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Abstract The present study aims to investigate the

influence of geometric nonlinearity on post-flutter

responses by developing a full-mode coupled nonlin-

ear flutter analysis method (frequency-domain

method) and a time-dependent nonlinear analysis

scheme (time-domain method). This approach inte-

grates the three-dimensional (3D) nonlinear finite

element model and nonlinear self-excited force

described by amplitude-dependent rational functions

(RFs). By comparing post-flutter responses obtained

from frequency-domain and time-domain methods,

not only the influence of geometric nonlinearity on

post-flutter responses is quantified, but also the

underlying physical mechanism is revealed. The

results show that the geometric nonlinear effect will

become more significant with the increase of the

amplitude and thus will induce a super-harmonic

resonance behavior. The behavior is mainly charac-

terized by the higher harmonic frequencies vibrations

with higher-order mode shapes involved in the vertical

and torsional displacement responses. Meanwhile, the

larger the vibration amplitude, the more significant the

super-harmonic resonance behavior. Besides, the

geometric nonlinear effect will also cause a significant

uplifting of the bridge deck in the vertical direction

during 3D nonlinear flutter process. The main physical

mechanism for the reduction in the amplitude of post-

flutter response (dominated by the vibration with

fundamental harmonic frequency) after considering

the geometric nonlinear behavior is that the vibrations

with higher harmonic frequencies play a role of

absorbing energy and reducing vibration (similar to

tuned mass damper effect) for the vibration with

fundamental harmonic frequency. For the long-span

suspension bridge with a main span of 1650 m studied

in this study, the geometric nonlinear effect may need

to be considered when the torsional amplitude at mid-

span is only greater than 1.5�.
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1 Introduction

After decades of development, linear flutter analysis

frameworks have achieved significant progress. On the

one hand, by adopting closed-form solutions of bimodal

coupled flutter [1, 2] or the step-by-step flutter analysis

method [3–6], the mechanisms of flutter for various

bridgedecks have been further investigated.On the other

hand, multimode and full-mode coupled flutter analysis

frameworks were developed by considering three-

dimensional (3D) aerodynamic effects, and thus, the

critical wind speed could be calculated more accurately

since both the negative and positive contributions from

othermodeswere considered [7–13]. In the classic linear

flutter framework, the self-excited forces are generally

modeled as linear functions of vibration velocity and

displacement [14]. Accordingly, the vibration of struc-

ture is assumed to go unbounded beyond a critical speed.

However, due to the existence of the aeroelastic

nonlinearity, extensive numerical and experimental

studies [14–19] shown that the flutter derivatives

(FDs) of bridge decks (especially for bluff bridge

decks) are amplitude-dependent. Besides, it was found

by many researchers that flutter vibrations of most

bluff bridges exhibit a self-limiting behavior and

become limit cycle oscillations (LCOs) beyond the

critical speed [20–29]. For relatively bluff sections,

such as edge-girders and H-shaped sections, a tor-

sional LCO coupled with a very slight vertical DOF

was usually observed [20–22]. While for relatively flat

sections, such as flat closed-box sections, thin rectan-

gular plates and truss bridge decks, a vertical–torsional

coupled LCO in the torsional mode was usually

observed [24–29]. Additionally, it was also found that

the amplitudes of LCOs for some bridge decks are

strongly affected by wind speed paths or initial

conditions [24, 29–31]. The above studies essentially

reveal the nonlinear characteristics of aerodynamic

forces, which indicates that linear flutter theory is no

longer applicable to the analysis of the ‘‘soft’’ flutter

(or called as LCO-type flutter).

Nowadays, the costs of construction and design of

super long-span bridges have increased dramatically

based on the framework of classic linear flutter, which

thus has restricted the development trend of bridges to

a longer span [29]. In reality, long-span bridges are

flexible and their vibration with large amplitude

belongs to a typical problem of ‘‘large deformation

but with small strain’’. Therefore, in order to fully

exploit the wind-resistant potentialities and reduce the

design requirements and difficulties of super long-

span bridges, vibrations with acceptable stable ampli-

tudes should be allowed for LCO type of flutter in the

future wind-resistant design. However, accurately

predicting nonlinear flutter responses (displacement,

acceleration, stress, etc.) is a prerequisite for the

determination of the acceptable maximum amplitude

and the establishment of the future fortification criteria

against flutter based on the nonlinear flutter theory

(also known as performance-based fortification crite-

ria against nonlinear flutter [36]). To this end, many

researchers modeled mathematically nonlinear aeroe-

lastic self-excited forces of typical bridge decks to

have a reasonable prediction on nonlinear flutter

amplitudes [32–37]. Gao et al. [22] established a

single-degree-of-freedom (SDOF) torsional nonlinear

self-excited force model for a twin-side-girder bridge

deck based on the measured aerodynamic force. Based

on the measured displacement from free vibrations of

a streamlined section, Zhang et al. [32] also developed

a SDOF nonlinear self-excited force model. However,

these SDOF models ignored the coupling effect from

the vertical DOF. Recently, Gao et al. [33] and Wu

et al. [30] proposed 2DOF nonlinear self-excited force

models for a streamlined section and a double-deck

truss girder section, respectively. Li [34] further

proposed a general modeling framework, including

multiple nonlinear effects from mechanical nonlin-

earity, non-wind-induced aerodynamic nonlinearity,

and wind-induced aerodynamic nonlinearity, for ver-

tical–torsional coupled nonlinear flutter. This model-

ing framework was further verified by section model

tests of a truss-girder deck with large amplitude

vibrations. However, 3D effects in terms of the

variation of self-excited forces along the bridge’s

span were not considered in the above studies. Based

on the nonlinear aerodynamic force model in terms of

amplitude-dependent FDs, 3D nonlinear flutter anal-

ysis for long-span bridges with a streamlined section

and a double-deck truss girder section were conducted

by Wang et al. [35] and Wu et al. [28], respectively. In

their analysis, the 3D effects in terms of spatial

variation of the self-excited forces were considered,

but only the fundamental torsional and vertical modes

can be included. For this, one of the purposes of this

study is to establish a nonlinear flutter analysis

framework in which the full-mode coupling effect

can be taken into account.
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The aforementioned nonlinear self-excited force

models are all in hybrid expressions in the time and

frequency domains, and they can only be analyzed in

the frequency domain, which means structural nonlin-

earities cannot be considered. To this end, many

attempts have been made to express the nonlinear

effects of wind–structure interactions for long-span

bridges in the time domain [38–48]. Wu and Kareem

[39, 40] proposed a nonlinear convolution approach

based on Volterra theory to describe linear and

nonlinear aerodynamic forces of long-span bridges,

but its application is currently limited due to the

challenge of identifying higher-order Volterra kernels.

Zhang [38] tried an integral-type model to simulate the

aerodynamic nonlinearity. Liu [41] andZhou et al. [42]

also attempted a nonlinear aerodynamic force model

based on nonlinear differential equations to capture the

nonlinear and unsteady aerodynamic effects resulting

from various wind velocities and structural vibration

amplitudes. However, not only the number of param-

eters needs to be identified was enormous but also the

identification of them needs adopting CFD simula-

tions. Besides, some black-box models [43–48] based

on different neural network architectures were adopted

to describe nonlinear and unsteady aerodynamic force

on bridge decks or airfoils with the rapid development

of artificial intelligence technology. However, the

generalization of these models needs to be further

verified and the interpretability of them needs to be

further improved. From a practical point of view, a

time-dependent nonlinear self-excited force model

whose parameters can be estimated by simple wind-

tunnel tests still needs to be investigated, which is the

second purpose of this study. Besides, the influence of

geometric nonlinearity on post-flutter responses needs

to be further quantified and analyzed, which is the

ultimate purpose of this study.

In this study, based on amplitude-dependent FDs

extracted from free vibration wind tunnel tests, a full-

mode nonlinear flutter analysis framework in the fre-

quency domain aiming at a more accurate prediction of

the 3D post-flutter responses by taking the full-mode

aerodynamic coupling effects into account was proposed

and a corresponding iterative algorithm was developed.

Subsequently, because the geometric nonlinearity effect

cannot be considered in the frequency-domain analysis

method, a time-dependent nonlinear unsteady self-

excited force model described by amplitude-dependent

RFs was established. Finally, an integrated nonlinear

numerical scheme integrating the time-dependent non-

linear self-excited force and 3D nonlinear finite element

model in the time domain was developed, with which a

more accurate post-flutter responses under the coupling

effects of multiple nonlinearities (e.g., aerodynamic

nonlinearity and structural nonlinearity) can be obtained.

Furthermore, by comparing post-flutter responses

obtained from the frequency-domain and time-domain

methods, not only the influence of geometric nonlinearity

on the post-flutter is quantified, but also the underlying

physical mechanism is revealed.

2 Full-mode nonlinear flutter analysis method

2.1 Novel finite element model for nonlinear

flutter analysis

In this section, a full-mode approach for nonlinear flutter

analysis is establishedbasedon the full-mode linear flutter

analysis method [13]. In the smooth flow, the governing

equation of motion for a bridge can be written as:

Ms
€Xþ Cs

_XþKsX ¼ Fse;non; ð1Þ

in which Ms,Cs and Ks are the global mass, damping

and stiffness matrices, respectively; Fse;non is the

vector of nodal nonlinear self-excited forces; X, _X and
€X represent the nodal displacement, velocity and

acceleration vectors, respectively.

The nonlinear self-excited forces (i.e., pitching

moment, drag force, and lift force) distributed on a unit

length of bridge deck could be described in terms of

amplitude-dependent FDs as (e.g., [49])

Lse;nonðtÞ¼
1

2
qU2ð2bÞ�

kH�
1

_h

U
þkH�

2

b _a
U
þk2H�

3aþk2H�
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þk2H�
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� �
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8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

;

ð2Þ

in which q denotes the air density; U is the mean wind

speed; B = 2b is the width of bridge deck; k = bx/U
denotes the reduced circular frequency; h, a and p are
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the vertical, torsional and lateral displacements of the

bridge deck, respectively; _h, _a and _p denote the

vertical, torsional and lateral velocity of the bridge

deck, respectively; and H�
i , P

�
i and A

�
i (i = 1,2���,6) are

nonlinear flutter derivatives expressed in terms of

vibration amplitude and reduced frequency k.

