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Abstract This paper discusses chaos in dynamical

systems as a positive aspect. It can be used to solve the

problem of a spacecraft angular reorientation. Chaos

can generate such a phase trajectory that will ensure

the transition from the initial zone of a phase space to

required one. As objects generating dynamical chaos

in the paper strange chaotic attractors are considering.

The goal is to initiate chaotic attractors in spacecraft

attitude dynamics phase space. It is possible to achieve

the target angular position of the spacecraft using the

initiated chaotic attractors. An algorithm for chaotic

attractors creation in the spacecraft attitude dynamics

is developed in the paper, and five new chaotic

attractors are discovered.

Keywords Attitude dynamics � Multi-rotor system �
Dynamical chaos � Chaotic attractor � Differential
evolution

1 Introduction

In the beginning, there was only Chaos, the

Abyss…

Hesiod, ‘‘Theogony.’’

The phenomenon of dynamical chaos and chaotic

attractors was discovered by Lorenz in 1963 [1]. He

was studying atmospheric convection when he made

this discovery. In 1976, Hénon developed a simpler

dynamical system with chaotic behavior [2]. This

system is known as the Hénon map and is created by

mapping explicit equations. In parallel with Hénon,

Rössler was also involved in solving the problem of

studying of dynamical systems with chaotic attractors.

He acquired a dynamical system with a single

nonlinear term in differential equations [3]. These

differential equations simulate the chemical reaction

processes. Further study of chaotic attractors in

dynamical systems led to the discovery of Chua’s

circuit [4, 5]. Chua’s circuit is typically used to study

various chaotic attractors. This has been demonstrated

in previous studies [6–8]. Sprott analyzed dynamical

systems with chaotic attractors. He identified the form

of differential equations in which chaotic attractors

occur [9].

Generally, chaos is considered a negative and

harmful aspect of system dynamics. Therefore, typical

research is aimed at both the detection and prevention/

elimination of chaos. Moreover, the tasks of chaos

detection are considering for the type of homo-/

heteroclinic chaos, using on the Melnikov method and

its modifications. In the papers [10, 11], the chaotic

motion of an asymmetric spacecraft under internal and

external perturbations was investigated. TheMelnikov
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method is used to predict chaotic pitch motion [12].

The effect of the spacecraft flexible panels was

evaluated in [13]. In studies [14–17], perturbed

dynamics problem for dual-spin and multi-spin (mul-

ti-rotor) spacecraft was examined. The Melnikov

method adaptation was recently developed for cases

with damped perturbations [18]. It was used to

investigate of nanosatellite attitude dynamics at the

presence of internal dissipation properties. The Wig-

gins generalization of the Melnikov method is impor-

tant and useful [19]. In addition, chaotic modes in

spacecraft attitude dynamics with liquid-filled cavities

have been investigated [20–23]. The papers [10–23]

analyzed ways to suppress homo-/heteroclinic chaos.

However, there are studies in which chaos is seen as

a positive aspect. One of the first studies is presented in

the paper [24]. On the basis of the numerical results,

Ott et al. concluded that the desired periodic motions

can be achieved using chaotic attractors. This assump-

tion was later confirmed in the framework of the

targeting problem [25]. The numerical results of [25]

showed that chaotic attractors can reduce the targeting

time. Later, the results obtained in [24] were extended

to high-dimensional systems [26, 27]. Macau also

explored the possibility of using chaos to solve

targeting problems [28, 29]. He developed a chaotic

targeting method [28, 29]. This method was used to

solve the planar Earth–Moon transfer problem with

minimum fuel cost. In addition to the above-men-

tioned method, the hybrid method has also been

proposed as a solution to this problem [30]. The hybrid

method can obtain a set of flight trajectories. These

trajectories have specific fuel costs and maneuver

times. It is worth noting that chaos control was applied

in some space missions. Belbruno [31] used chaos

theory to create low-cost trajectories. These trajecto-

ries rescued the Japanese spacecraft ‘‘Hiten,’’ in 1991

and the American communication satellite ‘‘HGS-1,’’

in 1998.

Chaos control can also be used in attitude dynam-

ics. In [32], an adaptive backstepping sliding mode

control was proposed. This control method aims to

synchronize the chaotic satellite attitude. The authors

obtained stable control laws using this approach.

These control laws suppress any undesirable effects

from unknown disturbances. A similar problem was

solved in [33]. The authors designed a fixed-time

adaptive synchronization controller satellite systems.

The controller adapts to unknown moments of inertia

and disturbance. In addition, chaos control is used in

the attitude dynamics of single satellites. In the papers

[34, 35], the spacecraft angular reorientation problem

was solved by chaos initiation. Chaos initiation was

provided by an internal rotor system. The control laws

for initializing Wang-Sun and Chen-Lee chaotic

attractors are derived. These laws involve rotor

(reaction wheel) control. The problem of the space-

craft chaotic transition was solved [36]. This transition

occurs from the initial zone to the desired zone, and,

therefore, the spacecraft desired angular reorientation

is possible. For example, in [36] chaotic reorientation

was fulfilled by creating heteroclinic chaos. The

heteroclinic chaos is occurred in areas of heteroclinic

orbits in the phase space of dynamical system at the

action of small perturbations.

