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Abstract We present analysis of dispersive wave
propagation through a spatial interface between a lin-
ear and nonlinear monatomic chain using a proposed
multiple scales perturbation approach. As such, we
solve interface problems at each perturbation order
(up to and including the second order) and assem-
ble multi-harmonic solutions for transmitted and back-
scattered waves. The perturbation approach predicts
the existence of multiple nonlinear dispersion curves
in the nonlinear subdomain. Using these curves, we
further predict spatially-varying, higher-harmonic gen-
eration in the transmitted field. For propagating higher-
harmonic waves, their amplitude is predicted to experi-
ence oscillatory spatial modulation due to the presence
of multiple wavenumbers at each frequency, whereas
for evanescent waves, their amplitude is predicted to
undergo a saturating modulation. A transmission anal-
ysis quantifies the increase of the extra-harmonic fre-
quency transmission, and the decrease of the funda-
mental frequency transmission, as the level of non-
linearity increases. Using direct numerical integra-
tion, we show that the perturbation predictions agree
closely with numerical simulations for weakly nonlin-
earwave propagation. Lastly, informed by the perturba-
tion results, we suggest a wave device which tailors the
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transmission of higher harmonics through the choice
of the nonlinear subdomain’s length and/or the signal
amplitude.

Keywords Nonlinear periodic structures · Extra-
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1 Introduction

Elastic periodic structures have well-known dispersion
characteristics admitting Bloch wave propagation [1].
Their application in metamaterials and phononic crys-
tals enables a variety of exotic wave phenomena, such
as negative refraction [2–5], nonreciprocity [6–9], and
topological protection [10–15]. In recent years, nonlin-
ear effects in periodic structures have gained increas-
ing attention due to their ubiquitous nature in granular
materials [16–18], contact-based structures [19–22],
and passive wave control devices [23–30]. Devices uti-
lizing nonlinearity can exhibit advanced wave control
including amplitude tunability [23–26], bifurcation-
based switching [27], and passive frequency conversion
[28–30].

To analyze nonlinear wave propagation in periodic
structures, many analytical tools have been developed,
including those based on the method of harmonic bal-
ance [31,32], transfer matrix approaches [29,33,34],
and perturbation methods [35–40]. In the weakly non-
linear regime, perturbationmethods derive closed-form
nonlinear wave approximations without a priori knowl-
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edge of the solution sought [41]. The simplest pertur-
bation method, the straightforward expansion, applies
only in limited circumstances where the expansion
of nonlinear terms does not generate secular terms at
the leading order [28], or is only required to hold for
short times and/or spatial extents [42]. The Lindstedt-
Poincaré method [35,40] and the method of multi-
ple scales (MMS) [36,37,39,43] introduce additional
expansions for the frequency and time, respectively.
They yield solutions to a wider class of problems and,
as such, can be used to study amplitude-dependent dis-
persion corrections [37,39], invariant multi-harmonic
waves and their stability [36], and internally resonant
waves [39,43,44].

The majority of existing perturbation studies con-
sider weakly nonlinear wave propagation in an infi-
nite medium, as excited (for example) by initial condi-
tions spanning the entire spatial domain [36,44]. Infi-
nite medium studies identify a nonlinear frequency
and wavenumber pair that shifts with amplitude away
from the linear band structure [35–37,44,45], without
distinguishing which of the two quantities (frequency
or wavenumber) is fixed and which is shifted. How-
ever, for semi-infinite nonlinear media with boundary-
excited nonlinear waves, the frequency is fixed by
the source and thus the wavenumber is considered to
shift [46]. Additional complexity arises from bound-
ary excitation – for example, Sanchez-Morcillo et al.
[28], utilizing a straightforward-expansion approach,
studied single-frequency boundary-excited waves and
revealed that the amplitudes of the multi-harmonic
solution evolve in space due to disparate wavenumbers
of the generated waves at the same frequency. Inter-
estingly, Fronk et al. [36] documented a very similar
phenomenon wherein an initial-condition excited non-
linear wave generates a higher wavenumber that inter-
acts with the fundamental wavenumber and exchanges
energy over time.

In contrast to prior studies, in this paper we present
an MMS-based perturbation analysis to investigate
nonlinear wave propagation at the spatial interface
of linear and nonlinear one-dimensional lattice struc-
tures, which has not been studied to date using a per-
turbation approach. The analysis systematically incor-
porates the interface conditions at each perturbation
order, and reconstitutes the multi-harmonic wave solu-
tions from a series of hierarchically structured sub-
solutions. We reveal a variety of propagation patterns
(propagating and evanescent) for transmitted and back-

scattered waves departing the spatial interface. By car-
rying the analysis out to the 2nd-order, we predict and
observe strong self-interaction phenomena; i.e., spon-
taneous amplitudemodulation of harmonics away from
the interface, similar to interactions reported in [28]
and [36] for uniform chains (i.e., chains without inter-
faces). In addition, the developed approach uncovers
multiple dispersion corrections (each corresponding to
an extra-generated harmonic) that simultaneously exist
in a nonlinear wave, in contrast to the single dispersion
correction shown in previous studies [35,36]. Lastly,
we apply the developed perturbation approach to exam-
ple interface systems and validate it using results from
numerical simulations. We remark that the developed
approach is broadly applicable to other interface prob-
lems between linear and nonlinear lattice structures,
such as those incorporating diatomic and triatomic unit
cells.

We organize the paper as follows: In Sect. 2, we
introduce the system under consideration. Section3
details the MMS perturbation approach, where the
expansion, variable nomenclature, and each-order’s
analysis are listed as individual subsections. Section4
provides numerical verification of the perturbation pre-
dictions and further discusses errors and amplitude-
dependent nonlinear transmission. In Sect. 5, we pro-
pose awavedevice capable of tailoring the transmission
of higher harmonics through the choice of the nonlinear
subdomain’s length and/or the signal amplitude. Lastly,
concluding remarks are presented in Sect. 6.

2 System introduction

We consider one-dimensional monatomic chains with
adjacentmasses coupled by an elastic springwith linear
(k1) and cubic (k3) stiffnesses, as depicted in Fig. 1a.
Note that the cubic stiffness in a portion of the domain
may be zero for all time, introducing a linear-nonlinear
interface. Accordingly, each mass in the monatomic
chain has an equation of motion given by,

mü j + k1(2u j − u j−1 − u j+1) + εk3(u j − u j−1)
3

+εk3(u j − u j+1)
3 = 0, (1)

where j denotes the mass index and u j its displace-
ment.Weuse a small parameter ε to implyweak nonlin-
earity, which also serves as a bookkeeping device [47]
in the subsequent perturbation analysis; it can be later
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Fig. 1 a Schematic of the studied nonlinear monatomic system.
b Graphic illustration of a spatial interface between a linear and
nonlinear monatomic chain. c Linear dispersion plot of the con-
sidered monatomic chain

set to one without loss of generality. A positive coeffi-
cient εk3 corresponds to a hardening nonlinear system,
and a negative one to softening. This type ofmonatomic
structure often arises froma three-dimensional physical
system, such as when considering wave propagation in
the [100], [110] and [111] directions of an anharmonic
crystal. A cubic nonlinear monatomic system can also
be used to model photonic systems with Kerr nonlin-
earity [48], or acoustic metamaterials with geometric
nonlinearity [5].

We define a spatial interface system as an infinite
monatomic chain segmented into two semi-infinite sub-
domains interfaced between the j = −1 and j = 0
masses, as illustrated in Fig. 1b. The j < 0 subdomain
is purely linear, with the governing equation of motion,

mü j + k1(2u j − u j−1 − u j+1) = 0, (2)

whereas the j > 0 subdomain is nonlinear and gov-
erned by Eq. (1) with nonzero k3. The two semi-
infinite subdomains are considered to have identical
linear impedance; this can be generalized to different
impedances in future work. We choose the masses at
j = −1 (blue dot) and j = 0 (yellow dot) as the bound-
ary mass of each subdomain, and derive the interface

conditions from their governing equations of motion,

mü−1 + k1(2u−1 − u−2 − u0) = 0, (3)

mü0 + k1(2u0 − u−1 − u1) + εk3(u0 − u1)
3 = 0.

(4)

We consider an incident rightward-moving wave of
known frequency ω, and complex amplitude A, orig-
inating from j = −∞, and investigate the reflection
and transmission at the fundamental and the generated
higher harmonics using the method of multiple scales
(MMS).

