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Abstract In this paper, the complicated heteroclinic
and codimension-four bifurcations of a triple SD
(smooth and discontinuous) oscillator are investigated
by analyzing the bifurcation sets in three-dimensional
parameter space. The structure of the transition set
including the equilibrium bifurcation set and a spe-
cial kind of heteroclinic orbit bifurcation set is con-
structed comprising of a catastrophe point of the fifth
order, the catastrophe curves of third order and also
the catastrophe surfaces of the first order, respectively,
according to the restoring forces and also the poten-
tials, respectively. Also, a theorem of structural sta-
bility of heteroclinic orbit in 2-dimensional Hamilton
system is introduced to find the heteroclinic bifurcation
set. The equilibria and the phase structures are classi-
fied and shown in details on the transition set and the
enclosed structurally stable areas for smooth and dis-
continuous cases, respectively. The normal forms for
each bifurcation surface are built up showing the com-
plex supercritical subcritical pitchfork bifurcations and
also the double saddle-node bifurcations, along with
the bifurcations of homoclinic and heteroclinic orbit.
Taken one of the bifurcation surfaces as an example,
the complicated bifurcation is investigated by employ-
ing subharmonic Melnikov functions including Hopf,
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double Hopf, the closed orbit and also the homo-
clinic/heteroclinic bifurcations. The results presented
herein this paper enriched the complex dynamic behav-
ior for the geometrical nonlinear systems.
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bifurcation with three geometrical parameters ·
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1 Introduction

Nonlinear oscillators [1] play an important role in both
science and technology, and they have been widely
applied in engineering [2–4], vibration control [5–10],
biology [11–13] and electronics [14–16]. Some clas-
sical oscillators have been studied for over a century,
such asDuffing oscillator [17] proposed in 1918, which
is a traditional model to describe the hardening spring
effect observed in many solid mechanical problems.
Many nonlinear systems can be approximately studied
with Duffing system after Taylor expansion, which is
of great help in both science and engineering [18,19].
Also, van der Pol Oscillator [20] is a classical oscillator
with nonlinear damping exhibiting a limit cycle [21],
which has been studied for over a long time. Chaos is
first noticed by Ueda [22] in his research on Duffing
oscillator with harmonic force, and a chaotic attractor
is also found in a set of ordinary differential equations
for fluid convection by Lorenz [23].
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An archetype smooth and discontinuous oscillator
comprising lumped mass and oblique springs was pro-
posed by Cao et al. [24] in 2006 to study transition
from smooth to discontinuous dynamics. This oscil-
lator has attracted many investigations, demonstrating
Hopf bifurcation under nonlinear damping [25], co-
dimension two bifurcation [26], chaotic threshold [27],
the transition of resonance mechanisms [28] and so on
[29]. Later, the coupled SD oscillator was proposed by
Hanet al. [30]with twogeometrical parameters exhibit-
ing smooth and discontinuous dynamics as well, which
can be regarded as a rigid coupling of two separate SD
oscillators vibrating horizontally. Complicated dynam-
ical behaviors have been demonstrated with the cou-
pled SD oscillator, such as the chaotic phenomenon for
discontinuous cases [31], buckling phenomenon and
co-dimension three bifurcation [32]. In 2015, a triple
SD oscillator was proposed by Han et al. [33] con-
sisting of a horizontal spring and two oblique springs
in nonlinear geometrical configuration, which exhibits
multiple-well dynamics for both smooth and discon-
tinuous cases. High-order quasi-zero stiffness [34] can
be built by this triple SD oscillator due to its nonlinear
geometrical configuration, which is of great value in
isolation engineering [35]. However, the phase struc-
tures and dynamical behaviors of the triple SD oscil-
lator are not classified clearly and a series of problem
about the heteroclinic bifurcation and the codimension-
4 bifurcation has not been studied.

The first motivation of this paper is to investigate the
complicated bifurcation of the triple SD oscillator, seen
from [33], with a full picture of bifurcation sets includ-
ing a heteroclinic bifurcation, phase portraits and the
normal forms of the codimension-4 bifurcations [36–
38]. The second motivation is to provide a theorem
of structural stability of heteroclinic orbit [39–41] in
2-dimensional Hamilton system to obtain the hetero-
clinic bifurcation set. The third motivation is to present
the complicated codimension-4 bifurcations including
the closed orbit bifurcation, Hopf bifurcation, double
Hopf bifurcation and also the homoclinic or hetero-
clinic bifurcations using subharmonic Melnikov func-
tions by taking the normal formof one of the bifurcation
surfaces as an example.

This paper is organized as follows. In Sect. 2, the
mathematical model is built with governing equation
and the Hamiltonian. In Sect. 3, the heteroclinic bifur-
cation condition is obtained by introducing a theorem
of structural stability of heteroclinic orbit in Hamilton

Fig. 1 Model of the triple SD oscillator [33]

system. In Sect. 4, the bifurcation sets are defined and
studied, along with the complicated change of equi-
libria and the characteristics of restoring force, and
the normal form of each bifurcation surface is built.
In Sect. 5, the universal unfolding is obtained and the
codimension-4 bifurcation is investigated by applying
the subharmonic Melnikov function, taken one of the
bifurcation surfaces as an example. Finally, the paper is
closedwith the summary of conclusions and the further
challenges.

2 Mathematical model

Consider a model proposed in [33] based up on the
SD oscillator [24], as shown in Fig. 1, consisting of a
lumped mass m, a horizontal spring and two inclined
springs pinned to rigid support.

Suppose the three springs are the samewith stiffness
k and initial length l, the horizontal distance on the
left and right is c and a, respectively, and the vertical
distance between the end points of the springs fixed to
the rigid supports is 2b. All the springs may be pre-
compressed or pre-stretched depending on the value of
a, b, c and l. The governing equation of free vibration
can be written as

mẌ + kX

(
1 − l√

X2 + a2

)

+ k(X + b)

[
1 − l√

(X + b)2 + c2

]
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+ k(X − b)

[
1 − l√

(X − b)2 + c2

]
= 0. (1)

The dimensionless form in 2-dimensional space can
be obtained as shown in the following

{
x ′ = y,

y′ = − f (x, α, β, γ ),
(2)

where ωn =
√

k
m , x = X

l , τ = ωnt , α = a
l , β = b

l and

γ = c
l , and f (x, α, β, γ ) is the restoring force which

can be written as

f (x, α, β, γ ) = 3x − x√
x2 + α2

− x + β√
(x + β)2 + γ 2

− x − β√
(x − β)2 + γ 2

, (3)

System (2) is aHamilton systemwhoseHamiltonian
is H(x, y) = 1

2 y
2+V (x, α, β, γ ). V (x, α, β, γ ) is the

potential which can be written as

V (x, α, β, γ ) = 1

2

(√
x2 + α2 − 1

)2

+ 1

2

[√
(x + β)2 + γ 2 − 1

]2

+ 1

2

[√
(x − β)2 + γ 2 − 1

]2
, (4)

3 Heteroclinic bifurcation of Hamilton system

The bifurcation condition of equilibriums of system (2)
can be written as f (x, α, β, γ ) = f ′

x (x, α, β, γ ) = 0.
Heteroclinic orbits are usually structurally unstable, but
some of them remains structurally stable for special
cases in Hamilton systems. A heteroclinic orbit bifur-
cation of this system is discoveredwhich is independent
of equilibrium change.

Consider a 2-dimensional Hamilton system

⎧⎪⎨
⎪⎩
x ′ = ∂H

∂y
,

y′ = −∂H

∂x
,

(5)

where the Hamiltonian H : R
2 × R

k → R which
can be written as H = H(x, y, p) is infinitely dif-
ferentiable, which is independent of time τ , and p =

(p1, p2, · · · , pk)T ∈ R
k is the parameter vector. The

Jacobian matrix of system (5) is

J =

⎡
⎢⎢⎣

∂2H

∂x∂y

∂2H

∂y2

−∂2H

∂x2
− ∂2H

∂x∂y

⎤
⎥⎥⎦ , (6)

whose eigenvalue is λ1,2=±
√

(
∂2 H

∂x∂y
)2−∂2 H

∂x2
∂2 H

∂y2
.

