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Abstract In this paper, we analyze how vegeta-
tion patterns occur in arid and semi-arid ecosystems
with different types of grazing, using both modelling
approaches and mathematical analysis. The concepts
of Tipping point and Turing point are helpful for us to
understand the desertification that catastrophic and crit-
ical transitions may have on ecosystems. In the mathe-
matical analysis, we extrapolated our analysis to local
stability and Turing instability of local and nonlocal
models. We found that the uniform vegetation state
changes to vegetation pattern state or bare soil state,
which means that there is overgrazing in this ecosys-
tem. Therefore, we propose that vegetation patterns
may be a warning signal for the onset of desertification.
Some notes on numerical simulation are given, based
on different diffusion coefficients, infiltration param-
eters and grazing rate. Numerical simulation not only
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verifies the validity of the theoretical results, but also
obtains some resultswhich can not be obtained inmath-
ematical analysis.
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1 Introduction

Vegetation patterns exist widely in the arid and semi-
arid ecosystems [1–10]. Vegetation patterns are viewed
as precursors of a catastrophic transition to a degraded
state [2,6–8], and important as potential indicators of
climate change and desertification. Humans and cli-
mate affect ecosystems and their services, which may
involve catastrophic and critical transitions from one
stable state to another (see Fig. 1). Catastrophic tran-
sitions, where a system shifts abruptly between alter-
nate steady states, are a generic feature of many non-
linear systems [3,8]. Understanding the drivers and
dynamics of catastrophic transitions in vegetation pat-
terns is crucial for effective ecosystem management
and conservation. Scientists use mathematical models
and empirical studies to investigate the mechanisms
behind these transitions and develop strategies to pre-
vent or mitigate their negative impacts. For terrestrial
ecosystems, it has been hypothesized that vegetation
patchiness could be used as a signature of imminent
transitions [2,7]. Satellite observations and field sur-
veys indicate that rainfall and grazing have a global
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Fig. 1 The transition of
different vegetation states in
an ecosystem

control on vegetation density along the water-limited
ecosystems, whereas local and nonlocal interactions
influence the spatial arrangement of vegetation [11–
16]. In particular, vegetation patterns that occur in a
scenario of flat terrain and hill side in several models
have been shown in simulations to evolve through a
sequence of morphologies, “ homogeneous vegetation
→ vegetation patterns → bare soil (desert)” (Fig. 1),
as ecosystem aridity increases [5]. In this way, veg-
etation patterns may serve as early-warning signs of
catastrophic ecosystem transitions [1,2,9]. The vege-
tation status changes directly to the bare soil status, “
homogeneous vegetation→ bare soil (desert)” (Fig. 1),
which means that the ecosystem has undergone catas-
trophic changes [17].

Indeed much work in the last two decades has
gone into mathematizing the water redistribution and
plant facilitation mechanisms into idealized models
that are able to qualitatively reproduce the patterns.
Mathematical models play a key role in understand-
ing formation of vegetation patterns, and a large num-
ber of mathematical models have been established
about the origin of this vegetation pattern forma-
tion [4,5,9,10,17–26]. One of the first mathematical
models is the Klausmerier model [4], which has a
connection between plant biomass and limited water
resources. In the past two decades, many extensions
of water–plant model has been proposed [11,12,14–
16]. Klausmerier model and many others based on
feedback mechanisms of plant biomass and limited
water resources have been established. One family
of models captures the spatial and temporal dynam-
ics of coarsely defined water and vegetation fields
through reaction–advection–diffusion partial differen-
tial equations. The model for surface water (W ) and
plant biomass (B) and balance is defined on an infi-
nite domain indexed by X as a function of time T , as
follows:

∂B

∂T
= {plant growth at �X at T }

−{plant loss at �X at T } ± {plant dispersal}.
∂W

∂T
= {rain f all rate at �X at T }

−{in f iltration rate at �X at T }
−{evaporation and drainage at �X at T }
±{water movement}.

An understanding of plant growth is therefore
essential to understand vegetation patterns, including
competition, plant–herbivore interactions, interactions
between plants and their abiotic environment and local
community dynamics [11]. Most mathematical mod-
els ignore many natural factors affecting vegetation
growth, and only consider some factors such as infiltra-
tion rate [26], light affect [11] and carbon dioxide [12].
Mathematical formulations and parameters are taken
from literature [4,5,10,11,20] and we summarized in
Table1.

Plant biomass may be lost due to natural mortality
or removal by herbivores [5]. In many previous stud-
ies [1–5,9–12,17,20,25–33], for the sake of simplicity,
grazing has been ignored or the functional response of
herbivores to changes in plant availability are assumed
to be linear. Bymodeling grazingwith a linear term, the
grazing pressure is independent of the local availability
of vegetation. Therefore, the local linear term is used
to simulate grazing, assuming that the grazing pres-
sure is constant. In real ecosystems, the demographic
response and functional responsemost likely dependon
the vegetation distribution, leading to a variable graz-
ing pressure [14] (see Fig. 2). The grazing pressure is
dependent of the local availability of vegetation, at a
location which is independent of the presence of veg-
etation elsewhere. This type of grazing is called local
grazing [15,16]. However, the grazing pressure at a
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Table 1 Relative growth rates and plant lost, where K2, p, M0, M1, j are positive constant and I j (B) = 1
Vol(�)

∫
X∈�

B j (X)dX , �:
denote a connected bounded spatial domain and Vol(�) is volume (length or area, depending on the dimension)

Model Plant growth Plant loss

Klausmeier model [4] K2WB2 (M0 + M1)B [4]

M0B + M1B2

1+I2(B)
[14,16]

M0B + M1BI1(B)
1+I1(B)

[14]

M0B + M1B2

1+B [16]

Shnerb model [17] K2WB (M0 + M1)B [17]

M0B + M1B
1+B [34,35]

Sherratt model [26] K2WBp (M0 + M1)B [26]

M0B + M1B j

1+I j (B)
[15]

And some others [2,5,6,10,25]

Fig. 2 Flowchart for nonlinear grazing

location is dependent of the presence of vegetation else-
where, this type of grazing so called nonlocal grazing
[14–16]. Mathematical formulations are taken from lit-
erature [14–16,34–36] and summarized in Table 1.

It is well known that plants reproduce asexually [5],
Klausmeier [4] and other biomathematics experts [5,
9–12,17,20,25,26] describe the process of vegetative
propagation by diffusion. In detail, the diffusion term
DB�B simulates the dispersal of seeds from the plant
to the ground, where � represents Laplace operator.

The rainfall can change seasonally and tends to be
intermittent in time [4,5,26], but here we view rain-
fall as a climatic parameter that may slowly change
over time and is constant in the absence of climate
change. All the types of vegetation models use lin-

ear terms to simulate water evaporation [4]. Water is
regarded as surface water, and the process of infil-
tration and subsequent uptake of soil water are com-
bined in the surface water uptake terms. The surface
water uptake terms depend on the plant growth func-
tion. Klausmeier [4] studied vegetation patterns on flat
land completely ignoring water diffusion. As we all
know, plants have the ability to redistribute the water
in the soil. Hardenberg [25] firstly used this idea in
water–plant interaction, in which the extended model
was used to describe the feedback effect between veg-
etation biomass and water. The main idea is to add
�(W −βB). Recently, some authors propose different
types of vegetation patterns model [15,16,31–33,37–
42] which includes cross-diffusion terms, this type of
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water–plant models have potential ecological reality
and intrinsic theoretical interest.

The rest of this article is organized as follows. In
Sect. 2, we present an extendedwater–plant model with
cross-diffusion and nonlinear grazing. In Sect. 3, we
explain the biological and mathematical meanings of
catastrophic transition and critical transition, and we
obtain some parameter conditions for linear stability
and vegetation patterns formation. In Sect. 4, we com-
pare the three type of grazing models using the criti-
cal diffusion coefficients. Section5 gives the numer-
ical simulations results of the extended water–plant
model. Finally, some conclusions and discussions are
presented in Sect. 6.

2 The extended model

Several modelling frameworks to describe the eco-
hydrological dynamics in vegetation patterns have
been proposed over the last two decades. One system
that stands out due to its simplicity is the extended
Klausmeier model. The vegetation growth term of the
extended Klausmeier model is WB2, on the basis of
mathematical simplicity rather than ecological data.
Our objective is to study howmodel predictions change
with the strength of the dependence of infiltration on
vegetation biomass, and we consider specifically the
one-parameter family of plant growth termsWBp with
p ≥ 1. Understanding the mechanisms and dynamics
of grazing-induced vegetation transitions is important
formanaging grazing systems and conserving biodiver-
sity. By considering the impacts of grazing on vegeta-
tion patterns, land managers can implement appropri-
ate grazing strategies, such as rotational grazing or tar-
geted grazing, to maintain desired vegetation commu-
nities and prevent undesirable shifts in ecosystem struc-
ture and function. To understand how grazing alters the
desertification process, we include the different grazing
terms in an extended Klausmeier model. Therefore, we
propose an extended water–plant model based on the
models of Klausmeier model [4,14,16], Shnerb model
[17,34–36] and Sherratt model [15,26]:

⎧
⎪⎨

⎪⎩

∂W

∂T
= Dw�(W − K1B) + R̃ − K2WBp − K3W,

∂B

∂T
= Db�B + K4K2WBp − M(B)B,

(2.1)

where plant biomass death rate dependence of natu-
ral mortality rate and nonlinear grazing pressure in the
following form

plant loss
︷ ︸︸ ︷
M(B)B =

natural mortali t y
︷ ︸︸ ︷
M0B +

grazing
︷ ︸︸ ︷
G j B

j ,

where G j denote grazing pressure, j is a constant and
represents aggregation parameter. The grazing pressure
at a location is dependent of the presence of vegetation
elsewhere (see Fig. 2), then G j represent

G j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Msus

K̃sus+I j (B)
, f or sustained type

nonlocal grazing,
Mnat I j (B)

(K̃nat )2+(I j (B))2
, f or natural type

nonlocal grazing.

