

effect, i.e., the system contains some state variables

that vary at quite different change rates. However, for

the systems with frequency multiscale effect, the

MMOs also can be created when the excitation

frequency is much smaller than the system natural

frequency [28, 29]. Since there are no obvious fast and

slow subsystems in the coupled systems, the standard

fast/slow analysis method cannot be directly used to

explore the mechanism of such MMOs. In recent

years, an improved fast/slow analysis method is

proposed to investigate the MMOs induced by the

frequency multiscale effect [30]. The basic idea of the

improved fast/slow analysis method is that the low-

frequency excitation can be regarded as a slow state

variable since it changes very slowly in each period of

the MMOs, and the whole system is treated as a fast

subsystem, thus establishing a time-domain multiscale

system formally. Based on this method, the MMOs

induced by the frequency multiscale effect have been

explored deeply. For example, Huang and Bi [31]

studied the MMOs in a high-dimensional system, and

the 2-D MMOs with single-mode, two-mode and

three-mode were presented. Kpomahou et al. [32]

explored the existence of the MMOs and horseshoe

chaos in a mixed Rayleigh-Lienard system, where the

MMOs were asymmetric ‘‘fold/Hopf’’ type, asymmet-

ric ‘‘fold/fold’’ type and asymmetric ‘‘Hopf/Hopf’’

type. Vijay et al. [33] reported the supercritical

pitchfork/fold MMOs and supercritical pitchfork

MMOs in the Lienard system with low-frequency

excitation. Oyeleke et al. [34] investigated the MMOs

induced by the pulse-shaped explosions, and they

found that the MMOs can exhibit the cascading

characteristics. Even though some achievements have

been made, some problems still need to be investi-

gated, such as possible routes to the periodic or chaotic

MMOs, possible factors causing the transitions

between the spiking states and quiescent states, the

effect of the low-frequency excitations on the dynam-

ical evolutions of the different MMOs and the

mechanism of the MMOs in the high-dimensional

systems.

In this paper, we focus on the MMOs in a system

consisting of a Van der Pol system and a Duffing

oscillator with two potential well. Two routes to the

MMOs, namely, the bifurcation delay phenomenon

and twist of the trajectories in space, are observed.

Based on that, six different MMOs, i.e., ‘‘fold/fold’’

MMOs, ‘‘delayed supHopf/fold-fold/fold’’ MMOs,

‘‘fold/inverse-period-4-inverse-period-twofold limit

cycle’’ chaotic MMOs, ‘‘fold/inverse-period-

8/supHopf’’ chaotic MMOs, ‘‘fold/delayed fold limit

cycle’’ chaotic MMOs and ‘‘fold/fold limit cycle’’

periodic MMOs, are investigated by using the phase

diagrams, time series, maximum Lyapunov exponent

diagrams and fast/slow analysis method. The goal of

this paper has threefold. First, we present two
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interesting routes to the MMOs, and several new

MMOs are proposed. Second, we show the effect of a

typical parameter on the bifurcation structures,

stable attractors, spiking states and MMOs. Third,

we deepen the applications of the improved fast/slow

analysis method in the mechanism analysis of the

MMOs induced by the frequency-domain multiscale

effect.

The rest of this paper is organized as follows. The

mathematical equation of the system consisting of a

Van der Pol oscillator and a Duffing oscillator with

two potential wells is presented in Sect. 2. In the

following section, bifurcation analyses of the system

are provided. Next, based on the bifurcation delay

phenomenon and twist of trajectories in space, six

different MMOs are proposed and revealed by phase

diagram, time series, superposition diagrams between

the bifurcation diagrams and transformation phase

diagrams, and Lyapunov exponent in Sect. 4. Finally,

Sect. 5 concludes the results of the whole paper.

2 Mathematical description of the coupled system

In this paper, we consider the MMOs in a system

consisting of a Van der Pol system and a Duffing

oscillator with two potential wells [35]. The mathe-

matical equation of the coupled system is presented as

d2x

dt2
� lð1� x2Þ dx

dt
þ x� kðy� xÞ ¼ 0; ð1aÞ

d2y

dt2
þ a

dy

dt
� yþ dy2 þ ey3 � k

dx

dt
� dy

dt

� �

¼ f cosðxtÞ; ð1bÞ

where l and e are taken at real positive values to

control the system nonlinearities. a and k indicate the

dissipation and the coupling coefficient. f and x
denote the amplitude and frequency of external

excitation. By introducing auxiliary variables m ¼ dx
dt

and n ¼ dy
dt
, system (1) can be rewritten into a standard

four-dimensional ordinary differential nonlinear

equation

_x ¼ m; ð2aÞ

_m ¼ kðy� xÞ � xþ lð1� x2Þm; ð2bÞ

_y ¼ n; ð2cÞ

_n ¼ f cosðxtÞ þ kðm� nÞ � ey3 � dy2 þ y� an:

ð2dÞ

System (1) has many physical scenarios and is

studied by many researchers. For example, Woafo

et al. [36] studied the analytic solutions of system (1)

in both nonresonant and resonant cases and observed

chaos behaviors by Shilnikov and numerical simula-

tion. Kadji and Yamapi [37] used Whittaker method

and the Floquet theory to study the general synchro-

nization dynamics of system (1). Kuznetsov et al. [38]

discussed the synchronization problem of system (1)

with inertial and dissipative coupling. Liu and Zhang

[39] analyzed the Bogdanov–Takens and triple zero

bifurcations for system (1) with Z(2) symmetry.

To analyze the mechanisms of different MMOs, we

assume that the frequency of the external excitation x
satisfies 0\x\\1, and then two timescale phe-

nomenon appears in the coupled model for the case of
x
x0

� 0:1 (x0 is the natural frequency of system (1) and

we fix it at 1 throughout the paper). Becausex is small,

the external excitation f cosðxtÞ varies slowly in each

period 2p
x , it can be regarded as a slow-changing

parameter h that changes in the interval of ½�1; 1�.
Then, system (2) is transformed into

_x ¼ m; ð3aÞ

_m ¼ kðy� xÞ � xþ lð1� x2Þm; ð3bÞ

_y ¼ n; ð3cÞ

_n ¼ hþ kðm� nÞ � ey3 � dy2 þ y� an: ð3dÞ

By choosing the appropriate parameter values,

MMOs can be observed in system (3) due to the two

timescale effect, as displayed in Fig. 1, from which we

can see that there are some differences among them,

such as the number of the spiking-state-oscillations in

every cycle and the intuitive shapes of the MMOs. The

differences suggest that the generation of these MMOs

may be different. To present the mechanism of these

MMOs, different bifurcation critical conditions are

provided in the next section.
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Fig. 1 Time domain responses of theMMOs for l ¼ 0:5, k ¼ 3, e ¼ 1, a ¼ 0:5, f ¼ 5 andx ¼ 0:005. a d ¼ 0:1; b d ¼ 0:6; c d ¼ 0:9;
d d ¼ 1:5; e d ¼ 2; f d ¼ 2:6
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3 Bifurcation analyses of the coupled system

3.1 Stability conditions

In order to obtain the equilibrium points of Eqs. 3(a),

(b), (c) and (d), let the right sides of Eqs. 3(a), (b), (c)

and (d) be equal to zero, we have

0 ¼ m; ð4aÞ

0 ¼ kðy� xÞ � xþ lð1� x2Þm; ð4bÞ

0 ¼ n; ð4cÞ

0 ¼ hþ kðm� nÞ � ey3 � dy2 þ y� an: ð4dÞ

It can be easily found that the equilibrium points

satisfy ky ¼ kxþ x and ey3 þ dy2 � y� h ¼ 0. To

simplify the analysis process, all the parameters are

not equal to zero in this paper. Then, the equilibrium

points can be written as Eðx0; y0Þ, where x0 ¼ ky0
kþ1

and

y0 is determined by ey30 þ dy20 � y0 � h ¼ 0.

The stabilities of Eðx0; y0Þ can be obtained by

linearization theory and stability theory. We linearize

system (3) at Eðx0; y0Þ, the Jacobian matrix is

presented as

J ¼

o _x

ox

o _x

om

o _x

oy

o _x

on

o _m

ox

o _m

om

o _m

oy

o _m

on

o _y

ox

o _y

om

o _y

oy

o _y

on

o _n

ox

o _n

om

o _n

oy

o _n

on

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

¼

0 0 1 0

�ðk þ 1Þ k lð1� x20Þ 0

0 0 0 1

0 �3ey20 � 2dy0 þ 1 k �k � a

0
BBB@

1
CCCA:

ð5Þ

The related characteristic equation is displayed as

a0k
4 þ a1k

3 þ a2k
2 þ a3kþ a4 ¼ 0, where a0 ¼

1,a1 ¼ a, a2 ¼ �k2 � k � ka, a3 ¼ k2 þ ðl� lx20Þ
ð3ey20 þ 2dy0 � 1Þ and a4 ¼ �ðk þ 1Þð3ey20 þ2dy0
�1Þ. Based on the Routh–Hurwitz rule [40], we know
that Eðx0; y0Þ is stable when all the following condi-

tions are satisfied as D0 ¼ a0 ¼ 1[ 0,

D1 ¼ a1 ¼ a[ 0, D2 ¼ det
a1 a0

a3 a2

" #
[ 0 and

D3 ¼ det

a1 a0 0

a3 a2 a1

0 a4 a3

2
64

3
75[ 0. If the stable conditions

are changed, different bifurcation patterns will

emerge.