To insure that system (5) has at least one heteroclinic
orbit, it must be supposed that two saddle points with
the same value of Hamiltonian exist, which indicates
the condition of existence of a heteroclinic orbit as the
following.
Condition 1:

∃(x1, y1), (x2, y2) ∈ R
2 and ∃ p ∈ R

k , s.t.

H(x1, y1, p) − H(x2, y2, p) = 0,
∂H

∂x
|(xl ,yl ) =

∂H

∂y
|(xl ,yl ) = 0 and [( ∂2 H

∂x∂y
)2 − ∂2 H

∂x2
∂2 H

∂y2
]|(xl ,yl ) >

0, l = 1, 2.
Here, a theorem to judge the structure stability of sys-
tem (5) with heteroclinic orbit is given in the following
with a brief proof.

Theorem 1 Suppose condition 1 is satisfied for system
(5) for a p ∈ R

k , which means (x1, y1) and (x2, y2)
are saddles connected by a heteroclinic orbit. System
(5) is structurally stable if ∀i ∈ {1, 2, · · · , k}, s.t.
∂H

∂pi
|(x1,y1) − ∂H

∂pi
|(x2,y2) ≡ 0 in a small neighborhood

near p.

Proof Assume that condition 1 is satisfied for a p ∈
R
k .We take a neighborhood of p:Ω p = { p̃| ‖ p̃− p‖ <

ε, ε > 0}, and for simplification, it is assumed there is
no equilibrium bifurcations in Ω p. This indicates that
for every p̃ ∈ Ω p, there always exists the coordinates
of a pair of saddle points xl = xl( p̃), yl = yl( p̃) (l =
1, 2) which are only dependent on parameter vector
p̃ ∈ Ω p, which means

∂H

∂x
|(xl ,yl ) = ∂H

∂y
|(xl ,yl ) = 0,

[(
∂2H

∂x∂y

)2

− ∂2H

∂x2
∂2H

∂y2

]
|(xl ,yl ) > 0,

l = 1, 2, ∀ p̃ ∈ Ω p (7)

Let h( p̃) = H(x1( p̃), y1( p̃), p̃)−H(x2( p̃), y2( p̃),
p̃). Certainly we have h( p) = 0. System (5) with
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heteroclinic orbit remaining structurally stable at p is
equivalent to the fact that for every p̃ ∈ Ω p, such that
h( p̃) = 0, which means ∇h( p̃) = 0.

Considering Eq. (7), the partial derivative of h( p̃)
with respect to pi can be written as

∂h

∂pi
= ∂H

∂x

∂x1
∂pi

+ ∂H

∂y

∂y1
∂pi

+ ∂H

∂pi
− ∂H

∂x

∂x2
∂pi

− ∂H

∂y

∂y2
∂pi

− ∂H

∂pi

= ∂H

∂pi
|(x1,y1) − ∂H

∂pi
|(x2,y2) (i = 1, 2, · · · , k)

(8)

Thus, Theorem 1 is proved. To understand this the-
orem better, two examples of heteroclinic bifurcations
are shown in appendix C. ��

For a special kind ofHamilton systemwhoseHamil-

tonian can be written as H(x, y, p) = 1

2
y2 +V (x, p),

the theorem of structure stability with heteroclinic orbit
can be simplified as follows:

Corollary 1 For H(x, y, p) = 1

2
y2 + V (x, p), sys-

tem (5) is structurally stable with heteroclinic orbit if
∃x1, x2 ∈ R, ∃ p ∈ R

k , s.t. V (x1, p) − V (x2, p) = 0,
V ′
x (xl , p) = 0, V ′′

xx (xl , p) < 0, l = 1, 2; and ∀i ∈
{1, 2, · · · , k}, s.t. V ′

pi |x=x1 − V ′
pi |x=x2 ≡ 0 in a small

neighborhood near p.

For system (2), it is obvious that V (−x, p) =
V (x, p), where p = (α, β, γ )T, and there are at most
three saddles.

For the case of existing two saddles (xl , 0) (l =
1, 2), considering the symmetry, we have x2 = −x1
and V ′

pi |x=x1 − V ′
pi |x=x2 = 0 (pi = α, β, γ ); thus, the

system is structurally stable. But for the case of three
saddles (xl , 0) (l = 1, 2, 3, x1 < x2 < x3), we have
x3 = −x1, x2 = 0, and

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

V ′
α |x=xl − V ′

α |x=0 = 1 − α√
x2l + α2

,

V ′
β |x=xl − V ′

β |x=0 = 2β√
β2 + γ 2

− xl + β√
(xl + β)2 + γ 2

+ xl − β√
(xl − β)2 + γ 2

,

V ′
γ |x=xl − V ′

γ |x=0 = 2γ√
β2 + γ 2

− γ√
(xl + β)2 + γ 2

− γ√
(xl − β)2 + γ 2

,

(9)

where l = 1, 3. It is obvious that V ′
α|x=xl −V ′

α|x=0 > 0
for every xl ∈ R \ {0} and every α ∈ R. Therefore, the
conclusion of heteroclinic bifurcation of system (2) can
be drawn as the following.

Corollary 2 System (2) is structurally unstable with
heteroclinic orbit if ∃x1, x2 ∈ R\{0}, ∃ p ∈ R

3, s.t.
V (xl , p) − V (0, p) = 0, V ′

x (xl , p) = 0, V ′′
xx (xl , p) <

0, l = 1, 2, where p = (α, β, γ )T.

If the condition of Corollary 2 is satisfied, then we
always have V ′

α|x=xl − V ′
α|x=0 > 0, which indicates

the occurring of heteroclinic bifurcation.

4 Bifurcation sets and normal forms

4.1 Definition of bifurcation sets

According to Sect. 3, the bifurcation set can be obtained
and written as

Σ = {(α, β, γ )| f (x, α, β, γ ) = f ′
x (x, α, β, γ ) = 0}

∪ {(α, β, γ )|V (x, α, β, γ ) = V (0, α, β, γ ),

V ′
x (x, α, β, γ ) = 0, V ′′

xx (x, α, β, γ ) < 0}, (10)

which can be written in the following form

Σ = B1 ∪ B2 ∪ B3 ∪ B4 ∪ B5 ∪ B6

∪B7 ∪ L1 ∪ L2 ∪ L3 ∪ L4 ∪ L5 ∪ P, (11)

where

B1 = {(α, β, γ )|C1(α, β, γ ) > 0; ∃x1 < 0 < x2,

f (xi ) = f ′(xi ) = 0, i = 1, 2, f ′′(x1) < 0 < f ′′(x2)},
B2 = {(α, β, γ )|C1(α, β, γ ) = 0;
C3(α, β, γ ) > 0; ∃x > 0, f (x) < 0},
B3 = {(α, β, γ )|C1(α, β, γ ) < 0; ∃x1 < 0 < x2,

f (xi ) = f ′(xi ) = 0, i = 1, 2, f ′′(x1) < 0 < f ′′(x2)},
B4 = {(α, β, γ )|C1(α, β, γ ) = 0;
C3(α, β, γ ) > 0; ∀x > 0, f (x) > 0},
B5 = {(α, β, γ )|C1(α, β, γ ) < 0; ∃x1 < 0 < x2,

f (xi ) = f ′(xi ) = 0, i = 1, 2, f ′′(x1) > 0 > f ′′(x2)},
B6 = {(α, β, γ )|C1(α, β, γ ) = 0;C3(α, β, γ ) < 0},
B7 = {(α, β, γ )|C1(α, β, γ ) < 0; ∃xi ,
V (xi ) = V (0), V ′(xi ) = 0, V ′′(xi ) < 0, i = 1, 2},

are all bifurcation surfaces of the first order,

L1 = {(α, β, γ )|C1(α, β, γ ) < 0; ∃xi ,
f (xi ) = f ′(xi ) = f ′′(xi ) = 0, i = 1, 2},
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Fig. 2 Bifurcation setsΣ in (α, β, γ ) parameter space: a. catas-
trophe curves and the catastrophe point; b. bifurcation sets in
front view; c. in dorsal view. (Bifurcation sets divide the (α, β, γ )

plane into five persistent regions, markedΩ1 toΩ5, for which the
corresponding phase portraits are persistent, on the boundaries
B1 to B7, the portraits are nonpersistent)