(2.2)

where sustained grazing with constant herbivore num-
bers and Holling type I I functional response, natural
grazing with constant functional response and demo-
graphic response by a type I I I sigmoid function [14].
Msus , Mnat (maximal grazing rate per unit area) and
K̃sus , K̃nat (half-persistence) are positive constant.

The grazing pressure is independent of the local
availability of vegetation (see Fig. 2), then G j repre-
sent

G j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Msus

K̃sus+B j , f or sustained type local

grazing,
Mnat B j

(K̃nat )2+B2 j , f or natural type local

grazing.

(2.3)

Remark 1 For all the types of grazing, the grazing is an
increasing function of B (see Fig. 3), so that locations
with relatively large biomass bear a large grazing rate
and locations with small biomass bear a small graz-
ing rate. The nonlocal natural grazing is bigger than
the nonlocal sustained grazing for small B(< B∗) and
smaller than large B(> B∗) (Fig. 3a), but the opposite is
true for local grazing (Fig. 3b). Since the local sustained
and local natural grazing functions (withMsus = Mnat ,
Ksus = Knat and the same value of j) are almost equal
for large B, in this regime the same dynamics are likely
to occur for local sustained and local natural grazing.

In the study of vegetation patterns, bounded regions
are often chosen to focus on specific ecosystems or
habitats. By defining the boundaries, researchers can
investigate how vegetation interacts with its surround-
ing environment and how it responds to external factors
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Fig. 3 Grazing as a function of plant density with M0 = 0.225, Msus = Mnat = 1.5, Ksus = Knat = 1 and j = 2

within the confined area. Neumann boundary condi-
tions
∂W

∂ν
= ∂B

∂ν
= 0,

where ν is the unit outer normal vector on smooth
boundary, can be applied to the boundaries of these
bounded regions to model the exchange of resources
between the vegetation and its surroundings. This
allows researchers to simulate and analyze how vege-
tation patterns evolve and respond to different environ-
mental conditions and disturbances within the defined
boundaries. To reduce the number of parameters, we
introduce the dimensionless variables and parameters,
which are indicated below:

w = K4K
1
p
2 K

− 1
p

3 W, b = K
1
p
2 K

− 1
p

3 B,

t = K3T x = K 1/2
3 D−1/2

W X, r = DBD
−1
W ,

α = K1K4, R = R̃K4K
−1−1/p
3 K 1/p

2 , m0 = M0K
−1
3 ,

ksus = K̃sus K
j/p
2 K− j/p

3 , knat = K̃ 2
nat K

2 j/p
2 K−2 j/p

3 ,

msus = Msus K
−1−1/p
3 K 1/p

2 mnat = Mnat K
−1/p
3 K 1/p

2 .

The dimensionless model is given by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂w
∂t = �w − α�b + R − wbp − w, x ∈ �, t > 0,
∂b
∂t = r�b + wbp − m0b − � j (b), x ∈ �, t > 0,
∂w
∂ν

= ∂b
∂ν

= 0, x ∈ ∂�, t > 0,
w(x, 0) = w0(x) ≥ 0, b(x, 0)

= b0(x) ≥ 0, x ∈ �,

(2.4)

where � is a bounded domain in the Euclidean space
R
1 orR2 with smooth boundary, denoted as ∂�, ν is the

unit outer normal vector on ∂�. � j is different types
of grazing are implemented by choosing either

� j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

msusb j

ksus+I j (b)
f or sustained type

nonlocal grazing,
mnat I j (b)b j

(knat )2+(I j (b))2
f or natural type

nonlocal grazing,

(2.5)

or

� j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

msusb j

ksus+b j , f or sustained type local

grazing,
mnat b2 j

(knat )2+b2 j
, f or natural type local

grazing.

(2.6)

According to [14–16] and Remark 1, in order to
compare the two nonlocal grazing type models and
the corresponding two local type models, we choose
ksus = knat = 1 and m1 := msus = mnat , for the sus-
tained grazing model j = p ≥ 1, for the natural graz-
ing model j = p

2 (p ≥ 1), and analyze an extended
water–plant model:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂w
∂t = �w − α�b + R − wbp − w, x ∈ �, t > 0,
∂b
∂t = r�b + wbp − m0b − �p(b), x ∈ �, t > 0,
∂w
∂ν

= ∂b
∂ν

= 0, x ∈ ∂�, t > 0,
w(x, 0) = w0(x) ≥ 0, b(x, 0)
= b0(x) ≥ 0, x ∈ �,

(2.7)

where p ≥ 1 and

�p(b) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

m1bp

1+Ip(b)
, f or sustained type

nonlocal grazing,
m1 Ip/2(b)bp/2

1+(Ip/2(b))2
, f or natural type

nonlocal grazing,
m1bp

1+bp , f or local grazing.

(2.8)
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Manor et al. [34], Wang et al. [35], and Lei et al. [36]
considered a biomass per capita death rate m0 + m1

1+b
with p = 1, and showed that Turing instability can
occur for system with large water diffusion or small
vegetation diffusion. Siero [14] using numerical simu-
lations method considered extended Klausmeier model
(p = 2) without cross-diffusion. In our previous work
[16], we studied extended Klausmeier model (p = 2)
with sustained type nonlocal grazing and local graz-
ing model, and compared the two types of extended
model. From [16], we can learn that nonlocal terms
promote linear stability, and the system may produce
pattern under the influences of self-diffusion and cross-
diffusion. Sherratt et al. [26] investigated the case that
p > 1, dw = 0 and m1 = 0, and their results showed
that the parameter p affects different types of solu-
tions such that spatial patterns, homogeneous vegeta-
tion and bare ground on flat terrain. In our previous
work [15], we studied an extended Sherratt model with
sustained grazing (p ≥ 1), and proved that the model
has very rich dynamics properties, including multiple
stable equilibria, saddle-node bifurcation of positive
equilibria, some characterizations for the non-constant
positive steady state solutions, and existence of non-
constant positive solutions.

3 Equilibrium state transition and spatial pattern
formation

The study of equilibrium state transitions and spatial
pattern formation is important in understanding the
behavior of complex model (2.7). It helps us under-
standhowsystems respondandadapt to changes in their
environment, and how order and structure can emerge
from simple interactions and dynamics. Equilibrium
state transition refers to the transition of a system from
one stable equilibriumstate to another. In equilibrium, a
system is in a balanced state where the forces and inter-
actions within the system are in equilibrium. However,
when external conditions or internal dynamics change,
the system may undergo a transition to a new equilib-
rium state. This transition can be triggered by various
factors such as changes in parameters, fluctuations, or
perturbations in the system.

In this section, for convenience of explanation, we
define

M1 := R − m0, M2 := R − m0 p(p − 1)−1+ 1
p .

The model (2.7) has a bare-solid (desert) steady state
(w0, b0) = (R, 0). For positive equilibriums, we have
the following two cases [15]:

(a) If p = 1, m1 < M1, then the model (2.7) has a
unique positive equilibrium

(w1, b1) =
(

m0R

R − m1
,
R − m0 − m1

m0

)

.

Ifm1 = M1, then the model (2.7) has a unique equilib-
rium (R, 0), and it is a so-called transcritical bifurcation
point [15,35].

(b) If p > 1, then equilibriums must satisfy b1−p +
b = R−m1

m0
, with w = R

1+bp . Set

H(b) = b1−p + b − R − m1

m0
.

Function H(b) has a unique minimum at

bmin = (p − 1)
1
p (3.1)

and H(b) → ∞ as b → 0 and ∞ [15]. Therefore,
function H(b) has no solution if when m1 > M2 (see
Fig. 4), and has two solutions b2, b3 if m1 < M2 and

b3 < bmin < b2. (3.2)

The two equilibrium solutions are called higher vegeta-
tion state (w2, b2) and lower vegetation state (w3, b3).
Note that the two states coincide at m1 = M2. In fact
here a so-called saddle-node bifurcation takes place
[15].

We study linear stability of spatial homogeneous
model in the neighborhood of each equilibrium. For
the sake of simplicity, we introduce some notations

f (w, b) := R − wbp − w, g(w, b)

:= wbp − m0b − m1b j

1 + b j
.

The Jacobian matrix of spatial homogeneous model
evaluated at the equilibrium points (wi , bi ) are

J (wi , bi ) =
(

f (i)
w f (i)

b

g(i)
w g(i)

b

)

,

where i = 1, 2, 3 and

f (i)
w = −bp

i − 1 < 0, f (i)
b = −pwi b

p−1
i < 0,

g(i)
w = bp

i > 0, (3.3)

g(i)
b = p

(

wb(p−1)
i − m1b

(p−1)
i

1 + bp
i

)

−m0 + pm1b
2p−1
i

(
1 + bp

i

)2 = m0(p − 1) + pm1b
2p−1
i

(
1 + bp

i

)2 > 0.
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Fig. 4 Positive constant equilibrium solution of the extended water–plant model expressed in plant biomass b as function of grazing
parameter m1 for R = 3 and m0 = 0.225. a p = 1, 1.5, 2, 4; b Drawing of partial enlargement of (a)

(3.4)

By simple calculations, we know that

det(J (wi , bi )) = −m0(b
p
i + 1)(p − 1) − pm1b

2p−1
i(

1 + bp
i

)

+p

(

m0 + m1b
p−1
i(

1 + bp
i

)

)

bp

= m0(b
p
i − p + 1). (3.5)

According to (3.2), we can obtain

det(J (w1, b1)) = m0b1 > 0,

det(J (w2, b2)) > 0, det(J (w3, b3)) < 0.