Converting the distributed self-excited forces of

element e into equivalent nodal forces at ends, then the

equivalent nodal forces of element e can be expressed

as:

Fe
se;non ¼ Ke

se;nonX
e þ Ce

se;non
_X
e
; ð3Þ

in whichKe
se;non and C

e
se;non represent the aerodynamic

stiffness and damping matrices of element e, respec-

tively. _X
e
and Xe donate the nodal velocity and

displacement, respectively. If a lumped formulation is

employed to derive the aerodynamic stiffness and

damping matrices, the aeroelastic damping and stiff-

ness matrices for element e can be written as:

Ke
se;non ¼

Ke
se;non1 0

0 Ke
se;non1

" #
;

Ce
se;non ¼

Ce
se;non1 0

0 Ce
se;non1

" #
;

ð4Þ

Ke
se;non1¼a

0 0 0 0 0 0

0 H�
4ðk;ArÞ H�

6ðk;ArÞ bH�
3ðk;ArÞ 0 0

0 P�
6ðk;ArÞ P�

4ðk;ArÞ bP�
3ðk;ArÞ 0 0

0 bA�
4ðk;ArÞ bA�

6ðk;ArÞ b2A�
3ðk;ArÞ 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2
6666664

3
7777775
;

ð5Þ

Ce
se;non1¼ c

0 0 0 0 0 0

0 H�
1ðk;ArÞ H�

5ðk;ArÞ bH�
2ðk;ArÞ 0 0

0 P�
5ðk;ArÞ P�

1ðk;ArÞ bP�
2ðk;ArÞ 0 0

0 bA�
1ðk;ArÞ bA�

5ðk;ArÞ b2A�
2ðk;ArÞ 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2
6666664

3
7777775
;

ð6Þ

in which c ¼ LeqUbk=2 and a ¼ LeqU2k2=2; Ar(r =

a, p, h) is the amplitude; and Le donates the length of

element e.

The aerodynamic damping or stiffness matrices

described by Eq. (4) can be simulated with the

element Matrix27 in ANSYS. Therefore, a hybrid

finite element model integrating one structural ele-

ment with four Matrix27 elements e1, e2, e3 and e4 is

formulated, in which e1 and e2 represent the nonlinear

aeroelastic stiffness elements, while e3 and e4 repre-

sent the nonlinear aeroelastic damping elements, as

shown in Fig. 1.

Assembling all elemental matrices into global

aerodynamic damping and stiffness matrices, one

obtains

Fse;non ¼ Kse;nonXþ Cse;non
_X; ð7Þ

in which Kse,non and Cse,non represent the global

aerodynamic stiffness and damping matrices.

Substituting Eq. (7) into Eq. (1), the governing

equation of the nonlinear wind-bridge coupled system

can be written as:

Ms
€Xþ ðCs � Cse;nonÞ _Xþ ðKs �Kse;nonÞX ¼ 0: ð8Þ

Equation (8) is parameterized by vibration fre-

quency, vibration amplitude and wind speed. For a

finite element model with n DOFs, by the complex

eigenvalue analysis of Eq. (8), a total of n conjugate

pairs of complex eigenvectors and eigenvalues can be

obtained. The conjugate pairs of complex eigenvalues

kj and eigenvectors Uj corresponding to the jth modal

branch can be expressed as:

kj ¼ ð�nj � iÞxj; Uj ¼ pj � iqj; ðj ¼ 1; :::; nÞ;
ð9Þ

in which nj and xj are the modal damping and

frequency corresponding to the jth modal branch.

Therefore, the three-dimensional motion of the bridge

in physical coordinates corresponding to the jth modal

branch can be written as:

Xj ¼ ðpj þ iqjÞe�njxj teixjt þ ðpj
� iqjÞe�njxjte�ixj t¼Aje

�njxj t cos xjt � /j

� �
;

ð10Þ

where

Aj ¼ 2 pj þ iqj
�� ��; ð11Þ

/j = arctan(qj
�
pjÞ; ð12Þ

Fig. 1 Hybrid finite element model
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in which /j and Aj represent the vibration phase and

amplitude, respectively, for all nodes of the bridge.

In this study, the damping of the bridge is assumed

as the Rayleigh damping matrix:

Cs ¼ aMs þ bKs; ð13Þ

in which a and b can be determined by [50]

a ¼ 2
xsixsj

x2
sj � x2

si

xsjnsi � xsinsj
� �

; ð14Þ

b ¼ 2
xsixsj

x2
sj � x2

si

� nsi
xsj

þ
nsj
xsi

� �
; ð15Þ

in which nsj and nsi donate the damping ratio of the jth

and ith structural mode, respectively; xsj and xsi

donate the circular frequency of the jth and ith

structural mode, respectively.

2.2 Algorithm implementation in ANSYS

At a given wind speed, the participation information of

each structural mode in coupled flutter cannot be

known in advance, so the FDs along the span of bridge

are unknown, and then, Eq. (8) cannot be determined.

Actually, the participation information of each struc-

tural mode will also vary with the vibration amplitude.

2.2.1 Determination of flutter derivatives at different

spanwise locations

In the present study, only the nonlinear self-excited

force of the bridge deck is considered; therefore,

Eq. (8) only depends on the motion amplitude of the

deck at different spanwise locations. Obviously, the

nodal vibration amplitude r0ðxÞ of the deck at the

spanwise location x for the jth modal branch can be

obtained from Aj shown in Eq. (11), in which r0 ¼
h0; p0; a0 and essentially represent the amplitude shape

of the bridge deck in the vertical, lateral and torsional

directions, respectively.

In this study, the FDs are described as functions of

vibration amplitude and reduced wind speed, so every

point of the nonlinear wind-bridge coupled system in

the space of vibration amplitude and reduced wind

speed can be considered as a linear system. Therefore,

the nonlinear full-mode flutter analysis becomes to

calculate the linear modal properties of every point in

this space. In addition, there is a need to determine a

location x for amplitude searching during searching

the modal properties in the space of vibration ampli-

tude and wind speed due to the fact that the vibration

amplitude of the bridge is different at different

locations. In general, considering that the modal

properties of the jth modal branch evolve from the

jth structural mode, the location of amplitude search-

ing for the jth modal branch usually should be

determined as xmax;j, the location of the maximum

value of the jth structural mode shape. For instance,

xmax;j should be determined as the mid-span of the

bridge for the first symmetric torsional mode, while it

should be determined as the 3/4 or 1/4 span of the

bridge for the first antisymmetric torsional mode. For

the jth modal branch, if the vibration amplitude of the

location xmax;j is Ar, the vibration amplitude at location

x can be determined by:

Ar;x ¼
r0ðxÞ

r0ðxmax;jÞ
Ar: ð16Þ

Then, the FDs at spanwise locations x for a given

reduced wind speed U* are obtained as:

A�
i ðxÞ ¼ A�

i U�;Ar;x

� �
; H�

i ðxÞ ¼ H�
i U�;Ar;x

� �
; ði

¼ 1� 6Þ:
ð17Þ

2.2.2 Solution of full-mode coupled nonlinear flutter

For a given amplitude Ar at the location xmax;j and a

given wind speed U, the FDs at different spanwise

locations are initially unknown because the participa-

tion information of each structural mode in bridge

flutter is unknown in advance. Therefore, a prelimi-

nary iterative procedure for amplitude shape r0 is

needed to determine the vibration amplitude of each

node along the span. An initial iterative amplitude

shape generally can be set as |rj(x)|, in which rj(x) is the

jth structural mode shape. Then, the vibration ampli-

tude at different locations x can be determined by:

Ar;x ¼
rjðxÞ
�� ��

rjðxmax;jÞ
�� ��Ar: ð18Þ

After the FDs are determined, another iterative

procedure for the modal frequency of the jth modal

branch, which is same as the linear flutter analysis

[12, 13], needs to be implemented to obtain the modal

properties.
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The above full-mode nonlinear analysis method can

only consider the aerodynamic nonlinearity, and it

involves a double-layer iterative procedure. To clarify

the proposed full-mode nonlinear analysis framework

more clearly, Fig. 2 demonstrates the specific

flowchart by taking the calculation of the jth modal

branch as an example. Besides, some main steps in the

flowchart are introduced as follows:

(1) Set the initial calculated wind speed Un ¼ U0;

(2) Set the location of amplitude searching xmax;j;

Fig. 2 The flowchart of the proposed full-mode nonlinear analysis framework
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(3) Set the initial vibration amplitude Ar ¼ Ar;0 at

the location xmax;j and set the initial iterative Ar;x

according to Eq. (18);

(4) Set the initial iterative modal frequency

xj ¼ xsj, where xsj is the frequency of the jth

structural mode;

(5) Calculate the FDs A�
i ðAr;x; U�

nÞ and

H�
i ðAr;x; U�

nÞ at different locations by interpo-

lation, where U�
n ¼ Un

�
ðxj;kbÞ;

(6) Conduct the complex eigenvalue analysis of

Eq. (8) and obtain the modal damping ratio,

modal frequency and complex mode shape of

the jth modal branch at the present iteration;

(7) Compare modal frequency xj;kþ1 with xj;k

obtained by the last iteration. If

ðxj;kþ1 � xj;kÞ
�
xj;k

�� ��\e, terminate the iteration

and go to step 8, otherwise, return to step 4;

(8) Based on the amplitude shape r0 obtained in the

present iteration, update the vibration ampli-

tudes Ar;x at different locations according to

Eq. (16);

(9) Define a convergence factor for the amplitude

shape iteration as

lðxÞ ¼ r0;dþ1ðxÞ � r0;dðxÞ
r0;dðxÞ

����
����; ðr ¼ h; p; aÞ;

ð19Þ

where d donates the dth (d = 1, 2, 3, 4, 5���) iteration
step. When the convergence factors l for all nodes of

the main girder are smaller than the tolerance e,
terminate the iteration and go to step 10, otherwise,

return to step 4;

(10) Compute and store the real modal properties nj
(Ar, Un), xj (Ar, Un) and the nodal amplitudes

Ar;x along the bridge’s span at wind speed Un

and vibration amplitude Ar;

(11) Gradually increase the amplitude Ar by DAr,

and repeat steps 3 * 10 until a maximum

vibration amplitude Ar,max given for searching

is reached;

(12) Gradually increase the wind speed Un by DU,
and repeat steps 1 * 11 until a maximum

wind speed Un,max given for searching is

reached;

(13) Based on the real modal properties xj (Ar, Un),

nj (Ar, Un) and Ar,x(Ar, Un) in the space of

vibration amplitude and wind speed, the evo-

lution of stable amplitudes with wind speed

(i.e., the 3D post-flutter response of the bridge)

can be obtained by searching the points where

the modal damping nj (Ar, Un) = 0.