Fig. 3 Restoring force and potential energy for α > 0 and γ > 0: a. restoring force for P, L1, L2; b. restoring force for L3, L4, L5; c.
restoring force for B1, B2; d. restoring force for B3, B4; e. restoring force for B5, B6, B7; (f). potential energy for L2, B7, P

L2 = {(α, β, γ )|C1(α, β, γ ) < 0; ∃x1 < 0 < x2,

V (xi ) = V (0), f (xi ) = f ′(xi ) = 0, i = 1, 2},
L3 = {(α, β, γ )|C1(α, β, γ ) = 0;
C3(α, β, γ ) = 0;C5(α, β, γ ) < 0},
L4 = {(α, β, γ )|C1(α, β, γ ) = 0; ∃x1 < 0 < x2,

f (xi ) = f ′(xi ) = 0, i = 1, 2, f ′′(x1) < 0 < f ′′(x2)},
L5 = {(α, β, γ )|C1(α, β, γ ) = 0;
C3(α, β, γ ) = 0;C5(α, β, γ ) > 0},

are all catastrophe curves of the third order, and

P = {(α, β, γ )|C1(α, β, γ ) = 0;C3(α, β, γ ) = 0;
C5(α, β, γ ) = 0} ≈ (0.69967, 0.48105, 0.57721),

is the catastrophe point of the fifth order, where

Ci (α, β, γ ) = f (i)
x (0,α,β,γ )

i ! (i = 1, 3, 5) is the Tay-
lor expansion coefficient of the restoring force, which
can be obtained as
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Table 1 Equilibriums and stability of each set and each area, xi , (i = 1, 2, 3) has no analytical solution and 0 < x1 < x2 < x3

Bifurcation set/Area Equilibriums

P,L5,B4 Stable degenerated center (0, 0)

L1 Unstable saddle (0, 0), Stable degenerated centers (±x1, 0)

L2 Unstable saddle (0, 0), Stable centers (±x1, 0), unstable cuspidal saddles (±x2, 0)

L3,B6 Unstable tangent saddle (0, 0), stable centers (±x1, 0)

L4 Stable degenerated center (0, 0), unstable cuspidal saddles (±x1, 0)

B1 Stable center (0, 0), unstable cuspidal saddles (±x1, 0)

B2 Stable degenerated center (0, 0), unstable saddles (±x1, 0), stable centers (±x2, 0)

B3 Unstable saddle (0, 0), stable centers (±x1, 0), unstable cuspidal saddles (±x2, 0)

B5 Unstable saddle (0, 0), unstable cuspidal saddles (±x1, 0), stable centers (±x2, 0)

B7 Unstable saddles (0, 0) and (±x2, 0), stable centers (±x1, 0) and (±x3, 0)

Ω1 Stable center (0, 0)

Ω2 Stable centers (0, 0) and (±x2, 0), unstable saddles (±x1, 0)

Ω3 Unstable saddle (0, 0), stable centers (±x1, 0)

Ω4, Ω5 Unstable saddles (0, 0) and (±x2, 0), stable centers (±x1, 0) and (±x3, 0)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

C1(α, β, γ ) = 3 − 1

α
− 2γ 2

(β2 + γ 2)
3
2

,

C3(α, β, γ ) = 1

2α3 − γ 2(4β2 − γ 2)

(β2 + γ 2)
7
2

,

C5(α, β, γ ) = − 3

8α5
− 3γ 2(8β4 − 12β2γ 2 + γ 4)

4(β2 + γ 2)
11
2

.

(12)

It is worth noticing that set B3 is divided into B3−1

and B3−2 by set B7, which is

B3−1 = {(α, β, γ )|(α, β, γ ) ∈ B3; V (xi ) > V (0),

f (xi ) = f ′(xi ) = 0, i = 1, 2}
B3−2 = {(α, β, γ )|(α, β, γ ) ∈ B3; V (xi ) < V (0),

f (xi ) = f ′(xi ) = 0, i = 1, 2}.

4.2 Structure of bifurcation sets

The bifurcation surfaces Bi , catastrophe curves L j and
the catastrophe point P satisfy

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

L1 = ∂B3 ∩ ∂B5 \ P,L2 = B3 ∩ ∂B7 \ P,

L3 = ∂B2 ∩ ∂B6 \ P = ∂B5 ∩ ∂B7 \ P,

L4 = ∂B1 ∩ ∂B3 \ P = ∂B2 ∩ ∂B4 \ P,

L5 = ∂B4 ∩ ∂B6 \ P = ∂B1 ∩ ∂B4 \ P,

P = ∂Li ∩ ∂L j (i �= j).

(13)

where ∂Bi and ∂L j represent the boundary of Bi and
L j , respectively.

The important property shown in Eq. (13), which
is proved in appendix B, indicates the structure of the
bifurcation set Σ , as shown in Fig. 2 to provide a bet-
ter understanding. The set Σ bifurcates at the catastro-
phe point P ≈ (0.69967, 0.48105, 0.57721) of the fifth
order into five catastrophe curves L1 ∼ L5 of the third
order and then into seven bifurcation surfaces B1 ∼ B7

of the first order. The surfaces are connected by the
catastrophe curves: curve L1 connects B3 and B5; L2

connects B3 and B7; L3 connects B2, B5, B6 and B7;
L4 connects B1, B2, B3 and B4; also, curve L5 connects
B1, B4 and B6. The system exhibits different topologi-
cal structure or dynamical behavior on each bifurcation
surface and each catastrophe.

For α > 0 and γ > 0, the system shows con-
tinuous dynamics (discontinuous cases are shown in
appendix A) and the α-β-γ parameter space is divided
into five areas named Ω1 to Ω5 by the bifurcation sets,
as shown in Fig. 2b and Fig. 2c from the front view and
dorsal view, respectively.

The restoring force f (x) corresponding to the catas-
trophe point, the catastrophe curves and the bifurcation
surfaces is plotted in Fig. 3. The restoring force f (x)
for L2, L4, B1, B3 andB5 is all tangent to x-axis as there
exists xi (i = 1, 2) that f (xi ) = f ′(xi ) = 0, f ′′(xi ) �=
0, and the restoring force for P, L1, L3, L4, B2 and B4

exhibits stable quasi-zero stiffness, while the restoring
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force for L5 and B6 exhibits unstable quasi-zero stiff-
ness. This quasi-zero stiffness characteristics is of great
value in isolation engineering.

The equilibriums and their stability of this system
corresponding to each set and each area are shown in
Table 1, which complicatedly changes as the varying of
the three parameters, and the analytical solution cannot
be obtained. The phase portraits corresponding to each
set and each area are plotted in appendix A for different
values of the Hamiltonian H(x, y) = E .