This study develops the ideas reflected in the

research [36]. In this paper, we also focus on the

spacecraft angular reorientation problem. But now, we

will explore the creation of chaotic attractors in the

phase space to reorient the spacecraft. Moreover,

using the differential evolution algorithm [37], we

consider the optimal reorientation process, when the

desired spatial orientation will be achieved at the

minimization of the angular velocity value.

The paper is organized as follows. In Sect. 2, the

basic concepts related to the mathematical model of

multi-rotor spacecraft angular motion are presented. In

addition, possible motion modes and reorientation

with the help of chaotic attractors are described. In

Sect. 3, the chaotic reorientation results obtained

using five new chaotic attractors are given. The

conclusions are drawn in Sect. 4.
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2 Mechanical and mathematical models

2.1 Coordinate system

Let us consider a multi-spin spacecraft [18] with six

sets of rotors placed along the principal axes (Fig. 1).

The main coordinate frames are the inertial frame

CXYZ and the frame Cxyz. The frame Cxyz is

connected to the main body of the spacecraft.

2.2 Dynamic and kinematic equations

We are studying a rotor system with six identical

rotors. Rotors are placed along the principal axes. The

angular momentum of the multi-rotor mechanical

system in frame Cxyz has the following form:

K ¼ Kb þ Kr; ð1Þ

Kb ¼
Ap
Bq
Cr

2
4

3
5; ð2Þ

Kr ¼ I
r1 þ r2
r3 þ r4
r5 þ r6

2
4

3
5: ð3Þ

Here, K is the angular momentum vector of the

complete mechanical system; Kb is the angular

momentum of the main body with immovable rotors;

Kr is the relative angular momentum of rotors; p, q, r

are components of the angular velocity of the main

body x in projections onto connected axes Cxyz; rl is
relative angular velocity of the l-th rotor relative to the

main body. Parameters A, B, and C are the moments of

inertia of the main body with fixed rotors:

A ¼ eA þ 4J þ 2I;

B ¼ eB þ 4J þ 2I;

C ¼ eC þ 4J þ 2I;

8>><
>>:

ð4Þ

where eA, eB, eC are the general inertia moments of the

main body; I and J are the longitudinal and equatorial

inertia moments of the rotor, respectively.

The equation for the angular motion of the system

in the connected frame Cxyz has the following form:

dK

dt
þ x� K ¼ Me; ð5Þ

where Me is the vector of the external torques acting

on the system. The scalar form of Eq. (5) has the shape

[18]:

A _pþI _r1þ _r2f gþ C�Bð ÞqrþI q r5þr6f g�r r3þr4f g½ �¼Me
x ;

B _qþI _r3þ _r4f gþ A�Cð ÞrpþI r r1þr2f g�p r5þr6f g½ �¼Me
y ;

C _rþI _r5þ _r6f gþ B�Að ÞpqþI p r3þr4f g�q r1þr2f g½ �¼Me
z :

8><
>:

ð6Þ

The equations of the relative rotations of rotors can

be derived. They are based on the law of change in

angular momentums:

Fig. 1 Mechanical structure of the considered spacecraft
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I _pþ _r1ð Þ ¼ Me
1 þMi

1;

I _pþ _r2ð Þ ¼ Me
2 þMi

2;

I _qþ _r3ð Þ ¼ Me
3 þMi

3;

I _qþ _r4ð Þ ¼ Me
4 þMi

4;

I _r þ _r5ð Þ ¼ Me
5 þMi

5;

I _r þ _r6ð Þ ¼ Me
6 þMi

6:

8>>>>>>>>>><
>>>>>>>>>>:

ð7Þ

Here, Me
l and Mi

l are external and internal torques

acting on the l-th rotor, respectively. Electric motors

installed in the main body create internal torque.

The kinematical equations for the Euler angles have

the well-known form:

_h ¼ p cosu� q sinu;

_w ¼ p sinuþ q cosuð Þ=sin h;
_u ¼ r � p sinuþ q cosuð Þ=tgh;

8><
>:

ð8Þ

where h is the nutation angle,w is the precession angle,

and u is the intrinsic rotation. Therefore, the multi-

rotor (multi-spin) spacecraft attitude dynamics is fully

described by Eqs. (6-–8).

2.3 Reorientation stages and phase space zones

As shown in [36], a spacecraft attitude can be

reoriented by initiating heteroclinic chaotic modes.

In this research, we use a different type of chaos. This

corresponds to chaotic attractors, which can be created

by the rotation of internal rotors (Fig. 1). This is based

on the following algorithm:

1. The spacecraft realizes the initial regular mode of

free angular motion.

2. The control system generates torques using jet-

rocket and electric engines. These torques brake

the main body and rotors.

3. The control system switches to form special

control laws. These laws create and support the

chaotic mode. The spacecraft moves chaotically at

this stage. The control systemmonitors the current

dynamic parameters.

4. The control system stops all rotor rotations and jet-

rocket engine work. This occurs when the motion

parameters and phase trajectory reach the target

zone. The chaotic attractor in phase space imme-

diately disappears. The spacecraft then smoothly

transitions to a new regular motion as a single rigid

body into the target zone.

As we already said, the spacecraft final regular

motion is the free angular motion of a single rigid

body. This occurs when all rotors are stopped and fixed

relative to the spacecraft main body. We can observe

the final zones of the spacecraft regular motion [36].