Therefore, (w3, b3) is always unstable when it exists.
Stability of (w1, b1) and (w2, b2) depends on the sign
of the tr(J (wi , bi )). If

tr(J (wi , bi )) = −bp
i − 1 + m0(p − 1)

+ pm1b
2p−1
i

(
1 + bp

i

)2 < 0 (3.6)

holds, then the equilibriums (w1, b1) and (w2, b2) are
locally asymptotically stable.

Let us address the extendedmodel (2.7). For the sake
of simplicity, we introduce some notations

g̃(w, b) = wbp − m0b − m1bp

1 + Ip(b)
,

ĝ(w, b) = wbp − m0b − m1 Ip/2(b)bp/2

1 + (Ip/2(b))2
.

Let f (i)
w , f (i)

b , g(i)
w , g(i)

b , g̃(i)
w , g̃(i)

b , ĝ(i)
w and ĝ(i)

b be the
derivatives of f (w, b), g(w, b), g̃(w, b) and ĝ(w, b)

with respect to w and b evaluated at the steady state
(wi , bi ),

f (i)
w = −bp

i − 1, f (i)
b = −pwi b

p−1
i ,

g(i)
w = g̃(i)

w = ĝ(i)
w = bp

i .

However, g̃(w, b) and ĝ(w, b) contain integrals, their
differentation requires a bit more attention. The
Gâteaux differential of Ip is given by

d I (b)p = lim
ε→0

Ip(bi + εb̃) − Ip(bi )

ε

= pbp−1
i

V ol(�)

∫

�

b̃dx,

where b̃ represents small perturbation. Now we differ-
entiate Gp,sus := m1

1+Ip(b)
:

dG p,sus = lim
ε→0

Gp,sus(bi + εb̃) − Gp,sus(bi )

ε

= lim
ε→0

m1

1+Ip(bi+εb̃)
− m1

1+Ip(bi )

ε

= −m1

1 + Ip(bi )
lim
ε→0

1

1 + Ip(bi + εb̃)

Ip(bi + εb̃) − Ip(bi )

ε

= −m1

(1 + Ip(bi ))2
d Ip(bi , b̃).

Through the relationship between Gâteaux differen-
tial and Fréchet differential, we can get

g̃(i)
b = m0(p − 1) + pm1b

2p−1
i

V ol(�)
(
1 + bp

i

)2

∫

�

· dx, (3.7)
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where
∫
�

· dx is integral operator. Similarly, we can get

ĝ(i)
b = m0(p − 1) + m1 pb

p−1
i

2
(
1 + bp

i

)

+ 1

Vol(�)

(
pm1b

2p−1
i

(
1 + bp

i

)2 − m1 pb
p−1
i

2
(
1 + bp

i

)

) ∫

�

· dx .

(3.8)

Substituting

U = Ui + 	, (U = (w, b)T , Ui = (wi , bi )
T ,

	 =
(
w̃, b̃)T

)

into models (2.7), on neglect higher order terms, we
obtain the following linearizedmodel, written in vector
form

	t = D	xx + J1	, f or local grazing

model, (3.9)

	t = D	xx + J2	 + J3,

f or sustained type nonlocal grazing

model, (3.10)

	t = D	xx + J4	 + J5	,

f or natural type nonlocal grazing

model, (3.11)

with

D =
(
1 −α

0 r

)

, J1 =
(

f (i)
w f (i)

b

g(i)
w g(i)

w

)

,

J2 =
(

f (i)
w f (i)

b

g(i)
w m0(p − 1)

)

,

J3 =
⎛

⎝
0 0

0
pm1b

2p−1
i

V ol(�)
(
1+bpi

)2
∫
�

· dx

⎞

⎠ ,

J4 =
⎛

⎝
f (i)
w f (i)

b

g(i)
w m0(p − 1) + m1 pb

p−1
i

2
(
1+bpi

)

⎞

⎠ ,

J5 =
⎛

⎜
⎝

0 0

0 1
Vol(�)

(
pm2b

2p−1
i(

1+bpi

)2 − m1 pb
p−1
i

2
(
1+bpi

)

)
∫
�

· dx

⎞

⎟
⎠ .

where i = 1, 2, 3, 	 denotes the vector of solutions to
the linear model of partial differential equations.

Here, we propose the corresponding characteristic
equation of linear equation (3.9)–(3.11). At first, we
introduce some eigenvalue problems which are useful
throughout this section. Let

0 = μ0 < μ1 ≤ μ2 ≤ · · · ≤ μ j ≤ · · · → ∞, (3.12)

denote the eigenvalues of−
 in� subject to the homo-
geneous Neumann boundary condition [38,39,43].
Therefore, characteristic equation of linearized sys-
tem (3.9), (3.10) and (3.11) consists of the following
sequences of equations

λI − L (r, α, μk) = 0,

where I is an identity matrix and

L (r, α, μk) :=
(

−μk + f (i)
w αμk + f (i)

b

g(i)
w −rμk + H (i)

)

.(3.13)

According to the properties of the eigenvectors of the
Laplace operator, we obtain

H (i) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m0(p − 1) + pm1b
2p−1
i(

1+bpi

)2 , k = 0,
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H (i)
sus := m0(p − 1),
k 
= 0, f or sustained type

nonlocal grazing,

H (i)
nat := m0(p − 1) + m1 pb

p−1
i

2
(
1+bpi

) ,

k 
= 0, f or natural type
nonlocal grazing,

H (i)
loc := m0(p − 1) + pm1b

2p−1
i(

1+bpi

)2 ,

k 
= 0, f or local type grazing.

(3.14)

It is worth mentioning that when k = 0, we have the
absence of diffusion model, thus λ satisfies the disper-
sion relation

λ2 − tr(J (wi , bi ))λ + det (J (wi .bi )) = 0,

where the expression of tr(J (wi , bi )) and
det (J (wi .bi )) are given by (3.5) and (3.6).

In the presence of diffusion, we have

λ2 − Tr(r, α, μk)λ + Det(r, α, μk) = 0, (3.15)

where k ∈ N
+ := {1, 2, 3, · · · } and

Tr(r, α, μk) := tr(L (r, α, μk))

= −(1 + r)μk + f (i)
w + H (i), (3.16)

Det(r, α, μk) := det(L (r, α, μk))

= rμ2
k −

(
r f (i)

w + H (i) + αg(i)
w

)
μk

+H (i) f (i)
w − f (i)

b g(i)
w . (3.17)

If

tr(J (wi , bi )) < 0, det (J (wi , bi )) > 0,

Tr(r, α, μk) < 0 and Det(r, α, μk) > 0 (3.18)

for all k ∈ N
+, then (wi , bi ) is locally stable with

respect to the nonlocal or local problem (2.7).
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3.1 Catastrophic transition and critical transition

The concept of catastrophic transition and critical tran-
sition contributes to our understanding of desertifica-
tion and ecological change [2,3,9]. In mathematical
models, when an equilibrium state loses its attraction
and disappears in response to a parameter passing a
critical value, Tipping will occur. At that moment, the
systemunderwent a catastrophic transition. The saddle-
node bifurcation and transcritical bifurcation point are
Tipping points (see Fig. 4). The Tipping points have
one zero eigenvalue, in which the nontrivial stable uni-
form solution loses stability. In ecosystems, vegetated
areas replace barren deserts in arid and semi-arid graz-
ing ecosystems, because of drought or overgrazing. The
classical theory of Tipping [2], predominantly based on
nonspatial models, led to the creation of generic early
warning signs before such Tipping occurs. In spatial
systems, this idea becomes more complicated because
it may now depend on critically the nature of the dif-
ferent spatial disturbances. Up to now, the regular spa-
tial patterns resulting from Turing instability have been
regarded as early warning signals for critical transi-
tion toward an alternative state in various ecosystems
[9]. A major part of mathematical literature on vegeta-
tion pattern formation (i.e., critical transition) focuses
on the onset of Turing patterns close to homogeneous
equilibria [1–3,9]. The homogeneous equilibria can be
diffusionally driven unstable and thus create spatial pat-
terns. As the grazing parameter moves around the Tur-
ing point we can obtain vegetation patterns. When the
grazing rate reached Turing point or Tipping point (see
Figs. 5 and 6), at which time this stable state disappears
or loses its stability, the system undergoes a critical or
catastrophic transition toward an alternative equilib-
rium.

In the spatially extended model, if p = 1 and
m1 > M1, then the system only has desert state (0, R)

and it is linearly stable. If p = 1 and m1 = M1,
then the system undergoes a transcritical bifurcation
at m1 = M1 (Tipping point). The bifurcation diagram
depicting these spatially uniform states and their sta-
bility as a function of m1 is plotted in Fig. 5. If grazing
parameterm1 is smaller than M1 and (3.18) holds, then
the spatially uniform state (w1, b1) is stable, and the
system will fall into a degraded bare desert state when
m1 > M1 (see Fig. 5a). This is a catastrophic transition
from a stable homogeneous vegetation state to a bear
solid state. If grazing parameter is greater than Turing

point and (3.18) does not hold, then Turing bifurcations
on the uniform vegetated equilibrium will produce pat-
terned states at the Turing point (see Fig. 5b). This is
critical transition from a stable and homogeneous veg-
etation state to vegetation pattern state.