3.2 Generation conditions of fold bifurcation

and Hopf bifurcation

When the parameters satisfy a4 ¼ �ðk þ 1Þ
ð3ey20 þ 2dy0 � 1Þ ¼ 0, the characteristic equation is

written as a0k
4 þ a1k

3 þ a2k
2 þ a3k ¼ 0, and one of

the roots is given by k1 ¼ 0 that means the appearance

of fold bifurcation.

On the other hand, we assume that the roots of the

characteristic equation have the following form of

k ¼ �x1i, bringing k ¼ �x1i into the characteristic

equation and eliminating the auxiliary parameter x1,

we can obtain the Hopf bifurcation conditions dis-

played as a31 � a1a2a3 þ a21a4 ¼ 0.

A typical two-parameter bifurcation diagram

related to h and d for chosen parameters l ¼ 0:5,

k ¼ 3, a ¼ 0:5, e ¼ 1, f ¼ 5 and x ¼ 0:005 is dis-

played in Fig. 2a which is obtained by the Matcont

software [41]. There are twofold bifurcation curves

and two Hopf bifurcation curve, and fold-1 curve is

close to Hopf2 curve. Moreover, two general-Hopf

bifurcation points can be observed, which lead to the

transitions in the types of Hopf bifurcations. Based on

the positions of different bifurcation curves and the

types of Hopf bifurcations, we can divide the whole

plane into five areas, i.e., A, B, C, D and E. In each

area, we can choose a typical parameter value of d to

investigate the bifurcation characteristics.

In area A, we choose d ¼ 0:1 as a representative to

explore the bifurcation structure, the related bifurca-

tion diagram is shown in Fig. 2b. Twofold bifurcation

points LP1 and LP2 divide the entire equilibrium point

curve into three sections named E1, E0 and E2. For

E1, it is stable in the interval of ðLP1; supHopf1Þ, and
it becomes unstable via the supercritical Hopf bifur-

cation supHopf 1, resulting in the occurrence of a

stable limit cycle LC1 at the same time. For E0, it is

always unstable in the interval of ðLP1; LP2Þ. For E2,
it is stable in the interval of ðsupHopf 2; LP2Þ, and it

turns to be unstable via the supercritical Hopf bifur-

cation supHopf 2, resulting in the generation of the

other stable limit cycle LC2 simultaneously. While for
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Fig. 2 Bifurcations characteristics for the chosen parameters

l ¼ 0:5, k ¼ 3, a ¼ 0:5, e ¼ 1, f ¼ 5 and x ¼ 0:005. a Two-

parameter bifurcation diagram corresponding to h and d; b

Bifurcation diagram for d ¼ 0:1; c Bifurcation diagram for

d ¼ 0:6; d Bifurcation diagram for d ¼ 1:5; e Bifurcation

diagram for d ¼ 1:75; f Bifurcation diagram for d ¼ 2
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the stable limit cycles LC1 and LC2, they disappear at

the points of supHopf 1 and supHopf 2, respectively.

In area B, d ¼ 0:6 is taken as a representative to

study the bifurcation characteristics, the correspond-

ing bifurcation diagram is displayed in Fig. 2c. The

entire equilibrium curve can be divided into three

sections by the fold bifurcations LP1 and LP2

obviously. On the upper branch, E1 is stable in the

interval of ðLP1; supHopf 1Þ and becomes unstable via

the supercritical Hopf bifurcation supHopf 1, and a

stable limit cycle LC1 is created simultaneously. On

the lower branch, E2 is stable in the intervals of

½�5; supHopf3Þ and ðsupHopf 2; LP2Þ, and it turns to
unstable in the interval of ðsupHopf3; supHopf 2Þ.
The stabilities of E2 are switched by two supercritical

Hopf bifurcations supHopf 2 and supHopf3. While on

the middle branch, E0 is always unstable. Moreover,

the stable limit cycle LC1 disappears at the point of

supHopf 1, and the stable limit cycle LC1 disappears

at the points of supHopf2 and supHopf3.