3 Perturbation analysis

3.1 MMS expansion and domain decomposition

According to theMMS procedure [47], we first expand
time in an asymptotic series using the small parameter,

T0 = t, T1 = εt, Tn = εnt. (5)

Multiple time derivatives result from the time expan-
sion,

˙( ) = D0( ) + εD1( ) + ε2D1( ) + O(ε3), (6)
¨( ) = D2

0( ) + 2εD0D1( )

+ ε2D2
1( ) + 2ε2D0D2( ) + O(ε3), (7)

where Dn corresponds to the partial time derivative
with respect to time Tn . Next, we expand the displace-
ment of each mass using an asymptotic series,

u j = u(0)
j + εu(1)

j + ε2u(2)
j + O(ε3). (8)

We decompose the chain into three subdomains: a
linear subdomain, an interface subdomain, and a non-
linear subdomain, and apply the expansions to each. In
the linear subdomain,we substitute Eqs. (7) and (8) into
the governing equation of motion, Eq. (2), and collect
resultant terms at the first three leading orders,

O(ε0) : mD2
0u

(0)
j + k1(2u

(0)
j − u(0)

j−1 − u(0)
j+1) = 0, (9)

O(ε1) : mD2
0u

(1)
j + k1(2u

(1)
j − u(1)

j−1 − u(1)
j+1) = 0, (10)

O(ε2) : mD2
0u

(2)
j + k1(2u

(2)
j − u(2)

j−1 − u(2)
j+1) = 0. (11)

Since an undamped linear monatomic chain has
no slow-time dependence, these expanded equations
admit identical forms with zero forcing terms on the
right-hand side, which informs Bloch wave solutions
at each order.
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In the nonlinear subdomain ( j > 0), we substitute
Eqs. (7) and (8) into Eq. (1) (with k3 �= 0) and collect
terms at the same three orders,

O(ε0) : mD2
0u

(0)
j + k1(2u

(0)
j − u(0)

j−1 − u(0)
j+1) = 0, (12)

O(ε1) : mD2
0u

(1)
j + k1(2u

(1)
j − u(1)

j−1 − u(1)
j+1) =

− 2mD0D1u
(0)
j + k3(u

(0)
j+1 − u(0)

j )3

+ k3(u
(0)
j−1 − u(0)

j )3, (13)

O(ε2) : mD2
0u

(2)
j + k1(2u

(2)
j − u(2)

j−1 − u(2)
j+1)

= − 2mD0D2u
(0)
j − mD2

1u
(0)
j − 2mD0D1u

(1)
j

+ fnl (u j−1, u j , uu+1), (14)

where the nonlinear force fnl at O(ε2) is given by,

fnl = 3k3(u
(0) 2
j−1 u

(1)
j−1 − u(0) 2

j−1 u
(1)
j − 2u(0)

j−1u
(1)
j−1u

(0)
j

+ 2u(0)
j−1u

(0)
j u(1)

j + u(1)
j−1u

(0) 2
j − 2u(0) 2

j u(1)
j

+ u(1)
j+1u

(0) 2
j + 2u(0)

j+1u
(0)
j u(1)

j

− 2u(0)
j+1u

(1)
j+1u

(0)
j − u(0) 2

j+1 u
(1)
j + u(0) 2

j+1 u
(1)
j+1).

(15)

The left-hand side of Eqs. (12)–(14) have identical
linear kernels, which again indicates the same form
of the homogeneous solutions. The right-hand side of
Eqs. (13) and (14) are functions of solutions from the
previous orders, enabling sequential solution of the sys-
tem of equations.

Next, we expand the interface conditions, Eqs. (3)
and (4), using the expansion, Eqs. (5), (7) and (8), and
collect the associated terms,

O(ε0) : mD2
0u

(0)
−1 + k1(2u

(0)
−1 − u(0)

−2 − u(0)
0 ) = 0,

(16)

mD2
0u

(0)
0 + k1(2u

(0)
0 − u(0)

−1 − u(0)
1 ) = 0, (17)

O(ε1) : mD2
0u

(1)
−1 + k1(2u

(1)
−1 − u(1)

−2 − u(1)
0 ) = 0,

(18)

mD2
0u

(1)
0 + k1(2u

(1)
0 − u(1)

−1 − u(1)
1 ) =

− 2mD0D1u
(0)
0 + k3(u

(0)
1 − u(0)

0 )3, (19)

O(ε2) : mD2
0u

(2)
−1 + k1(2u

(2)
−1 − u(2)

−2 − u(2)
0 ) = 0,

(20)

mD2
0u

(2)
0 + k1(2u

(2)
0 − u(2)

−1 − u(2)
1 ) =

− 2mD0D2u
(0)
0 − mD2

1u
(0)
0 − 2mD0D1u

(1)
0

− 3k3(u
(0)
0 − u(0)

1 )2(u(1)
0 − u(1)

1 ), (21)

where Eqs. (16), (18) and (20) arise from Eqs. (3), (17),
(19) and (21) arise from Eq. (4). We note that such
expansion of the interface conditions is inherently iden-
tical to the expansions in the subdomains. It is different
from initial condition expansions discussed in [49,50].

As such, we acquire three ordered linear interface
systems where the nonlinear effects and slower-time
dependencies appear as forcing-like terms on the right-
hand side. At each order, we will subsequently derive
particular solutions in the linear and nonlinear subdo-
mains, respectively, and then introduce homogeneous
solutions in both subdomains to satisfy the correspond-
ing interface conditions. We note that the dispersion
shifts (captured by frequency detuning terms in later
sections) may appear as unknowns at a given order, but
can be derived by removing secular terms at the next
order of the analysis. In this study, we carry the MMS
analysis up to and including O(ε2) and confine our
interest to the fundamental and third harmonics.

3.2 Nomenclature

The ensuing analysis introduces a multitude of waves
spanning three subdomains and three orders, wherein
the coupling of their amplitudes and phases occurs
through complex mechanisms. To enhance clarity, we
detail our choice for variable nomenclature.

The amplitude coefficients ofwaves at each order are
denoted by uppercase letters in alphabetical sequence.
For instance, the amplitude A signifies a wave appear-
ing at O(ε0), while B and C correspond to waves
appearing at O(ε1) and O(ε2), respectively. A super-
script ’+’ or ’−’ indicates a rightward- or leftward-
propagating wave, respectively. The subscripts of an
amplitude coefficient indicate the harmonics of the cor-
responding wave and whether the solution is a homo-
geneous or particular solution. For instance, C+

3.p rep-

resents an O(ε2) rightward-propagating wave at three
times the fundamental frequency originating as a par-
ticular solution, while B−

1.h denotes an O(ε1) leftward-
propagating wave at the fundamental frequency orig-
inating as a homogeneous solution. These amplitude
coefficients are assumed to be complex quantities.

The spatial-temporal phase of a wave is represented
by Greek letters θ j or ψ j . Similarly, a superscript ’+’
or ’−’ is used to indicate a rightward- or leftward-
propagatingwave, respectively. Furthermore, a hat sign
(̂ ) is added to signify the presence of a dispersion shift
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(i.e., frequency detuning term). Generally, waves in the
nonlinear subdomain appear with the hat sign, whereas
those in the linear subdomain do not.

3.3 O(ε0) analysis

We express solutions to the O(ε0) governing equa-
tion in the nonlinear subdomain, Eq. (12), using Bloch
waves of the form,

u(0)
j = 1

2
A+
1.he

îθ+
j + c.c., j ≥ 0, (22)

where A+
1.h denotes a complex wave amplitude, ̂θ+

j =
(ω0 + εσ )T0 − μ0 j denotes the oscillation phase, εσ
denotes a small frequency detuning, and c.c. denotes
the complex conjugate of all preceding terms. The fre-
quency ω0 and wavenumber μ0 obey the well-known
linear dispersion relationship [36],

ω0(μ0) =
√

2k1
m

(1 − cos(μ0)), (23)

as depicted in Fig. 1c. In general, detuning is responsi-
ble for a nonlinear dispersion shift, which can apply to
either the frequency or the wavenumber. In this study,
we consider the dispersion shift as a correction to the
frequency in accordance with the MMS analysis pre-
sented by Fronk et al. [36], such that (ω0 + εσ ) and
μ0 obey a nonlinear dispersion relationship. Notably,
Jiao et al. [46] applied the dispersion correction to
the wavenumber and documented a wavenumber clip-
ping effect which results in a slightly different disper-
sion shift. However, this deviation becomes noticeable
only when the frequency approaches the cutoff fre-
quency,which falls outside themain scope of this study.
Accordingly, we expand the detuning as a series of fre-
quency shifts,σ = σ (1)+εσ (2)+ε2σ (3)+..., to capture
the dispersion corrections at higher orders,

εσT0 = σ (1)T1 + σ (2)T2 + O(ε3). (24)

We note that this asymptotic expansion follows the
tradition of [41]; alternative expansions using Padé
approximators are also possible [51,52]. In addition,
we assume a slower time dependence in the magnitude
of the transmitted amplitude,

A+
1.h(T1, ..., Tn) = α(T1, ..., Tn)e

iβ. (25)

We purposely isolate the dispersion shifts (i.e., detun-
ing terms) from the amplitude for our interface analy-
sis. As a result, β is not considered a function of slower

time scales herein. After these considerations, we note
that the solution we have presented for O(ε0), Eq. (22),
is equivalent to that presented by Fronk et al. [36]

Given a known incident Bloch wave of amplitude A,
frequencyω, and associatedwavenumberμ originating
in the linear subdomain, its presence at the interface
induces a reflected wave with complex amplitude A−

1.h
and a transmitted wave with complex amplitude A+

1.h ,
as given Eq. (22). Figure2a illustrates the O(ε0) wave
interactions near the interface. Accordingly, the O(ε0)

solution for the total domain can be written as,

u(0)
j = 1

2
Aeiθ

+
j + 1

2
A−
1.he

iθ−
j + c.c., j < 0, (26)

u(0)
j = 1

2
A+
1.he

îθ+
j + c.c, j ≥ 0, (27)

where θ+
j = ωT0 −μj and θ−

j = ωT0 +μj denote the
phases for incident and reflected waves, respectively, in
the linear subdomain. We note that the incident wave
frequency ω obeys the linear dispersion relationship,
Eq. (23), with real wavenumber μ since it is assumed
well below the linear cut-off frequency.