3 Time-dependent nonlinear numerical scheme

3.1 Time-dependent linear self-excited force

model

The self-excited forces per unit span length induced by

arbitrary structural motion can be expressed in terms

of convolution integrals using impulse response

functions as [51]

LseðtÞ¼
1

2
qU2

Z t

�1
ILhðt�sÞhðsÞþILpðt�sÞpðsÞ
�

þILaðt�sÞaðsÞÞds;
ð20Þ

DseðtÞ ¼
1

2
qU2

Z t

�1
IDhðt � sÞhðsÞ þ IDpðt � sÞpðsÞ
�

þIDaðt � sÞaðsÞÞds;
ð21Þ

MseðtÞ ¼
1

2
qU2

Z t

�1
IMhðt � sÞhðsÞ þ IMpðt � sÞpðsÞ
�

þIMaðt � sÞaðsÞÞds;
ð22Þ

where Ifx (f = L,D,M; x = h, p, a) denotes the impulse

function of the self-excited forces, in which the

subscripts represent the corresponding force compo-

nent. Taking the impulse function of the lift force
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induced by the vertical motion (i.e., ILh) as an

example, according to the rational function (RF)

approximation [52–54], ILh can be further written as:

ILh tð Þ ¼ A1d tð Þ þ A2

b

U
_d tð Þ þ A3

b2

U2
€d tð Þ

þ d tð Þ
Xm
n¼4

An�
Xm
n¼4

Andn
U

b
exp � dnU

b
t

� �
;

ð23Þ

where d is the unit impulse function; A1, A2, A3, An, dn
(n = 4, 5…, m) are frequency-independent coeffi-

cients, which can be determined by the nonlinear least-

square method based on the obtained FDs [54]; m was

taken as 5 in this study. The third term in Eq. (23)

represents the aerodynamic force caused by the

acceleration term, which is usually small and

neglected. Then, substituting Eq. (23) into Eq. (20),

the aerodynamic lift force induced by the vertical

motion can be obtained as follows:

Lseh tð Þ ¼ 1

2
qU2 A1h tð Þ þ A2

b

U
_h tð Þ

� 	

þ 1

2
qU2

Xm
n¼4

An

Z t

�1

e�
dnU
b t�sð Þ _h sð Þds: ð24Þ

Similarly, the expressions for the other self-excited

force components Lsea,Mseh andMsea can be obtained.

Since the time-dependent linear self-excited force

model is finally described as a form of rational

functions, it is simply called as linear RFs model here.

3.2 Time-dependent nonlinear self-excited force

model

The aforementioned linear RFs model is unable to

describe the nonlinear characteristics of self-excited

forces varying with amplitude. To this end, similar to

using amplitude-dependent FDs to describe nonlinear

self-excited forces in Eq. (2), a time-dependent nonlin-

ear self-excited forcemodel using amplitude-dependent

impulse response functions can be expressed as:

Lse;nonðt; r̂Þ ¼
1

2
qU2

Z t

�1
ILhðt � s; r̂ÞhðsÞð :

þILpðt � s; r̂ÞpðsÞþILaðt � s; r̂ÞaðsÞÞds;
ð25Þ

Dse;nonðt; r̂Þ¼
1

2
qU2

Z t

�1
IDhðt�s; r̂ÞhðsÞð :

þIDpðt�s; r̂ÞpðsÞþIDaðt�s; r̂ÞaðsÞÞds;
ð26Þ

Mse;nonðt; r̂Þ¼
1

2
qU2

Z t

�1
IMhðt�s; r̂ÞhðsÞð :

þIMpðt�s; r̂ÞpðsÞþIMaðt�s; r̂ÞaðsÞÞds;
ð27Þ

where r̂(r = h, p, a) denote the vibration amplitude. It

should be noted that the self-excited drag force and the

self-excited forces caused by the lateral displacement

p are ignored in the following analysis. Thus,

Eqs. (25)–(27) can be further simplified as:

Lse;non t; r̂ð Þ ¼ 1

2
qU2

Z t

�1
ILhðt � s; r̂ÞhðsÞð

þILaðt � s; r̂ÞaðsÞÞds ¼ Lseh;non t; r̂ð Þ þ Lsea;non t; r̂ð Þ;
ð28Þ

Mse;non t; r̂ð Þ ¼ 1

2
qU2

Z t

�1
IMhðt � s; r̂ÞhðsÞð

þIMaðt � s; r̂ÞaðsÞÞds ¼ Mseh;non t; r̂ð Þ
þMsea;non t; r̂ð Þ:

ð29Þ

It is presumed that when the FDs corresponding to a

group of discrete motion amplitudes r̂k (k = 1, 2,…, n)

are obtained, the RF models corresponding to a group

of discrete motion amplitudes r̂k can also be deter-

mined using the method mentioned in Sect. 3.1. Then,

the time-dependent nonlinear self-excited force model

under arbitrary amplitudes r̂ can be approximately

determined by interpolation as:

Lse;non t; r̂ð Þ ¼ cr;k � Lsea t; r̂kð Þ þ cr;kþ1 � Lsea t; r̂kþ1ð Þ
þ cr;k � Lseh t; r̂kð Þ þ cr;kþ1 � Lseh t; r̂kþ1ð Þ;

ð30Þ

Mse;non t; r̂ð Þ¼cr;k �Msea t; r̂kð Þþcr;kþ1 �Msea t; r̂kþ1ð Þ
þcr;k �Mseh t; r̂kð Þþcr;kþ1 �Mseh t; r̂kþ1ð Þ;

ð31Þ

in which:

r̂k\r̂\r̂kþ1; ð32Þ
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cr;k ¼
r̂kþ1 � r̂

r̂kþ1 � r̂k
; cr;kþ1 ¼

r̂ � r̂k
r̂kþ1 � r̂k

; ð33Þ

where k = 1,2,3���n; n is the number of discrete

amplitudes. The larger the nwithin a certain amplitude

range, the more accurate the nonlinear characteristics

of self-excited forces can be described by Eqs. (30)

and (31). Besides, to ensure that the nonlinear self-

excited force model described by Eqs. (30) and (31)

can be applied to the arbitrary motion with the nonzero

mean value, the limiting behavior of Eqs. (30) and (31)

need to meet the quasi-steady characteristics of wind

load after the change of structure attitude. Thus, one

obtains:

Lsehðt ! 1Þ ¼ 0; Msehðt ! 1Þ ¼ 0; ð34Þ

Lseaðt ! 1Þ ¼ 0:5qU2bC0
LDa

¼ FLða0 þ DaÞ � FLða0Þ; ð35Þ

Mseaðt ! 1Þ ¼ 0:5qU2b2C0
MDa

¼ FMða0 þ DaÞ � FMða0Þ; ð36Þ

where FM, FL are quasi-steady wind load; a0 is initial
angle of attack, Da is the increment of attack angle or

the increment of the mean torsional displacement.

According to the above conditions, it can be obtained

that the constraints for identifying rational function

coefficients in the nonlinear self-excited force model

are:

AMh1¼ALh1¼0; ALa1¼bC0
Lða0Þ; AMa1¼b2C0

Mða0Þ:
ð37Þ

After integrating the nonlinear self-excited force

model described by Eqs. (30) and (31) and the

nonlinear finite element model by using APDL

offered by ANSYS, a time-dependent nonlinear

numerical scheme can be implemented in ANSYS

software. By using this scheme, the whole evolution

process of 3D post-flutter response considering

structural nonlinearity and aerodynamic nonlinearity

under arbitrary wind speed can be obtained. In

addition, it should be noted that the nonlinear flutter

analysis method described in this section is a time-

domain method while the full-mode nonlinear flutter

analysis method described in Sect. 3 is a frequency-

domain method, in which the frequency-domain

method can only consider the aerodynamic

nonlinearity.

4 Parameters identification and validation

4.1 Engineering background

As shown in Fig. 3, a single-span steel-truss girder

suspension bridge with a main span of 1650 m and two

side spans of 518 m and 502 m in the preliminary

design scheme is taken as a case study herein. The

bridge includes four main cables, which is the first

time adopted in the design scheme. The sag/span ratio

of the outer main cable is 1/10.79, while that of the

inner main cable is 1/11.61. As shown in Fig. 3b and c,

the double-deck steel-truss girder is 9.5 m high and

32 m wide.

Firstly, to obtain the dynamic characteristics of the

bridge as accurately as possible, a refined spatial-truss-

girder finite element model was established by

ANSYS, as shown in Fig. 4. The two towers and the

main steel truss are simulated with spatial beam

elements, while the hangers and the main cables are

modeled by spatial link elements. In addition, the

whole steel bridge panel is simulated with shell

elements. However, the refined model is a very

complex model and it has 23,136 elements and

11,970 nodes in total, which makes its transient

analysis very time-consuming and also requires huge

storage demand. To this end, a simplified equivalent-

single-girder finite element model (or called single-

spine girder model), who only has 2153 elements and

1368 nodes in total, was established according to the

stiffness andmass distribution equivalence of the main

girder in all directions. More details about the

modeling method of the equivalent-single-girder

model can be found in our previous study [54]. The

dynamic characteristics of the two finite element

models are compared in Table 1, and it can be found

that they are in good agreement. Therefore, the single-

spine girder model will be adopted to the full-mode

analysis and transient analysis of nonlinear flutter in

Sect. 5. Additionally, it should be noted that, for

example, ‘‘V–A-1’’ in Table 1 represents the first

antisymmetric vertical mode shape.

4.2 Amplitude-dependent flutter derivatives

The amplitude-dependent FDs of the bridge deck are

obtained from free-vibration wind tunnel tests of the

section model [34, 49]. The section model tests are

conducted at the wind tunnel of the Research Center of
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Wind Engineering and Wind Environment in Chang-

sha University of Science and Technology, as shown

in Fig. 5. The main dynamic parameters of section

model tests are given in Table 2, in which case B is

obtained by increasing the structural damping on the

basis of case A, while case C is obtained by changing

Fig. 3 The structural dimension of the bridge in the preliminary design scheme

Fig. 4 The refined finite

element model of the bridge

Table 1 Dynamic characteristics of the bridge

Mode number Mode shapea Frequency f (Hz) Error (%)

The refined model The single-spine girder model

1 L–S-1 0.0470 0.0471 0.21

2 V–A-1 0.0886 0.0884 -0.23

3 L–A-1 0.1018 0.1027 0.88

4 V–S-1 0.1162 0.1159 -0.26

5 V–A-1 (coupled LF) 0.1358 0.1348 -0.74

6 V–S-2 0.1621 0.1613 -0.49

7 T–S-1 (coupled minor L–S-2) 0.1799 0.1795 -0.22

8 L–S-2 (coupled minor T–S-1) 0.1897 0.1903 0.32

9 T–A-1 0.2111 0.2107 -0.19

10 V–A-2 0.2119 0.2124 0.24

aL, lateral; V, vertical; T, torsional; LF, longitudinal floating; S, symmetrical; A, asymmetrical
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the mass m and mass moment of inertia I on the basis

of case A. It should be noted that the structural

damping of cases A * C is amplitude-dependent due

to nonlinear factors [29], as shown in Fig. 6. Based on

the amplitude-dependent FDs obtained from case A, as

shown in Fig. 7, the stable amplitudes of nonlinear

flutter for cases A * C can be calculated by the

closed-form solution method [49] and they are com-

pared with the experimental results, as shown in

Fig. 8. It can be found that the calculated values agree

well with the experimental values for all cases, which

indicates that the amplitude-dependent FDs shown in

Fig. 7 are accurate and reliable and thus can be used to

the following analysis. As shown in Fig. 7, A�
1 and A�

4

are somewhat scattered. It is mainly because the

contribution of A�
1 and A�

4 to the modal properties of

flutter is relatively small, as also stated in other studies

[2, 33, 35], which thus lead the identification of A�
1 and

A�
4 is easy to be interfered by noises in the recorded

displacement signal. Besides, the noise in signal may

also vary with wind speed and amplitude, which will

inevitably further enhance the scatter of A�
1 and A�

4. In

addition, it can be found that the FDs H�
2 , H

�
3 , A

�
1, A

�
2,

A�
3 and A�

4 all exhibit a certain nonlinear dependence

on the torsional amplitude, while the FDs H�
1 and H�

4

have no dependence on amplitude. Consequently,

when adopting the above two methods for nonlinear

flutter analysis of this bridge, only the torsional

amplitude needs to be concerned. However, for bridge

decks whose FDs are dependent on the lateral or

vertical amplitude, the corresponding amplitude

should be concerned. Besides, it should be noted that

since the nonlinearity of aerodynamic force is

described by the amplitude-dependent FDs, only the

nonlinearity from the first-order aerodynamic force

component has been considered herein. The contribu-

tion of higher-order aerodynamic force components is

negligible, which has been directly validated by the

Fig. 5 Section model in wind tunnel

(a) Vertical structural damping                                         (b) Torsional structural damping 