d ¼ 1:5 is chosen as a typical parameter to study the

dynamic characteristics in area C, the bifurcation

diagram is presented in Fig. 2d. Twofold bifurcation

points LP1 and LP2 separate the whole equilibrium

branches into three parts, i.e., E1, E0 and E2. On the

lower curve, E2 is stable in the intervals

½�5; subHopf3Þ and ðsupHopf 2; LP2Þ, it becomes

unstable on a subcritical Hopf bifurcation subHopf3,

and resulting in the generation of an unstable limit

cycle LC3. E2 also turns to unstable on a supercritical

Hopf bifurcation supHopf 2, and leading to the

production of the stable limit cycle LC2. Then, LC3

and LC2 collide with each other, and they disappear at

the fold bifurcations of limit cycles LPC. On the upper

curve, E1 is stable in the interval of ðLP1; supHopf 1Þ
and becomes unstable on the supercritical Hopf

bifurcation supHopf 1, and a limit cycle LC1 is

created. In particular, a series of period-doubling

bifurcations of LC1 can be observed. While on the

middle curve, E0 is always unstable.

In area D, we select d ¼ 1:75 as a typical parameter

to explore the dynamical characteristics, the related

bifurcation map is shown in Fig. 2e. The entire

equilibrium curve is separated by the fold bifurcation

points LP1 and LP2. On the lower curve, E2 gets its

stability in the intervals of ½�5; supHopf 3Þ and

ðsupHopf 2; LP2Þ, and it turns to unstable in the

interval of ðsupHopf3; supHopf 2Þ. The stable attrac-
tor in the interval of ðsupHopf 3; supHopf 2Þ is a

stable limit cycle LC2. On the upper curve, E1 gets its

stability in the interval of ðLP1; supHopf1Þ, and it

becomes unstable on a supercritical Hopf bifurcation

supHopf 1, resulting in the generation of the limit

cycle LC1. Moreover, a series of period-doubling

bifurcation points corresponding to LC1 can be seen,

and the stability of LC1 is changed by the fold

bifurcations of limit cycles LPC. While on the middle

curve, E0 is always unstable.

At last, we choose d ¼ 2 as a typical parameter to

analyze the bifurcation characteristics in area E, the

relating bifurcation diagram is presented in Fig. 2f.

Twofold bifurcations LP1 and LP2 separate the entire

equilibrium curve into three parts, namely, the upper

branch, the middle branch and the lower branch. E2 is

always stable on the lower branch and E0 is always

unstable on the middle branch. While on the upper

curve, E1 obtains its stability in the interval of

ðLP1; supHopf Þ and turns to unstable in the interval

of ðLP1; supHopf Þ. In addition, a limit cycle LC1 is

produced on the supercritical Hopf bifurcation

supHopf , and the stability of LC1 is transformed by

a series of fold bifurcations of limit cycles.

4 Generation of different MMOs

In this section, different MMOs induced by different

bifurcation structures in each area will be presented by

using fast/slow analysis, phase diagram, time series

and Lyapunov exponent. In addition, MMOs induced

by bifurcation delay phenomenon are also studied.

4.1 ‘‘Fold/fold’’ MMOs

Firstly, we investigate the MMOs in area A, the

parameter values are taken at l ¼ 0:5, k ¼ 3, a ¼ 0:5,

e ¼ 1, f ¼ 5, x ¼ 0:005 and d ¼ 0:1. From the

corresponding diagrams Fig. 3a, b, we can see that

the MMOs are generated by the trajectory moving

around two stable limit cycle attractors. Overlapping

the diagram on the plane of ðh; xÞ and

ðz; 5 cosð0:005tÞ;wÞ onto the bifurcation diagram, we

can obtain a clear idea on the mechanism of such

MMOs. The superposition diagram is plotted in Fig. 4.

Assuming h slowly changes from its largest value

þ5, the trajectories move violently around the

stable limit cycle LC1, forming the spiking-state-

oscillations-1. As h arrives at the point supHopf 1, the
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trajectories do not exit the spiking-state-oscillations-1

due to the supercritical Hopf bifurcation delay effect

[42, 43]. When h decreases to the value of hLP1, the
trajectories rapidly descend to the attractive domain of

limit cycle attractor LC2 and vibrate for the spiking-

state-oscillations-2.

As h reaches the smallest value - 5, it begins to

grow. The trajectories continue oscillating in LC2 for

the spiking-state-oscillations-2. As previously ana-

lyzed, the spiking-state-oscillations-2 are terminated

on the fold bifurcation LP2 and the trajectories rapidly

enter the attractive domain of limit cycle attractor LC1

and oscillate for the spiking-state-oscillations-1.

From Fig. 4a, we may have an illusion that the two

limit cycles LC1 and LC2 intersect each other, this

phenomenon can be called twist of trajectories in

space. Actually, these two limit cycles are independent

and do not intersect in space, Fig. 4b clearly illustrates

this fact. For such MMOs, the two spiking-state-

oscillations are switched by twofold bifurcations, so

we can name this dynamical behaviors as ‘‘fold/fold’’

MMOs.