If p > 1, then the desert state (R, 0) is linearly
stable for all the parameters, and undergoes a saddle-
node bifurcation at m1 = M2 (Tipping point). The
bifurcation diagram depicting these spatially uniform
states and their stability as a function of m1 is plotted
in Fig. 6. If grazing parameter is smaller than M2 and
(3.18) holds, then the spatially uniform state (w2, b2)
is stable, and the system will fall into a degraded bare
desert state whenm1 > M2 (see Fig. 6a), this is a catas-
trophic transition from vegetation state to a bear solid
state. If grazing parameter is greater than Turing point
and (3.18) does not hold, then Turing bifurcations on
the uniform vegetated equilibrium (w2, b2) will pro-
duce patterned states at the Turing point (see Fig. 6b).
The critical transition from a stable and homogeneous
vegetation state to a vegetation pattern state refers to a
significant change in the spatial arrangement and struc-
ture of vegetation within an ecosystem. It signifies a
shift from a uniform distribution of vegetation to the
emergence of distinct patterns or patches. The transi-
tion from a vegetation pattern state to a desert state
is a significant and concerning phenomenon known as
desertification. The vegetation pattern transformation
of desert only occurs in The critical transition, but not
in the Catastrophic transition. Catastrophic and critical
transition are ecologically represented by the transition
diagram in Fig. 1.

3.2 Stability analysis

Stability analysis involves determining the stability of
an equilibrium state and understanding how the system
behaves in its vicinity. In stability analysis, the focus
is on small perturbations or deviations from the equi-
librium state. The goal is to determine whether these
perturbations will grow or decay over time, indicat-
ing the stability or instability of the equilibrium. Sta-
bility analysis is crucial in understanding the behav-
ior and dynamics of complex system (2.7). It provides
insights into the long-term behavior of the system, such
as whether it converges to a stable state, exhibits oscil-
lations, or undergoes chaotic behavior. By analyzing
the stability of equilibrium states, researchers can pre-
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Fig. 5 Transition diagram depicting the constant equilibrium points of model (2.7) when p = 1. Solid lines describe the stability of
the system state variables, while the dotted line indicates the unstable states. a Catastrophic transition; b Critical transition

Fig. 6 Transition diagram depicting the constant equilibrium points of model (2.7) when p > 1. Solid lines describe the stability of
the system state variables, while the dotted line indicates the unstable states. a Catastrophic transition; b Critical transition

dict and control the system response to perturbations
and external influences.

The bare-soil (R, 0) is always locally stable for the
models (2.7) with p > 1, and this equilibrium is locally
stable for the models (2.7) when R < m0 + m1 and
p = 1. For the model (2.7) with p > 1, we have
det (J (w3, b3)) < 0, hence (w3, b3) is always unsta-
ble. Therefore, in the following analysis, we mainly
discuss equilibrium points (w1, b1) and (w2, b2).

In this case,we introduce critical self-diffusion coef-
ficients

ϒ(i) :=
f (i)
w H (i) − 2 f (i)

b g(i)
w − 2

√

− f (i)
b g(i)

w

(
f (i)
w H (i) − f (i)

b g(i)
w

)

(
f (i)
w

)2 ,

(3.19)

and critical cross-diffusion coefficients

(i) = − f (i)
w r + 2

√
H (i) f (i)

w − f (i)
b g(i)

w

√
r − H (i)

g(i)
w

.

(3.20)

For the different types of grazing and positive equi-
libriums Ui = (wi , bi )(i = 1, 2), we have H (i) :=
H (i)
loc, H

(i)
nat , H

(i)
loc [see Eq. (3.14)]. Therefore, there are

different types of models corresponding to ϒ
(i)
sus, ϒ

(i)
nat ,

ϒ
(i)
loc and 

(i)
sus,

(i)
nat ,

(i)
loc. The main results on stabil-

ity for model (2.7) are given in the following Theorem.
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Theorem 3.1 Assume that p = 1 and (3.6) holds.

(i) For the absence of cross-diffusion model:

(a) If m1 < M1, then equilibrium (w1, b1) is
locally stable for the sustained grazing model.

(b) If m1 ≤ M1 − m0 and r > ϒ
(1)
nat , then (w1, b1)

is locally stable for the natural grazing model.
(c) If m1 < M1 and r > ϒ

(1)
loc , then (w1, b1) is

locally stable for local grazing model.

(ii) For the cross-diffusion model:

(a) Suppose that m1 < M1 holds. If 0 < α < 
(1)
sus ,

then (w1, b1) is locally stable for the sustained
grazing model.

(b) Suppose that m1 ≤ M1 − m0 and r > ϒ
(1)
nat

hold. If 0 < α < 
(i)
nat , then (w1, b1) is locally

stable for the natural grazing model.
(c) Suppose that m1 < M1 and r > ϒ

(1)
loc hold. If

0 < α < 
(1)
loc, then (w1, b1) is locally stable

for the local grazing model.

Proof (i) (a) According to (3.14), we obtain H (1)
sus = 0

when p = 1. If the sustained grazing model without
cross-diffusion is locally stable, then we must have

Det (r, 0, μk) = rμ2
k − r fwμk − fbgw > 0, (3.21)

Trsus(r, 0, μk) = −rμ2
k + fw < 0, (3.22)

for allμk . Hence, (w1, b1) is locally stable with respect
to the sustained grazing model.

(b) Assume that p = 1, m1 < M1 − m0, we obtain
H (1)
nat < H (1)

loc . Suppose that (3.6) holds, that is to say

Trsus(r, 0, μk) ≤ Trloc(r, 0, μk) < 0. (3.23)

If the natural grazing model (2.7) without cross-
diffusion is locally stable, then we must have

Det (r, 0, μk) = rμ2
k − (H (1)

nat + r fw)μk

+H (1)
nat fw − fbgw > 0 (3.24)

for all μk . Thus we obtain the following stability con-
ditions

H (1)
nat + r fw ≤ 0 (3.25)

or

H (1)
nat + r fw > 0 and min Det (r, 0, μk) > 0. (3.26)

The inequality (3.25) is equivalent to r ≥ r0 := H (1)
nat| fw |

and the first inequality in (3.26) is equivalent to r < r0.

Whereas, the second inequality in (3.26) is satisfied if
either ϒ

(1)
nat < r < ϒ̄

(1)
nat , where

ϒ
(1)
nat :=

H (1)
nat fw − 2 fbgw − 2

√
fbgw

(
fbgw − H (1)

nat fw
)

f 2w
,

ϒ̄
(1)
nat :=

H (1)
nat fw − 2 fbgw + 2

√
fbgw

(
fbgw − H (1)

nat fw
)

f 2w
,

whereϒ
(1)
nat , ϒ̄

(1)
nat are the two positive roots of equation

(
r fw + H (1)

nat
)2 − 4

(
H (1)
nat fw − fbgw

)
r = 0.

By simple calculation, we obtained 0 < ϒ
(1)
nat <

r0 < ϒ̄
(1)
nat . Thus stability conditions are

r ≥ r0 or ϒ
(1)
nat < r < r0.

Thus, if r satisfies conditions r > ϒ
(1)
nat , then the

eigenvalues of the operatorL (r, 0, μk) are with nega-
tive real part for all k ∈ N

+.
The proof of (c) is similar with (b), thus we omit it.
(ii) (a) To show stability of the cross-diffusion

model, we only need to verify that

Det (r, α, μk) = rμ2
k − (

r fw + H (1)
sus + αgw

)
uk

+H (1)
sus fw − gw fb > 0 (3.27)

for all k. Then the condition for the stability of (w1, b1)
is

r fw + H (1)
sus + αgw ≤ 0 (3.28)

or

r fw + H (1)
sus + αgw > 0 and min Detsus(r, α, k) > 0.

(3.29)

Since r > ϒ
(1)
sus , we have

r fw + m0 < 2
√
H (1)
sus fw − fbgw

√
r .

Therefore, the inequality (3.28) and (3.29) are equiv-
alent to

α ≤ α0 = −H (1)
sus − r fw
gw

or

r fw + H (1)
sus + αgw < 2

√
r(H (1)

sus fw − fbgw)

and α > α0.
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By simple calculation, we can easily get the stability
conditions

α > (1)
sus

:= − fwr + 2
√
r
(
H (1)
sus fw − fbgw

) − H (1)
sus

gw

> 0.

(3.30)

The proof of (b) and (c) are similar with (a), thus we
omit them. This completes the proof. �
Remark 2 If p > 1, m1 < M2, then f (2)

w H (2)
sus −

f (2)
b g(2)

w > det (J (w2, b2)) > 0 is established for
the sustained grazing model. Therefore, when p > 1,
the stability of the equilibrium point (w2, b2) to the
sustained grazing model and local grazing model can
be considered, but for natural grazing model, when
1 < p < 2, the sign of H (2)

nat f
(2)
w − f (2)

b g(2)
w cannot

be judged. Thus, when 1 < p < 2, the stability of
the equilibrium point (w2, b2) for the natural grazing
model cannot be judged. However, when p ≥ 2 and
m1 < M2, it can guarantee that H

(2)
nat f

(2)
w − f (2)

b g(2)
w >

det (J (w2, b2)) > 0, so the stability of (w2, b2) to the
natural grazing model can be judged.

Theorem 3.2 Assume that m1 < M2 and (3.6) holds.
The following statements hold:

(i) For the absence of cross-diffusion model:

(a) If p > 1 and r > ϒ
(2)
sus(r > ϒ

(2)
loc ), then

(w2, b2) is locally stable for sustained (local)
grazing model.

(b) If p ≥ 2 and r > ϒ
(2)
nat , then (w2, b2) is locally

stable for natural grazing model.

(ii) For the cross-diffusion model:

(a) Suppose that p > 1 and r > ϒ
(2)
sus(r > ϒ

(2)
loc )

hold. If 0 < α < 
(2)
sus(0 < α < 

(2)
loc), then

(w2, b2) is locally stable for sustained (local)
grazing model.

(b) Suppose that p ≥ 2 and r > ϒ
(2)
nat hold. If

0 < α < 
(2)
nat , then (w2, b2) is locally stable

for natural grazing model.

The proof of the Theorem 3.2 is similar with Theo-
rem 3.1, thus we omit it.