Fig. 6 Nonlinear characteristics of structural damping for all cases A * C

Table 2 Main dynamic parameters of all cases (initial attack

angle 0�)

Cases m (kg/m) I (kg m2/m) fh0 (Hz) fa0 (Hz) fa0/fh0

A 17.7508 1.0702 1.7055 2.57 1.51

B 17.7508 1.0702 1.72 2.601 1.51

C 16.5223 1.4486 1.7677 2.209 1.25
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(a) *

2A                                                                             (b) *

3A

(c) *

2H *

3H

(e) *

1A                                                                              (f) *

4A

 (g) *

1H  and *

4H

Fig. 7 Amplitude-

dependent FDs of the bridge

deck [34, 49]
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results shown in Fig. 8. In fact, whether it is airfoil or

complex bridge deck section, many studies have been

shown that the higher-order aerodynamic force com-

ponents have negligible effects on nonlinear flutter or

vortex-induced vibration [28, 35, 37, 49, 55–57].

4.3 Identification and validation of coefficients

in amplitude-dependent RFs model

The identified coefficients of the RFs model under

amplitudes ranging from 1� to 14� for the steel-truss

bridge deck are shown in Tables 3, 4, 5, and 6. For

long-span suspension bridges, it should be noted that

the bridge deck will exhibit vibration behavior with a

nonzero mean value due to the significant geometric

nonlinear effect. Thus, the constraints shown in

Eq. (37) should be and have been taken into account

in the identification of coefficients to ensure that the

amplitude-dependent RFs model can be used for

arbitrary motion with nonzero mean value. Figure 9

further displays the experimental values and the fitted

values (back-calculated by the RFs model) of the

amplitude-dependent FDs, in which only the ampli-

tudes 1� * 2� * 13� are given for a better compar-

ison among results. It can be seen that the fitted values

agree well with the experimental values. It should be

noted that the deviation of H�
2 between the experi-

mental and fitted values is relatively large at the low

reduced wind speed, but it has little effect on the

prediction of post-flutter response occurring at rela-

tively high reduced wind speeds. In addition, the

scatter of A�
1 and A�

4 is relatively large, but the fitted

values capture the overall variation trend of the

experimental values.

To further validate the accuracy of the above-

identified coefficients in amplitude-dependent RFs

model, the closed-form solution method of bimodal

coupled nonlinear flutter [49] was adopted to calculate

the post-flutter response. The fundamental symmetric

vertical bending mode (i.e., mode 4) and the funda-

mental symmetric torsional mode (i.e., mode 7), as

shown in Fig. 10, were selected in the bimodal

(a) Torsional stable amplitude                                           (b) Vertical stable amplitude 

Fig. 8 Comparison of experimental and predicted values for all cases A * C

Table 3 Coefficients of Lseh under different amplitudes

Amplitude (�) A1 A2 A4 A5 d4 d5

– 0 - 17.9942 - 4460.1334 4522.223 2.1 2.12
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coupled nonlinear flutter analysis. Figure 11 compares

the stable amplitude responses calculated based on the

experimental and fitted FDs, respectively. It can be

seen that the responses under three different structural

damping ratios (0%, 0.3% and 0.5%) are all in good

agreement. It should be noted that the agreement

between the two results is relatively poor at some wind

speeds, which is mainly caused by the relatively large

difference between the experimental and fitted FDs at

some reduced wind speeds. It also gives a piece of

important information that the post-flutter response is

very sensitive to the amplitude-dependent flutter

derivatives, and thus, the accurate identification of

the amplitude-dependent flutter derivatives is the

premise of accurately evaluating the post-flutter

response.

Table 4 Coefficients of

Lsea under different
amplitudes

Amplitude (�) A1 A2 A4 A5 d4 d5

1 118.7168 - 76.9239 - 364.5151 432.3657 0.136 1.4

2 118.7168 - 154.924 711.212 - 346.2209 2.0804 0.1232

3 118.7168 9.0618 - 351.6245 143.0982 0.116 0.62

4 118.7168 5.617 - 397.3277 155.3634 0.1116 0.32

5 118.7168 - 10.5943 - 473.9836 228.8646 0.106 0.22

6 118.7168 - 23.1521 - 728.1258 483.7662 0.1076 0.16

7 118.7168 - 33.4884 567.845 - 809.8092 0.1424 0.1004

8 118.7168 - 40.7086 - 1434.7867 1194.5721 0.1004 0.1204

9 118.7168 - 48.6651 - 1478.2212 1242.5769 0.1004 0.1204

10 118.7168 - 52.5492 - 1493.5972 1261.4263 0.1004 0.1204

11 118.7168 - 53.416 1258.1454 - 1488.1854 0.1204 0.1004

12 118.7168 - 53.5389 - 1473.3566 1245.0186 0.1004 0.1204

13 118.7168 - 52.606 1224.062 - 1451.4881 0.1204 0.1004

14 118.7168 - 51.9954 1207.1518 - 1434.31 0.1204 0.1004

Table 5 Coefficients of

Msea under different

amplitudes

Amplitude (�) A1 A2 A4 A5 d4 d5

1 73.3386 - 596.9666 376.0756 780.9517 0.8004 0.2772

2 73.3386 - 568.0822 1345.1051 - 430.3009 0.2332 0.1004

3 73.3386 - 733.3883 - 357.2629 1301.5371 0.1004 0.2484

4 73.3386 - 441.3449 - 1427.1263 1216.5314 2.12 0.3668

5 73.3386 - 660.4305 - 821.3399 1120.2697 2.12 0.3416

6 73.3386 - 925.8215 147.5772 914.6707 0.1004 0.3748

7 73.3386 - 919.1351 840.2294 228.3741 0.4024 0.1004

8 73.3386 - 904.9328 286.57 776.5374 0.1004 0.4204

9 73.3386 - 893.9194 324.2686 723.4956 0.1004 0.4256

10 73.3386 - 883.6051 367.3299 670.1928 0.1004 0.4404

11 73.3386 - 814.5074 402.9647 567.69 0.1004 0.4204

12 73.3386 - 634.6006 403.4069 405.7245 0.3004 0.1004

13 73.3386 534.6521 - 2668.2071 822.3676 2.12 0.1612

14 73.3386 1633.7856 875.9644 - 5224.0231 0.1524 2.1
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5 Influence of geometric nonlinearity on post-

flutter responses

The geometric nonlinear effects of long-span suspen-

sion bridges mainly originate from the following

aspects: (1) stress-stiffening effect, which mainly

includes the gravity stiffness of the main cable and

the geometric stiffness of the suspender caused by the

dead load of the bridge deck. (2) Sag effect of the main

cable caused by the dead load of the bridge deck,

which will result in a certain reduction of the stiffness

of the main cable. (3) Large deformation effect due to

the action of wind load, where the structural equilib-

rium equation should be re-established at the position

after each minor deformation. The influence of the

stress stiffening effect can be taken into account by

setting ‘‘STIFF, ON’’ when the transient analysis was

conducted in the ANSYS software. Besides, when

‘‘NLGEOM, ON’’ is used, both the stress stiffening

effect and the large deformation effect are included,

though this case is labeled as large deformation effect

hereafter in the transient analysis.

5.1 3D nonlinear flutter analysis for a suspension

bridge with four main cables

It can be seen from Table 1 that the frequency ratio of

T–S-1 to V–S-1 is 1.548, which is much less than the

frequency ratio of T–A-1 to V–A-1, 2.384. Besides,

the frequency of T–A-1 is higher than that of T–S-1.

Therefore, the nonlinear flutter of this bridge is

dominated by the first symmetric torsional modal

branch (or called the 7-th modal branch). To investi-

gate the influence of geometric nonlinearity on post-

flutter responses, six different cases of 3D nonlinear

flutter analysis are conducted, as shown in Table 7. It

should be noted that the full-mode nonlinear flutter

analysis (i.e., cases 1 * 2) is based on the fitted FDs.

Therefore, the influence of geometric nonlinearity on

nonlinear flutter can be investigated and quantified by

comparing the results of frequency-domain analysis

(i.e., cases 1 * 2) and time-domain analysis (i.e.,

cases 3 * 6). In addition, the classic Rayleigh

damping model is adopted in cases 1 * 6 and the

Rayleigh damping coefficient a and b is determined

based on mode 4 (V–S-1) and mode 7 (T–S-1). It

should be noted that both the stress stiffening effect

and large deformation effect are considered in cases 4

and 6 though labeled as large deformation effect

hereafter.

The damping mechanism of real bridge structure is

very complicated. On the one hand, it is too difficult to

obtain the structural damping characteristics of real

bridge structure under large amplitudes, especially the

structural damping ratio of torsional modes under

large torsional amplitudes. On the other hand, there is

no mathematical model that can describe the evolution

mechanism of nonlinear damping for real bridge

structures under large amplitudes currently. Therefore,

it is almost impossible to accurately simulate the post-

flutter response of a real long-span bridge at present.