Fig. 3 The corresponding diagrams for the fixed parameters are l ¼ 0:5, k ¼ 3, a ¼ 0:5, e ¼ 1, f ¼ 5, x ¼ 0:005 and d ¼ 0:1. a
Diagram projected onto the ðx; yÞ plane; b time histories on the plane of ðt; xÞ

Fig. 4 The superposition diagram between the phase diagram

and the bifurcation diagram. a Two-dimensional views of the

superposition diagram on the plane of ðh; xÞ; b Three-

dimensional views of the superposition diagram on the plane

of ðz; 5 cosð0:005tÞ;wÞ
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4.2 ‘‘Delayed supHopf/fold-fold/fold’’ MMOs

Secondly, we explore the dynamical responses in area

B, the related projection diagrams are shown in Fig. 5,

where the parameters are chosen at l ¼ 0:5, k ¼ 3,

a ¼ 0:5, e ¼ 1, f ¼ 5,x ¼ 0:005 and d ¼ 0:6. We can

find that the MMOs are related to two stable limit

cycles and four spiking-state-oscillations are involved

in each period. By overlapping the diagram projected

onto the ðh; xÞ plane and the bifurcation characteristics
projected onto the ðh; xÞ plane, we can get a clear idea
on the generation of the MMOs, as displayed in

Fig. 6a.

In order to analyze the generation of such MMOs in

detail, we decompose a periodic motion into two parts,

the first is h slowly decreasing from ? 5 to - 5 and

the second is h slowly increasing from - 5 to ? 5, the

corresponding diagrams are plotted in Fig. 6b, c. For

the first part, the trajectories firstly move acutely for

the spiking-state-oscillations-1 in the attractive

domain of the limit cycle attractor LC1. As h arrives

at supHopf1, the trajectories continue vibrating with a

large-amplitude due to the Hopf bifurcation delay

effect. After then, fold bifurcation point LP1 appears,

resulting in the trajectories jumping into the attractive

domain of LC2 to form the spiking-state-oscillations-

2. The spiking-state-oscillations-2 will remain until h
reaches - 5 due to the Hopf bifurcation delay, even if

a Hopf bifurcation supHopf3 occurs at h ¼ �4.574.

For the second part, the trajectories firstly move

peacefully in the vector field of E2. As h arrives at

supHopf 3, the trajectories continue moving with a

small-amplitude owing to the effect of the delayed

Hopf bifurcation. Sometime later, the Hopf bifurca-

tion delay phenomenon finishes and the trajectories

begin to vibrate dramatically to form the spiking-state-

oscillations-3. Similarly, the spiking-state-oscilla-

tions-3 are not terminated by Hopf bifurcation

supHopf 2 but ended up with fold bifurcation LC2.

The trajectories jump to oscillate in the attractive

domain of LC1 to form the spiking-state-oscillations-

4.

Figure 6d presents a fact that the two limit cycles

LC1 and LC2 are independent and do not intersect in

space. For such MMOs, the spiking-state-oscillations-

1 and the spiking-state-oscillations-4 are induced by

fold bifurcations and terminated also by fold bifurca-

tions, while the spiking-state-oscillations-2 are pro-

duced by delayed supercritical Hopf bifurcations and

ended up with fold bifurcations. So, such dynamical

responses are named ‘‘delayed supHopf/fold-fold/-

fold’’ MMOs.

In area B, if we fix the parameters at l ¼ 0:5, k ¼ 3,

a ¼ 0:5, e ¼ 1, f ¼ 5, x ¼ 0:005 and d ¼ 0:9, the

other MMOs’ structures are created, as displayed in

Fig. 7. For such MMOs, the two spiking-state-oscil-

lations are involved in each period. We also find that

the trajectories can arrive at the vector field of LC2

when h decreases through the point of the supercritical
Hopf bifurcation supHopf3 and a large bifurcation

delay interval can be seen as h passes across the point

of the supercritical Hopf bifurcation supHopf 3.

Fig. 5 The related diagrams for the fixed parameters l ¼ 0:5, k ¼ 3, a ¼ 0:5, e ¼ 1, f ¼ 5, x ¼ 0:005 and d ¼ 0:6. a
Diagram projected onto the ðx; yÞ plane; b time histories on the plane of ðt; xÞ
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According to the generation of the two spiking-state-

oscillations, such dynamical responses are named

‘‘fold/fold-fold/supHopf’’ MMOs. In this area, we can

obtain a fact that Hopf bifurcation delay plays an

important action in the generation of the different

MMOs.