Substituting Eqs. (26) and (27) into the O(ε0) inter-
face conditions, Eqs. (16) and (17), yields a set of time-
dependent algebraic equations for A−

1.h and A+
1.h . In

order to eliminate the temporal dependence of the equa-
tions,wenote that frequencymust be preserved through
the interface such that,

ω = ω0 + εσ. (28)

In numerical evaluation, we need to truncate the detun-
ing series; for the O(ε1) analysis, we use the approxi-
mation that

ω ≈ ω0 + εσ (1). (29)

This is strictly done out of convenience to facilitate
finding A−

1.h , A
+
1.h , and σ (1) after the O(ε1) analysis—

see the discussion following Eq. (33). Later, during the
O(ε2) analysis, we reintroduce the σ (2) detuning.

After removing the common temporal factor eiωT0 ,
the remaining terms canbe expressed as a linear system,

[ −k1 −mω2e−iμ + 2k1e−iμ − k1e−i2μ

−mω2
0 + 2k1 − k1e−iμ0 −k1e−iμ

]

[

A+
1.h

A−
1.h

]

=
[

mω2 − 2k1 + k1eiμ

k1

]

Aeiμ. (30)

The solution to this linear system results in the
reflected and transmitted amplitudes at O(ε0) given
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the incident wave parameters (i.e., A and ω). Note that
ω and the linear dispersion relationship yield μ, and
Eqs. (29) and (23) eliminate μ0 and ω0 in favor of the
unknown detuning σ (1). Thus, only symbolic expres-
sions for A−

1.h and A+
1.h as functions of σ (1) are avail-

able at this stage. If the perturbation approach termi-
nates after O(ε0), this detuning term can be neglected,
which leads to full transmission |A+

1.h | = |A|. Other-
wise, we carry the symbolic expressions into the next
order and together determine the detuning.

3.4 O(ε1) analysis

To proceed with the O(ε1) analysis, we first derive the
wave solutions in the nonlinear subdomain. We update
the right-hand side of the O(ε1) equation, Eq. (13),
using the O(ε0) solution, Eq. (22). The updated right-
hand side contains oscillating terms with time-varying
phase ±̂θ+

j and ±3̂θ+
j . We recognize the terms depen-

dent on ±̂θ+
j to be secular, which requires elimination

to prevent resonant response (i.e., divergence of the
series expansion). Accordingly, we collect and equate
these secular terms to zero,

3k3α
3 cos(μ0) − 3

4
α3 cos(2μ0) − 9

4
k3α

3

+mω0ασ (1) − imω0D1α = 0. (31)

Real and imaginary components of this equation yield
solutions for the detuning and the T1-scale time depen-
dence of the amplitude, respectively,

σ (1) = 3k3α2(cos(2μ0) − 4 cos(μ0) + 3)

4mω0
, (32)

D1α = 0. (33)

Equation (32) relates detuning to frequency ω0 and
wavenumberμ0, which obey the linear dispersion rela-
tionship, Eq. (23). We remind the readers that the fre-
quency ω0 and the detuning σ (1) are related to the inci-
dent wave frequency ω by Eq. (29). Thus, we com-
bine Eqs. (32), (23), and (29) with the linear sys-
tem at O(ε0), Eq. (30), and obtain five equations and
five unknowns (A+

1.h, A
−
1.h , σ (1), ω0, μ0). The solu-

tions to the O(ε0) order is now complete. Had we also
included ε2σ (2) in Eq. (29), the O(ε0) solutions would
be delayed until completion of the O(ε2) analysis.

Returning to the O(ε1) analysis, with the secular
terms removed, the right-hand side of Eq. (13) reduces
to an oscillating force with phase 3̂θ+

j . We assume a

Fig. 2 Schematic of a spatial interface with generated harmon-
ics. Solid arrows indicate the incident wave and particular solu-
tions, while dashed arrows indicate homogeneous wave solu-
tions. Subplots a, b and c represent the wave interaction near the
interface at O(ε0), O(ε1) and O(ε2), respectively

particular solution of u(1)
j in the form of,

u(1)
j.p = 1

2
B+
3.pe

i3̂θ+
j + c.c., (34)

where the subscript .p suggests a particular solution.
Using the method of undetermined coefficients, we
derive the amplitude at 3̂θ+

j ,

B+
3.p = k3(A

+
1.h)

3(cos(μ0) − 1)2(2 cos(μ0) + 1)

2k1(1 − cos(3μ0)) − 9ω2
0m

.

(35)

The above results agree with the analysis presented
in other works considering homogeneous chains (i.e.,
no interfaces) [36]. Conventionally, the O(ε1) pertur-
bation analysis concludes with the determination of the
particular solution [35,36] since an infinite nonlinear
subdomain does not require consideration of bound-
ary conditions. The presence of an interface, however,
requires the introduction of additional homogeneous
solutions to satisfy the interface conditions, as detailed
next.

In the O(ε1) interface conditions, Eq. (19), we
update the right-hand side using the known u(0)

j solu-
tion. The updated forcing-like terms contain the first
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and third frequency, which requires inclusion of homo-
geneous solutions in u(1)

j at these harmonics in both
the nonlinear and linear subdomains. In the nonlinear
subdomain, by causality, a wave only travels from left
to right, and thus the homogeneous solution takes the
form,

u(1)
j.h = 1

2
B+
1.he

îθ+
j + 1

2
B+
3.he

îψ+
j + c.c., j ≥ 0, (36)

where B+
1.h and B+

3.h denote undetermined complex
amplitudes and ̂ψ+

j = (ω3.h + εδ3)T0 −μ3.h j denotes
the detuned wave phase at the third frequency. Note
that, the frequency wavenumber pair (ω3.h , μ3.h) fol-
lows the linear dispersion relationship given inEq. (23).
The small detuning term is defined similar to εσ ,

εδ3T0 = δ
(1)
3 T1 + O(ε2), (37)

In fact, any number of plane waves constitute a
valid homogeneous solution, but only two will be
needed herein to satisfy the interface conditions, which
requires frequency matching at the fundamental fre-
quency, (Eq. 28), and the third frequency,

3ω = ω3.h + εδ3. (38)

Similarly, onemay truncate the detuning terms atO(ε1)

in numerical evaluations.
Accordingly, we combine the particular solution,

Eq. (34), and homogeneous solution, Eq. (36), into the
general solution at O(ε1),

u(1)
j = 1

2
B+
3.pe

i3̂θ+
j + 1

2
B+
1.he

îθ+
j + 1

2
B+
3.he

îψ+
j

+c.c., j ≥ 0. (39)

In the linear subdomain, the waves represented by
the homogeneous solutions propagate from right to left
with form,

u(1)
j = 1

2
B−
1.he

iθ−
j + 1

2
B−
3.he

iψ−
j + c.c., j < 0, (40)

where ψ−
j = 3ωT0 − μ(3ω) j . We depict the five

O(ε1)-generated harmonics departing the interface in
Fig. 2b.

Next, we substitute the general solutions, Eqs. (39)
and (40), into the O(ε1) interface conditions, Eqs. (18)
and (19), yielding the following linear system,

eiωT0 :
[ −k1 −(mω2 − 2k1)e−iμ − k1e−i2μ

−k1e−iμ0 − mω2
0 + 2k1 −k1e−iμ

]

[

B+
1.h

B−
1.h

]

=
[

0
3k3α2A+

1.h
4 eiμ0 (1 − e−iμ0 )3 + 2mω0σ

(1)A+
1.h,

]

, (41)

ei3ωT0 :
[ −k1 −(9mω2 − 2k1)e−iμ(3ω) − k1e−i2μ(3ω)

−k1e−iμ3.h − mω2
3.h + 2k1 −k1e−iμ(3ω)

]

[

B+
3.h

B−
3.h

]

=
[

k1B
+
3.p

k3(A
+
1.h )3

4 (e−iμ0 − 1)3 + B+
3.p(9mω2 + k1(e−i3μ0 − 2))

]

. (42)

We note that μ3.h and ω3.h in Eq. (42) are functions
of the unknown detuning, δ3, via the nonlinear disper-
sion relationship in Eq. (38). While Eq. (41) can be
evaluated to yield final expressions for B+

1.h and B−
1.h ,

the solutions to Eq. (42) await determination of δ3 at
O(ε2). If the perturbation approach terminates after
O(ε1), δ(1)

3 can be neglected, leading toω3.h = 3ω, and
μ3.h = μ(3ω). Otherwise, we determine the detuning
by removing additional secular terms.