However, in general, with the increase in amplitude,

Table 6 Coefficients of

Mseh under different

amplitudes

Amplitude (�) A1 A2 A4 A5 d4 d5

1 0 374.0272 676,028.8442 - 676,587.1025 0.9324 0.9328

2 0 358.7005 120,573.5838 - 120,947.3636 0.6192 0.6204

3 0 277.4826 28.8825 - 284.2366 0.1004 0.98

4 0 160.4117 - 2779.5262 2704.1972 0.3204 0.3124

5 0 140.6502 2446.6648 - 2503.9017 0.274 0.2804

6 0 143.0279 42,515.505 - 42,577.1678 0.2948 0.2952

7 0 141.2115 - 21,336.6057 21,276.063 0.2912 0.2904

8 0 116.4468 - 69.733 29.0968 0.3568 0.1004

9 0 - 106.3774 1,079,571.823 - 1,079,080.344 1.3252 1.3248

10 0 80.6058 230.3214 - 243.0658 0.1004 0.1204

11 0 161.2068 - 110.8085 35.0984 0.56 0.1004

12 0 285.4071 - 262.6829 55.6201 0.78 0.1004

13 0 245.2003 76,056.7753 - 76,212.0002 0.4048 0.4056

14 0 287.4627 177,688.7311 - 177,874.5846 0.4084 0.4088
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(a) *

2A                                                                             (b) *

3A

(c) *

2H                                                                               (d) *

3H

(e) *

1A                                                                              (f) *

4A

(g) *

1H  and *

4H

Fig. 9 Experimental versus

fitted values of FDs under

different amplitudes

123

6828 K. Li et al.



the frictional energy dissipation at the joints of

components of real structure will become more

significant, and thus, the structural damping will

increase with the increase in amplitude. Accordingly,

it is conservative to evaluate the post-flutter responses

of real structures by adopting the linear damping ratio

given by the wind resistance design specifications. The

present study is not intended to completely and

accurately investigate the post-flutter behavior of real

bridges, but rather to more truly evaluate the post-

(a) Mode 4 (V-S-1) (b) Mode 7 (T-S-1)

Fig. 10 Bridge mode shapes

(a) Torsional stable amplitude                               (b) Vertical stable amplitude 

Fig. 11 Stable amplitude responses calculated based on the experimental and fitted FDs

Table 7 Cases of 3D

nonlinear flutter analysis
Case Method ns (%) Geometric nonlinear effect

Case 1 Frequency-domain analysis (full-mode) 0 –

Case 2 Frequency-domain analysis (full-mode) 0.3 –

Case 3 Time-domain analysis 0 Stress stiffening effect

Case 4 Time-domain analysis 0 Large deformation effect

Case 5 Time-domain analysis 0.3 Stress stiffening effect

Case 6 Time-domain analysis 0.3 Large deformation effect
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flutter response, quantify the impact of geometric

nonlinearity on the post-flutter responses and reveal

the corresponding mechanism. In addition, it should

be noted that the Rayleigh damping will change with

the displacement due to the structural stiffness Ks in

Eq. (13) changing with the displacement under large

motion amplitude. Therefore, individually quantifying

the influence of geometric nonlinearity on nonlinear

flutter can only be based on the cases without

considering the structural damping (i.e., cases 1, 3,

4), which will be discussed later.

The nonlinear post-flutter response is greatly

affected by the calculation time step Dt in the time-

domain analysis, as shown in Fig. 12. It can be found

that when Dt is 0.06 s or 0.02 s, the torsional

stable amplitude is about 3.7� or 4.6�, respectively,
with a difference of 0.9�. A relatively large time step

Dt will underestimate the amplitude. However, when

Dt is 0.01 s or 0.005 s, the torsional stable amplitude is

about 4.91� or 4.96�, respectively, with a very slight

difference. Considering the calculation cost, the time

step Dt is taken as 0.01 s in the following time-domain

analysis.

5.2 Influence of geometric nonlinearity

on stable amplitude

Figure 13 displays the time history of displacement at

the mid-span obtained by the time-domain analysis

method and a typical bending-torsional coupled LCO

can be observed. For the torsional displacement, the

evolution of amplitude considering the stress stiffen-

ing effect agree well with that considering the large

deformation effect, and the mean value of the response

is basically zero. For the vertical displacement, the two

are in good agreement at the small amplitude stage but

gradually deviates as the amplitude increases. Besides,

it can be seen that the mean value of the vertical

displacement is close to zero at the small amplitude

stage and increases gradually from zero as the

amplitude increases, indicating that the bridge deck

is gradually lifted up. Relatively speaking, the bridge

deck considering large deformation effect is lifted up

higher due to the more significant geometric nonlin-

earity compared with that only considering the stress

stiffening effect. It should be noted that the behavior

with a nonzero mean vibration cannot be predicted by

the frequency-domain method because the geometric

nonlinear effect cannot be considered (though aero-

dynamic nonlinear effect is included).

The evolution of the mid-span stable amplitudes

with wind speed for cases 1 * 6 in Table 7 is shown

in Fig. 14. For the cases without structural damping

(i.e., cases 1, 3, and 4), it can be observed that the

stable amplitudes obtained by the frequency-domain

method (i.e., case 1) agree well with that obtained by

the time-domain method (i.e., case 3 and 4) when the

amplitude is small (\ 4�) due to the insignificant

nonlinear effect. With the further increase of

stable amplitude ([ 4�), the results of case 3 and case

4 are gradually smaller than those of case 1, and this

trend is more obvious in case 4 than in case 3. It

indicates that the geometric nonlinear effect induced

by the large deformation becomes more significant

than that induced by the stress stiffening with the

increase in amplitude. Besides, the results of case 4

become smaller and smaller than those of case 1 with

the increase of stable amplitude, which indicates that

the large deformation effect becomes more and more

significant with the increase in vibration amplitude.

Figure 15 further compares the stable amplitudes

along the span of the bridge for cases 1, 3 and 4 when

U = 32 m/s, and it can be seen that not only the

amplitudes of the full span are reduced but also the

Fig. 12 Effect of time step

Dt on post-flutter response

(mid-span, U = 30 m/s,

ns = 0%)

123

6830 K. Li et al.



amplitude shape of the bridge deck is changed

significantly due to the large deformation effect.

In summary, the large deformation effect can

significantly reduce the stable amplitudes of post-

flutter when the amplitude is large enough, and thus,

the large deformation effect should be taken into

account when the amplitude is relatively large.

However, it should be noted that although the

(a) Torsional displacement                                                (b) Vertical displacement

Fig. 13 Time histories of displacements at mid-span for cases 3 and 4 (U = 28 m/s; ns = 0)

(a) Torsional stable amplitude                                    (b) Vertical stable amplitude 

Fig. 14 Evolution of stable amplitude at mid-span with wind speed for cases 1 * 6

(a) Torsional stable amplitude                                    (b) Vertical stable amplitude 

Fig. 15 Stable amplitudes along the span of the bridge for cases 1, 3, and 4 (U = 32 m/s; ns = 0)
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geometric nonlinearity has little influence on the

stable amplitudes when the vibration amplitude is

small (\ 4�), it has a significant influence on the mean

value of the vertical displacement, as shown in

Fig. 13. Therefore, it cannot be concluded that the

geometric nonlinearity can be ignored when the

amplitude of this bridge is less than 4�, which will

be further discussed later.

For the cases with structural damping ratio ns =
0.3% (i.e., cases 2, 5, and 6), it can be observed from

Fig. 14 that the stable amplitudes of case 2 agree well

with that of case 5 when the amplitude is small (\ 4�).
However, as the amplitude further increases ([ 4�),
the stable amplitudes of case 5 become gradually

smaller than those of case 2. After the large deforma-

tion effect is considered (i.e., case 6), the stable am-

plitudes are reduced to a greater extent. Besides, even

if the amplitude is small (\ 4�), the stable amplitude of

case 6 is much smaller than that of case 2.

The above analysis shows that the influence of

geometric nonlinearity on post-flutter responses is

different between considering and not considering

structural damping. To investigate the reason, Figs. 16

and 17 further display the free-decay responses of

structural mode 4 (V–S-1) and mode 7 (T–S-1),

respectively, under a large initial excitation. For mode

4, it can be found that the displacement responses

between considering stress stiffening effect and large

deformation effect are in good agreement. Moreover,

the structural damping ratio of mode 4 remains at

about 0.3% and hardly varies with the vertical

amplitude. For mode 7, the damping ratio within 3�
is maintained at 0.3% when only the stress stiffening

effect is considered. With the further increase of

amplitude, the damping ratio starts to increase and

reaches about 0.45% when the vibration amplitude

reaches 3.7�. After the large deformation effect is also

taken into account, the damping ratio within 0.5� is

maintained at 0.3% and then the damping ratio

increases rapidly with the increase in amplitude.

When the amplitude reaches 2.7�, the damping ratio

even increased to 1.7%. The above analysis indicates

that the stress stiffening effect and large deformation

effect have little influence on the vertical stiffness of

the bridge deck but have a great influence on the

torsional stiffness of suspension bridges. As a result,

the Rayleigh damping in the torsional direction

increases significantly with the increase in amplitude,

which is one of the main reasons for the sharp decrease

in the stable amplitude after the large deformation

effect is considered.

Although it is known that the structural damping of

real bridges will increase with the increase in vibration

amplitude due to various factors, whether the above-

mentioned amplitude-dependent behavior of Rayleigh

damping truly describes a physical damping mecha-

nism of real bridges still needs to be validated by

relevant research. Therefore, the physical mechanism

for the influence of geometric nonlinearity on the post-

flutter will be mainly discussed among the cases

without structural damping.

             (a) Vertical displacement                                            (b) Damping ratio vs vertical amplitude

Fig. 16 Characteristics of free-decay responses at the mid-span of structural mode 4
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5.3 Influence of geometric nonlinearity on mean

displacements

Figure 18 displays the evolution of the mid-span mean

displacement with wind speed at the sable amplitude

stage. It can be found that both the mean values of the

vertical displacement and torsional displacement exhibit

nonzero behavior, and they both increase with the

increase in stable amplitude. Since the mean torsional

displacement is negligible, it will not be discussed in

depth. Careful observation shows that even when the

(a) Torsional displacement                                      (b) Damping ratio vs torsional amplitude

Fig. 17 Characteristics of free-decay responses at the mid-span of structural mode 7

      (a) Mean torsional displacement                                        (b) Mean vertical displacement

Fig. 18 Evolution of mean displacement at mid-span with wind speed at the stable amplitude stage

Fig. 19 Mean vertical displacement along the bridge’s span at

the stable amplitude stage (U = 32 m/s; ns = 0)
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stable amplitude is small (within 4�), there is a relatively
significant mean vertical displacement. Therefore,

although the geometric nonlinearity has a small influence

on the stable amplitudewithin a small vibration amplitude

(within 4� here) but will cause relatively significant mean

vertical displacement. From this point of view, even if the

vibration amplitude is relatively smaller, geometric

nonlinearity also should be considered. The larger the

amplitude, the more significant the geometric nonlinear-

ity and thus the larger the mean vertical displacement.

Figure 19 further shows the mean vertical displacement

along the bridge’s span at the stable amplitude stagewhen

U = 32 m/s. It can be found that the mean vertical

displacement of the bridge deck forms an uplift shape that

approximates the first symmetrical vertical bendingmode

shape. In addition, themean vertical displacement of case

4 is larger than that of case 3 because the geometric

nonlinear effect of large deformation is much stronger

than that of stress stiffening.

5.4 Super-harmonic resonance behavior induced

by geometric nonlinearity

The main physical mechanism of the geometric

nonlinear effect reducing the stable amplitudes will

be further discussed in this section from the perspec-

tive of the whole evolution process of 3D responses.

5.4.1 Cases without structural damping

As mentioned earlier, the influence of geometric

nonlinearity on post-flutter will be mainly discussed

based on the cases without structural damping.

Figures 20 and 21 show the time–frequency spectra

of the corresponding responses shown in Fig. 13.