It is worth noticing that some high-order degener-
ated points are found as the varying of the three geomet-
rical parameters, such as a 5th-order degenerated center
at point P, a 3rd-order degenerated center at curve L5

and a 1st-order degenerated center at the bifurcation
surface B4, which can be applied in engineering isola-
tion. A pair of 1st-order degenerated center is found at
curve L1, curve L4 and surface B2. Meanwhile, a 3rd-
order tangent saddle and a 1st-order tangent saddle are
found at curve L3 and surface B6, respectively.

Multiple-well dynamics is also found on this system,
such as a single well around by heteroclinic at L4 and
B1, a double well at L1, L2, L5, B6 and Ω3, triple well
at Ω2 and quadruple well at B7.

4.3 Normal forms of bifurcation surfaces

The bifurcation diagrams for x versus β, α and γ with
fixed (α, γ ), (β, γ ) and (α, β) are plotted in Fig. 4a,
b and c, respectively, from which the type of bifurca-
tion of each surface can be classified clearly. B2 and B4

are supercritical pitchfork bifurcation surfaces across
which a stable center bifurcates into a pair of stable cen-
ters and an unstable saddle, changing through a degen-
erated center. But B6 is subcritical pitchfork bifurcation
surface across which an unstable saddle bifurcates into
a pair of unstable saddles and a stable center, chang-
ing through a tangent saddle. B1, B3 and B5 are sets
of double saddle-node bifurcation across which a pair
of stable centers and a pair of unstable saddles appear,
changing through a pair of cuspidal saddles. B7 is the
set of heteroclinic bifurcation independent to equilib-
rium bifurcations.

The normal form of each bifurcation surface is
shown in Table 2, along with the local bifurcation dia-
gram and the changing of homoclinic or heteroclinic
orbits. A pair of homoclinic orbits appears across the
supercritical pitchfolk bifurcation set B2 and B4, and a

heteroclinic orbit appears across the subcritical pitch-
folk bifurcation set B6. The saddle-node bifurcation
sets B1 and B3−1 lead to a cuspidal heteroclinic orbit
and the appearance of a pair of homoclinic orbits, but a
cuspidal homoclinic orbit and the appearance of homo-
clinic orbits are led by saddle-center bifurcation set
B3−2 and B5.

5 Codimension-4 bifurcations

5.1 Universal unfolding and Subharmonic Melnikov
function

The system can be written in the following form after
Taylor expansion

⎧⎪⎨
⎪⎩
x ′ = y,

y′ = −c1(α, β, γ )x − c3(α, β, γ )x3

−c5(α, β, γ )x5 − c7(α, β, γ )x7,

(14)

where ci (α, β, γ ) (i = 1, 3, 5, 7) is the coefficient of
Taylor series of the restoring force.

We assume that the system is perturbed by a gen-
eral van der Pol nonlinear damping, which leads to the
forced dissipative oscillator as follows

⎧⎪⎨
⎪⎩
x ′ = y,

y′ = −(ξ + ηx2 + ζ x4 + νx6)y − c1(α, β, γ )x − c3(α, β, γ )x3

−c5(α, β, γ )x5 − c7(α, β, γ )x7.

(15)

System (15) is the universal unfolding of system
(14) which will be proved in another work. This sys-
tem exhibits unfolded dynamics of three parameter
codimension-four. Assuming c7(α, β, γ ) > 0 and
applying the scale transformation

x → c
1
6
7

ν
1
3

x, τ → ν

c7
τ,

a system equivalent to the nonlinear damped triple SD
oscillator is obtained as follows

⎧⎪⎨
⎪⎩
x ′ = y,

y′ = μ1x + μ2x3 + μ3x5 + μ4y

+μ5x2y + μ6x4y − x7 − x6y,

(16)
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Fig. 4 Bifurcation diagrams for smooth cases: a. bifurcation diagram for x versus β for α = 0.2 and γ = 0.1; b. bifurcation diagram
for x versus α for β = 0.764 and γ = 0.1; c. bifurcation diagram for x versus γ for α = 0.85 and β = 0.35

where μ1 = −ν2c1c
−2
7 , μ2 = −ν

4
3 c3c

− 5
3

7 , μ3 =
−ν

2
3 c5c

− 4
3

7 , μ4 = − ξν
c7
, μ5 = − ην

1
3

c
2
3
7

and μ6 =

− ζ

ν
1
3 c

1
3
7

.

In order to study the global bifurcations for the corre-
sponding homoclinic and heteroclinic orbits for three-
parameter codimension-four bifurcation, a scale trans-
formation is introduced as shown in the following

(x, y) → (δn−1x, δn y), τ → 1

δ
τ.

And let μ1 = sgnμ1δ
2, μ2 = −δ4−2nε1, μ3 =

−δ6−4nε2, μ4 = δ2ε3, μ5 = δ4−2nε4 and μ6 =
δ6−4nε5, system (16) can be led to

⎧⎪⎨
⎪⎩
x ′ = y,

y′ = sgnμ1x − ε1x3 − ε2x5 − x7

+δ(ε3 + ε4x2 + ε5x4 − x6)y,

(17)

while n = 4
3 .

For δ = 0, system (17) is a Hamilton system

{
x ′ = y,

y′ = sgnμ1x − ε1x3 − ε2x5 − x7,
(18)

whose Hamiltonian function can be obtained as

H(x, y) = 1

2
y2 − sgnμ1

2
x2 + ε1

4
x4 + ε2

6
x6 + 1

8
x8.

(19)

The number of limit cycles of system (17) is related
to the number of zero points of the subharmonic Mel-
nikov function which can be obtained as follows

M(h) =
∫ T

0
y2(τ )[ε3 + ε4x

2(τ ) + ε5x
4(τ ) − x6(τ )]dτ

=
∫
Γ (h)

y(ε3 + ε4x
2 + ε5x

4 − x6)dx, (20)

where Γ (h) = {(x, y)|H(x, y) = h} and T is the
period of curve Γ (h).

It is clear that the above subharmonic Melnikov
function can be used to deprive all the bifurcations cor-
responding to the normal forms inTable 1. For example,
when ε1 > 0 and ε2 < −2

√
ε1, for B2, when μ1 > 0,

ε1 = ε1 − λ and ε2 = ε2, for B3−1 and B3−2, and
also the complicated bifurcation corresponding to nor-
mal form of B5 and B7 can be shown if the parameters
μ1 > 0, ε1 = ε1 + λ and ε2 = ε2 are taken.

Due to the limited space, only the codimensionbifur-
cations for B2 are presented in the following parts, that
is, ε1 > 0 and ε2 < −2

√
ε1. For the convenience,

μ1 ∈ R is assumed and ε1 = 5.5, ε2 = −5 is taken in
the following analysis.

Forμ1 < 0, Γ (h) is classified to three types of peri-
odic orbits as shown in Fig. 5a: Γ1(h) for 0 < h < h2,
Γ2(h) for h1 < h < h2 and Γ3(h) for h > h2, while
Γ (h2) is the homo-heteroclinic orbits. h1 ≈ 1.47881
and h2 ≈ 1.83333 are the potential energy at the equi-
libriums of system (18) for μ1 < 0.

For μ1 > 0, Γ (h) is classified to four types of peri-
odic orbits as shown in Fig. 5c:Γ4(h) for h3 < h < h4,
Γ5(h) for h4 < h < 0, Γ6(h) for 0 < h < h5 and
Γ7(h) for h > h5, whileΓ (0) is the double-homoclinic
orbits and Γ (h5) is the homo-heteroclinic orbits. h3 ≈
−1.87814, h4 ≈ −0.05206 and h5 ≈ 0.20104 are the
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Table 2 Normal forms corresponding to the bifurcation surfaces

potential energy at the equilibriums of system (18) for
μ1 > 0.