These zones are shown as the single rigid body in

Fig. 2.

The first zone or the A-zone (Fig. 2) describes the

rotational motion of the longitudinal axes (Cz) of the

rigid body. These axes rotate around the vector of

angular momentum K with acute angles of nutation h.
The rotation of the spacecraft around the Cz-axis is

positive. It also has motion with positive precession

Fig. 2 Zones of rigid body angular motion in phase space of

angular velocity components
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velocity and positive intrinsic rotation velocity. The

second zone or theB-zone is the same as the A-zone.

However, the spacecraft rotates in the opposite

direction relative to the angular momentum. The

angular motion has a positive precession velocity. It

also has a negative intrinsic rotation velocity. In

addition, the values of nutation are substantially large.

The third zone or the C-zone describes the rotation

preferably relative to the transversal axis Cx. The

spacecraft rotates around vector K with a positive

precession velocity. The intrinsic rotation periodically

oscillates around u = p/2. The motion in this zone is

usually the worst. The spacecraft rotates sideways in

relation to the main direction. Finally, the fourth zone

or the D-zone is analogous to the C-zone. However,

the spacecraft rotates periodically around the value

u = 3p/2. Similarly, the D-zone is an undesirable

zone of the motion modes, similar to the C-zone.

To achieve the mentioned zones, we introduce

infinitely close times. These times occur before and

after rotor fixations on the border. The border is

between the third and fourth steps of the reorientation

algorithm:

t�� ¼ t� � e; ð9Þ

t�þ ¼ t� þ e; ð10Þ

where t* is the time the rotors stop during the chaotic

mode; t��, t
�
þ are times before and after the rotors stop,

respectively; e is an infinitesimal value.

The angular momentum before the rotors stop is

calculated as the angular momentum of the multi-rotor

system with rotating rotors:

Kx ¼ Ap t��
� �

þ I r1 t��
� �

þ r2 t��
� �� �

;

Ky ¼ Bq t��
� �

þ I r3 t��
� �

þ r4 t��
� �� �

;

Kz ¼ Cr t��
� �

þ I r5 t��
� �

þ r6 t��
� �� �

;

8><
>:

ð11Þ

where we suppose that at time t*, the rotors are stopped

and, therefore, rl(t
*) = 0. Thus, the components of

angular velocity p t�þ
� �

, q t�þ
� �

, r t�þ
� �

after rotors stop

can be calculated from the law of angular momentum

conservation, similar to the components of the angular

momentum of the single rigid body:

p t�þ
� �

¼ pþ0 ¼ Kx

A
;

q t�þ
� �

¼ qþ0 ¼ Ky

B
;

r t�þ
� �

¼ rþ0 ¼ Kz

C
:

8>>>>><
>>>>>:

ð12Þ

Then, after the rotors stop, we have the following

twice the kinetic energy and square of the angular

momentum:

h ¼ 2T ¼ A pþ0
� �2 þ B qþ0

� �2 þ C rþ0
� �2

; ð13Þ

G2 ¼ Apþ0
� �2 þ Bqþ0

� �2 þ Crþ0
� �2

: ð14Þ

Let us assume (without any loss of generality) that

A[B[C. Thus, Eq. (13) and Eq. (14) can be

rewritten as follows:

Ah� G2 ¼ B A� Bð Þk21; ð15Þ

G2 � Ch ¼ B B� Cð Þk22: ð16Þ

Therefore, we express the parameters k21 and k22:

k21 ¼ q2þ þ
C þ 2Ið Þ A� Cð Þr2þ
Bþ 2Ið Þ A� Bð Þ ; ð17Þ

k22 ¼ q2þ þ
Aþ 2Ið Þ A� Cð Þp2þ
Bþ 2Ið Þ B� Cð Þ ; ð18Þ

Now, we can describe the following conditions for

entry into the A-zone:

k1j j[ k2j j & rþ [ 0; ð19Þ

into the B-zone:

k1j j[ k2j j & rþ\0; ð20Þ

into the C-zone:
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k1j j\ k2j j & pþ [ 0; ð21Þ

and into the D-zone:

k1j j\ k2j j & pþ\0: ð22Þ

It is worth noting that the cases of k1 ¼ 0 and k2 ¼
0 mean the rotation around only the Cx-axis and Cz-

axis, respectively. If k1 ¼ k2 then the rotational

motion occurs along the separatrixes (these are the

black lines at Fig. 2).

Now, let us describe the control laws and stages of

attitude reorientation realization. The first stage

describes the natural initial regular motion of the

spacecraft.

In the second stage, we need to stop the main body

and all the rotors. This can be realized by the

corresponding actuators (by the jet engines of the

main body and by the electric engines of rotors). This

process can be fulfilled with the help of the following

modeling laws:

Me
x ¼ �mH t � tbrbð Þp;

Me
y ¼ �mH t � tbrbð Þq;

Me
z ¼ �mH t � tbrbð Þr;

8><
>:

ð23Þ

where m is the positive constant and H(t) is the

Heaviside function, tbrb is the start time of the process

of stopping the main body. At the same time, the

complete stop of the relative rotation of all rotors is

fulfilled with internal torques of the form:

Mi
l ¼ �m t � tbrrð Þrl; ð24Þ

where tbrr is the start time of the process of stopping

the l-th rotor. At the action of torques (23) and (24), all

bodies of our system (the main body and all rotors)

will stop their angular motion relative to the inertial

frame CXYZ.