3.3 Spatial pattern formation

Spatial vegetation pattern formation refers to the emer-
gence of organized patterns in the distribution of veg-
etation across a landscape. The formation of spatial
vegetation patterns is influenced by a combination of
ecological processes and environmental factors, study-
ing spatial vegetation pattern formation is essential for
advancing our ecological understanding, conserving
biodiversity, maintaining ecosystem functioning, guid-
ing landmanagement practices, and adapting to climate
change. It provides valuable insights into the complex
interactions between plants, animals, and their environ-
ment, and helps us make informed decisions for sus-
tainable land use and conservation. Turing instability is
a simple mechanism to generate heterogeneous spatial
patterns via reaction–diffusion model. Turing instabil-
ity indicates that there exists a μk such that the root λ

of (3.15) satisfies Re(λ) > 0. In this case, we can see
that

Det(r, α, μk) = rμ2
k − (

r f (i)
w + H (i) + αg(i)

w

)
μk

+H (i) f (i)
w − f (i)

b g(i)
w = 0, (3.31)

have two positive roots:

μ±(r, α)

= r fw + αgw + H (i) ±
√(

r fw + αgw + H (i)
)2 − 4r

(
H (i) fw − fbgw

)

2r
. (3.32)

For the different types of model, we have differ-
ent μ±

sus(r, α), μ±
nat (r, α) and μ±

loc(r, α). It is obvious
that if μ−

k (r, α) < μk < μ+
k (r, α) holds for some μk ,

then Det(r, α, μk) < 0, and the positive equilibrium
(wi , bi ) (i = 1, 2) of model (2.7) is unstable. Accord-
ing to Theorems 3.1 and 3.2, we obtain the following
result with respect to spatial Turing instability of the
model (2.7).

Theorem 3.3 Suppose that p = 1 and (3.6) holds.

(i) For the absence of cross-diffusion model:

(a) If m1 < M1, then equilibrium (w1, b1) is
always locally stable for the sustained grazing
model. That is, the Turing instability will not
occur in sustained grazing model.
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(b) If m1 ≤ M1 − m0 and 0 < r < ϒ
(1)
nat , then the

positive equilibrium (w1, b1) of natural graz-
ing model (2.7) is unstable and thus model
experiences the Turing instability provided that
μ−
nat (r, 0) < μk < μ+

nat (r, 0) for some k ≥ 1.
(c) If m1 < M1 and 0 < r < ϒ

(1)
loc , then the posi-

tive equilibrium (w1, b1) of local grazingmodel
(2.7) is unstable and thus model experiences
the Turing instability provided thatμ−

loc(r, 0) <

μk < μ+
loc(r, 0) for some k ≥ 1.

(ii) For the cross-diffusion model:

(a) Assume that m1 < M1 holds. If α > 
(1)
sus , then

the positive equilibrium (w1, b1) of sustained
grazing model (2.7) is unstable and thus model
experiences the Turing instability provided that
μ−
sus(r, α) < μk < μ+

sus(r, α) for some k ≥ 1.

(b) Assume that m1 ≤ M1 − m0 and r > ϒ
(1)
nat

hold. If α > 
(1)
nat , then the positive equilib-

rium (w1, b1) of natural grazing model (2.7) is
unstable and thus model experiences the Tur-
ing instability provided thatμ−

nat (r, α) < μk <

μ+
nat (r, α) for some k ≥ 1.

(c) Assume that m1 < M1 and r > ϒ
(1)
loc hold.

If α > 
(1)
loc, then the positive equilibrium

(w1, b1)of natural grazingmodel (2.7) is unsta-
ble and thus model experiences the Turing
instability provided that μ−

loc(r, α) < μk <

μ+
loc(r, α) for some k ≥ 1.

Proof (i) (a) In Theorem 3.1(i)(a), we have known
that sustained grazing model without cross-diffusion
is unconditionally stable. Therefore, (a) is clearly true.

(b) Assume that p = 1, m1 < M1 − m0, we obtain
H (1)
nat < H (1)

loc . To show Turing instability driven by the
self-diffusion, we only need to verify that

Detnat (r, α, μk) := rμ2
k − (

r fw + H (1)
nat

)
μk

+H (1)
nat fw − gw fb < 0,

for some μk > 0, which is equivalent to

{
r fw + H (1)

nat > 0,
(
r fw + H (1)

nat
)2 − 4

(
H (1)
nat fw − fbgw

)
r > 0.

(3.33)

Using the same argument as in the proof of Theorem
3.1, we obtain 0 < r < ϒ

(1)
nat . Thus, if r satisfies con-

ditions 0 < r < ϒ
(1)
nat , then there is an eigenvalue of

the operator L (r, α, k) with positive real part if and

only if the inequality μ−
nat (r, 0) < μk < μ+

nat (r, 0) is
satisfied for some k ∈ N

+.
The proof (i)(c) is similar with (i)(b), thus we omit

it.
(ii) (a) Using the same argument as (i), we only need

to verify that

Det (r, α, μk) := rμ2
k − (r fw + H (1)

sus

+αgw)μk + H (1)
sus fw − gw fb < 0,

for some μk > 0, which is equivalent to

{
r fw + αgw + H (1)

sus > 0,
(
r fw + αgw + H (1)

sus

)2 − 4
(
H (1)
sus fw − fbgw

)
r > 0.
(3.34)

If α > (1), then there is an eigenvalue of the oper-
ator L (r, α, k) with positive real part if and only if
inequality μ−(r, α) < μk < μ+(r, α) is satisfied for
some k ∈ N

+.
The proof of the (ii)(b) and (c) are very similar with

(ii)(a). The difference is that the self-diffusion coef-
ficient in the natural grazing model and local grazing
model have parameter restrictions, That is to say, the
model without cross-diffusion should be stable, but the
self-diffusion constraint is not required in the sustained
grazing model (i.e., the sustained grazing model with-
out cross-diffusion is always locally stable). This com-
pletes the proof. �
Theorem 3.4 Suppose that m1 < M2 and (3.6) holds.

(i) For the absence of cross-diffusion model:

(b) If p > 1 and 0 < r < ϒ
(2)
sus (0 < r < ϒ

(2)
loc ),

then the positive equilibrium (w2, b2) of natu-
ral (local) grazing model (2.7) is unstable and
thus model experiences the Turing instability
provided that μ−

sus(r, 0) < μk < μ+
sus(r, 0)

(μ−
loc(r, 0) < μk < μ+

loc(r, 0)) for some k ≥ 1.

(b) If p ≥ 2 and 0 < r < ϒ
(2)
nat , then the positive

equilibrium (w2, b2) of natural grazing model
(2.7) is unstable and thusmodel experiences the
Turing instability provided that μ−

nat (r, 0) <

μk < μ+
nat (r, 0) for some k ≥ 1.

(ii) For the cross-diffusion model:

(a) Assume that p > 1 and r > ϒ
(2)
sus (r > ϒ

(2)
loc )

hold. If α > 
(1)
sus (α > 

(1)
loc), then the pos-

itive equilibrium (w2, b2) of sustained (local)
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grazing model (2.7) is unstable and thus model
experiences the Turing instability provided that
μ−
loc(r, 0) < μk < μ+

loc(r, 0) (μ−
loc(r, 0) <

μk < μ+
loc(r, 0)) for some k ≥ 1.

(b) Assume that p ≥ 2 and r > ϒ
(2)
nat hold. If α >


(1)
nat , then the positive equilibrium (w2, b2) of

natural grazingmodel (2.7) is unstable and thus
model experiences the Turing instability pro-
vided that μ−

nat (r, 0) < μk < μ+
nat (r, 0) for

some k ≥ 1.

The proof of the Theorem 3.4 is similar with Theorem
3.3, thus we omit it.

Remark 3 In Theorems 3.1–3.4, we studied the influ-
ence of the diffusion coefficients r(:= Db

Dw
) and α, and

obtain the diffusion-induced instability region. In fact,
to obtain pattern occurrence the water diffuses much
faster than the vegetation, i.e., Db � Dw, or the cross-
diffusion is small enough.

By using separation of variables, we get eigen-
values of � on � with Neumann boundary condi-
tions. The eigenvalue μk := n2

L2 (n is a integer) in
the one-dimensional (i.e., � := (0, Lπ)) case and
μk := n2

L2 + m2

L2 (n,m are two integers) in the two-
dimensional case (i.e., � := (0, Lπ) × (0, Lπ)) [43].

We present detailed comparisons between the dif-
ferent types of grazing. In Fig. 7, we fix all parameter
values and vary only the self-diffusion coefficient r .
In Fig. 7, we plot Det(r, 0, μk) for the cases p = 1 at
the equilibrium (w1, b1) from stability to self-diffusion
driven instability.

1. Sustained grazing model without cross-diffusion:
If we take r = 0.1, 0.0001 (black and green curve
in Fig. 7a), then Det(r, 0, μk) > 0 for all n. Sim-
ilarly, for two-dimensional case, if we take r =
0.1, 0.0001 (see Fig. 7b, c), then Det(r, 0, μk) > 0
for all n,m in space Det(r, 0, μk) − n − m. That
is, the Turing instability will not occur in sustained
grazing model.

2. Natural grazing model without cross-diffusion: If
we take r = 0.0012 (black curve in Fig. 7d), which
is less than the critical diffusion coefficient ϒ(1)

nat =
0.0015 (red curve in Fig. 7d), then Det(r, 0, μk) <

0 for some n. If we take r = 0.0045 (green
curve in Fig. 7c, d), a value that is greater than the
critical diffusion coefficient ϒ

(1)
nat = 0.0015 (red

curve in Fig. 7d), then Det(r, 0, μk) > 0 for all

n. Similarly, for two-dimensional case, if we take
r = 0.0015 (see Fig. 7e), then Det(r, 0, μk) < 0
for some n,m in space Det(r, 0, μk) − n −m, and
if r = 0.0045 (see Fig. 7f), then Det(r, 0, μk) > 0
for all n,m in space Det(r, 0, μk)−n−m. It is clear
that self-diffusion in natural grazing model induces
diffusion-driven instability when r < ϒ

(1)
nat .