4.3 ‘‘Fold/inverse-period-4-inverse-period-

twofold limit cycle’’ chaotic MMOs

Thirdly, the mechanism of the dynamical responses in

area C is investigated in this subsection, the corre-

sponding diagrams are presented in Fig. 8, where the

parameters are fixed at l ¼ 0:5, k ¼ 3, a ¼ 0:5, e ¼ 1,

f ¼ 5, x ¼ 0:005 and d ¼ 1:5. We can see that such

MMOs may be induced by the trajectories moving

among the attractive domains of an equilibrium point

and two stable limit cycles, and three spiking-state-

oscillations are involved in each period. In addition,

we also find that Fig. 8a shows the obvious chaotic

characteristics. Overlapping the diagram on the plane

of ðh; xÞ onto the bifurcation diagram, we can get a

clearer idea on the mechanism of the MMOs, as

displayed in Fig. 9a.

Assuming h slowly increases from its smallest

value �5, the trajectories move in the vector field of

E2 with small amplitude. As h passes through the point
of subHopf3 slowly, the subcritical Hopf bifurcation

delay effect occurs, and a large delay interval can be

observed. Then, h arrives at the LP2 point, the

quiescent-state-oscillations are terminated, and the

trajectories enter the attractive domain of the limit

Fig. 6 Fast/slow decompilation of the MMOs for l ¼ 0:5,
k ¼ 3, a ¼ 0:5, e ¼ 1, f ¼ 5, x ¼ 0:005 and d ¼ 0:6. a Two-

dimensional views of the superposition diagram projected onto

the ðh; xÞ plane; b the evolution process of h slowly varying

from ? 5 to - 5; c the evolution process of h slowly varying

from - 5 to ? 5; d three-dimensional views of the superposi-

tion diagram on the plane of ðz; 5 cosð0:005tÞ;wÞ
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cycle attractor LC1, resulting in the generation of the

spking-state-oscillations-3. If h reaches the largest

value þ5, the spiking-state-oscillations remain, and

this big-amplitude vibrations can be renamed the

spiking-state-oscillations-1. Sometime later, a series

of period-doubling bifurcations appears, leading to the

generation of chaos, and the trajectories continue

vibrating with large-amplitude. Then, the system exits

the chaotic behaviors by the inverse-period-doubling-

bifurcation-4, and the trajectories vibrate for the

period-doubling-4-oscillations. In addition, we note

that the upper vibration boundary of the trajectories

gradually decreases for the period-doubling-4-oscilla-

tions. While if h arrives at the inverse-period-

doubling-bifurcation-2 point, the trajectories jump to

oscillate in the vector field of the limit cycle attractor

LC2 conveniently, resulting in the occurrence of the

spiking-state-oscillations-2. As h slowly comes across

the LPC point, limit cycle LC1 is canceled, but due to

the bifurcation delay phenomenon, the trajectories

continue vibrating with big-amplitude for sometime.

Subsequently, the oscillating amplitude of the trajec-

tories decreases gradually, and the trajectories settle

down to the vector field of E2. If h returns to the

smallest value �5, it starts to increase, and the next

chaotic MMOs begin.

For such MMOs, the spiking-state-oscillations-1–3

are induced by fold bifurcation and ended up with

Fig. 7 Dynamical responses for l ¼ 0:5, k ¼ 3, a ¼ 0:5, e ¼ 1, f ¼ 5,x ¼ 0:005 and d ¼ 0:9. a Time history on the plane of ðt; xÞ; b
two-dimensional views of the superposition diagram on the plane of ðh; xÞ

Fig. 8 The corresponding phase diagrams for the parameters l ¼ 0:5, k ¼ 3, a ¼ 0:5, e ¼ 1, f ¼ 5, x ¼ 0:005 and d ¼ 1:5. a
Diagram projected onto the ðx; yÞ plane; b time histories on the plane of ðt; xÞ with spiking-state-oscillations analysis
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inverse-period-doubling-bifurcation-4, and the spik-

ing-state-oscillations-2 is created by inverse-period-

doubling-bifurcation-2 and terminated by fold bifur-

cations of limit cycles. Therefore, such MMOs can be

known as ‘‘fold/inverse-period-4-inverse-period-two-

fold limit cycle’’ MMOs.