The third stage forms and supports a chaotic

attractor and a corresponding chaotic motion mode.

The third stage starts after stopping elements of the

mechanical system. After elements immobility

achieving, the spin-up mode is initiated for rotors #2,

4, and 6. The goal here is to reach specific relative

angular velocities [21] of these rotors:

r2 ¼ a0; r4 ¼ b0; r6 ¼ c0. The spin-up process

is implemented using internal torques. These torques

come from the electric internal rotor engines:

Mi
2¼maccH t�tacrð Þ H t�tacrð Þ�H t�tacr�

I a0j j
mxacc

� �� 	
sign a0ð Þ;

Mi
4¼maccH t�tacrð Þ H t�tacrð Þ�H t�tacr�

I b0j j
myacc

� �� 	
sign b0ð Þ;

Mi
6¼maccH t�tacrð Þ H t�tacrð Þ�H t�tacr�

I c0j j
mzacc

� �� 	
sign c0ð Þ:

8>>>>>>><
>>>>>>>:

ð25Þ

Here, macc is the constant, tacr is the start time of

rotors accelerating, a0, b0, c0 are some predefined

constant parameters.

Spin-up of the rotors occurs until the following

three conditions are met:

a0 � r2j j\n; ð26Þ

b0 � r4j j\n; ð27Þ

c0 � r6j j\n; ð28Þ

where n is an acceptable small error. When conditions

(26–28) are met, the rotors must support the chaotic

mode [34, 35]. In this case, rotors should be controlled

by internal electrical engines according to the follow-

ing laws:

r1ðtÞ ¼ pðtÞ ap � 2I
� �

=I;

r3ðtÞ ¼ qðtÞ bq � 2I
� �

=I;

r5ðtÞ ¼ rðtÞ cr � 2Ið Þ=I;
r2ðtÞ ¼ a0;

r4ðtÞ ¼ b0;

r6ðtÞ ¼ c0;

8>>>>>>>>><
>>>>>>>>>:

ð29Þ

where ap, bq, cr are some predefined constant param-

eters. In addition, it is necessary [34, 35] to create
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external torque on the main body. This torque can be

formed by the jet engines. The torque should follow

the control laws:

Me
x ¼ mx þ a1p;

Me
y ¼ my þ b1q;

Me
z ¼ mz þ c1r:

8><
>:

ð30Þ

Here, mx, my, mz, a1, b1, c1 is also predefined

constant parameters. Thus, the following vector of

control parameters is used to create and support a

chaotic mode:

Control ¼ a0; a1; ap;mx; b0; b1; bq;my; c0; c1; cr;mz

� �T
ð31Þ

Certain values of the control parameters (31) will

be defined. The description will be given in Sect. 2.5.

At the end of the third stage, the spacecraft will

implement chaotic motion. The motion will be of a

predefined type of chaotic attractor. These attractors

are defined by certain values, specifically (31).

Finally, the fourth stage involves immediately

disabling the control at the time-point tfinish. Together

with the control disabling, all of the rotors should also

be immediately stopped in their relative rotations

8l : rl ! 0ð Þ by the internal large friction (at the

torques like (24) with an extremely large value m). The
spacecraft enters the fourth stage and transitions to a

new mode. This mode is in the target zone of the phase

space. The spacecraft operates as a single rigid body

system.

2.4 Additional conditions for an optimal exit

from the chaotic mode

As mentioned above, chaos can help achieve the

desired target zone in spacecraft attitude dynamics.

After entering the target zone, the spacecraft’s angular

velocity changes. The new values may be similar to

the initial zone. In this study, we added a condition for

reaching the target zone. The condition requires a

minimum angular velocity:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2 þ r2

p
! min : ð32Þ

In addition, we can include another requirement for

spacecraft reorientation. This involves achieving a

specific position in relation to the inertial axis CZ. The

mathematical shape of this condition is quite simple:

cb � cj j ! min; ð33Þ

where cb and c are the target boundary and the real

obtained values of the so-called ‘‘direction cosines,’’

respectively. The directional cosines of theCZ axis are

evaluated by the following well-known differential

equations:

_c1 ¼ rc2 � qc3;

_c2 ¼ pc3 � rc1;

_c3 ¼ qc1 � pc2:

8><
>:

ð34Þ

Finally, we can introduce one more additional

condition in our study. This is a requirement for the

coincidence of the angular momentum vector with the

CZ-axis of the inertial coordinate system:

K � c
Kj j ! 1: ð35Þ

Thus, the problem of the optimal exit from the

chaotic mode is described as follows: it is necessary to

reorient the spacecraft from the initial zone to the final

target zone of the phase space of the attitude dynamics

at the given orientation of the spacecraft relative to the

inertial CZ-axis (33), at the coincidence of the angular

momentum vector with the CZ-axis (35), and at the

minimum of the angular velocity value (32). This can

be expressed mathematically as follows:

f tfinishð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2 þ r2

p
þ cb � cobj j

þ 1� K � c
Kj j

� �

! min : ð36Þ
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In our research, the search for time-point tfinish with

conditions (32), (33), and (35) is carried out using the

differential evolution algorithm [37]. To guarantee

entry into the final target zone, we introduce the

following penalty function:

if final zone 6¼ target zoneð Þ thenf tfinishð Þ ¼ M

else

f tfinishð Þ ¼ kw1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2 þ r2

p
þ kw2 cb � cobj j þ kw3 1� K � c

Kj j

� �
! min;

ð37Þ

where M is the penalty value and the coefficients kwi
are the weights. The parameters M and kwi are

described in Sect. 3.1.