When only the stress stiffening effect is considered

(i.e., Fig. 20), it can be seen that a weak third harmonic

frequency component 3f0 (f0 is the fundamental

harmonic frequency of flutter) gradually appears in

the torsional displacement with the increase of ampli-

tude (amplitude increases with time, shown in

Fig. 13), while there are no higher harmonic fre-

quency components in the vertical displacement. After

the large deformation effect is taken into account (i.e.,

Fig. 21), not only the frequency component 3f0 in the

torsional displacement becomes more significant, but

also the significant higher harmonic frequency com-

ponents 2f0, 3f0 and 4f0 appear in the vertical

displacement at the same time. When the wind speed

is further increased to 32 m/s, as shown in Fig. 22, one

can observe that both the torsional and vertical

amplitudes considering large deformation effect grad-

ually become smaller than those only considering

stress stiffening effect when the amplitudes increase to

a certain extent. Similarly, Figs. 23 and 24 further give

the time–frequency spectra of the corresponding

responses in Fig. 22. It can be found that the higher

harmonic frequency components in the responses have

been enhanced compared with Figs. 20 and 21 due to

the larger vibration amplitudes. This enhancement

effect is mainly featured by increasing the amplitude

of higher harmonic frequency components, as well as

the emergence of new higher harmonic frequency

components.

Fig. 20 Time–frequency spectra of the corresponding responses considering stress stiffening effect in Fig. 13
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Fig. 21 Time–frequency spectra of the corresponding responses considering large deformation effect in Fig. 13

(a) Torsional displacement                                                  (b) Vertical displacement

Fig. 22 Time histories of displacements at mid-span of case 3 and case 4 (U = 32 m/s; ns = 0)

Fig. 23 Time–frequency spectra of the corresponding responses considering stress stiffening effect in Fig. 22
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The evolution of 3D vibration shape of the bridge

deck in one vibration cycle at the stable amplitude

stage is further shown in Figs. 25 and 26, in which the

different lines represent the displacement of the bridge

deck at different times. When only the stress stiffening

effect is considered (i.e., Fig. 25), one can observe that

the vibration in the torsional direction is mainly

characterized by a T–S-1 mode shape but with

significant higher-order torsional vibration shapes

involved (such as the third symmetric torsional mode

shape) at small torsional displacements. In addition,

the vibration in the vertical direction is mainly

characterized by a shape that couples V–S-1 and V–

S-2, which indicates that the structural mode 6 (V–S-

2) also contributes to the post-flutter. A more detailed

discussion can be found in our previous study [49].

Similarly, the significant higher-order vertical vibra-

tion shapes (such as the third symmetric vertical mode

shape) can also be observed at small vertical displace-

ments. After the large deformation effect is taken into

account (i.e., Fig. 26), it can be found that the

vibration shape in the torsional direction has deviated

far from the T–S-1 shape (mainly deviates from the

sinusoidal waveform). Besides, the more significant

higher-order torsional and vertical vibration shapes

are observed in the torsional and vertical vibration

Fig. 24 Time–frequency spectra of the corresponding responses considering large deformation effect in Fig. 22

(a) Torsional displacement (b) Vertical displacement

Fig. 25 3D vibration shape of the bridge deck in one vibration cycle at the stable amplitude stage (U = 32 m/s; ns = 0; stress stiffening

effect)
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displacements, respectively. Another noteworthy

aspect is that the asymmetry of the vertical vibration

is also becoming more significant compared with that

only considering stress stiffening effect. This asym-

metry is mainly characterized by the amplitude of the

upward vibration being significantly larger than that of

the downward vibration, as well as the ‘‘saddle shape’’

formed by the downward vibration being significantly

deeper than that formed by the upward vibration.

In fact, there should be a correlation between the

high-order vibration shapes in the displacement

responses and the higher harmonic frequency compo-

nents in the response spectra. Thus, the displacement

responses considering large deformation effect can be

(a) Torsional displacement                                                  (b) Vertical displacement

Fig. 26 3D vibration shape of the bridge deck in one vibration cycle at the stable amplitude stage (U = 32 m/s; ns = 0; large

deformation effect)

(a)Mid-span displacement component   (b) Spectrum of displacement component (c)Vibration shape of displacement component

Fig. 27 Characteristics of torsional displacement components (U = 32 m/s; ns = 0; large deformation effect)
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further decomposed according to the frequency com-

ponents in the response spectra. Figures 27 and 28

display the displacement components corresponding

to the frequency components in response spectra at

wind speed of 32 m/s. For the torsional displacement,

it can be seen that the displacement components with

frequencies 3f0 and 5f0 are almost zero at small

vibration amplitude stage but start to increase from

zero after the amplitude of displacement component

with the fundamental harmonic frequency f0 reaches

about 1.5�. When the displacement component with

frequency f0 gets into a stable vibration stage, so do the

other displacement components with higher harmonic

frequencies. Hence, it can be concluded that the

geometric nonlinear effect should be considered in the

nonlinear flutter analysis of this bridge when the

amplitude at mid-span reaches about 1.5�. Besides,
one can observe that the vibration shape correspond-

ing to fundamental harmonic frequency f0 is the mode

shape T–S-1; the vibration shape corresponding to

frequency 3f0 is close to the mode shape T–S-3; and

the vibration shape corresponding to frequency 5f0 is a

higher-order torsional mode shape. Another notewor-

thy aspect is that the stable torsional amplitude at mid-

span of the displacement component with frequency

3f0 is about 0.35�, accounting for about 6.3% of 5.5�
(the stable amplitude of the displacement component

with frequency f0). However, the stable torsional

amplitude corresponding to frequency 5f0 is a small

amount. For the vertical displacement, the vibration

(a)Mid-span displacement component   (b) Spectrum of displacement component   (c)Vibration shape of displacement component

Fig. 28 Characteristics of vertical displacement components (U = 32 m/s; ns = 0; large deformation effect)
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shapes corresponding to higher harmonic frequency

components are the higher-order vertical mode shapes,

which are basically similar to the torsional displace-

ment. Besides, there is a non-oscillatory component

with zero frequency (see in the top plots of Fig. 28) in

the vertical displacement, which is caused by the

geometric nonlinear effect and cannot be predicted by

the frequency-domain method.

To further investigate the reasons for the reduction

of nonlinear flutter amplitude caused by geometric

nonlinearity. Taking U = 32 m/s of case 4 as an

example, the work done by aerodynamic forces on

each displacement component was calculated sepa-

rately. According to Figs. 27 and 28, the original

torsional displacement a and vertical displacement h

can be decomposed as:

a � a0 þ a1 þ a2 þ a3 þ a5; ð38Þ

h � h0 þ h1 þ h2 þ h3 þ h4; ð39Þ

in which d0 (d = a or h) represents the displacement

component with frequency 0, di (d = a or h;

i = 1,2,3���) represents the displacement component

with frequency if0. It can be seen from Fig. 29 that the

time histories and spectra of original displacement

responses all can be well reconstructed by the sum of

all displacement components shown in Figs. 27 and

28. As shown in Fig. 29, Tn represents one vibration

period of the original torsional displacement at mid-

span and tn represents the position of Tn in the

dimension of time. The works Wai and Whi

(i = 1,2,3���) done by aerodynamic forces on all

displacement components of all nodes within one

vibration period Tn are calculated. The specific

calculation formulas are given as follows:

Wai ¼
Z L

0

Z tþTn

t

Mse;nonðxÞ _aiðxÞdtdx; i ¼ 1; 2; 3 � � �ð Þ;

ð40Þ

Whi ¼
Z L

0

Z tþTn

t

Lse;nonðxÞ _hiðxÞdtdx; i ¼ 1; 2; 3 � � �ð Þ;

ð41Þ

in which L represents the length of the bridge deck.

The evolution of works done by aerodynamic forces

on all displacement components within one period Tn
with time tn is given in Fig. 30. One can found that the

airflow always does positive work on a1 and h1 at the

stable amplitude stage (i.e., the wind inputs energy to

the fundamental harmonic vibration). On the other

hand, the airflow always does negative work on a2, a3,
a5, h2, h3 and h4 at the stable amplitude stage (i.e., the

energy of super-harmonic vibrations is dissipated by

the wind). Moreover, it can be found that the energy is

mainly dissipated through the third super-harmonic

torsional vibration (i.e., a3).
For a better understanding, the following simple

explanation is provided. As shown in Figs. 15, 27, 28,

and 31 (the fundamental harmonic frequency f0 is

given for cases 3 and 4 in Fig. 31), the frequency and

vibration shape of fundamental harmonic vibration of

case 4 are basically consistent with that of case 1, so

(a) Time histories of displacement responses                          (b) Spectra of displacement responses 

Fig. 29 Comparison of original and reconstructed displacement responses at mid-span (U = 32 m/s, case 4)
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that the evolution of fundamental harmonic vibration

of case 4 should be basically consistent with case 1.

However, as shown in Figs. 14 and 27, the stable am-

plitude of case 4 is only about 5.6�, which is smaller

than that of case 1 (i.e., 8.8�), so that the wind is

constantly inputting energy into the fundamental

harmonic vibration at stable amplitude of 5.6� because
its aerodynamic damping is still negative. For the

super-harmonic vibrations, their aerodynamic damp-

ing is positive since the reduced wind speed (U/bf) of

them is much less than that of the fundamental

harmonic vibration, so that the energy of them is

dissipated by the wind. Besides, since the super-

harmonic vibrations are induced by structural geo-

metric nonlinearity, the energy caused super-harmonic

vibrations must have come from the structure itself

(i.e., the preexisting fundamental harmonic vibration).

As such, the super-harmonic vibrations are equivalent

to adding a positive structural damping effect to the

fundamental harmonic vibration, which thus causes a

reduction in the amplitude of post-flutter and stabi-

lized at 5.6�.
According to the above analysis, the geometric

nonlinear effect will become more and more signif-

icant with the increase of vibration amplitude and thus

will induce a super-harmonic resonance behavior.

This behavior is mainly characterized by the higher

harmonic frequencies vibrations with higher-order

mode shapes involved in the vertical and torsional

displacement responses. In addition, the greater the

amplitude, the more significant the super-harmonic

resonance behavior. The energies of the vibrations

with higher harmonic frequencies (i.e., the super-

harmonic vibrations) originate from the preexisting

vibration with fundamental harmonic frequency (i.e.,

the fundamental harmonic vibration). However, the

(a) Torsional displacement components                                     (b) Vertical displacement components

Fig. 30 The evolution of works done by aerodynamic forces within one period Tn with time tn (U = 32 m/s, case 4)

Fig. 31 Frequency of nonlinear flutter for cases 1, 3 and 4

Fig. 32 Schematic diagram for typical nonlinear flutter

responses
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absorbed energies of super-harmonic vibrations will

be continuously dissipated by the airflow since the

aerodynamic damping of the vibrations with higher

harmonic frequencies is positive due to their lower

reduced wind speed. Consequently, the super-har-

monic vibrations play a role of absorbing energy and

reducing vibration (similar to tuned mass damper

effect) for the fundamental harmonic vibration, which

is the main physical mechanism for the reduction in

the amplitude of post-flutter response (dominated by

the fundamental harmonic vibration) after the geo-

metric nonlinear effect is considered. Besides, it is

worth noting that the similar super-harmonic vibration

phenomenon was also reported recently in a numerical

simulation study on the 3D full-bridge flutter of

Tacoma Narrows Bridge [58] (both aerodynamic and

geometric nonlinearities were considered), as well as a

wind tunnel test study on the large amplitude flutter of

a full-bridge aeroelastic model [59].