Before proceeding to the next order, we refer
back to the O(ε1) solution in the nonlinear subdo-
main, Eq. (39). By choice, the second (homogeneous)

term, B+
1.he

îθ+
j , shares the same spatial-temporal phase

with its previous-order (homogeneous) solution u(0)
j in

Eq. (22). We choose to reconstitute the homogeneous

solutions and return B+
1.he

îθ+
j to the O(ε0) solution as

a correction to A+
1.h ,

u j = u(0)
j + εu(1)

j + O(ε2), (43)

u(0)
j ← 1

2
(A+

1.h + εB+
1.h)e

îθ+
j + c.c.

= 1

2
˜A+
1.he

îθ+
j + c.c., j ≥ 0, (44)

u(1)
j ← 1

2
B3e

i3̂θ+
j + 1

2
B+
3.he

îψ+
j + c.c., j ≥ 0, (45)

α̃ = |˜A+
1.h |. (46)

This reconstitution process is general—i.e., at each
subsequent order, the previous orders’ homogeneous
solutions need to be updated once higher-order correc-
tion terms (with the same spatial and temporal phase)
are derived via interface conditions. Alternatively, had

we retained B+
1.he

îθ+
j in the O(ε1) solution u(1)

j instead
of reconstituting, we would have induced secular terms
at O(ε2) that could not be removed by the introduced
detuning terms. We note that the reconstitution step
introduces ε into the O(ε0) solution, apparently con-
tradicting the order separation performed in arriving
at Eqs. (12)–(14); however, such a step is routinely
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taken in perturbation analyses for homogeneous solu-
tions and has been shown to yield solutions consis-
tent with approaches which do not re-introduce ε – the
reader is referred to pp. 51–52 in the monograph by
Nayfeh & Mook [53] for a relevant discussion.

Accordingly, the rearrangedO(ε1) solution,Eq. (45),
now only contains harmonics at the third frequency.
The first wave, arising as a particular solution with
phase 3̂θ+

j , always propagates. The second wave, aris-
ing fromahomogeneous solution and obeying a nonlin-
ear dispersion relationship, could be evanescent when
ω3.h eclipses the cutoff frequency of the monatomic

chain (ωcuto f f = 2
√

k1
m ), wherein μ3.h becomes com-

plex. This bifurcation leads to distinct results in O(ε2)

analysis. In the following subsections, we break the
O(ε2) analysis into two discussions addressing propa-
gating and evanescent third harmonics separately.

3.5 O(ε2) analysis

3.5.1 Propagating third harmonics

In this subsection, we consider μ3.h ∈ R, resulting
in a propagating third harmonics. We first seek the
O(ε2) solutions in the nonlinear subdomain. Utilizing
the reconstituted O(ε0) and O(ε1) solutions, Eqs. (44)
and (45), we update the right-hand side of the O(ε2)

equation in the nonlinear subdomain ( j ≥ 0), Eq. (14).
The requisite time derivative terms are then,

D0D2u
(0)
j = −1

2
ω0σ

(2)
˜A+
1.he

îθ+
j

+ i

2
ω0(D2˜A+

1.h)e
îθ+

j + c.c, (47)

D2
1u

(0)
j = −1

2
(σ (1)

ω )2˜A+
1.he

îθ+
j + c.c., (48)

D0D1u
(1)
j = −9

2
ω0σ

(1)B+
3.pe

i3̂θ+
j

−1

2
ω3.hδ

(1)
3 B+

3.he
îψ+

j + c.c., (49)

where we have used the higher-order expression
̂θ+
j = (ω0T0 + σ (1)T1 + σ (2)T2) − μ0 j + O(ε3) and

recalled that D1α = D1β = 0.
The right-hand side of the O(ε2) equation, Eq. (14),

contains secular terms with phase ̂θ+
j and ̂ψ+

j . Elimi-

nating secular terms associated witĥθ+
j , and then sep-

arating real and imaginary components, yields

σ (2) = − 1

2mω0
(3|B+

3.p |̃αk3(2 cos3(μ0)

−3 cos2(μ0) + 1) + m(σ (1))2), (50)

D2˜A+
1.h = 0, (51)

for the O(ε2) dispersion shift and amplitude depen-
dence, respectively. For secular terms associated with
̂ψ+

j , a single real equation results,

δ3 = 3k3α̃2

2mω3.h
(2 − 2 cos(μ0) − 2 cos(μ3.h)

+ cos(μ0 − μ3.h) + cos(μ0 + μ3.h)), (52)

which yields the O(ε1) dispersion correction associ-
ated with the third harmonic’s homogeneous solution.
We note that the dispersion shift described by Eq. (52)
is fundamentally different from the O(ε1) dispersion
shiftσ (1), given inEq. (32), implying unique dispersion
corrections for each spatial-temporal phase.

The remainder of the right-hand side contains propa-
gating terms with phases±(̂ψ+

j −2̂θ+
j ),±3̂θ+

j ,±5̂θ+
j ,

and ±(̂ψ+
j + 2̂θ+

j ). We assume particular solutions to

the O(ε2) problem (Eq. 14) in the form,

u(2)
j.p = 1

2
C+
1.pe

i(̂ψ+
j −2̂θ+

j )

+ 1

2
C+
3.pe

i3̂θ+
j + 1

2
C+
5.pe

i5̂θ+
j

+ 1

2
C+
5.p2e

i(̂ψ+
j +2̂θ+

j ) + c.c, j ≥ 0, (53)
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Fig. 3 The multi-harmonic solution for an interface problem
with propagating third-harmonics. In each subfigure, the linear
dispersion and two nonlinear dispersion curves (with correction

σ (1) and δ
(1)
3 ) are depicted. The shifts are amplified for graphi-

cal illustration. Subplots a, b and c depict the wave solutions at
O(ε0), O(ε1) and O(ε2), respectively. Each marker represents
a unique spatial-temporal phase, as given to the right

which includes the fundamental, third and fifth har-
monics. As stated in Sect. 2, we confine our interest to
the fundamental and third harmonics with the expec-
tation that higher harmonics result in negligible con-
tributions to the total field, and thus we only consider
the former two terms in the subsequent analysis. Using
the method of undetermined coefficients, we derive the
retained complex wave amplitudes,

C+
1.p = − 3k3B

+
3.h

˜A+
1.h

2

2(4mω2
0 − 4mω0ω3.h + mω2

3.h − 2k1 + 2k1 cos(−μ3.h + 2μ0))
(−1 + 2 cos(μ0)

+ cos(μ3.h) − 2 cos(μ0 − μ3.h) + cos(−μ3.h + 2μ0)

− cos(2μ0)), (54)

C+
3.p = 6B+

3.p

9mω2
0 − 2k1 + 2k1 cos(3μ0)

(4 cos4(μ0)̃α
2k3 − 4 cos3(μ0)̃α

2k3

− 3 cos2(μ0)̃α
2k3 + 2 cos(μ0)̃α

2k3

+ k3α̃
2 − 3σ (1)mω0). (55)

Consistent with the O(ε1) analysis, we include
homogeneous solutions to theO(ε2) problem,Eq. (14),

in the form of two Bloch waves oscillating at the fun-
damental and third harmonics, respectively,

u(2)
j.h = 1

2
C+
1.he

îθ+
j + 1

2
C+
3.he

îψ+
j + c.c., j ≥ 0, (56)

and thus the general solution in the nonlinear subdo-
main admits the form,

123



5024 L. Fang, M. J. Leamy

u(2)
j = 1

2
C+
1.pe

i(̂ψ+
j −2̂θ+

j ) + 1

2
C+
3.pe

i3̂θ+
j

+1

2
C+
1.he

îθ+
j + 1

2
C+
3.he

îψ+
j + c.c., j ≥ 0. (57)

The back-scattered wave in the linear subdomain is
similarly assembled,

u(2)
j.h = 1

2
C−
1.he

iθ−
j + 1

2
C−
3.he

iψ−
j + c.c., j < 0. (58)

Accordingly, we identify six O(ε2) generated har-
monics departing the interface in Fig. 2c. The O(ε2)

interface conditions, Eqs. (20) and (21), then yield a
set of linear systems at the fundamental and third har-
monics,

eiωT0 :
[ −k1 −(mω2 − 2k1)e−iμ − k1e−i2μ

−k1e−iμ0 − mω2
0 + 2k1 −k1e−iμ

]

[

C+
1.h

C−
1.h

]

=
[

k1C
+
1.p

f (ω)
2

]

, (59)

f (ω)
2 = (3k3 ˜A+

1.h

2
B+
3.h + 4k1C

+
1.p)e

i(2μ0−μ3.h )

4

− 3k3 ˜A+
1.h

2
B+
3.he

i(μ0−μ3.h )

2

− 3k3 ˜A+
1.h

2
(B+

3.h + B+
3.p)e

i2μ0

4

+ 3k3 ˜A+
1.h

2
B+
3.pe

−i3μ0

4
− 3k3 ˜A+

1.h

2
B+
3.pe

−i2μ0

2

+ 3k3 ˜A+
1.h

2
B+
3.pe

−iμ0

4

+ 3k3 ˜A+
1.h

2
B+
3.he

−iμ3.h

4
+ 3k3 ˜A+

1.h

2
(B+

3.h + B+
3.p)e

iμ0

2

− 3k3 ˜A+
1.h

2
(B+

3.h + B+
3.p)