2.5 Chaotic attractors

Dynamical systems with chaotic attractors can be

described by the following simple differential equa-

tions [9]:

_x¼a0þa1xþa2yþa3zþa4x
2þa5y

2þa6z
2þa7xyþa8xzþa9yz;

_y¼b0þb1xþb2yþb3zþb4x
2þb5y

2þb6z
2þb7xyþb8xzþb9yz;

_z¼c0þc1xþc2yþc3zþc4x
2þc5y

2þc6z
2þc7xyþc8xzþc9yz;

8><
>:

ð38Þ

where ai, bi, ci are constant coefficients.

Let us establish the link between Eq. (38) and

Eq. (6). First, we substitute expression (29) into

Eq. (6). Taking into account Eq. (29), we can consider

Eq. (6) as the complete first-order system of differen-

tial equations relatively p; q; r: After reassigning the

variables p $ x; q $ y; r $ zð Þ, we can write [34]

the following correspondences for the system (38)

coefficientsai, bi, and ci:

Fig. 3 a Phase portrait and b LCE of chaotic attractor #1
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a0 ¼ mx Aþ ap
� ��1

; b0 ¼ my Bþ bq
� ��1

; c0 ¼ mz C þ crð Þ�1;

a1 ¼ a1 Aþ ap
� ��1

; b1 ¼ c0 Bþ bq
� ��1

; c1 ¼ �b0 C þ crð Þ�1;

a2 ¼ �c0 Aþ ap
� ��1

; b2 ¼ b1 Bþ bq
� ��1

; c2 ¼ a0 C þ crð Þ�1;

a3 ¼ b0 Aþ ap
� ��1

; b3 ¼ �a0 Bþ bq
� ��1

; c3 ¼ c1 C þ crð Þ�1;

a4 ¼ a5 ¼ a6 ¼ b4 ¼ b5 ¼ b6 ¼ c4 ¼ c5 ¼ c6 � 0;

a7 ¼ b7 � 0; c7 ¼ A� B� bq þ ap
� �

C þ crð Þ�1;

a8 ¼ c8 � 0; b8 ¼ C � A� ap þ cr
� �

Bþ bq
� ��1

;

b9 ¼ c9 � 0; a9 ¼ B� C � cr þ bq
� �

Aþ ap
� ��1

:

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð39Þ

If we know the numerical values of the coefficients

ai, bi, and ci which provide the birth of the chaotic

attractor in the system (38), then we can find the

corresponding values of the control parameters (31)

that satisfy the conditions (39).

Let us provide a concrete example of the detection

of these parameters. First, we found a new set of

coefficients for system (38) with a new chaotic

attractor (the chaotic attractor #1):

a0 ¼ 0:1247; a1 ¼ 0:0901; a2 ¼ 0:3172; a9 ¼ �0:4341;

b0 ¼ �0:747; b1 ¼ �0:5605; b2 ¼ �0:5813;

c0 ¼ 0:3638; c7 ¼ 0; 434;

af3;4;5;6;7;8g ¼ bf3;4;5;6;7;8;9g ¼ cf1;2;3;4;5;6;8;9g ¼ 0:

8>>><
>>>:

ð40Þ

The system (38) with coefficient values (40) has a

chaotic attractor in the phase space {x, y, z} (Fig. 3a).

The Lyapunov characteristic exponents (LCE) for this

attractor are shown in Fig. 3. The LCE values were

computed using the Benettin method [38]. The final

LCE values are equal to

k1 ¼ 0:056; k2 ¼ 0; k3 ¼ �0:548.

The Kaplan–Yorke dimension for chaotic attractor

#1 has the following value:

D ¼ 2þ 0:056þ 0

�0:548j j ¼ 2:1012: ð41Þ

The fractional Kaplan–Yorke dimension indicates

the fractality of the attractor. In this case, the attractor

is commonly referred to as ‘‘strange attractor.’’ The

presence of a positive LCE indicates the chaotic

behavior of the dynamics along the attractor; there-

fore, the found attractor is the ‘‘strange chaotic

attractor.’’