For μ1 = 0, Γ (h) is classified to three types of
periodic orbits as shown in Fig. 5b: Γ8(h) for 0 <

h < h7, Γ9(h) for h6 < h < h7 and Γ10(h) for h >

h7, while Γ (h7) is the homo-heteroclinic orbits. h6 ≈
−0.15585 and h7 ≈ 0.92668 are the potential energy
at the equilibriums of system (18) for μ1 = 0.

Let

I in(h) =
∫

Γi (h)

x2n ydx, Pi
n(h) = I in(h)

I i0(h)
,

and pi (h) = Pi
3(h) − ε5Pi

2(h) − ε4Pi
1(h). The zero

points of function M(h) can be regarded as the inter-
sections of curve p = pi (h) and line p = ε3.
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Fig. 5 Different types of orbit Γ (h) = {(x, y)|H(x, y) = h} of system (18) for ε1 = 5.5, ε2 = −5: a. μ1 < 0; b. μ1 = 0; c. μ1 > 0

5.2 Jacobian matrix and eigenvalues

To classify the equilibriums, the Jacobian matrix of
system (17) is obtained as follows

J =
[

0 1
− f ′(xi ) δ(ε3 + ε4x2i + ε5x4i − x6i )

]
, (21)

where f ′(x) = −sgnμ1 + 3ε1x2 + 5ε2x4 + 7x6 is
the stiffness and (xi , 0) is one of the equilibriums. The
eigenvalues can be written as

λ1,2 = 1

2
[δ(ε3 + ε4x

2
i + ε5x

4
i − x6i )

±
√

δ2(ε3 + ε4x
2
i + ε5x

4
i − x6i )2 − 4 f ′(xi )]. (22)

For the equilibrium (xi , 0) being saddle point
( f ′(xi ) < 0) without perturbation (δ = 0), the eigen-
values λ1,2 under perturbation (δ > 0) are a pair of
real numbers being positive and negative, respectively,
implying that (xi , 0) for f ′(xi ) < 0 is always a saddle
point for every ε3, ε4 and ε5.

For the equilibrium (xi , 0) being center point ( f ′(xi )
> 0) without perturbation (δ = 0), the conclusion is
more complicated under perturbation (δ > 0). (xi , 0)

is stable node when ε3 < − 2
√

f ′(xi )
δ

− ε4x2i − ε5x4i +
x6i , stable degenerated node when ε3 = − 2

√
f ′(xi )
δ

−
ε4x2i −ε5x4i +x6i , stable focuswhen− 2

√
f ′(xi )
δ

−ε4x2i −
ε5x4i +x6i < ε3 < −ε4x2i −ε5x4i +x6i , center pointwhen
ε3 = −ε4x2i −ε5x4i +x6i , unstable focuswhen−ε4x2i −
ε5x4i +x6i < ε3 <

2
√

f ′(xi )
δ

−ε4x2i −ε5x4i +x6i , unstable

degenerated node ε3 = 2
√

f ′(xi )
δ

− ε4x2i − ε5x4i + x6i ,

unstable node ε3 >
2
√

f ′(xi )
δ

− ε4x2i − ε5x4i + x6i .

5.3 Codimension-4 bifurcations

For the next analysis, it is assumed that ε1 = 5.5, ε2 =
−5, ε4 = −1, ε5 = 3.6 and δ = 0.4.

5.3.1 Equilibrium change

For μ1 < 0, equilibrium (±1.41421, 0) is a pair of
saddles for every ε3, while equilibriums (0, 0) and
(±1.77716, 0) are listed in Table 3 for different ε3.
For μ1 > 0, equilibriums (0, 0) and (±1.12104, 0) are
saddles for every ε3, while equilibriums (±0.47565, 0)
and (±1.87537, 0) are listed in Table 4 for different ε3.

5.3.2 Limit cycle bifurcations

The curves of pi (h) for both μ1 > 0, μ1 < 0 and
μ1 = 0 are calculated by numerical integrationmethod
and shown inFig. 6 and the bifurcation diagramonμ1−
μ4 plane can be obtained by using the transformation
μ1 = sgnμ1δ

2, μ4 = δ2ε3. The bifurcation sets shown
in Fig. 7a can be described as follows:

BI = {μ4 = c1μ1, μ1 < 0},
H1 = {μ4 = c2μ1, μ1 < 0},
HLI = {μ4 = c3μ1, μ1 < 0},
HLII = {μ4 = c4μ1, μ1 < 0},
BII = {μ4 = c5μ1, μ1 < 0},
H2I = {μ4 = c6μ1, μ1 < 0},
HLIII = {μ4 = c7μ1, μ1 < 0},
H2II = {μ4 = c8μ1, μ1 > 0},
HLIV = {μ4 = c9μ1, μ1 > 0},
HLV = {μ4 = c10μ1, μ1 > 0},
BIII = {μ4 = c11μ1, μ1 > 0},
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Table 3 Equilibrium
change for μ1 < 0

Equilibrium (0, 0) (±1.77716, 0)

Stable node ε3 < −5 ε3 < −25.8776

Stable degenerated node ε3 = −5 ε3 = −25.8776

Stable focus −5 < ε3 < 0 −25.8776 < ε3 < −1.2476

Center point ε3 = 0 ε3 = −1.2476

Unstable focus 0 < ε3 < 5 −1.2476 < ε3 < 23.3824

Unstable degenerated node ε3 = 5 ε3 = 23.3824

Unstable node ε3 > 5 ε3 > 23.3824

Table 4 Equilibrium
change for μ1 > 0

Equilibrium (±0.47565, 0) (±1.87537, 0)

Stable node ε3 < −6.1400 ε3 < −33.6755

Stable degenerated node ε3 = −6.1400 ε3 = −33.6755

Stable focus −6.1400 < ε3 < 0.0536 −33.6755 < ε3 < 2.4905

Center point ε3 = 0.0536 ε3 = 2.4905

Unstable focus 0.0536 < ε3 < 6.2471 2.4905 < ε3 < 38.6565

Unstable degenerated node ε3 = 6.2471 ε3 = 38.6565

Unstable node ε3 > 6.2471 ε3 > 38.6565

Fig. 6 a. The curve of
function p(h) for μ1 < 0;
b. the curve of function
p(h) for μ1 > 0; c. detail of
the gray box in figure b; d.
the curve of function p(h)

for μ1 = 0
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H2III = {μ4 = c12μ1, μ1 > 0},
HLVI = {μ4 = c13μ1, μ1 > 0},
HLVII = {μ4 = c14μ1, μ1 > 0},

where c1 ≈ 0.03737, c2 = 0, c3 ≈ −0.50463,
c4 ≈ −0.84214, c5 ≈ −0.95882, c6 ≈ −1.242,
c7 ≈ −1.93395, c8 ≈ 2.5, c9 ≈ 0.82500, c10 ≈
0.33091,c11 ≈ 0.17889, c12 ≈ 0.056, c13 ≈ 0.01413
and c14 ≈ −0.21213. The bifurcation sets divide the
μ1 − μ4 plane into sixteen areas, named I to XVI.

It is worth noticing that the limit cycle bifurcation
also happens while μ1 ≡ 0, dividing line μ1 = 0 into
eight parts, which can be described as the following:

OI = {μ4 > δ2b1, μ1 = 0},
L1 = {δ2b2 < μ4 < δ2b1, μ1 = 0},
L2 = {δ2b3 < μ4 < δ2b2, μ1 = 0},
L3 = {δ2b4 < μ4 < δ2b3, μ1 = 0},
L4 = {δ2b5 < μ4 < δ2b4, μ1 = 0},
L5 = {δ2b6 < μ4 < δ2b5, μ1 = 0},
L6 = {δ2b7 < μ4 < δ2b6, μ1 = 0},
OII = {μ4 < δ2b7, μ1 = 0},

where b1 ≈ 0.71441, b2 = 0.03832, b3 ≈ 0, b4 ≈
−0.34552, b5 ≈ −0.43164, b6 ≈ −0.46325 and b7 ≈
−0.59598.