4
+ (4mω2

0 − 8k1)C
+
1.p

4

+m˜A+
1.h (2ω0σ

(2) + (σ (1))2), (60)
ei3ωT0 :
[ −k1 −(9mω2 − 2k1)e−iμ(3ω) − k1e−i2μ(3ω)

−k1e−iμ3.h − mω2
3.h + 2k1 −k1e−iμ(3ω)

]

[

C+
3.h

C−
3.h

]

=
[

k1C
+
3.p

f (3ω)
2

]

, (61)

f (3ω)
2 = − 3k3B

+
3.h α̃

2ei(μ0−μ3.h )

2
− 3k3B

+
3.h α̃

2ei(μ0+μ3.h )

2

+ (6k3B
+
3.p α̃

2 + 2k1C
+
3.p)e

−i3μ0

2

− 3k3B
+
3.p α̃

2e−i4μ0

2
− 3k3B

+
3.p α̃

2e−i2μ0

2

+ 3k3B
+
3.h α̃

2e6−iμ3.h

+ 3k3(B
+
3.h + B+

3.p)(cos(μ0) − 1)̃α2

+ 2mω0σ
(1)(B+

3.h + B+
3.p) + C+

3.p(mω2
0 − 2k1). (62)

Solving these linear systems yield the amplitude
coefficients at O(ε2). We thus collect the solutions at

each order and reconstitute the final solution in the non-
linear subdomain,

u j =
˜A+
1.h

2
ei

̂θ+
j + ε(

B+
3.p

2
ei3

̂θ+
j + B+

3.h

2
ei

̂ψ+
j )

+ ε2(
C+
1.p

2
ei(

̂ψ+
j −2̂θ+

j ) + C+
1.h

2
ei

̂θ+
j

+ C+
3.p

2
ei3

̂θ+
j + C+

3.h

2
ei

̂ψ+
j ) + c.c, j ≥ 0. (63)

The reconstituted solution in the linear subdomain
takes the final form,

u j = A

2
eiθ

+
j + A−

1.h

2
eiθ

−
j + ε(

B−
1.h

2
eiθ

−
j

+ B−
3.h

2
eiψ

−
j ) + ε2(

C−
1.h

2
eiθ

−
j + C−

3.h

2
eiψ

−
j )

+ c.c., j < 0. (64)

We summarize the multi-harmonics solutions in Fig. 3
and refer the reader to Table 1 for the mapping of
complex amplitudes and detunings to equation number.
Note that at both the fundamental and third frequency,
multiple wavenumbers exist in the nonlinear subdo-
main, suggesting a spatial modulation of the response
magnitude. Since this nonlinearity-inducedmodulation
is passive and intrinsic to the monatomic system, we
term the resultant pattern self-interacting.Wewill illus-
trate this phenomenon in Sect. 4. We note that if the
fifth harmonic is to be considered in the analysis, the
homogeneous solution at 5ω would include an addi-
tional detuning, which can be determined in the O(ε3)

analysis.

3.5.2 Evanescent third harmonics

If the generated higher frequency falls in the stopband
of the monatomic system (i.e., ω3.h > ωcuto f f ), the
associated wavenumber becomes complex. For sake of
simplicity,wedonot consider thewavenumber clipping
effect [46] and instead define the real component of the
wavenumber asπ , consistentwith the linear evanescent
wave analysis [1],

μ3.h ≡ π + iμ3.h.i , (65)

where μ3.h.i is to be determined.
As such,we reformulate theO(ε1) solution,Eq. (45),

incorporating the imaginary wavenumber μ3.h.i ,

u(1)
j ← 1

2
B3e

i3̂θ+
j + 1

2
B+
3.he

îψ+
j.r e jμ3.h.i + c.c.,

j ≥ 0, (66)
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where ̂ψ+
j.r = (ω3.h +εδ3)T0−π j denotes the real part

of the wave phase. The linear dispersion relationship in
the presence of the complex wavenumber becomes,

ω3.h =
√

2k1
m

(1 + cosh(μ3.h.i )). (67)

To avoid unbounded growth in the nonlinear subdo-
main, we assume μ3.h.i is negative.

We next update the O(ε2) equation in the nonlinear
subdomain, Eq. (14), and present the multiple-scale
time derivative terms. Note that terms D0D2u

(0)
j and

D2
1u

(0)
j have identical expressions as in the propagat-

ing third harmonics case, (Eqs. (47) and (48)). The
D0D1u

(1)
j term is updated by the evanescent specific

O(ε1) solution, Eq. (66),

D0D1u
(1)
j = −9

2
ω0B3σ1e

i3̂θ+
j

−1

2
ω3.hδ3e

i3̂ψ+
j.r e jμ3.h.i . (68)

The removal of secular terms yields the same expres-
sion for D2˜A+

1.h andσ (2) as shown inEqs. (50) and (51).
The detuning term δ3, however, admits a different form,

δ3 = −3k3α̃2(cos(μ0) − 1)(cosh(μ3.h.i ) + 1)

mω3.h
.

(69)

We then derive the particular solutions in the form of,

u(2)
j.p = 1

2
C+
1.pe

i(̂ψ+
j.r−2̂θ+

j )e jμ3.h.i

+1

2
C+
3.pe

i3̂θ j + c.c., j ≥ 0, (70)

where the complex amplitude coefficient C+
3.p has the

same expression as in Eq. (55), and C+
1.p appears as,

C+
1.p = − 3k3 ˜A+

1.h

2
B+
3.p

4(4mω2
0 − 4mω0ω3.h + mω2

3.h − 2k1 − k1ei2μ0+μ3.h.i − k1e−i2μ0−μ3.h.i )

(2eiμ0+μ3.h.i − e2iμ0+μ3.h.i + 2e−iμ0−μ3.h.i

−e−2iμ0−μ3.h.i − 2 cosh(μ3.h.i )

−2 cos(2μ0) + 4 cos(μ0) − 2). (71)

To satisfy theO(ε2) interface conditions inEqs. (20)
and (21),we introduce homogeneous solutions contain-
ing the fundamental and third frequency in both the
linear and nonlinear subdomains,

u(2)
j.h = 1

2
C+
1.he

îθ+
j + 1

2
C+
3.he

îψ+
j.r e jμi

+c.c., j ≥ 0, (72)

u(2)
j.h = 1

2
C−
1.he

iθ−
j + 1

2
C−
3.he

iψ−
j.r e− jμi (3ω)

+c.c., j < 0, (73)

where ψ−
j.r = (3ω + εδ3)T0 + π j represents the real

component of the wave phase; the attenuation constant
μi (3ω) can be derived using the linear dispersion rela-
tionship in Eq. (67).

Accordingly, the interface conditions inform a lin-
ear system at the fundamental and third frequency,
which admits identical forms as demonstrated in the
propagating third harmonic case, Eqs. (59) and (61).
Nonetheless, we recognize two different forcing-like
terms below,

f (ω)
2 = (−6k3˜A+

1.h

2
B+
3.h − 4k1C

+
1.p)e

μ3.h.i+i2μ0

4

+3k3˜A+
1.h

2
B+
3.he

μ3.h.i+iμ0

+3k3˜A+
1.h

2
B+
3.pe

−3iμ0

4
− 3k3˜A+

1.h

2
B+
3.pe

−i2μ0

2

+3k3˜A+
1.h

2
B+
3.pe

−iμ0

4
−

3k3˜A+
1.h

2
B+
3.pe

i2μ0

4
+ 3k3˜A+

1.h

2
B+
3.pe

iμ0

2

−3k3˜A+
1.h

2
B+
3.he

μ3.h.i

2

−3k3˜A+
1.h

2
B+
3.p

2
+ (4mω2

0 − 8k1)C
+
1.p

4

+m˜A+
1.h(2ω0σ

(2) + (σ (1))2), (74)

f (3ω)
2 = (6k3α̃2B+

3.p + 2k1C
+
3.p)e

−i3μ0

2
− 3k3α̃2B+

3.pe
−i4μ0

2

−3k3α̃2B+
3.pe

−i2μ0

2
+6k3α̃

2B+
3.h(cos(μ0) − 1)eμ3.h.i

+3k3α̃
2B+

3.p(cos(μ0) − 1) + mω2
0C

+
3.p

+2mω0σ
(1)(B+

3.h + B+
3.p) − 2k1C

+
3.p. (75)

The final solution in the nonlinear subdomain can
then be assembled as,

u j =
˜A+
1.h

2
ei

̂θ+
j + ε(

B+
3.p

2
ei3

̂θ j + B+
3.h

2
ei

̂ψ+
j.r e jμ3.h.i )

+ε2(
C+
1.p

2
ei(

̂ψ+
j.r−2̂θ+

j )e jμ3.h.i + C+
3.p

2
ei3

̂θ+
j +

C+
1.h

2
ei

̂θ+
j + C+

3.h

2
ei

̂ψ+
j.r e jμ3.h.i ) + c.c., j ≥ 0.