To calculate the control values (31), we need to

define the moments of inertia of our spacecraft and

rotors. In this study, we use the following values

eA ¼ 90; eB ¼ 70; eC ¼ 50; I ¼ 1; J ¼ 1. Now, we

can use optimization methods to find numerical values

(31) that satisfy conditions (39). This requires know-

ing the chaotic attractor coefficients (40) and inertia

moment values. For example, it is possible, to build an

auxiliary function [34]:

W a0; a1; ap;mx; b0; b1; bq;my; c0; c1; cr;mz

� �

¼ a0 �
mx

Aþ ap

� �2

þ b0 �
my

Bþ bq

 !2

þ c0 �
mz

C þ cr

� �2

þ a1 �
a1

Aþ ap

� �2

þ b1 �
c0

Bþ bq

 !2

þ c1 þ
b0

C þ cr

� �2

þ a2 þ
c0

Aþ ap

� �2

þ b2 �
b1

Bþ bq

 !2

þ c2 �
a0

C þ cr

� �2

þ a3 �
b0

Aþ ap

� �2

þ b3 þ
a0

Bþ bq

 !2

þ c3 �
c1

C þ cr

� �2

þ c7 � A� B� bq þ ap
� ��

C þ crð Þ
� �2 þ b8 � C � A� ap þ cr

� ��
Bþ bq
� �� �2

þ a9 � B� C � cr þ bq
� ��

Aþ ap
� �� �2

ð42Þ

Next, we attempt to obtain the global minimum of

the function using the gradient method [34]:

while
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W Controlið Þ

p���
���[ d : Controliþ1

¼ Controli � hrW Controlið Þ; ð43Þ

where Control0 is the starting approximation of the

vector of control parameters, d is an accuracy of

calculations, and h is the step of the parametric motion

to the minimum in the parametric space of vector (31)

in the direction opposite to the gradient vector:

r ¼ o

oa0
;
o

oa1
;
o

oap
;
o

omx
;
o

ob0
;
o

ob1
;
o

obq
;
o

omy
;
o

oc0
;
o

oc1
;
o

ocr
;
o

omz

" #T
:

Table 1 Control parameters for the initialization of chaotic

attractor #1

Control parameter Value

a0 4.3034 9 10–5

a1 12.5706

ap 49.4971

mx 17.3940

b0 - 6.8039 9 10–5

b1 - 45.8922

bp 8.9490

my - 5.8956

c0 - 44.2524

c1 - 6.9478 9 10–5

cp 89.4998

mz 50.7517
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After iterations (43) are completed, we can obtain

the clarified values of the control vector. The iteration

process can lead to a local minimum of the function. In

this case, we cannot find the right control parameters

to form the attractor with the given coefficients.

Nevertheless, in all cases of our research, these

iterations were successful. As a result, we obtain quite

accurate control parameter values (31), which are

presented in Table 1. The calculation of the control

parameter (31) can be solved using other optimization

methods. One of these methods is the differential

evolution algorithm [37].

We discovered four new systems with chaotic

attractors, in addition to the previously mentioned case

of attractor #1. These systems are presented

in Appendix A.

The next section of this paper describes similar

modeling results for the system (38). These results

provide the birth of new chaotic attractors. These

results are presented in Appendix B.

3 Applied results to spacecraft attitude dynamics

Now, we can use new chaotic attractors to reorient the

spacecraft. This uses the natural properties of dynam-

ical chaos. Let us divide this section of our article into

three subsections. The first subsection provides the

initial conditions for h, u, w, p, q, r. It also includes

Table 2 Initial conditions

Case h0,
rad

u0,

rad

w0,

rad

p0,
s-1

q0,
s-1

r0,
s-1

r01,
s-1

r02,
s-1

r03,
s-1

r04,
s-1

r05,
s-1

r06,
s-1

C ? A 1.59 - 0.98 - 0.64 0.48 5.01 - 0.46 1.15 - 0.5 - 1.1 - 1.5 1.5 2.0

B ? A 1.86 0.18 - 0.07 3.33 1.93 - 5.72 1.15 - 0.5 - 1.1 - 1.5 1.5 2.0

A ? C 1.33 - 0.12 - 0.80 - 2.52 3.58 7.12 1.15 - 0.5 - 1.1 - 1.5 1.5 2.0

Fig. 4 Dependence of

angular velocity

components on time
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boundary conditions for c1, c2, c3, and the values of

control constants (Eqs. 23–25). The second subsection

includes the estimated spacecraft transition from the

initial zone to the target zone. This estimation is

performed using five new chaotic attractors. The

transition from the initial zone to the target zone is

performed by considering the goal function in

Eq. (36). In the third subsection, the efficiency of

Fig. 5 Dependence of (a) nutation, (b) p velocity component, (c) q velocity component, and (d) r velocity component on time
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transitioning from the initial zone to the target zone is

compared. This research only focuses on the C ? A

transition case. A comparison is made for the angular

velocity components p, q, r, the final attitude position

of the spacecraft c1, c2, c3, and the projection of the

angular momentum vector K.

Fig. 6 Dependence of (a) nutation, (b) p velocity component, (c) q velocity component, and (d) r velocity component on time
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3.1 Modeling parameters

The initial conditions for modeling are presented in

Table 2. All of them were used for modeling and

presented in Figs. 4, 5, 6, 7, 8, and 9.

The boundary conditions for the directional cosines

are presented in Table 3. It should be noted that the

presented boundary conditions are common for all

considered cases.

Fig. 7 Dependence of (a) nutation, (b) p velocity component, (c) q velocity component, and (d) r velocity component on time
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The numerical parameters of laws (23–25) are

given in Table 4. The considered chaotic attractors

obviously have different control coefficients

(Eq. (31)). Therefore, the parameters mxacc, myacc,

mzacc are defined by the constants a0, b0, c0. The

penalty value is M = 15,000, and the weights are

kw1 = 1 and, kw2 = kw3 = 1000. These parameters are

applied to all considered cases.