As shown in Fig. 5, Γ1, Γ3, Γ6, Γ7, Γ8 and Γ10 all
represent a single periodic orbit for a constant h, so
each intersection of p = ε3 and p = pi (h) (i =
1, 3, 6, 7, 8, 10) corresponds to a single limit cycle.
Similarly, each intersection of p = ε3 and p =
pi (h) (i = 2, 4, 5, 9) corresponds to a pair of limit
cycles because Γ2, Γ4, Γ5 and Γ9 all represent a pair
of periodic orbits. Γ (h2) for μ1 < 0, Γ (0) and Γ (h5)
for μ1 > 0, Γ (h7) for μ1 = 0 are all homoclinic or
heteroclinic orbits, implying that pi (h2) for μ1 < 0,
pi (0), pi (h5) for μ1 > 0 and pi (h7) for μ1 > 0 corre-
spond to homoclinic or heteroclinic bifurcation. Thus,
the conclusion can be drawn as the following:
(1) closed orbit bifurcation set: BI , BI I , BI I I (ε3 =
c1, c5, c11), where a semi-stable limit cycle bifurcates
into a stable one and an unstable one;
(2) Hopf bifurcation set: H1(ε3 = c2);
(3) double Hopf bifurcation set: H2I , H2I I , H2I I I (ε3 =
c6, c8, c12);

(4) homoclinic or heteroclinic bifurcation set: HLI ,
HLI I , HLI I I , HLI V , HLV , HLV I , HLV I I (ε3 =
c3, c4, c7, c9, c10, c13, c14), where limit cycle turns into
homoclinic or heteroclinic orbit;
(5) supercritical pitchfolk equilibrium bifurcation set:
OI , OI I .

The phase portraits are shown in Fig. 8, 9 and 10 for
μ1 < 0, μ1 = 0 and μ1 > 0, respectively, correspond-
ing to each area and each bifurcation set in Fig. 7.

6 Conclusion and discussions

The complicated bifurcations of a nonlinear oscilla-
tor consisting of a horizontal spring and two oblique
springs in nonlinear geometrical configuration gov-
erned by three geometrical parameters have been stud-
ied in this paper. The bifurcation sets have been defined
according to the characteristics of restoring force and
potential, including bifurcation surfaces, catastrophe
curves of the first and third order, and also a catastrophe
point of the fifth order. A special kind of heteroclinic
bifurcation of this oscillator is discovered by investi-
gating the structural stability of heteroclinic orbits in
Hamilton system. The phase portraits, multiple-well
potential energy and force-displacement characteris-
tics have been investigated, demonstrating high-order
singulars and multiple-well dynamics. Complex bifur-
cations have been demonstrated in smooth region with
the normal form of each bifurcation surface, classified
as supercritical pitchfolk bifurcation, subcritical pitch-
folk bifurcation and double saddle-center bifurcation.
Subharmonic Melnikov function has been employed
to detect the complicated bifurcations of limit cycles
including closed orbit bifurcation, Hopf bifurcation,
double Hopf bifurcation and homoclinic or hetero-
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Fig. 7 a. bifurcation
diagram on μ1 − μ4 plane;
b. detail of the gray box in
figure a, the bifurcation for
μ1 = 0 for detail

Fig. 8 Phase portraits of system (17) for μ1 < 0, ε1 = 5.5, ε2 = −5, ε4 = −1 and ε5 = 3.6 (δ = 0.4, green points represent
equilibrium points and red lines represent limit cycles)
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Fig. 9 Phase portraits of system (17) for μ1 = 0, ε1 = 5.5, ε2 = −5, ε4 = −1 and ε5 = 3.6 (δ = 0.4, green points represent
equilibrium points and red lines represent limit cycles)
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Fig. 10 Phase portraits of system (17) for μ1 > 0, ε1 = 5.5, ε2 = −5, ε4 = −1 and ε5 = 3.6 (δ = 0.4, green points represent
equilibrium points and red lines represent limit cycles)

clinic bifurcations, taken bifurcation surface B2 as an
example. The codimension-4 bifurcation of the triple
SD oscillator corresponding to other normal forms
will be investigated in another paper. Also, further
researches can be undertaken to analyze for the com-
plicated behaviors of this oscillator such as resonant
behaviors [42,43] and the chaotic behaviors [44–46]
under the external perturbations as well.
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Fig. 11 Phase portraits for α > 0 and γ > 0 with a catastrophe point, 5 catastrophe curves, 7 bifurcation surfaces and 5 areas (The
value of parameters and the belonged set are shown in each figure legend)

A Phase structures

A.1 Smooth cases

Phase portraits of smooth case for α > 0 and γ > 0
are plotted in Fig. 11. Orange lines represent small peri-
odic orbits, green and blue lines represent large peri-
odic orbits which encircle heteroclinic or homoclinic
orbits, and black lines represent heteroclinic or homo-
clinic orbits.

A.2 Discontinuous cases

For α = 0 and γ > 0, only x = 0 is discontinuous.
The restoring force can be written as f (x, 0, β, γ ) =
3x−sgnx− x + β√

(x + β)2 + γ 2
− x − β√

(x − β)2 + γ 2
. The

bifurcation diagram along with the bifurcation sets is
shown inFig. 12.And the phase portraits corresponding
to each set and each area are shown in Fig. 13.
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Fig. 12 Bifurcation diagrams for α = 0: a. equilibrium bifur-
cation surfaces; b. bifurcation sets on β-γ plane. (Bifurcation
sets divide the (β, γ ) plane into three persistent regions, marked
Ω3, Ω4 and Ω5, for which the corresponding phase portraits are
persistent, on the boundaries B3−1, B3−2, B5 B7, the portraits
are nonpersistent)

For α > 0, β > 0 and γ = 0, x = β and x = −β

are discontinuous. The restoring force can be written as

f (x, α, β, 0) = − x√
x2 + α2

− sgn(x + β) − sgn(x −

β). The bifurcation diagram along with the bifurcation
sets is shown in Fig. 14. The corresponding phase por-
traits are shown in Fig. 15.

For α = 0, β > 0 and γ = 0, x = 0, x = β

and x = −β are all discontinuous. The restoring force
can be written as f (0, β, 0) = 3x − sgnx − sgn(x +
β) − sgn(x − β). The bifurcation diagram is shown in
Fig. 16 for x versus β. The phase portraits are plotted
in Fig. 17.

Fig. 13 Phase portraits for α = 0 (The value of parameters and the belonged set are shown in each figure legend)
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Fig. 14 Bifurcation
diagrams for γ = 0: a.
equilibrium bifurcation
surfaces; b. bifurcation sets
on α-β plane. (Bifurcation
sets divide the (α, β) plane
into five persistent regions,
marked Ω1 to Ω5, for which
the corresponding phase
portraits are persistent, on
the boundaries B1 to B7, the
portraits are nonpersistent)

Fig. 15 Phase portraits for γ = 0 (The value of parameters and the belonged set are shown in each figure legend)

B Relationship between bifurcation surfaces and
catastrophe curves

To prove the relationship between bifurcation surfaces
and catastrophe curves shown inEq. (8), setB1 toB7 are
divided into a series of sets as shown in the following

M+ = {(α, β, γ )|∃x1 < 0 < x2,

f (xi ) = f ′(xi ) = 0, i = 1, 2, f ′′(x1) < 0 < f ′′(x2)},
M− = {(α, β, γ )|∃x1 < 0 < x2,

f (xi ) = f ′(xi ) = 0, i = 1, 2, f ′′(x1) > 0 > f ′′(x2)},
N− = {(α, β, γ )|∃x > 0, f (x) < 0},
N+ = {(α, β, γ )|∀x > 0, f (x) > 0},
E i− = {(α, β, γ )|Ci (α, β, γ ) < 0},
E i+ = {(α, β, γ )|Ci (α, β, γ ) > 0}, (i = 1, 3, 5)
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G = {(α, β, γ )|∃xi ,
V (xi ) = V (0), V ′(xi ) = 0, V ′′(xi ) < 0, i = 1, 2},
K = {(α, β, γ )|∃x1 < 0 < x2,

f (xi ) = f ′(xi ) = f ′′(x) = 0, i = 1, 2}.