(76)
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Fig. 4 The multi-harmonic solution for an interface problem
with evanescent third-harmonics. In each subfigure, we display
the real dispersion relations on the left and imaginary ones on the
right. The linear dispersion and two nonlinear dispersion curves
(with correction σ (1) and δ

(1)
3 ) are depicted. The shifts are ampli-

fied for graphical illustration. Subplots a, b, and c depict the
wave solutions at O(ε0), O(ε1), and O(ε2), respectively. Each
marker represents a unique spatial-temporal phase, as given to
the right. A solid marker represents the oscillatory phase (real
component), whereas a hollowmarker represents the attenuation
constant (imaginary component)

The back-scattered wave in the linear subdomain has
the expression,

u j = A

2
eiθ

+
j + A−

1.h

2
eiθ

−
j + ε(

B−
1.h

2
eiθ

−
j

+ B−
3.h

2
eiψ

−
j.r )e− jμ3.h.i + ε2(

C−
1.h

2
eiθ

−
j

+C−
3.h

2
eiψ

−
j.r )e− jμ3.h.i + c.c., j < 0. (77)

We summarize the multi-harmonic solutions for
evanescent third harmonics in Fig. 4. We refer the
reader to Table 1 for the mapping of complex ampli-
tudes and detunings to equation numbers as used
in Eqs. (63)–(64) (propagating third-harmonics), and
Eqs. (76)–(77) (evanescent third harmonics).

4 Results

4.1 Self-interaction pattern

In the nonlinear subdomain, perturbation analysis pre-
dicts multiple wave solutions with different wavenum-

bers at each frequency. This variety of wavenumbers
leads to a spatial self-interaction phenomenon. In this
section, we illustrate this phenomenon at the funda-
mental and third frequency using an example system.

For the case of propagating third harmonics, the
wave solutions at the fundamental and third frequencies
can be collected from the general solution, Eq. (57),

u(ω)
j =

˜A+
1.h + ε2C+

1.h

2
ei

̂θ+
j

+ε2
C+
1.p

2
ei(

̂ψ+
j −2̂θ+

j ) + c.c, (78)

u(3ω)
j = εB+

3.p + ε2C+
3.p

2
ei3

̂θ+
j

+εB+
3.h + ε2C+

3.h

2
ei

̂ψ+
j + c.c. (79)

Next, we introduce polar expressions for the com-
plex amplitudes,

˜A+
1.h + ε2C+

1.h = α1.he
iβ1.h ,

ε2C+
1.p = α1.pe

iβ1.p ,
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Table 1 Variable-Equation Correspondence

MMS order Variable ω3.h < 2
√

k1
m ω3.h > 2

√

k1
m

O(ε0) A, ω Given

A+
1.h Eq. (30)

A−
1.h

˜A+
1.h Eq. (44)

O(ε1) σ (1) Eq. (32)

B+
3.p Eq. (35)

B+
1.h Eq. (41)

B−
1.h

B+
3.h Eq. (42)

B−
3.h

O(ε2) σ (2) Eq. (50)

δ
(1)
3 Eq. (52) Eq. (69)

C+
1.p Eq. (54) Eq. (71)

C+
3.p Eq. (55)

C+
1.h Eqs. (59) and (60) Eqs. (59) and (74)

C−
1.h

C+
3.h Eqs. (61) and (62) Eqs. (61) and (75)

C−
3.h

εB+
3.p + ε2C+

3.p = α3.pe
iβ3.p ,

εB+
3.h + ε2C+

3.h = α3.he
iβ3.h , (80)

and revert to real solution forms to Eqs. (78) and (79),

u(ω)
j =

√

P2
1 + Q2

1 cos(ωT0 + ζ1), (81)

u(3ω)
j =

√

P2
3 + Q2

3 cos(3ωT0 + ζ3), (82)

where

ζi = atan(
Qi

Pi
),

Pi = αi.p cos ρi + αi.h cos γi ,

Qi = αi.p sin ρi + αi.h sin γi ,

ρ1 = −(μ3.h − 2μ0) j + β1.p,

γ1 = −μ0 j + β1.h,

ρ3 = −3μ0 j + β3.p,

γ3 = −μ3.h j + β3.h, (83)

and where i ∈ {1, 3} denotes the variables associated
with first and third harmonics.We are particularly inter-
ested in the amplitude envelope with the spatial depen-
dence included in ρi and γi ,
√

P2
i + Q2

i =

√

α2
i.p + α2

i.h + 2αi.pαi.h cos(ρi − γi ). (84)

In fact, this envelope demonstrates a spatial oscil-
lation with a period of 2π

μ3.h−3μ0
. Due to the nonlinear

dispersion shifts, this period is a function of the inci-
dent wave amplitude. Furthermore, we introduce two
approximations to advance the understanding of the
self-interaction pattern. At the fundamental frequency,
α2
1.p + α2

1.h 	 2α1.pα1.h , such that,
√

P2
1 + Q2

1 ≈
√

α2
1.p + α2

1.h

(

1 + αi.pαi.h

α2
1.p + α2

1.h

cos(ρ1 − γ1)

)

.(85)

At the third frequency, the quantityα2
3.p+α2

3.h equals
approximately 2α3.pα3.h in the long-wavelength limit.
We note that this approximation degrades as the fre-
quency and wavenumber pair moves away from the
longwavelength limit, andwe only use it for qualitative
interpretation of the self-modulation pattern. Accord-
ingly, Eq. (84) simplifies to,
√

P2
3 + Q2

3 ≈ 2
√

α3.pα3.h

∣

∣

∣

∣

cos(
ρ3 − γ3

2
)

∣

∣

∣

∣

. (86)

123



5028 L. Fang, M. J. Leamy

Under these simplifications, the amplitude at the

fundamental frequencyoscillates around
√

α2
1.p + α2

1.h ,

and the amplitude at the third frequency oscillates
around zero. The oscillation periods (in space) for both
harmonics are identical.

For the case of evanescent third harmonics, α1.p and
α3.h become functions of space, resulting in an oscil-
latory saturation pattern in both the fundamental and
third frequency. This can be shown in a manner analo-
gous to that presented in Eqs. (78)–(84). For the sake
of brevity, we omit explicit algebraic details.

4.2 Numerical verification

In this section, we numerically simulate the interface
system in matlab by directly integrating the govern-
ing equations of motion (Eqs. (1)–(4)) via the mat-
lab function ODE89 (we find lower-order Runge–
Kutta schemes are insufficient to match the perturba-
tion results). We employ system parameters m = 1 kg,
k1 = 1 N/m, εk3 = 1 N/m3.

The numerical interface model comprises a 500-
mass linear chain interfaced with a 1000-mass non-
linear chain. The two masses straddling the interface
are indexed by j = −1 and j = 0, consistent with
the analytical model in Fig. 1. We excite the system by
prescribing a harmonic displacement at the free end
of the linear subdomain (u−500 = A cos(ωt)), and
monitor the transmitted wave in the interface near-field
( j ∈ [0, 100] for the case of propagating third har-
monics, and j ∈ [0, 50] for the case of evanescent
third harmonics). We conduct the simulation over 120
wave periods (T = 2π

ω
), ensuring sufficient time to

attain steady-state dynamicswithin themonitored near-
field, while also avoiding the interference from bound-
ary reflections. At the steady state, we conduct a Fast
Fourier Transform (FFT) on each mass in the interface
near-field, and track the evolution of the fundamental
(A j (ω)) and third frequency magnitude (A j (3ω)).

Figure 5 illustrates themagnitudes of the fundamen-
tal and third frequencies in the nonlinear subdomain, as
obtained through numerical computations and pertur-
bation analysis.Wepresent both theO(ε1)perturbation
results evaluated using Eq. (39), and the O(ε2) pertur-
bation results evaluated using Eq. (57) (case of propa-
gating third harmonics) or Eq. (63) (case of evanescent
third harmonics).

We consider three excitation frequencies at ω =
0.4, 0.6 and 0.7 rad/s, where the former two frequen-
cies result in propagating third harmonics, and the last
one corresponds to an evanescent third harmonic. Three
excitation amplitudes are considered at each frequency:
A = 0.1, 0.2 and 0.3 m. We employ a nondimension-

alized quantity, � = εk3|A|2
k1

, to assess the strength of
the nonlinear restoring force [36]. The three selected
amplitudes thus correspond to � = 0.01, 0.04, and
0.09. In general, a value of � < 0.1 is considered to
meet the criterion for weakly nonlinear conditions.