Fig. 8 Dependence of

angular velocity magnitude

on time

Fig. 9 Dependence of

directional cosines on time

Table 3 Boundary conditions (initial and target values)

Case c10, rad c20, rad c30, rad c1f, rad c2f, rad c3f, rad

C ? A - 0.707 0 - 0.707 0 0 1

B ? A

A ? C

Table 4 Control constants

Case m tbrb, s tbrr, s tacr, s mxacc myacc mzacc

C ? A 15 50 70 200 a0j j
100

b0j j
100

c0j j
100

B ? A

A ? C
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Fig. 10 Dependence of the

angular momentum vector

on time

Table 5 Coefficients of

Eq. (38)
Parameter\Attractor #2 #3 #4 #5

a0 0 0 0.3873 0.2252

a1 0.0901 - 0.6041 - 0.7195 0.1854

a2 0.186 0.1654 - 0.5055 - 0.2698

a3 0 0 0 0

a7

a8

a9 - 9.589 0.2255 - 0.1708 - 0.4847

b0 0.01 0 - 0.4231 0.1862

b1 - 0.403 - 0.0725 0.2146 0.5556

b2 - 0.589 - 0.3653 0.0703 - 0.6426

b3 0 0.0754 0 0

b7 0

b8 0.4629 0.648 - 0.0611

b9 0 0 0

c0 0.3638 0 - 0.6175 - 0.4447

c1 0 0 0

c2 - 0.0836

c3 0.2018

c7 0.537 - 0.6233 - 0.5365 0.5302

c8 0 0 0 0

c9

123

Multi-rotor spacecraft attitude control by triggering chaotic modes on strange chaotic attractors 4631



3.2 Transitions from the initial zone to the target

zone

Let us consider the transition caseC ? A. The results

of the numerical modeling are presented in Fig. 4. The

red line is the initial motion of the spacecraft; the dark-

blue and light-blue lines are the braking stage of the

body and rotor, respectively (Eqs. (23) and (24)); the

yellow line is the spinning-up stage of the rotors

(Eq. (25)); the black line is the chaotic motion of the

Table 6 LCEs and Kaplan–Yorke dimension

Attractor LCEs Kaplan–Yorke dimension

#2 0:11 0 �0:604½ � 2.1255

#3 0:038 0 �0:802½ � 2.0474

#4 0:019 0 �0:66½ � 2.0288

#5 0:07 0 �0:528½ � 2.1321

Table 7 Control

parameters for initialization

of chaotic attractor

Parameter attractor #2 #3 #4 #5

a0 9.2577 9 10–7 - 11.6361 - 1.3739 9 10–4 - 4.9567 9 10–4

a1 13.0970 - 40.8711 - 39.6622 26.8109

ap 49.2691 - 22.3414 - 34.8724 54.5927

mx 0.0324 - 4.1425 9 10–5 21.3497 32.5556

b0 2.4501 9 10–6 5.0247 9 10–5 - 1.0440 9 10–4 4.0492 9 10–4

b1 - 37.9640 - 56.3915 9.1318 - 45.1160

bp - 5.5544 84.3687 59.8503 0.2093

my 0.6290 2.7030 9 10–4 - 54.9333 13.0741

c0 - 25.9628 - 11.1930 27.8674 39.0115

c1 5.3753 9 10–7 28.0667 3.9016 9 10–4 - 1.9441 9 10–4

cp 89.2692 89.1132 89.2686 90.3002

mz 91.4336 - 6.6635 9 10–5 - 86.0050 - 62.3932

(a)
(b)

0 2 4 6 8 10

i 10
4

-1

-0.5

0

0.5

LCE

Fig. 11 a Phase portrait and b LCE of the chaotic attractor #2
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(a) (b)

0 2 4 6 8 10
i

10
4

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

LCE

Fig. 12 a Phase portrait and b LCE of the chaotic attractor #3

(a) (b)

0 2 4 6 8 10

i 10
4

-1.5

-1

-0.5

0.5

LCE

Fig. 13 a Phase portrait and b LCE of the chaotic attractor #4

123

Multi-rotor spacecraft attitude control by triggering chaotic modes on strange chaotic attractors 4633



spacecraft (Eqs. 29 and 30); and the violet line is the

final motion of the spacecraft.

The nutation angle began to fluctuate between 0.57

and 1.22 radians after entering the target A-zone

(Fig. 5a). Figure 5b–d shows a significant decrease in

angular velocity compared to the initial values. The

time spent by the spacecraft in the chaotic mode of

motion was 218.22 s.

Similar results were obtained for the transition

B ? A (Fig. 5a). However, the chaotic motion time

increased from 218.22 to 986.51 s. This can be

explained by the form of the chaotic attractor. During

the transition, the nutation angle varied from 4.2 to

5.57 rad (Fig. 6a). The angular velocity components

(Fig. 6b–d) also decreased significantly, as in the case

of the transition C ? A.

Finally, during the transition A ? C, the time of

the chaotic motion of the spacecraft decreased to

105.5 s due to the form of the chaotic attractor. The

nutation angle in zone C has large fluctuations

(Fig. 7a). In addition, the angular velocity components

(Fig. 7b–d) have large amplitudes compared to previ-

ous cases. This trend is observed in all considered

chaotic attractors (see Appendix B).