4.4 ‘‘Fold/inverse-period-8/supHopf’’ chaotic

MMOs

Fourthly, the parameters l ¼ 0:5, k ¼ 3, a ¼ 0:5,

e ¼ 1, f ¼ 5, x ¼ 0:005 and d ¼ 1:75 are fixed as

example to explore the nonlinear responses in area D,

the related diagrams are displayed in Fig. 10. We note

that the diagrams shown in Fig. 10 are similar to that

in Fig. 8, but in fact, from the bifurcation structures

plotted in Fig. 2d, e, we know there are qualitative

differences of the generation mechanisms between

them. Now, we overlap the diagram on the plane of

ðh; xÞ onto the bifurcation diagram to present the

mechanism for such MMOs, as displayed in Fig. 11.

Supposing h slowly adds from the largest value�5,

the trajectories trace in the vector field of E2 with

small-amplitude. As h varies through the supHopf 3

point, the small-amplitude oscillations continue due to

the Hopf bifurcation delay, and they are terminated by

the LP2 point. Subsequently, the trajectories enter the

vector field of the chaotic attractor that is created by

Fig. 9 Generation analysis of the MMOs for l ¼ 0:5, k ¼ 3, a ¼ 0:5, e ¼ 1, f ¼ 5, x ¼ 0:005 and d ¼ 1:5. a The overlay diagram

between the diagram on the plane of ðh; xÞ and the bifurcation diagram; b the Lyapunov exponent diagram

Fig. 10 The related diagrams for the parameters l ¼ 0:5, k ¼ 3, a ¼ 0:5, e ¼ 1, f ¼ 5, x ¼ 0:005 and d ¼ 1:75. a Diagram projected

onto the ðx; yÞ plane; b Time histories on the plane of ðt; xÞ
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the period-doubling route. Then, the spiking-state-

oscillations-1 is induced, and it will last for a long

time. As h decreases through the inverse-period-

doubling-bifurcation-8 point, the chaotic behaviors

are terminated, and the trajectories approach the

attractive domain of the LC2 attractor on the lower

branch. The spiking-state-oscillations-2 is created, in

fact, the spiking-state-oscillations-2 can be treated as a

continuation of the spiking-state-oscillations-1, just a

jumping behavior induced by the inverse-period-

doubling-bifurcation-8 point occurs between them.

When h decreases through the supHopf3 point, the

trajectories’ oscillating-amplitude decreases gradu-

ally, and the trajectories stabilize in the attractive

domain of E2 to vibrate.

For such MMOs, the spiking-state-oscillations-1

and the spiking-state-oscillations-2 can be treated as a

whole spiking-state-oscillation, and the whole spik-

ing-state-oscillation involves three dynamical behav-

iors, i.e., fold bifurcation, inverse-period-doubling-

bifurcation-8 and supercritical Hopf bifurcation.

Moreover, the chaos are observed in such MMOs, so

such dynamical responses are known as ‘‘fold/inverse-

period-doubling-8/supHopf’’ MMOs.

4.5 ‘‘Fold/delayed fold limit cycle’’ chaotic

MMOs

In this subsection, we will present a kind of chaotic

MMOs in area E by taking the parameters l ¼ 0:5,

k ¼ 3, a ¼ 0:5, e ¼ 1, f ¼ 5, x ¼ 0:005 and d ¼ 2 as

a representative, and the diagram projected onto the

ðx; yÞ plane and time histories are presented in

Fig. 12a, b. We can see that such MMOs behave in

obvious chaotic characteristics from Fig. 12b, c. By

overlying the diagram projected on the ðh; xÞ plane and
the bifurcation diagram displayed on the ðh; xÞ space,
we can obtain a clearer idea on such MMOs, as

presented in Fig. 12d.

Supposing h slowly adds from the smallest value

�5, the trajectories trace peacefully for a small-

amplitude vibration in the vector field of E2, behaving

in the quiescent-state-oscillations. Then, the LP2 point

appears, resulting in the generation of a jump

phenomenon. The trajectories start to vibrate vio-

lently, resulting in the appearance of the spiking-state-

oscillations, and they will last for a long time. Noting

that the chaotic behaviors are involved in the bifur-

cation structures and the trajectories have the ability to

traverse the chaotic area. Subsequently, the trajecto-

ries exit the chaotic oscillations by period-doubling

bifurcations and enter the period area, resulting in the

period-doubling oscillations. As h arrives the fold

bifurcations of limit cycles, the stability of LC1 is

changed. On the upper curve, no attractive domain of

any stable attractors exists, the trajectories can only

choose to vibrate in the unstable vector field of LC1

due to the bifurcation delay effect. Sometime later, the

trajectories jump to vibrate in the vector field of E2

and the quiescent-state-oscillations are produced on

the lower curve.