3. Local grazing model without cross-diffusion: If
we take r = 0.0045 (black curve in Fig. 7g),
which is less than the critical diffusion coeffi-
cient ϒ

(1)
loc = 0.0049 (red curve in Fig. 7g), then

Det(r, 0, μk) < 0 for some n. If we take r = 0.005
(green curve in Fig. 7g), a value that is greater than
the critical diffusion coefficientϒ(1)

loc = 0.0049 (red
curve in Fig. 7g), then Det(r, 0, μk) > 0 for some
n. Similarly, for two-dimensional case, if we take
r = 0.0045 (see Fig. 7e), then Det(r, 0, μk) < 0
for some n,m in space Det(r, 0, μk)−n−m, and if
r = 0.005 (see Fig. 7f), then Det(r, 0, μk) > 0 for
all n,m in space Det(r, 0, μk) − n − m. It is clear
that self-diffusion in local grazing model induces
diffusion-driven instability when r < ϒ

(1)
loc .

In Fig. 8, we fix all parameters except the cross-
diffusion coefficient α and show Det(r, α, μk) for the
cases p = 1. Ifwe take r = 0.006, then it is greater than
all the critical self-diffusion coefficientsϒ

(1)
sus , ϒ

(1)
nat and

ϒ
(1)
loc . By Fig. 7 the positive equilibrium (w1, b1) of

model (2.7) without cross-diffusion (α = 0) is sta-
ble. It is clear that self-diffusion in three types of mod-
els does not induce diffusion-driven instability. For the
sustained (natural or local) grazing model with cross-
diffusion, if we take α = 0.29 (0.22 or 0.2), then it
is less than the critical cross-diffusion coefficient (1)

sus

((1)
nat or 

(1)
loc). We observe that Det (r, α, μk) > 0 for

all n in one-dimensional case (green curve in Fig. 8a,
d, g). Similarly, for two-dimensional case, if we take
α = 0.29 (0.22 or 0.2), then Det(r, α, μk) > 0 for all
n,m in space Det(r, 0, μk) − n − m (see Fig. 8b, e,
h). Hence, the equilibrium solution (w1, b1) is stable
when α < 

(1)
sus ((1)

nat or 
(1)
loc). If we take α = 0.3

(0.25 or 0.29), a value that is greater than the critical
cross-diffusion coefficient 

(1)
sus = 0.2963 ((1)

nat =
0.2478 or 

(1)
loc = 0.2101) (red curve in Fig. 8a, d,

g), then Det(r, α, μk) < 0 for some n. Similarly,
for two-dimensional case, if we take α = 0.3 (0.25
or 0.29), then Det(r, α, μk) < 0 for some n,m in
space Det(r, α, μk) − n − m (see Fig. 8c, f, i). It is
clear that cross-diffusion in different grazing types of
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Fig. 7 Plots of Det (r, 0, μk) fixed parameters m0 = 0.225, m1 = 1.5 and R = 3. a and b sustained grazing model; c and d natural
grazing model; e and f local grazing model

models induces cross-diffusion-driven instability when
α > 

(1)
sus(

(1)
nat or 

(1)
loc).

4 A comparison between local and nonlocal
grazing models

There are three grazing models that have been devel-
oped to simulate and study the effects of grazing onveg-
etation patterns and ecosystem dynamics. Here, I will
provide a brief comparison of three grazing models:

local grazing model, nonlocal sustained grazing model
and nonlocal natural grazing model. It is important to
note that each grazing model has its own assumptions,
strengths, and limitations. The choice ofmodel depends
on the specific research question and the level of com-
plexity desired.We use a combination ofmodels to gain
amore comprehensive understanding of grazing effects
on vegetation patterns and ecosystem dynamics.

Letϒ(i)
sus, ϒ

(i)
nat , ϒ

(i)
loc and

(i)
sus,

(i)
nat ,

(i)
loc represent

critical self-diffusion coefficients and critical cross-
diffusion coefficients for sustained grazing model, nat-
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Fig. 8 Plots of Det (r, α, μk) fixed parameters m0 = 0.225, m1 = 1.5, R = 3 and r = 0.06. a–c Sustained grazing model; d–f natural
grazing model; g–i local grazing model

ural grazing model and local grazing model, respec-
tively. Then we can obtain the following results:

Theorem 4.1 For the model (2.7) of the correspond-
ing critical self-diffusion coefficients has the following
relationship:

(i) If p = 1 and m1 ≤ M1 − m0, then 0 < ϒ
(1)
nat <

ϒ
(1)
loc .

(ii) If p > 1 and m1 < M2, then 0 < ϒ
(2)
sus < ϒ

(2)
loc .

(iii) If p ≥ 2 and m1 < M2, then 0 < ϒ
(2)
sus < ϒ

(2)
nat <

ϒ
(2)
loc .

Proof (i) Sincem1 ≤ M1−m0, it’s easy to get H
(1)
loc >

H (1)
nat > 0. By simple calculation, we obtained

Detloc(r, 0, μk) < Detnat (r, 0, μk),

where

Detloc(r, 0, μk) := rμ2
k − (

r f (1)
w + H (1)

loc

)
μk

+H (1)
loc f

(1)
w − f (1)

b g(1)
w ,

Detnat (r, 0, μk) := rμ2
k − (

r f (1)
w + H (1)

nat
)
μk

+H (1)
nat f

(1)
w − f (1)

b g(1)
w .

123



Spatial vegetation pattern formation and transition 5781

If Detloc(r, 0, μk) > 0holds, then Detnat (r, 0, μk)

> 0 must be true. Therefore, Theorem 4.1 (i) is true.
(ii) By similar way as described above, we have fol-

lowing results

Detloc(r, 0, μk) < Detsus(r, 0, μk),

where

Detloc(r, 0, μk) := rμ2
k − (

r f (2)
w + H (2)

loc

)
μk

+H (2)
loc f

(2)
w − f (2)

b g(2)
w ,

Detsus(r, 0, μk) := rμ2
k − (

r f (2)
w + H (2)

sus

)
μk

+H (2)
sus f

(2)
w − f (2)

b g(2)
w .

If Detloc(r, α, μk) > 0 holds, then Detsus(r, 0, μk)

> 0 must hold. Hence, Theorem 4.1 (ii) is true.
(iii) According to the inequality (3.2), we obtained

b2 > (p − 1)
1
p .

When p ≥ 2, it is easy to conclude from the above
inequality that b2 > 1. By (3.4), (3.7) and (3.8), we
have g(2)

b > ĝ(2)
b > g̃(2)

b when p ≥ 2. Therefore, it’s
easy to get the following inequality

f (2)
w g̃(2)

b − f (2)
b g(2)

w > f (2)
w ĝ(2)

b − f (2)
b g(2)

w

> f (2)
w g(2)

b − f (2)
b g(2)

w > 0.

According to the above inequalities, we obtain

Detsus(r, 0, μk) > Detnat (r, 0, μk) > Detloc(r, 0, μk).

Hence, Theorem 4.1 (iii) is proved. When 1 < p <

2, since b2 < 1, g(2)
b < ĝ(2)

b holds. Since f (2)
w ĝ(2)

b <

f (2)
w g(2)

b < 0, the positivity of f (2)
w ĝ(2)

b − f (2)
b g(2)

w can-

not be guaranteedwhen f (2)
w g(2)

b − f (2)
b g(2)

w > 0. There-
fore, when 1 < p < 2, we could not compare the sta-
bility between the local grazing model and the natural
grazing model. �
Theorem 4.2 For the model (2.7), the corresponding
critical cross-diffusion coefficients has the following
relationship:

(i) If p = 1, m1 ≤ M1 − m0 and r > ϒ
(1)
loc , then


(1)
sus > 

(1)
nat > 

(1)
loc.

(ii) If p > 1, m1 < M2 and r > ϒ
(2)
loc , then 

(2)
sus >


(2)
loc.

(iii) If p ≥ 2, m1 < M2 and r > ϒ
(2)
loc , then 

(2)
sus >


(2)
nat > 

(2)
loc.

The proof of the Theorem 4.2 is similar with Theorem
4.1, thus we omit it.

Remark 4 InTheorems 4.1 and 4.2,we can see the non-
local terms promote linear stability, which implies that
if the local model is stable, then the nonlocal model is
always stable. On the contrary, if the nonlocal model
is stable, the local model may produce vegetation pat-
terns. For the two non local models, the stability of the
sustained grazing model is better than that of the nat-
ural grazing model. If the sustained grazing model is
stable, then the natural grazing model is also stable.

Here, we use numerical simulation to compare the
three grazing types models and consider the effect of
grazing parameter m1 on model (2.7). For the fixed
other parameters, the absence of cross-diffusion model
(2.7) is stable when r > ϒ(i)(m1), and the cross-
diffusion model (2.7) is stable when r > ϒ(i)(m1) and
0 < α < (i)(m1). To describe the pattern formation,
we give the following examples.