It is obvious that N± and E i± are areas, M± and G
are surfaces, K is curve. And we have

⎧⎪⎨
⎪⎩
M+ ∩ M− = N+ ∩ N− = E i+ ∩ E i− = ∅, ∂2E i± = ∅

∂E i− = ∂E i+ = {(α, β, γ )|Ci (α, β, γ ) = 0},
∂N− = ∂N+ = M+, ∂M− = ∂M+ = K.

(B1)

Also,we give some lemmas about the characteristics
of restoring force f (x) without proving:

Lemma 1 f (−x) = − f (x), lim
x→±∞ f (x) = ±∞ and

f (2n)(0) = 0, n ∈ N;

Lemma 2 f (x) has at most 3 zero points for x ∈
(0,+∞);

Lemma 3 f (x) has at most 3 extreme points and 2
inflection points for x ∈ (0,+∞);

Lemma 4 if f ′(0) = f ′′′(0) = 0, then f (5)(0) <

0 ⇐⇒ (α, β, γ ) ∈ N−;

Lemma 5 if f ′(0) = f ′′′(0) = 0, then f (5)(0) >

0 ⇐⇒ (α, β, γ ) ∈ N+;

Lemma 6 if f ′(0) = 0 and (α, β, γ ) ∈ M+, then
C3(α, β, γ ) > 0.

(1)
Set B1 can be divided into B1 = E1+ ∩ M+ and

∂B1 can be divided into ∂B1 = (∂E1± ∩ M+) ∪ (E1+ ∩
∂M±) ∪ (∂E1± ∩ ∂M±).

We have ∂E1± ∩ M+ = L4, ∂E1± ∩ ∂M± = P and

E1+ ∩ ∂M± = lim
xi→0

{(α, β, γ )|C1(α, β, γ ) > 0;
∃x1 < 0 < x2, f (xi ) = f ′(xi ) = 0, i = 1, 2, f ′′(x1)
< 0 < f ′′(x2)}. (B2)

Assume that f (x) = ax(x2 − x2i )
2 + bx3(x2 −

x2i )
3 + cx5(x2 − x2i )

4 + o(x7), which is

f (x) = ax4i x − (2ax2i + bx6i )x3 + (a + 3bx4i + cx8i )

x5 + o(x7), (B3)

Fig. 16 Bifurcation diagrams for α = 0 and γ = 0

and let Eq. (B3) be the Taylor series of the restor-
ing force, so that C1(α, β, γ ) = ax4i , C3(α, β, γ ) =
−(2ax2i + bx6i ) and C5(α, β, γ ) = (a + 3bx4i + cx8i ),
where xi = xi (α, β, γ ) and a > 0. Let xi → 0 and we
can obtain lim

xi→0
C1(α, β, γ ) = 0, lim

xi→0
C3(α, β, γ ) =

0 and lim
xi→0

C5(α, β, γ ) = a > 0.

Therefore, we have E1+ ∩ ∂M± = L5, and ∂B1 =
L4 ∪ L5 ∪ P.
(2)

Set B2 can be divided into B2 = ∂E1±∩E3+∩N− and
∂B2 can be divided into ∂B2 = (∂E1± ∩ ∂E3± ∩ N−) ∪
(∂E1± ∩ E3+ ∩ ∂N±) ∪ (∂E1± ∩ ∂E3± ∩ ∂N±).

From lemma 4 we have ∂E1± ∩ ∂E3± ∩ N− = L3,
and form lemma 6 we have ∂E1± ∩E3+ ∩ ∂N± = ∂E1± ∩
M+ = L4, we also have ∂E1± ∩ ∂E3± ∩ ∂N± = P.
Therefore, ∂B2 = L3 ∪ L4 ∪ P.
(3)

Set B3 can be divided into B3 = E1− ∩ M+ and
∂B3 can be divided into ∂B3 = (∂E1± ∩ M+) ∪ (E1− ∩
∂M±) ∪ (∂E1± ∩ ∂M±).

It is obvious that ∂E1± ∩ M+ = L4, E1− ∩ ∂M± =
E1− ∩K = L1 and ∂E1± ∩ ∂M± = P. Therefore, ∂B3 =
L1 ∪ L4 ∪ P.
(4)

Set B4 can be divided into B4 = ∂E1±∩E3+∩N+ and
∂B4 can be divided into ∂B4 = (∂E1± ∩ ∂E3± ∩ N+) ∪
(∂E1± ∩ E3+ ∩ ∂N±) ∪ (∂E1± ∩ ∂E3± ∩ ∂N±).

From lemma 5 we have ∂E1± ∩ ∂E3± ∩N+ = L5. We
also have ∂E1± ∩ E3+ ∩ ∂N± = L4 and ∂E1± ∩ ∂E3± ∩
∂N± = P. Therefore, ∂B4 = L4 ∪ L5 ∪ P.
(5)

Set B5 can be divided into B5 = E1− ∩ M− and
∂B5 can be divided into ∂B5 = (∂E1± ∩ M−) ∪ (E1− ∩
∂M±) ∪ (∂E1± ∩ ∂M±).
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Fig. 17 Phase portraits for α = 0 and γ = 0 (The value of parameters and the belonged set are shown in each figure legend)

It is obvious that E1±∩∂M± = L1, ∂E1±∩∂M± = P
and

∂E1± ∩ M− = lim
C1→0−{(α, β, γ )|C1(α, β, γ ) < 0;

∃x1 < 0 < x2,

f (xi ) = f ′(xi ) = 0, i = 1, 2, f ′′(x1) > 0 > f ′′(x2)}.
(B4)

Considering f (0) = f (xi ) = 0, f ′(0) < 0,
f ′(xi ) = 0, f ′′(0) = 0, f ′′(xi ) < 0 and lemma 3,
we have

(a). there exists minimum points xI ∈ (0, xi ) and
∃xII ∈ (xi ,+∞), f (xI) < 0, f (xII) < 0,
f ′(xI) = f ′(xII) = 0, f ′′(xI) > 0, f ′′(xII) > 0;

(b). ∃xa ∈ (xI, xi ), ∃xb ∈ (xi , xII), f ′′(xa) = 0,
f ′′(xb) = 0;

(c). f ′(x) monotone increases in (0, xa), monotone
decreases in (xa, xb) and monotone increases in
(xb,+∞).

So it is clear that

f (xI) =
∫ xI

0
f ′(x)dx > f ′(0)xI,

let f ′(0) → 0− and we have f (xI) → 0−, then we
have f (x) → 0− for ∀x ∈ (0, xi ) because f (xI) ≤
f (x) < 0 in (0, xi ). From lemma 2, it can be derived
that

lim
f ′(0)→0− xi = 0. (B5)

Assume that f (x) = ax(x2 − x2i )
2 + bx3(x2 −

x2i )
3 + cx5(x2 − x2i )

4 + o(x7) and a < 0, which is

the same form as Eq. (B3). Then let it be the Taylor
series of the restoring force, so thatC1(α, β, γ ) = ax4i ,
C3(α, β, γ ) = −(2ax2i +bx6i ) andC5(α, β, γ ) = (a+
3bx4i + cx8i ), where xi = xi (α, β, γ ) and a > 0. Let
xi → 0 and we can obtain lim

C1→0− C3(α, β, γ ) = 0 and

lim
C1→0− C5(α, β, γ ) = a < 0.