Fig. 11 Fast/slow decompilation of the MMOs for l ¼ 0:5, k ¼ 3, a ¼ 0:5, e ¼ 1, f ¼ 5, x ¼ 0:005 and d ¼ 1:75. a The overlay

diagram between the diagram on the plane of ðh; xÞ and the bifurcation diagram; b the Lyapunov exponent diagram
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For such MMOs, the spiking-state-oscillations are

produced by fold bifurcations and terminated by the

delayed fold bifurcations of limit cycles, and chaos

can be observed. Therefore, the dynamical responses

are named ‘‘fold/delayed fold limit cycle’’ chaotic

MMOs.

4.6 ‘‘Fold/fold limit cycle’’ periodic MMOs

In the last subsection, we will analyze a periodMMOs’

type in area E, the related diagrams are shown in

Fig. 13, where the parameters are taken at l ¼ 0:5,

k ¼ 3, a ¼ 0:5, e ¼ 1, f ¼ 5, x ¼ 0:005 and d ¼ 2:6.

We can see that the MMOs are created by the

trajectories switching between the equilibrium point

and limit cycle, and only one spiking-state-oscilla-

tions-1 is involved in each period. The mechanism of

such MMOs can be explored clearly by superposing

the diagram projection onto the ðh; xÞ plane onto the

bifurcation diagram displayed on the ðh; xÞ space, as
displayed in Fig. 14a.

We also assume h slowly increases from the

smallest value �5, the trajectories trace gently for a

small-amplitude vibration in the vector field of E2,

agreeing with the quiescent-state-oscillations. As h
arrives at the LP2 point, a jump phenomenon occurs,

resulting in the trajectories getting into the attractive

domain of LC1, and the spiking-state-oscillations-1

can be observed. Sometime later, h reaches the

maxima value ? 5, it begins to decrease, but the

Fig. 12 Phase diagrams and fast/slow decompilation of the

MMOs for the values of l ¼ 0:5, k ¼ 3, a ¼ 0:5, e ¼ 1, f ¼ 5,

x ¼ 0:005 and d ¼ 2. aDiagram projected onto the ðx; yÞ plane;
b time histories on the plane of ðt; xÞ; c maximum Lyapunov

exponent diagram; d Fast/slow analysis by superposing the

diagram projected onto the ðh; xÞ plane to the bifurcation

diagram on the ðh; xÞ space
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spiking-state-oscillations-1 still continues. While if h
decreases to the LPC point, no stable limit cycle

attractor exists, the trajectories have no choice but to

jump to the attractive domain of the equilibrium point

E2 on the lower curve, resulting in the generation of

the quiescent-state-oscillations.

For such MMOs, the spiking-state-oscillations-1 is

produced by fold bifurcations and terminated at fold

bifurcations of limit cycles, and periodic characteris-

tics can be observed from Fig. 14b. Therefore, the

dynamical responses shown in Fig. 13 are called

‘‘fold/fold limit cycle’’ periodic MMOs.

5 Conclusions and discussions

The study of MMOs in high-dimensional systems is

one of the hot spots in the fast/slow dynamics. In this

paper, we take a coupled Duffing–Van der Pol model

with a slowly changing periodic external forcing as an

example to investigate the generation of the complex

MMOs, where the bifurcation delay phenomenon and

twist of trajectories in space can be observed. As soon

as the trajectories undergo a jump phenomenon to the

periodic limit cycles or chaotic limit cycles, periodic

or chaotic MMOs can be observed. Furthermore, the

mechanisms of the periodic and chaotic MMOs are

Fig. 13 The corresponding diagrams for the parameters are l ¼ 0:5, k ¼ 3, a ¼ 0:5, e ¼ 1, f ¼ 5, x ¼ 0:005 and d ¼ 2:6. a
Diagram projection onto the ðx; yÞ plane; b time histories on the plane of ðt; xÞ

Fig. 14 Fast/slow decompilation of the MMOs for l ¼ 0:5,
k ¼ 3, a ¼ 0:5, e ¼ 1, f ¼ 5, x ¼ 0:005 and d ¼ 2:6. a The

overlay diagram between the bifurcation diagram and the

diagram projected onto the plane of ðh; xÞ; b the maximum

Lyapunov exponent diagram
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investigated by using the phase diagrams, time series,

maximum Lyapunov exponent diagrams, three-di-

mensional phase diagrams and superimposed

diagrams.

Our study shows that the bifurcation delay phe-

nomenon can lead to the trajectories to arrive at the

attractive domain of different attractors, which can be

used to explore the generation of the different spiking-

state-oscillations. Moreover, we find that the chaotic

attractor is induced by the period-doubling route, and

the trajectories have their own choice to cross or not

cross the chaotic area. Our results provide more

possible routes to the MMOs and improve a better

understanding of the bifurcation structures and bifur-

cation delay on the generation of the MMOs.
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