As mentioned in Introduction, the future perfor-

mance-based fortification criteria against nonlinear

flutter will focus on the acceptable maximum ampli-

tude Amax
a of post-flutter LCO rather than the critical

wind speed Ucr [29, 34, 36, 37], as shown in Fig. 32.

Generally speaking, the determination of accept-

able maximum amplitude Amax
a for a specific bridge

relies on the accurate estimation of displacement,

acceleration and stress responses during post-flutter

LCO. Therefore, on the one hand, since both the

structural and aerodynamic nonlinear effects can be

taken into account simultaneously by the developed

nonlinear numerical scheme in this study, the more

accurate post-flutter responses of bridges can be

obtained, which is the foundation for establishing the

above performance-based fortification criteria against

flutter; on the other hand, it can be seen from the above

analysis that the large deformation effect has a

significant impact on the stable amplitudes and 3D

vibration shape of nonlinear flutter, which indicates

that the large deformation effect should be taken into

account during the nonlinear flutter analysis of bridges

and the determination of Amax
a in the future perfor-

mance-based fortification criteria. Meanwhile, since

the large deformation effect can significantly reduce

the amplitude of post-flutter, the more wind-resistant

potentialities can be exploited and thus also encour-

aged the confidence in the establishment of the

performance-based fortification criteria against flutter

in the future.

Additionally, the above analysis results still need

further verification from wind tunnel tests of a three-

dimensional full-bridge aeroelastic model. However,

this verification work is very challenging at present,

because how to accurately simulate the geometric

nonlinearity of real bridges in aeroelastic model and

how to identify and quantify other complex nonlinear

damping behaviors in aeroelastic model are still very

difficult works so far.

5.4.2 Cases with structural damping

To validate that the above-mentioned super-harmonic

resonance behavior induced by geometric nonlinearity

is not a special behavior existing in the undamped

structure, investigating the response characteristics of

the damped structure is necessary. To this end,

Fig. 33 Time histories of displacements at mid-span of case 5 and case 6 (U = 42 m/s; ns = 0.3%)
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Figs. 33, 34, and 35 show the displacement responses

and the corresponding time–frequency spectra when

ns = 0.3% andU = 42 m/s. It can be found that even if

the stable amplitude considering large deformation

effect is small (the torsional stable amplitude is about

1.7�), very weak higher harmonic frequency compo-

nents in the response can still be observed, which

indicates that there is a weak super-harmonic reso-

nance behavior. In addition, it should be noted that the

large reduction of amplitude after considering the

large deformation effect is mainly caused by the

increase of Rayleigh damping due to the geometric

nonlinear effect, as shown in Fig. 17b, but has little to

do with the weak super-harmonic resonance.

6 Conclusions

In this study, a full-mode coupled nonlinear flutter

analysis method and a nonlinear numerical scheme in-

tegrating a 3D nonlinear finite element model (con-

sidering geometric nonlinearity) and a time-dependent

nonlinear self-excited force model (considering aero-

dynamic nonlinearity) were developed to investigate

the influence of geometric nonlinearity on post-flutter

responses. The major conclusions are as follows:

(1) The proposed time-dependent nonlinear self-

excited forces model can well describe the

nonlinear and unsteady characteristics of the

Fig. 34 Time–frequency spectra of the corresponding responses considering stress stiffening effect in Fig. 33 (U = 42 m/s;

ns = 0.3%)

Fig. 35 Time–frequency spectra of the corresponding responses considering large deformation effect in Fig. 33 (U = 42 m/s;

ns = 0.3%)
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self-excited force under large amplitude vibra-

tions. The model can be combined with nonlin-

ear finite element model to simulate the whole

evolution process of 3D post-flutter under the

coupling effect of structural and aerodynamic

nonlinearities.

(2) The geometric nonlinear effect will become

more and more significant with the increase of

vibration amplitude and thus will induce a

super-harmonic resonance behavior. This

behavior is mainly characterized by the higher

harmonic frequencies vibrations with higher-

order mode shapes involved in the vertical and

torsional displacement responses; and the larger

the amplitude, the more significant the super-

harmonic resonance behavior. Besides, the

geometric nonlinear effect will also cause a

significant uplifting of the bridge deck in the

vertical direction during 3D nonlinear flutter

process.

(3) The energies of the vibrations with higher

harmonic frequencies (i.e., the super-harmonic

vibrations) originate from the preexisting vibra-

tion with fundamental harmonic frequency (i.e.,

the fundamental harmonic vibration). However,

the absorbed energies of super-harmonic vibra-

tions will be continuously dissipated by the

airflow since the aerodynamic damping of the

vibrations with higher harmonic frequencies is

positive due to their lower reduced wind speed.

Consequently, the super-harmonic vibrations

play a role of absorbing energy and reducing

vibration (similar to tuned mass damper effect)

for the fundamental harmonic vibration, which

is the main physical mechanism for the reduc-

tion in the amplitude of post-flutter response

(dominated by the fundamental harmonic vibra-

tion) after the geometric nonlinear effect is

considered.

(4) The geometric nonlinear behaviors, such as

stress stiffening effect and large deformation

effect, cannot be ignored in the 3D nonlinear

flutter analysis of long-span suspension bridges.

Otherwise, the post-flutter responses may be

overestimated. The large deformation effect can

induce a more significant super-harmonic reso-

nance behavior compared with only considering

the stress stiffening effect and thus further

reduce the amplitude of post-flutter more

significantly. For the long-span suspension

bridge studied in this paper, a weak super-

harmonic resonance behavior starts to appear

when the torsional amplitude at mid-span is only

greater than 1.5�, which means that the geomet-

ric nonlinear effect may be worth considering at

this time.

In view of the shortcoming of Rayleigh damping

model in 3D nonlinear flutter analysis, a nonlinear

structural damping model suitable for real bridges

should be developed in future work, and the damaging

stress level of critical components of long-span

bridges during the post-flutter should be further

investigated. Besides, the symbol calculation method

based on neural networks proposed by Zhang et al.

[60–63] recently opens up a general symbolic com-

puting path for the analytic solution of nonlinear

partial differential equation, which may also be used

for the analytic solution of the nonlinear wind-bridge

coupled system described in this study in the future

work.

Acknowledgements This work described in this paper is

supported by the National Natural Science Fund of China (No.

52308480; 52178451; 52178450; 52178452). The authors

would also like to gratefully acknowledge the support from

the Open Fund of Key Laboratory of Bridge Engineering Safety

Control by Department of Education (Changsha University of

Science & Technology) (No.12KB01).

Author contributions KL involved in conceptualization,

methodology, formal analysis, investigation, funding

acquisition, and writing—original draft. YH involved in

conceptualization, methodology, funding acquisition,

supervision and writing-review & editing. CSC involved in

methodology, investigation, and writing—review and editing.

WZ involved in writing—review and editing. JS involved in

validation and visualization. HY involved in validation and

visualization.

Funding The authors have not disclosed any funding.

Availability of data and material All data generated or

analyzed during this study are included in this article.

Declarations

Conflict of interest The authors declare that they have no

known competing financial interests or personal relationships

that could have appeared to influence the work reported in this

paper.

123

A nonlinear numerical scheme to investigate the influence of geometric nonlinearity 6843



References

1. Chen, X., Kareem, A.: Revisiting multimode coupled bridge

flutter: some new insights. J. Eng. Mech. 132(10),
1115–1123 (2006)

2. Chen, X.: Improved understanding of bimodal coupled

bridge flutter based on closed-form solutions. J. Struct. Eng.

133(1), 22–31 (2007)

3. Matsumoto, M.: Aerodynamic damping of prisms. J. Wind

Eng. Ind. Aerodyn. 59, 159–175 (1996)

4. Matsumoto, M., Daito, Y., Yoshizumi, F., Ichikawa, Y.,

Yabutani, T.: Torsional flutter of bluff bodies. J. Wind Eng.

Ind. Aerod. 69, 871–882 (1997)

5. Matsumoto, M., Kobayashi, Y., Shirato, H.: The influence

of aerodynamic derivatives on flutter. J. Wind Eng. Ind.

Aerodyn. 60, 227–239 (1996)

6. Yang, Y., Wu, T., Ge, Y., Kareem, A.: Aerodynamic sta-

bilization mechanism of a twin box girder with various slot

widths. J. Bridge Eng. 20(3), 04014067 (2015)

7. Agar, T.: The analysis of aerodynamic flutter of suspension

bridges. J. Comput. Struct. 30(3), 593–600 (1988)

8. Agar, T.: Aerodynamic flutter analysis of suspension

bridges by a modal technique. J. Eng. Struct. 11, 75–82
(1989)

9. Namini, A., Albrecht, P., Bosch, H.: Finite element based

flutter analysis of cable suspended bridges. J. Struct. Eng.

118(6), 1509–1526 (1992)

10. Jain, A., Jones, N., Scanlan, R.: Coupled flutter and buf-

feting analysis of long span bridges. J. Struct. Eng. 122(7),
716–725 (1996)

11. Chen, X., Matsumoto, M., Kareem, A.: Aerodynamic cou-

pling effects of flutter and buffeting of bridges. J. Eng.

Mech. 126(1), 17–26 (2000)

12. Ge, Y.J., Tanaka, H.: Aerodynamic flutter analysis of cable-

supported bridges by multi-mode and full-mode approa-

ches. J. Wind Eng. Ind. Aerodyn. 86(2), 123–153 (2000)

13. Hua, X.G., Chen, Z.Q.: Full-order and multimode flutter

analysis using ANSYS. Finite Elem. Anal. Des. 44(9–10),
537–551 (2008)

14. Scanlan, R.H., Tomko, J.: Airfoil and bridge deck flutter

derivatives. J. Soil Mech. Found. Div. 97(6), 1717–1737
(1971)

15. Scanlan, R.: Amplitude and turbulence effects on bridge

flutter derivatives. J. Struct. Eng. 123(2), 232–236 (1997)

16. Noda, M., Utsunomiya, H., Nagao, F., Kanda, M., Shiraishi,

N.: Effects of oscillation amplitude on aerodynamic

derivatives. J. Wind Eng. Ind. Aerodyn. 91, 101–111 (2003)
17. Chen, Z.Q., Yu, X.D., Yang, G., Spencer, B.F., Jr.: Wind-

induced self-excited loads on bridges. J. Struct. Eng.