Thus, the concept proposed in [36] also works in

chaotic attractor cases. The spacecraft’s attitude

transition C ? A is crucial for space missions. A

comparative analysis of efficiency will focus solely on

this case..

3.3 Comparative analysis of efficiency

Due to the best performance obtained in terms of

Eq. (32), Eq. (33), and Eq. (35), the best chaotic

attractor for the case C ? A should be assigned to

attractor #1. The proposed approach reduced the

angular velocity value by five times (Fig. 8). It also

eliminated fluctuations.

(a) (b)

0 2 4 6 8 10

i 10
4

-0.8

-0.6

-0.4

-0.2

0.2

LCE

Fig. 14 a Phase portrait and b LCE of the chaotic attractor #5
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In addition, the spacecraft can be reoriented to the

desired position (Fig. 9). After leaving the chaos, the

spacecraft also receives small nutation values. These

values are shown in Fig. 10. This means that the

angular momentum vector aligns with the CZ-axis.

The spacecraft will mainly rotate in the CZ-direction

with a small nutation angle. It is the preferred motion.

Fig. 15 Dependence of (a) nutation, (b) p velocity component, (c) q velocity component, and (d) r velocity component on time
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Fig. 16 Dependence of (a) nutation, (b) p velocity component, (c) q velocity component, and (d) r velocity component on time
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Fig. 17 Dependence of (a) nutation, (b) p velocity component, (c) q velocity component, and (d) r velocity component on time
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Fig. 18 Dependence of (a) nutation, (b) p velocity component, (c) q velocity component, and (d) r velocity component on time
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Fig. 19 Dependence of (a) nutation, (b) p velocity component, (c) q velocity component, and (d) r velocity component on time
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Fig. 20 Dependence of (a) nutation, (b) p velocity component, (c) q velocity component, and (d) r velocity component on time
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Fig. 21 Dependence of (a) nutation, (b) p velocity component, (c) q velocity component, and (d) r velocity component on time
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Fig. 22 Dependence of (a) nutation, (b) p velocity component, (c) q velocity component, and (d) r velocity component on time
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Fig. 23 Dependence of (a) nutation, (b) p velocity component, (c) q velocity component, and (d) r velocity component on time
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Fig. 24 Dependence of (a) nutation, (b) p velocity component, (c) q velocity component, and (d) r velocity component on time
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Fig. 25 Dependence of (a) nutation, (b) p velocity component, (c) q velocity component, and (d) r velocity component on time
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Fig. 26 Dependence of (a) nutation, (b) p velocity component, (c) q velocity component, and (d) r velocity component on time
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The modeling results (Figs. 4, 5, 6, 7, 8, and 9)

demonstrate that chaotic attractors enable spacecraft

reorientation.

In Appendix B, we additionally present alternative

cases of dynamics modeling. These cases involve

other new chaotic attractors.

4 Conclusion

In this paper, the angular reorientation of the space-

craft with the help of the dynamic chaos initiation was

considered. To initiate dynamic chaos, some chaotic

attractors were used. Five new chaotic attractors were

found. All new chaotic attractors can reorient space-

craft but have pros and cons. In conclusion, the

following points can be made:

• The idea [36] of spacecraft attitude reorientation

by chaos was confirmed in the case of chaotic

attractors using.

• The spacecraft multi-rotor system can generate

different chaotic attractors. These attractors can be

one-scroll, two-scroll, and three-scroll types.

• Using the optimization algorithm, we can deter-

mine the exit time from the chaotic mode. This can

be performed with minimal angular velocity.

• The exit time from the chaotic mode can be

selected such that the spacecraft will have an

orientation close to the desired one.
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Appendix A.1. Parameters of the strange attractors

Coefficients of Eq. (38) for considered attractors are

presented in Table 5.

LCEs and Kaplan–Yorke dimension of considered

attractors are given in Table 6.

To initiate the chaotic mode with above-mentioned

chaotic attractor, the control parameters (31) must

have the following values, presented in Table 7.

Appendix A.2. Modeling results for new systems

with chaotic attractors

The chaotic attractor #2

The phase portrait and LCE are shown in Fig. 11.

The chaotic attractor #3

The phase portrait and LCE are shown in Fig. 12.

The chaotic attractor #4

The phase portrait and LCE are shown in Fig. 13.

The strange chaotic attractor #5

The phase portrait and LCE are shown in Fig. 14.

Appendix B. Transition from the initial zone

to the target one

Figures 15, 16, 17 shows the numerical results corre-

sponding to attitude reorientation C ? A, B ? A,

and A ? C with the help of chaotic attractor #2.

Figures 18, 19, 20 shows the numerical results

corresponding to attitude reorientation C ? A,

B ? A, and A ? C with the help of the chaotic

attractor #3.

Figures 21, 22, 23 shows the numerical results

corresponded to attitude reorientations C ? A,

B ? A, and A ? C with the help of the chaotic

attractor #4.

Figures 24, 25, 26 shows the numerical results

corresponding to attitude reorientation C ? A,

B ? A, and A ? C with the help of the chaotic

attractor #5.
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