Figure 5a–c illustrate the propagation pattern of
the fundamental and third harmonics in the trans-
mitted wave at ω = 0.4 rad/s. We observe remark-
able agreement between the numerical results and the
perturbation predictions. For the third harmonic (bot-
tom subplots), both O(ε1) and O(ε2) perturbation
solutions result in a sinusoidal self-interaction pat-
tern (beating) modulating the harmonic’s magnitude
in space. The numerical results verify the predicted
period, 2π

μ3.h−3μ0
. As the excitation amplitude (and

thus incident wave amplitude) increases, we observe
a corresponding increase in the spatial beating period.
At larger � values, this amplitude-dependent phe-
nomenon is accurately captured by the O(ε2) perturba-
tion result, but less so by the O(ε1) solution. The dis-
crepancy observed between the two perturbation orders
results primarily from the omission of the detuning
term (dispersion correction) δ

(1)
3 in the O(ε1) solu-

tion. We recall that this detuning can only be deter-
mined at O(ε2), and has to be omitted if the perturba-
tion analysis terminates at O(ε1). As expected, larger
nonlinear restoring forces lead to larger detuning (dis-
persion shift), which results in the mismatch of O(ε1)

solution at larger amplitudes. We note that this spatial
beating phenomenon differs from the one documented
by Sanchez-Morcillo et al. [28], whose beating period
prediction is independent of wave amplitude.

For the fundamental frequency (top subplots), the
O(ε1) perturbation solution depicts a straight hor-
izontal line, indicating a uniform amplitude enve-
lope in space. Despite its accurate depiction of the
response magnitude, it fails to capture the sinusoidal
self-interaction pattern observed in the numerical sim-
ulations due to the reasons mentioned at the end of
Sect. 4.1. The O(ε2) perturbation solution, however,
accurately captures the self-interaction pattern—note
that the vertical axes in the subplots have a very nar-
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Fig. 5 Comparisons with numerical simulation of the wave-
field in the nonlinear subdomain after the interface. Three exci-
tation frequencies, ω = 0.4, 0.6, and 0.7 rad/s, and three �-
values, 0.01, 0.04, and 0.09, corresponding to wave amplitudes
A = 0.01, 0.02, and 0.03 m, respectively, are selected. Plots in
each row share the same excitation frequency; plots in each col-

umn share the same excitation amplitude. In each row, the top and
bottom subplots depict the magnitude (in meters) of the funda-
mental and third harmonics, respectively, as a function of space
(as measure by the mass index). The numerical results (blue) are
compared with the O(ε1) (red) and O(ε2) (yellow) perturbation
predictions

row range of values. Similarly, the beating period
increases as we increase the nonlinearity. Notably,
the beating patterns in the fundamental and third fre-
quency are related by a phase difference: a maxi-
mum of |A j (3ω)| always corresponds to a minimum
of |A j (ω)|, which implies an inter-harmonic energy
exchange in space, analogous to previous findings of
inter-harmonic energy exchange in time [44]. In addi-
tion, we observe fast oscillations in the fundamental
frequency at small magnitudes. The presence of these
oscillations, which consistently appear in all numerical
results, can be attributed to a combination of higher-
order solutions and numerical errors. We provide a
quantitative error analysis in a Sect. 4.3.

Figure 5d–f depicts the propagation pattern at a
higher frequency (0.6 rad/s) where the third frequency

is still propagating. Compared to Fig. 5a–c, the self-
interaction pattern in both the fundamental and third
harmonics demonstrate a considerably shorter beating
period. As such, we state that under the assumption
of propagating third harmonics, a lower frequency and
higher amplitude leads to a larger beating period for the
hardening cubic nonlinearity considered. In addition,
we observe that the magnitude of the third harmonic at
j = 0 is nonzero. In fact, the amplitude envelope of the
third harmonics is elevated from zero in the nonlinear
subdomain, which can be explained by the analytical
solution of the envelope, Eq. (84).

When the third frequency is evanescent, Fig. 5g–i
document a fundamentally different evolutionpattern—
both the fundamental and third frequency amplitudes
saturate at fixed levels after a short period of oscillatory
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evolution. The O(ε1) perturbation analysis predicts a
straight horizontal line in the fundamental frequency,
and a saturation pattern in the third frequency, whose
agreement with the numerical simulation degrades as
the nonlinearity increases. By carrying the perturbation
analysis to O(ε2), we capture the saturation pattern in
both frequencies with an improved match with numer-
ical simulations. Notably, in the third frequency, we
observe an overshooting phenomenon near the inter-
face. The location of the overshooting maximum cor-
responds to a dipping minimum at the fundamental fre-
quency. This observation is consistent with the energy
exchange mentioned above.

As such,we show that the O(ε2) perturbation results
accurately capture the self-interaction pattern in both
the fundamental and third frequency, reaching a high
degree of agreement with the numerical simulations. In
what follows, we employ two error measures to quan-
tify the errors of the O(ε2) perturbation results, and
then close the results section with a transmission and
reflection analysis.

4.3 Error analysis

Webegin the error analysis bydefining anormalized-
root-mean-square error (NRMSE),

NRMSE(ω)

= 1

|A|

√

√

√

√

1

n

n
∑

j=0

(|Anum
j (ω)| − |Aper

j (ω)|)2,

(87)

where |Anum
j (ω)| and |Aper

j (ω)| denote the numeri-

cal and O(ε2) perturbation-predicted harmonic mag-
nitudes at frequency ω and location j , respectively.
We choose n = 100 in the error analysis results
that follow. To capture the perturbation solution error
as a function of nonlinear measure �, we vary the
excitation amplitude and normalize the RMSE with
respect to the excitation amplitude |A|, resulting in the
NRMSE described above. Note that we separate the
transmitted fundamental and third harmonic and com-
pute their NRMSE individually. This measure quanti-
fies the magnitude-normalized difference between two
amplitude envelopes at each frequency. As illustrated
in Fig. 6a, b, the overall NRMSEs for both frequencies
are considerably small. As the strength of the nonlin-
earity increases, it is expected the NRMSE will also

increase. We note that this tendency is less apparent in
the fundamental frequency due to the fast oscillations
induced by higher order terms and numerical errors,
consistent with the observation in Fig. 5.

We also introduce a relative error, assuming the
numerical simulations as ground truth,

erel(ω) = 1

n + 1

n
∑

j=0

|Anum
j (ω) − Aper

j (ω)|
|Anum

j (ω)| . (88)

We compute the erel for each frequency and present the
results in Fig. 6c, d. The relative error in the fundamen-
tal frequency is considerably small, given the absolute
error |Anum

j (ω) − Aper
j (ω)| is often orders of magni-

tude smaller than the reference truth |Anum
j (ω)|. The

relative error in the third frequency is slightly larger,
but remains under 0.1 for most considered response
amplitudes (i.e., nonlinearity). Similar to the NRMSE
measure,we observe the error increasingwith the rising
nonlinearity. We note that the relative error at low non-
linearity is mostly contributed by the numerical errors.

4.4 Transmission analysis

Finally, we derive the average transmission and
reflection coefficients at each frequency. According to
Fig. 5, the transmitted fundamental and third frequency
undergo a self-interaction pattern, and we hence com-
pute an average transmission ratio,

|T (1)| = 1

|A| (
1

n + 1

n
∑

j=0

|A j (ω)|), (89)

|T (3)| = 1

|A| (
1

n + 1

n
∑

j=0

|A j (3ω)|), (90)

for both perturbation and numerical results. To main-
tain consistency, we use the samemethod for the reflec-
tion coefficient at the third harmonics,

|R(3)| = 1

|A| (
1

n + 1

0
∑

j=−n

|A j (3ω)|). (91)

The reflection coefficient at the fundamental har-
monic |R(1)|, however, requires a different treatment
since the reflected wave superposes with the incident
wave in the linear subdomain. We employ a nonlinear
least square fit to determine the reflection amplitude
and thus the reflection coefficient. We refer readers to
Appendix A for details of this treatment. Note that the
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Fig. 6 Error analysis
between perturbation
predicted and numerical
simulated response in the
nonlinear subdomain. a
Normalized
root-mean-square error
(NRMSE) of the response at
the fundamental frequency.
b NRMSE of the response
at the third frequency. c
Relative error of the
response at the first
frequency. d Relative error
of the response at the third
frequency. Note that plots
a–b are in log-log scale, and
c–d are in log-linear scale

Fig. 7 Averaged
transmission and reflection
coefficients at three selected
frequencies as a function of
nonlinear strength: a
averaged transmission
coefficients at the
fundamental frequency, b
averaged reflection
coefficients at the
fundamental frequency, c
averaged transmission
coefficients at the third
frequency, d averaged
reflection coefficients at the
third frequency
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2D FFT and the nonlinear least square fit can possibly
introduce numerical errors larger than the perturbation
errors due to the spectral leakage and the large contrast
between the incident and reflected wave amplitude.

We present the averaged transmission and reflection
coefficients in Fig. 7. For all three frequencies consid-
ered, an increasing nonlinearity results in a reduction
of transmission at the fundamental frequency, but an
increase in the transmission at the third harmonic fre-
quency and an increase in reflected energy at both fun-
damental and third harmonic frequencies. At a given
nonlinearity (amplitude), a higher frequency induces a
lower transmission of the fundamental frequency. This
phenomenon is expected as the impedance mismatch
between the two subdomains, as a result of dispersion
shifts captured by detuning terms, increases when we
increase the amplitude or frequency. When the third
harmonic is evanescent (yellow curve and data points),
the transmission at both the fundamental and third har-
monic frequencies is lower than the oneswith propagat-
ing third harmonics. In this scenario, the third harmonic
reflection is negligible—the nonzero values, shown as
yellow dots in Fig. 7d, stem from FFT spectral leakage.