Example 1 Letm0 = 0.225, R = 3, p = 1. We obtain
the effect of the grazing parameterm1 on pattern forma-
tion and desertification process in Fig. 9. Figure9 sim-
ulates the desertification process with a slowly increas-
ing grazing parameter m1. It is easy to see that large
values of the grazing parameter m1 is grater than Tip-
ping point, the homogeneous or vegetation pattern state
becomes the bare desert state. When the grazing pres-
sure drops below a Turing point, the model resides
in a more stable homogeneously vegetated state. We
present detailed analysis three types of grazing mod-
els. In Fig. 9 we summarize our results as follows:

1. Model of absent cross-diffusion: If m1 > R − m0,
then the model (2.7) only has stable bare soil state.
If m1 < R − m0, then the model (2.7) has stable
homogeneous vegetation state for sustained graz-
ing model, homogenous vegetation state or vegeta-
tion pattern state exist for local grazingmodels. For
the natural grazing model, when m1 ≤ R − 2m0,
we can judge occur vegetation pattern or maintain
homogenous vegetation, but when m1 ≤ R− 2m0,
we cannot judge it. It is easy to see from Fig. 9a that
vegetation patterns will not occur in sustained graz-
ingmodel, there is no vegetation patterns in the sus-
tained grazing ecosystem, which means that catas-
trophic changes have taken place in the ecosystem.
By comparing the natural grazing and local graz-
ing models, we can find that the vegetation pattern
region of the local grazing case is larger than the
natural grazing case (see Fig. 9b, c).
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Fig. 9 The effects of grazing rate m1 on pattern formation for
a different models with p = 1. Critical diffusion coefficient
ϒ

(1)
sus , ϒ

(1)
nat ,ϒ

(1)
loc and

(1)
sus ,

(1)
nat ,

(1)
loc are given by Theorem 3.3

and3.4.H.V. andP.F. are respectively represent homogenous veg-
etation region and pattern formation region. a Sustained grazing

model without cross-diffusion; b Natural grazing model without
cross-diffusion; c Local grazing model without cross-diffusion;
d Natural grazing model with cross-diffusion; e Sustained graz-
ing and local grazing model with cross-diffusion; f Drawing of
partial enlargement of (e)

2. Model with cross-diffusion: By the analyses above,
we take r = 0.06, which guarantees that self-
diffusion model is stable. If m1 < R − m0 (m1 ≤
R−2m0), then the homogenous vegetation or veg-
etation pattern exists for sustained and local (nat-
ural) grazing model with cross-diffusion. Specifi-
cally, for the natural grazing model pattern forma-
tion in the magenta region, pattern does not occur
in the green region, and unable to determine pattern
or homogenous vegetation in the cyan region. Sim-
ilarly, for the sustained grazingmodel patterns does
not occur in the green region and cyan region, pat-
tern formation in the magenta region. For the local
grazing model patterns does not occur in the green
region, pattern formation in themagenta region and
cyan region. It is easy to see from Fig. 9e and f that
the Turing region of the local grazing case is lager
than the sustained grazing case.

Example 2 Let m0 = 0.225, R = 3, p = 2. If
m1 > M2, then the model (2.7) only has stable bare
soil state. If m1 < M2, then the model (2.7) has sta-
ble homogenous vegetation state or vegetation pattern
state for all the grazing types of models. We obtain the
effect of the grazing parameterm1 on pattern formation
and desertification process in Fig. 10. For the different
grazing types models, the bare soil state, pattern state
and homogenous vegetation state exist, and we have
following results:

1. Model of absent cross-diffusion: By comparing dif-
ferent grazing type models, we can find that the
vegetation pattern region of the local grazing case
(yellow, cyan and magenta regions in Fig. 10a, b) is
lager than the natural grazing case (yellow and cyan
regions in Fig. 10a, b) and the sustained grazing
case (magenta regions in Fig. 10a, b) is smaller than
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Fig. 10 The effects of grazing rate m1 on pattern formation for
a different models with p = 2. a Model of different grazing
types without cross-diffusion; b Drawing of partial enlargement

of (a); c Model of different grazing types with cross-diffusion;
d Drawing of partial enlargement of (c)

the natural grazing case. However, the homogenous
vegetation region of the local grazing case (green
region in Fig. 10a, b) is smaller than the natural
grazing case (green and cyan regions in Fig. 10a, b)
and the sustained grazing case (green, cyan and yel-
low regions in Fig. 10a, b) is lager than the natural
grazing case.

2. Model with cross-diffusion: By the analyses above,
we take r = 0.75, which guarantees that self-
diffusion model is stable. It is easy to see from
Fig. 10c and d that the desertification process is
opposite for the without cross-diffusion model
(Fig. 10a, b).

For different p, the corresponding critical self-
diffusion coefficients ϒ(i) (i = 1, 2) and cross-

diffusion coefficients (i) are given in Table2. From
the Table 2, we can know when p ∈ [1, 1.5), ϒ(i)

value increases gradually, but when p ∈ [1.5,+∞),
ϒ(i) value decreases gradually. Through simple analy-
sis, we know that all the critical cross-diffusion coef-
ficients (i) increases with respect to p ∈ [1,+∞).
According toTable 2,we further verify that 0 < ϒ

(i)
sus <

ϒ
(i)
nat < ϒ

(i)
loc and 

(i)
sus > 

(i)
nat > 

(i)
loc.

5 Numerical simulations

In this section, the results of theoretical analysis are
verified by numerical simulation. We combine the
finite differencemethodwith theGauss–Seidel iterative
method to conduct numerical simulations. The finite
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Table 2 The critical self-diffusion and cross-diffusion coefficients for different p. When p = 1, ϒ(i) and (i) represent ϒ(1) and (1)

respectively; when p > 1, ϒ(i) and (i) represent ϒ(2) and (2) respectively

p ϒ
(i)
sus ϒ

(i)
nat ϒ

(i)
loc 

(i)
sus 

(i)
nat 

(i)
loc

1 No 1.5 × 10−3 4.9 × 10−3 0.2963 0.2478 0.2101

1.2 1.1536 × 10−4 2.2 × 10−3 6.7 × 10−3 0.2581 0.2167 0.1796

1.5 3.2858 × 10−4 2.4 × 10−3 7.1 × 10−3 0.2182 0.1863 0.1535

1.7 3.8886 × 10−4 2.3 × 10−3 6.5 × 10−3 0.1987 0.1721 0.1429

1.9 3.9368 × 10−3 2 × 10−3 5.6 × 10−3 0.1832 0.1609 0.1353

2 3.8221 × 10−3 1.8 × 10−3 5.2 × 10−3 0.1765 0.1561 0.1322

2.5 2.6782 × 10−4 1.1 × 10−3 3 × 10−3 0.1507 0.1376 0.1210

3 1.5516 × 10−4 5.7978 × 10−4 1.6 × 10−3 0.1338 0.1253 0.1140

4 4.0126 × 10−4 1.3754 × 10−4 3.8233 × 10−4 0.1145 0.1112 0.1060

4.5 1.8977 × 10−5 6.3237 × 10−5 1.7645 × 10−4 0.1097 0.1073 0.1039

5 8.6465 × 10−6 2.8364 × 10−5 7.9525 × 10−5 0.1063 0.1048 0.1025

difference method is used to approximate derivatives
in system (2.7) by discretizing the domain into a grid
of points. This results in a systemof algebraic equations
that can be solved numerically. The Gauss–Seidel iter-
ative method is then applied to solve this system iter-
atively. All of our numerical simulations employ the
homogeneous Neumann boundary conditions. The ini-
tial distributions of both plant and water are taken as
follows:

w(0, x) = wi + εζ, b(0, x) = bi + εζ (i = 1, 2),

where ε = 0.001, ζ is tiny random perturbation
term [44,45]. The choice of initial condition reflects
small inhomogeneous spatial perturbation from homo-
geneous steady-state. For models of different grazing
types, the results of numerical simulation are very sim-
ilar. Therefore, in this section, we only give numerical
simulation related to the local grazing model.

5.1 One dimensional simulations

In this subsection, we will perform a series of numer-
ical simulations of model (2.7) with local grazing in
one-dimension space. By the Table 2, we can see that
critical self-diffusionϒ

(1)
loc = 0.0049 and critical cross-

diffusion 
(1)
loc = 0.2101 for r = 0.06 when p = 1.

First, we consider the effect of self-diffusion coeffi-
cient r on the stability of positive constant steady state
(w1, b1) for local model (2.7) without cross-diffusion
(i.e., α = 0). Taking r = 0.004, we obtain simulation

diagrams of positive solution b(x, t) of local model
(2.7) with α = 0 (see Fig. 11a), which shows that
(w1, b1) is unstable. Taking r = 0.0052, we obtain
Fig. 11b and find that (w1, b1) is locally asymptotically
stable. In short, one can conclude that self-diffusion
coefficient r plays an important role in determining
the stability of positive constant steady state (w1, b1)
for local model (2.7) without cross-diffusion. Simi-
larly, we consider the effect of cross-diffusion α on
the stability of positive constant steady state (w1, b1)
for local model (2.7) with r = 0.06. Taking α = 0.018,
we obtain simulation diagrams of positive solution
b(x, t) of local model (2.7) (see Fig. 11c), which shows
that (w1, b1) is locally asymptotically stable. Taking
α = 0.024, we obtain Fig. 11d and find that (w1, b1) is
unstable.

Since the influence of p on the stability of the model
is difficult, we can only use the numerical methods to
study the influence of p on the model (see Table 2).
Then, we study the stability of equilibrium (w2, b2) by
only changing r for different p and fixing other param-
eters R = 3,m0 = 0.225,m1 = 1.5, α = 0. On one
hand, taking p = 1.2, 1.5, one can get simulation dia-
grams of positive solution b(x, t) of local model (2.7)
with r = 0.006, 0.0069, respectively (see Fig. 12a–
d). By comparing Fig. 12a–d, we find that parameter p
can change the stability of (w2, b2), which is indicate
that the stability of local model (2.7) becomes better
with the increase of p on the interval (1, 1.5]. On the
other hand, On one hand, taking p = 2, 21.5, one can
get simulation diagrams of positive solution b(x, t) of
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Fig. 11 Simulation diagrams of positive solution b(x, t) of local grazing model (2.7) with p = 1, R = 3,m0 = 0.255,m1 = 1.5, L =
10 and t = 1000. a r = 0.004, α = 0; b r = 0.052, α = 0; c r = 0.006, α = 0.018; d r = 0.006, α = 0.024

local model (2.7) with r = 0.0029, 0.0045, respec-
tively (see Fig. 12e–h). By comparing Fig. 12e–h, we
find that the smaller p is on the interval (1.5,∞], the
better the stability of local model (2.7). To sum up,
these interesting advances indicate that parameter p is
important to determine spatial pattern.