Therefore, we have ∂E1± ∩ M− = L3, and ∂B5 =
L1 ∪ L3 ∪ P.
(6)

Set B6 can be divided into B6 = ∂E1± ∩ E3− and ∂B6

can be divided into ∂B6 = ∂E1± ∩ E3±, which is

∂B6 = {(α, β, γ )|C1(α, β, γ ) = 0;C3(α, β, γ ) = 0}. (B6)

It is obvious that ∂B6 = L3 ∪ L5 ∪ P.
(7)

Set B7 can be divided into B7 = E1− ∩ G and ∂B7

can be divided into ∂B7 = (∂E1± ∩ G) ∪ (E1− ∩ ∂G) ∪
(∂E1± ∩ ∂G), where

∂G = {(α, β, γ )|∃x1 < 0 < x2, (B6)

V (xi ) = V (0), V ′(xi ) = V ′′(xi ) = 0, i = 1, 2}.

It is obvious that E1− ∩ ∂G = L2 ⊆ B3. And

∂E1± ∩ G = lim
C1→0−{(α, β, γ )|C1(α, β, γ ) < 0;

∃x1 < 0 < x2,

V (xi ) = V (0), V ′(xi ) = 0, V ′′(xi ) < 0, i = 1, 2}.
(B7)
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Fig. 18 Heteroclinic orbits for Hamilton system: a a = 0.95, b = −1; b a = 1, b = −1; c a = 1.05, b = −1

Fig. 19 Heteroclinic orbits for Hamilton system: a a = 1
2 , b = −1, c = −4, q = 3.98; b a = 1

2 , b = −1, c = −4, q = 4; c a = 1
2 ,

b = −1, c = −4, q = 4.02

Considering
∫ xi
0 f (x)dx = V (xi ) − V (0) = 0,

f (xi ) = 0, f ′(xi ) < 0, lemma 1, lemma 2 and
lemma 3, we have

(a). ∃xk ∈ (0, xi ), x j ∈ (xi ,+∞), f (xk) = f (xi ) =
f (x j ) = 0;

(b). there existsminimum xI ∈ (0, xk),maximum xII ∈
(xk, xi ) and minimum xIII ∈ (xi , x j ), f ′(xI) =
f ′(xII) = f ′(xIII) = 0;

(c). f ′(x) monotone increases in (0, xI).

So it is clear that

f (xI) =
∫ xI

0
f ′(x)dx > f ′(0)xI,

let f ′(0) → 0− and we have f (xI) → 0−.
Considering f (xI)xk <

∫ xk
0 f (x)dx < 0, we have∫ xk

0 f (x)dx → 0− and
∫ xi
xk

f (x)dx = − ∫ xk
0 f (x)dx

→ 0+. So it can be derived that f (x) → 0− for ∀x ∈
(0, xk) and f (x) → 0+ for ∀x ∈ (xk, xi ).

From lemma 2, it can be derived that

lim
f ′(0)→0− xi = lim

f ′(0)→0− xk = 0. (B8)

Assume that V (x) = ax2(x2 − x2i )
2 + bx4(x2 −

x2i )
3 + cx6(x2 − x2i )

4 + o(x7), and f (x) = V ′(x),

which is

f (x) = 2ax4i x − 4(2ax2i + bx6i )x
3

+6(a + 3bx4i + cx8i )x
5 + o(x7), (B9)

and let Eq. (B9) be the Taylor series of the restor-
ing force, so that C1(α, β, γ ) = 2ax4i , C3(α, β, γ ) =
−4(2ax2i +bx6i ) andC5(α, β, γ ) = 6(a+3bx4i +cx8i ),
where xi = xi (α, β, γ ) and a < 0. Let xi →
0 and we can obtain lim

C1→0
C3(α, β, γ ) = 0 and

lim
C1→0

C5(α, β, γ ) = 6a < 0.

Therefore, we have ∂E1± ∩ G = L3, and ∂B7 =
L2 ∪ L3 ∪ P.

C Structural stability of Hamilton system with
heteroclinic orbits

Without loss of generality, a 2-dimensional Hamilton
system is considered, whose Hamilton function can be
written in the following form

H(x, y) =
∞∑
i=1

∞∑
j=1

ai, j x
i y j . (C1)
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twoexamples are given to illustrate the condition of het-
eroclinic bifurcation of 2-dimensional Hamilton sys-
tem, which is shown in theorem 1.

Example 1 Let a2,0 = 1, a1,1 = a, a1,2 = b, a2,3 =
−1, a, b ∈ R and ai, j ≡ 0(else), theHamilton function
is H(x, y, p) = x2 + axy + bxy2 − x2y3, where p =
(a, b)T, which leads to the following Hamilton system

{
x ′ = ax + 2bxy − 3x2y2,

y′ = −2x − ay − by2 + 2xy3.
(C2)

Three saddles A(0, 0), B(0,− a
b ) and C(xc( p),

yc( p)) can be found. When p = (1,−1)T, we have
H |A = H |B = H |C = 0, thus three heteroclinic
orbits can be found, as shown in Fig. 18b: Γ1 con-
necting A(0, 0) and B(0, 1);Γ2 connecting B(0, 1) and
C(− 1

3 , 1); Γ3 connecting A(0, 0) and C(− 1
3 , 1). Cal-

culation shows that

∂H

∂a
|B − ∂H

∂a
|A = 0,

∂H

∂b
|B − ∂H

∂b
|A = 0,

∂H

∂a
|C − ∂H

∂a
|B = xc( p)yc( p) �= 0,

∂H

∂b
|C − ∂H

∂b
|B = xc( p)y2c ( p) �= 0,

∂H

∂a
|C − ∂H

∂a
|A = xc( p)yc( p) �= 0,

∂H

∂b
|C − ∂H

∂b
|A = xc( p)y2c ( p) �= 0,

whichmeans heteroclinic orbitΓ1 is structurally stable,
but Γ2 and Γ3 are structurally unstable. The neighbor-
hood systems are shown in Fig. 18a and c. Heteroclinic
orbit Γ2 splits into orbits Γ1,0 ∪ Γ1,1 or Γ2,0 ∪ Γ2,1,
while heteroclinic orbit Γ3 splits into orbits Γ1,0 ∪Γ1,2

or Γ2,0 ∪ Γ2,2.

Example 2 Consider theHamilton functionH(x, y, p)
= 1

2 y
2 − (x − a)2(x − b)2(x2 + cx + q), where

p = (a, b, c, q)T, which leads to the following Hamil-
ton system

⎧⎪⎨
⎪⎩
x ′ = y,

y′ = 2(x − a)(x − b)(2x − a − b)(x2 + cx + q)

+(x − a)2(x − b)2(2x + c).

(C3)

Three saddles A(a, 0), B(b, 0) and C(xc( p), 0) can
be found.When p = ( 12 ,−1,−4, 4)T, we have H |A =
H |B = H |C = 0, and two heteroclinic orbits can be
found, as shown in Fig. 19b: Γ1 connecting A( 12 , 0)
and B(−1, 0); Γ2 connecting A( 12 , 0) and C(xc( p), 0).
Calculation shows that

∂H

∂pi
|A − ∂H

∂pi
|B = 0 (pi = a, b, c, q),

∂H

∂c
|C − ∂H

∂c
|A = −xc( p)(xc( p) − a)2(xc( p) − b)2 �= 0,

∂H

∂q
|C − ∂H

∂q
|A = −(xc( p) − a)2(xc( p) − b)2 �= 0,

which means heteroclinic orbit Γ1 is structurally sta-
ble, but Γ2 is structurally unstable. The neighborhood
systems are shown in Fig. 19a and c. Heteroclinic orbit
Γ2 splits into orbits Γ1,0 ∪ Γ1,1 or Γ2,0 ∪ Γ2,1.
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