At the fundamental frequency, the transmission and
reflection approximately follow the rule of |R(1)| +
|T (1)| = 1, given |T (1)| < 1. We note that a strict
matching is not expected due to the presence of weak
nonlinearity and energy exchange. At the third fre-
quency, the transmission and reflection do not follow
the relationship described above, since they are solely
products of nonlinear interactions, and do not stem
from an incident wave at the third frequency.

Finally, we remark a high-degree of agreement
between the perturbation-predicted and numerically-
simulated transmission. The reflection predictions exh
ibit slight mismatch from their numerical measures,
especially at high nonlinearity, which we attribute to
higher-order terms and numerical errors.

5 Application: a nonlinear harmonic filter

Based on insight gained from the presented perturba-
tion approach and predicted self-interaction patterns,
we propose and analyze an amplitude-dependent wave
filter for controlling the transmission of higher harmon-
ics. Figure8a illustrates the implementation, featuring
a nonlinear (cubic) material sandwiched between two
linear materials. The interfaces are identified by red

and blue lines. For plane waves perpendicular to the
interfaces, the device’s operation can be analyzed accu-
rately using chain representations. To maintain consis-
tency with the preceding analysis, the mass and lin-
ear stiffness of the chains are identical (m = 1 kg,
k1 = 1 N/m) while the nonlinear cubic stiffness is set
to k3 = 1 N/m3. In the presented schematic, the wave
propagates from left to right, with the first mass on the
left denoted as j = 1. The left section of the linear
chain is referred to as the incident medium, and the
right linear chain as the receiving medium. In the sub-
sequent numerical simulations, we excite a wave with
ω = 0.5 rad/s (resulting in propagating third harmon-
ics in the nonlinear medium) and independently vary
the nonlinear inclusion length and the wave amplitude.
These simulations demonstrate transmission tuning of
the third harmonic, resulting in complete filtering at
predetermined combinations of inclusion length and
wave amplitude.

Figure 8b illustrates our default configuration, whe
rein the nonlinear inclusion comprises 300masses, and
the incident wave exhibits an amplitude of A = 0.3 m.
The first three diagrams in Fig. 8b (read vertically) por-
tray the spatial distribution of frequency components
during propagation. The gray-scale (see colorbar, lower
left of figure) denotes intensity at a specific frequency
and designated time, determined through wavelet anal-
ysis. In this arrangement, the fundamental frequency
traverses the nonlinear inclusion. Upon reaching the
linear-nonlinear interface, it induces a spatially vary-
ing third harmonic (note shallow-colored “bubbles” at
3ω = 1.5 rad/s). As the generated third harmonic exits
the nonlinear inclusion, it continues to propagate into
the receiving medium, albeit at a slower speed than the
fundamental frequency owing to the dispersive charac-
teristics of the monatomic chain. At the lowermost part
of Fig. 8b, we present the perturbation-based projec-
tion of the third harmonic’s distribution after the linear-
nonlinear interface at j = 200. The outcome demon-
strates that the chosen length of the nonlinear inclu-
sion permits the sinusoidal-shaped self-interaction pat-
tern to approach its zenith at the exit of the inclusion,
thereby facilitating a high transmission into the receiv-
ing medium.

Figure 8c illustrates a similar configuration, now
with a shorter nonlinear inclusion comprised of 200
masses. Maintaining the same wave frequency and
amplitude, the self-interaction pattern reaches its min-
imum at the second interface, resulting in minimal
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Fig. 8 Nonlinear periodic material featured in a higher-
harmonic filter. a Schematic representation of the implementa-
tion, featuring a linear-nonlinear-linear arrangement ofmaterials.
A test signal propagates in the rightward direction. b Propaga-
tion at A = 0.3 m, with a nonlinear inclusion composed of 300
masses. c Propagation at A = 0.3 m, with a nonlinear inclusion
composed of 200 masses. d Propagation at A = 0.22 m, with

a nonlinear inclusion composed of 300 masses. The first three
vertical plots in each panel depict the spatial distribution of the
frequency spectrum at three distinct instances of time. The low-
ermost plots in each panel illustrate the perturbation-predicted
distribution of the third harmonic within the nonlinear segment
of the chain. All plots share the same intensity colorbar (lower
left)

transmission of the third harmonic into the receiv-
ing medium. This set of simulations underscores the
fact that one can effectively regulate the quantity of
downstream higher harmonic by adjusting the inclu-
sion length of the nonlinear periodic media. It is impor-
tant to note that the relationship between the inclu-
sion length and higher-harmonic transmission is not
monotonic owing to the oscillatory nature of the self-
interaction pattern.

In addition to length adjustments, the nonlinear
inclusion can function as an amplitude-dependent filter,
as demonstrated in Fig. 8d. This configuration main-
tains the same inclusion length and signal frequency
as depicted in Fig. 8b, but employs a lower amplitude
of A = 0.22 m. Consequently, the self-interaction pat-
tern at this amplitude assumes a slightly longer spatial
period, leading to a minimal output of third harmonic
at the exit of the inclusion. Thus, with variable gain (or
equivalently, loss), the nonlinear inclusion can regu-
late continuously the degree to which a third harmonic
transmits into the receiving medium.

6 Concluding remarks

In conclusion, we presented a MMS-based perturba-
tion approach that rigorously analyzes nonlinear dis-
persive wave propagation at the interface of linear and
nonlinear monatomic lattices. Key to the approach,
and differing from previous MMS approaches, we
introduce homogeneous solutions at each considered
order in addition to the customary particular solu-
tions [36], thus enabling the satisfaction of new inter-
face conditions. By carrying the MMS analysis up to
and including the second order, we derived a multi-
harmonic solution with distinct dispersion corrections
associated with individual waves. The superposition of
the multi-harmonic solution leads to the prediction of
complicated self-interaction phenomenon including an
amplitude-dependent spatial beating pattern for prop-
agating third harmonics, and a saturating pattern for
evanescent third harmonics. These self-interaction pat-
terns capture spatial energy exchange between the fun-
damental and third frequency, analagous to the tem-
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poral energy-exchange between harmonics reported
previously in the literature [44]. Numerical simula-
tions, employing direct integration of the equations
of motion, validate the aforementioned findings with
a high degree of accuracy. The conducted error anal-
ysis further quantifies the strong agreement between
theoretical predictions and simulation results. In addi-
tion, we presented a transmission analysis, revealing
a notable decrease in transmission at the fundamental
frequency and a concurrent increase in both the third-
harmonic transmission and reflection with increasing
wave amplitude (or, equivalently, increasing nonlin-
ear stiffness). Lastly, we presented a proposed wave
devicewhich tailors the transmission of higher harmon-
ics through the choice of the nonlinearmaterial’s length
and/or the signal amplitude. Future research on this
topicmay include the application of theMMSapproach
to periodic media with multiple degrees of freedom
per unit cell, such as diatomic chains and locally reso-
nant metamaterials, and extensions to two- and three-
dimensional lattices incorporating interfaces between
linear and nonlinear media.
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Appendix A Extract reflection coefficient at
fundamental frequency

We introduce a analytical-solution based treatment to
capture the small reflection in the linear subdomain, and
utilize a nonlinear least square fit method to approxi-
mate the reflection coefficient from the perturbation-
predicted or numerically-simulated amplitude enve-
lope.

Without loss of generality, we assume thewave solu-
tion at the fundamental frequency in the linear subdo-
main can be represented as,

u j = 1

2
Aei(ωT0−μj) + 1

2
A · Rei(ωT0+μj) + c.c,

j < 0, (A1)

where A is the complex incident wave amplitude, and
R is the complex reflection coefficient.We consider the
following polar expressions, A = αAeiβA and A · R =
αReiβR , and re-format Eq. (A1) as,

u j = αA cos(ωT0 − μj + βA)

+αR cos(ωT0 + μj + βR), (A2)

which can be further expanded and re-organized as,

u j =
√

P2 + Q2 cos(ωT0 + ζ ),

ζ = atan(
Q

P
),

P = αA cos ρ + αR cos(γ,

Q = αA sin ρ + αR sin γ,

ρ = −μj + βA,

γ = μj + βR . (A3)

As such, the amplitude envelope
√

P2 + Q2 can be
expressed as,
√

P2 + Q2

=
√

α2
A + α2

R + 2αAαR cos(ρ − γ ). (A4)

Typically, the incident wave amplitude αA and wavenu
mberμ are known quantities, and the unknowns are the
reflected amplitude αR , and phase difference βA −βR ,
which is included in the ρ − γ term.

Next we feed the perturbation-predicted and numer-
ically simulated amplitude envelopes into this model,
Eq. (A4), and utilize matlab’s fit function (specify-
ing the NonlinearLeastSquares method) to quantify
the unknowns. Lastly, we report the magnitude of the
reflection coefficient at the fundamental frequency,

|R(1)| = αR

|A| . (A5)
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