5.2 Two dimensional simulations

In this subsection, we take fixed values R = 3 and
m0 = 0.225 for numerical simulations and consider r ,
m1 and p as controlling parameters. The model (2.7)
is solved numerically using the Euler method with a
time step size of �t = 0.01 and space step size �x =
�y = 0.0004. As a result, we only show our results
of pattern formation about vegetation distribution. It
is worthy to mention that the patterns reported in this
paper are independent of the choice of �x and �t as
we have checked with smaller values of time and space
stepping.

Nowweare in aposition to look at the vegetationpat-
terns obtained from numerical simulations of (2.7) sat-
isfying initial and boundary conditions. It is found that,
when r = 0.001 and p = 2, that is to say the station-
ary state pattern presented such as spot-like (Fig. 13b,
c) and stripe-like (Fig. 13d–f) patterns. Associated col-
orbar in the figure shows abrupt fluctuation in vege-
tation density at different time steps. In every pattern,
the yellow (blue) represents the high (low) density of
vegetation b. Simulation results presented in Fig. 13 of
different time steps mentioned at the caption of figure,
one can see that for the case r = 0.001, p = 2 and
m1 = 1.5, on increasing the time steps, the sequence
“spots −→ spots−→stripes mixtures −→ stripe” is
observed, and we have checked the patterns for greater
values of t and obtained patterns are same as we have
presented here.

Numerical simulation methods are commonly used
in studying grazing parameters to model and analyze
the complex interactions between grazers, vegetation,
and the environment. Figure14 depicts the stationary
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Fig. 12 Simulation diagrams of positive solution b(x, t) of local
grazing model (2.7) with R = 3,m0 = 0.255,m1 = 1.5, L =
10 and t = 1000. a r = 0.006, p = 1.2; b r = 0.0069, p = 1.2;

c r = 0.006, p = 1.5; d r = 0.0069, p = 1.5; e r =
0.0029, p = 2; f r = 0.0045, p = 2; g r = 0.0029, p = 2.5; h
r = 0.0045, p = 2.5
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Fig. 13 Spatiotemporal pattern exhibited by vegetation density
b(x, y, t) with advancement of time. Vegetation distribution at
different time steps: a t = 0; b t = 300; c t = 800; d t = 1500; e

t = 3000; f t = 5000. Parameter values are p = 2,m0 = 0.225,
m1 = 1.5 and r = 0.002

distribution of vegetation over the spatial domain at
t = 1500 for different grazing parameter m1 and fixed
r = 0.001 and p = 2. In Fig. 14, For the different val-
ues of m1 located in the “vegetation pattern regions”
(yellow, cyan and magenta regions in Fig. 10a, b), we
show two categories of Turing patterns for the distri-
bution of vegetation b of model (2.7). If the grazing
rate m1 = 1 and p = 2, then we obtained ϒloc(m1) =
0.0016. When r = 0.002, the self-diffusion is not sat-
isfied with the parameter conditions of the pattern for-
mation (i.e., r = 0.002 ∈ (0, ϒloc)). In Fig. 14a, when
m1 = 1 and r = 0.002, we observed the emergence of
a uniform vegetative state. If the grazing ratem1 = 1.8
and p = 2, then we obtained ϒloc(m1) = 0.0125, by
the theoretical results, we know that the grazing rate
m1 = 1.8 satisfy r = 0.002 ∈ (0, ϒloc(m1)), thus veg-
etation pattern appear in model (2.7) with local graz-
ing (see Fig. 10b). The numerical simulation results
in Fig. 10c and b also show that the numerical sim-

ulation results correspond to the theoretical results.
From Figs. 13d and 14, one can see that for the cases
m1 = 1.8, 2, on increasing the controlled parameter
m1, the maximum vegetation density also increased
(i.e., 5.1455 −→ 6.523).

We continue our investigation into the effects of
changing the parameter p. Figure15 depicts the station-
ary distribution of vegetation over the spatial domain
at t = 1500 for different p and fixed r = 0.002 and
m1 = 1.5. These patterns are obtained for the parame-
ter values lying within Turing domain r ∈ (0, ϒloc(p))
[where ϒloc(p) is depend on p and given by (3.19)]
and themaximum vegetation density are changingwith
increasing magnitude of p. In Fig. 15, we found that
the maximum density of vegetation decreased with the
increase of infiltration rate p. The numerical simula-
tion results in Fig. 15a and Table are consistent. By the
Fig. 12e and f and Table 2, we found that the smaller p
is on the interval (1.5,+∞), the better the stability of
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Fig. 14 Stationary spatial pattern exhibited by the vegetation density b(x, y, t) at t = 1500 for fixed R = 3,m0 = 0.225, r = 0.002
and three different values of m1. a m1 = 1; b m1 = 1.8

Fig. 15 Stationary spatial pattern exhibited by the vegetation density b(x, y, t) at t = 1500 for fixed R = 3,m0 = 0.225,m1 =
1.5, r = 0.001 and three different values of p. a p = 3; b p = 4

localmodel (2.7). To sumup, these interesting advances
indicate that parameter p is important to determine spa-
tial pattern.

6 Conclusions and discussions

These extended water–plant models provide a frame-
work for understanding the dynamics and spatial orga-
nization of vegetation, and they can be used to guide
conservation efforts, land management practices, and
ecological research. It is important to note that these
models are simplified representations of complex eco-
logical processes, and they may not capture all the fac-
tors and mechanisms that influence vegetation patterns
in every ecosystem. Additionally, different ecosystems

may require different models or a combination of mod-
els to adequately describe their vegetation patterns.

In this paper, an extended water–plant model is
proposed, which has power-exponential plant growth,
cross-diffusion and three kinds of nonlocal grazing.
This model is based on the well-known Klausmeier
model. The nonlocal interaction is characterized by an
integral term. Through the comparative study of the
two nonlocal models and local model, the influence
of nonlocal term on the stability of the model is fur-
ther understood. We presented local stability analysis
of interior equilibrium solution of the proposed local
and nonlocal models. The results indicated that if the
infiltration parameter is equal to 1 the unique posi-
tive equilibrium is always locally stable for sustained
grazing type model without cross-diffusion. However,
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under certain parameter constraints, Turing instability
can be observed in both natural grazing and local graz-
ing models.

For themodel with cross-diffusion, when p = 1, the
three models all have the parameter conditions for Tur-
ing instability. When p > 1, we can obtain parameter
constraints for Turing instability in the sustained graz-
ing and local grazing models. Nevertheless, the stabil-
ity cannot be judged in the natural grazing model when
p ∈ (1, 2), but the parameter conditions for Turing
instability can be obtained when p ≥ 2. Understand-
ing diffusion-induced instability in vegetation patterns
is important for studying the dynamics and resilience
of ecosystems. This research can assist in identifying
the factors that contribute to the formation and tran-
sition of vegetation patterns. Additionally, studying
diffusion-induced instability can provide insights into
the mechanisms driving vegetation pattern formation
and the potential impacts of disturbances or environ-
mental changes on ecosystem dynamics.

Grazing can directly impact vegetation by remov-
ing plant biomass through herbivory. This can result in
a decrease in vegetation cover and biomass, creating
gaps in the vegetation. These gaps provide opportuni-
ties for different plant species to establish and grow,
leading to shifts in species composition and diversity.
We used numerical simulation methods considered the
effect of grazing parameter m1 on model (2.7). For
the fixed other parameters, the absence of the cross-
diffusion model (2.7) is stable when r > ϒ(i)(m1),
and the cross-diffusion model (2.7) is stable when
r > ϒ(i)(m1) and α < (i)(m1). Therefore, when
the self-diffusion (cross-diffusion) coefficient caused
by grazing rate is greater (less) than the critical self-
diffusion (cross-diffusion) coefficient, Turing pattern
will emerge. More interestingly, vegetation state tran-
sition from homogenous vegetation → vegetation pat-
terns → bare soil as grazing rate increases. Vegeta-
tion Pattern formation can be recognized as desertifi-
cation and early warning indicator of collapse for arid
and semiarid grazing ecosystemswhich provides a new
insight for ecological protection.

Some characterizations for the non-constant posi-
tive steady state solutions, including a priori estimate
of the positive solutions, bifurcation solutions and the
non-existence and existence of non-constant positive
solutions of local grazing and natural grazing models
are similar to the sustained grazing model studied in
our previous paper [15,16], we omit a detailed analysis

of these properties in this article. It is worth mention-
ing that there are many uncertain factors in the natural
environment, such as sand, toxicity, deforestation and
natural disaster, which may cause desertification. In
addition, meteorological factors, such as light, temper-
ature and carbon dioxide, have great influence on veg-
etation pattern formation, which should be integrated
into the vegetation model. This paper ignores these
natural environment and meteorological factors in this
paper, and we will further study these factors in future.
The nonlocal grazing pressures of sustained and natural
grazing derived in paper [14], only depend on global
mean forage I j (B) = 1

Vol(�)

∫
X∈�

B j (X)dX , which
means that grazing at any location depends equally on
alternative forage nearby and further away. An alter-
native modelling approach could be to assume that
consumers have overlapping utilization distributions
K (x0 − x), which measure the use of locations for for-
aging as a function of distance to individual refuge sites
x0. The (weighted) local mean forage near x0 would
now be given by the convolution

K ∗ B j =
∫

X∈�

K (X0 − X)B j (X)dX.

The dependence of the grazing pressure on I j (B)

should now be replaced by a dependence on K ∗ B j :
the grazing pressure also becomes variable in space.
We further investigate an extended water–plant model
with K ∗ B j .

Data availability Some or all data, models, or code generated
or used during the study are available from the corresponding
author by request
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