131(12), 1783–1793 (2005)

18. Mannini, C., Sbragi, G., Schewe, G.: Analysis of self-ex-

cited forces for a box-girder bridge deck through unsteady

RANS simulations. J. Fluids Struct. 63, 57–76 (2016)

19. Xu, F., Ying, X., Zhang, Z.: Effects of exponentially mod-

ified sinusoidal oscillation and amplitude on bridge deck

flutter derivatives. J. Bridge Eng. 21(5), 06016001 (2016)

20. Matsumoto, M., Shirato, H., Hirai, S.: Torsional flutter

mechanism of 2-D H-shaped cylinders and effect of flow

turbulence. J. Wind Eng. Ind. Aerod. 41(1–3), 687–698
(1992)

21. Daito, Y., Matsumoto, M., Araki, K.: Torsional flutter

mechanism of two-edge girders for long-span cable-stayed

bridge. J. Wind Eng. Ind. Aerod. 90, 2127–2141 (2002)

22. Gao, G.Z., Zhu, L.D., Han, W.S., Li, J.W.: Nonlinear post-

flutter behavior and self-excited force model of a twin-side-

girder bridge deck. J. Wind Eng. Ind. Aerod. 177, 227–241
(2018)

23. Tang, Y., Hua, X.G., Chen, Z.Q., Zhou, Y.: Experimental

investigation of flutter characteristics of shallow p section at
post-critical regime. J. Fluid Struct. 88, 275–291 (2019)

24. Michelin, S., Choquel Amandolese, M.: Low speed flutter

and limit cycle oscillations of a two-degree-of-freedom flat

plate in a wind tunnel. J. Fluid Struct. 43, 244–255 (2013)

25. Pigolotti, L., Mannini, C., Bartoli, G.: Experimental study

on the flutter-induced motion of two-degree-of-freedom

plates. J. Fluid Struct. 75, 77–98 (2017)

26. Gao, G.Z., Zhu, L.D., Wang, F., Bai, H., Hao, J.M.:

Experimental investigation on the nonlinear coupled flutter

motion of a typical flat closed-box bridge deck. J. Sens.

Basel. 20(2), 568 (2020)

27. Xu, F., Yang, J., Zhang, M., Yu, H.: Experimental investi-

gations on post-flutter performance of a bridge deck sec-

tional model using a novel testing device. J. Wind Eng. Ind.

Aerod. 217, 104752 (2021)

28. Wu, B., Chen, X.Z., Wang, Q., Liao, H.L., Dong, J.H.:

Characterization of vibration amplitude of nonlinear bridge

flutter from sectional model test to full bridge estimation.

J. Wind Eng. Ind. Aerod. 197, 104048 (2020)

29. Li, K., Han, Y., Cai, C.S., Hu, P., Li, C.: Experimental

investigation on post-flutter characteristics of a typical steel-

truss suspension bridge deck. J. Wind Eng. Ind. Aerodyn.

216, 104724 (2021)

30. Wu, B., Wang, Q., Liao, H., Mei, H.: Hysteresis response of

nonlinear flutter of a truss girder: experimental investiga-

tions and theoretical predictions. J. Comput. Struct. 238,
106267 (2020)

31. Yuan, W., Laima, S., Chen, W.L., Li, H.: External excita-

tion effects on the flutter characteristics of a 2-DOF rigid

rectangular panel. J. Wind Eng. Ind. Aerod. 209, 104486
(2021)

32. Zhang, M., Xu, F., Ying, X.: Experimental Investigations on

the nonlinear torsional flutter of a bridge deck. J. Bridge

Eng. 22(8), 04017048 (2017)

33. Gao, G., Zhu, L., Li, J., Han, W., Yao, B.: A novel two-

degree-of-freedom model of nonlinear self-excited force for

coupled flutter instability of bridge decks. J. Sound Vib.

480, 115406 (2020)

34. Li Kai.: Nonlinear Flutter Characteristics of Long-Span

Bridges and Its Analytical Method. Doctoral Thesis,

Changsha University of Science and Technology, China

(2022). (In Chinese)

35. Wang, Y., Chen, X., Li, Y.: Nonlinear self-excited forces

and aerodynamic damping associated with vortex induced

vibration and flutter of long span bridge. J. Wind Eng. Ind.

Aerodyn. 204, 104207 (2020)

36. Zhu, L.D., Gao, G.Z., Zhu, Q.: Recent advances, future

application and challenges in nonlinear flutter theory of long

span bridges. J. Wind Eng. Ind. Aerodyn. 206, 104307
(2020)

123

6844 K. Li et al.



37. Zhang, M., Xu, F., Wu, T., Zhang, Z.B.: Post flutter analysis

of bridge decks using aerodynamic describing functions.

J. Bridge Eng. 25(8), 04020046 (2020)

38. Zhang, Z.T.: Multistage indicial functions and post flutter

simulation of long-span bridges. J. Bridge Eng. 23(4),
04018010 (2018)

39. Wu, T., Kareem, A.: A nonlinear convolution scheme to

simulate bridge aerodynamics. Comput. Struct. J. 128,
259–271 (2013)

40. Wu, T., Kareem, A., Ge, Y.J.: Bridge aerodynamics and

aeroelasticity: a comparison of modeling schemes linear and

nonlinear aeroelastic analysis frameworks for cable-sup-

ported bridges. J. Nonlinear Dyn. 74, 487–516 (2013)

41. Liu SY.: Nonlinear Aerodynamic Model and Non-station-

ary Whole Process Wind Response of Long Span Bridges.

Doctoral Thesis, Tongji University, China (2014) (In

Chinese).

42. Zhou, R., Yang, Y.X., Ge, Y.J., Du, Y.L., Zhang, L.H.:

Wind-induced nonlinear behaviors of twin-box girder

bridges with various aerodynamic shapes. J. Nonlinear Dyn.

6, 1–21 (2018)

43. Li, W., Laima, S., Jin, X., Yuan, W., Li, H.: A novel long

short-termmemory neural-network-based self-excited force

model of limit cycle oscillations of nonlinear flutter for

various aerodynamic configurations. J. Nonlinear Dyn.

100(3), 2071–2087 (2020)

44. Zhang, R., Bilige, S., Chaolu, T.: Fractal solitons, arbitrary

function solutions, exact periodic wave and breathers for a

nonlinear partial differential equation by using bilinear

neural network method. J. Syst. Sci. Complex. 34, 122–139
(2021)

45. Li, K., Kou, J., Zhang, W.: Deep neural network for

unsteady aerodynamic and aeroelastic modeling across

multiple Mach numbers. J. Nonlinear Dyn. 96(3),
2157–2177 (2019)

46. Li, T., Wu, T., Liu, Z.: Nonlinear unsteady bridge aerody-

namics: reduced-order modeling based on deep LSTM

networks. J. Wind Eng. Ind. Aerodyn. 198, 104116 (2020)

47. Zhang, R.F., Li, M.C., Yin, H.M.: Roguewave solutions and

the bright and dark solitons of the (3?1)-dimensional

Jimbo–Miwa equation. Nonlinear Dyn. 103, 1071–1079

(2021)

48. Zhang, R.F., Bilige, S.: Bilinear neural network method to

obtain the exact analytical solutions of nonlinear partial

differential equations and its application to p-gBKP equa-

tion. Nonlinear Dyn. 95, 3041–3048 (2019)

49. Li, K., Han, Y., Song, J., Cai, C.S., Hu, P., Qiu, Z.X.: Three-

dimensional nonlinear flutter analysis of long-span bridges

by multimode and full-mode approaches. J. Wind Eng. Ind.

Aerodyn. 242, 105554 (2023)

50. Clough, R.W., Penzien, J.: Dynamics of Structures, 2nd edn.

McGraw-Hill, New York (1993)

51. Lin, Y.K., Yang, J.N.: Multimode bridge response to wind

excitations. J. Eng. Mech. 109(2), 586–603 (1983)

52. Chen, X., Matsumoto, M., Kareem, A.: Time domain flutter

and buffeting response analysis of bridges. J. Eng. Mech.

126(1), 7–16 (2000)

53. Chen, X., Kareem, A., Matsumoto, M.: Multimode coupled

flutter and buffeting analysis of long span bridges. J. Wind

Eng. Ind. Aerodyn. 89(7), 649–664 (2001)

54. Han, Y., Li, K., Cai, C.S.: Study of central buckle effects on

flutter of long-span suspension bridges. Wind Struct. Int. J.

35(5), 000 (2020)

55. Rooij, A.C.L.M.V., Nitzsche, J., Dwight, R.P.: Energy

budget analysis of aeroelastic limit-cycle oscillations.

J. Fluids Struct. 69, 174–186 (2017)

56. Zhang, M., Xu, F., Zhang, Z., Ying, X.: Energy budget

analysis and engineering modeling of post-flutter limit cycle

oscillation of a bridge deck. J.Wind Eng. Ind. Aerodyn. 188,
410–420 (2019)

57. Mashnad, M., Jones, N.P.: A model for vortex-induced

vibration analysis of long-span bridges. J. Wind Eng. Ind.

Aerodyn. 134, 96–108 (2014)

58. Song, D., Kim, W., Kwon, O.K., et al.: Vertical and tor-

sional vibrations before the collapse of the Tacoma narrows

bridge in 1940. J. Fluid Mech. 949, A11 (2022)

59. Zhang, Z., Wang, Z., Zeng, J., et al.: Experimental inves-

tigation of post-flutter properties of a suspension bridge with

a p-shaped deck section. J. Fluids Struct. 112, 103592

(2022)

60. Zhang, R.F., Li, M.C., Cherraf, A., et al.: The interference

wave and the bright and dark soliton for two integro-dif-

ferential equation by using BNNM. Nonlinear Dyn. 111,
8637–8646 (2023)

61. Zhang, R.F., Bilige, S., Liu, J.-G., Li, M.: Bright-dark

solitons and interaction phenomenon for p-gBKP equation

by using bilinear neural network method. Phys. Scr. 96,
025224 (2021)

62. Zhang, R.F., Li, M.C., Gan, J.Y., et al.: Novel trial functions

and rogue waves of generalized breaking soliton equation

via bilinear neural network method. Chaos Solitons Fractals

154, 111692 (2022)

63. Zhang, R.F., Li, M.C., Albishari, M.: Generalized lump

solutions, classical lump solutions and rogue waves of the

(2?1)-dimensional Caudrey–Dodd–Gibbon–Kotera–

Sawada-like equation. Appl. Math. Comput. 403, 126201
(2021)

Publisher’s Note Springer Nature remains neutral with

regard to jurisdictional claims in published maps and

institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner)

holds exclusive rights to this article under a publishing

agreement with the author(s) or other rightsholder(s); author

self-archiving of the accepted manuscript version of this article

is solely governed by the terms of such publishing agreement

and applicable law.

123

A nonlinear numerical scheme to investigate the influence of geometric nonlinearity 6845


	A nonlinear numerical scheme to investigate the influence of geometric nonlinearity on post-flutter responses of bridges
	Abstract
	Introduction
	Full-mode nonlinear flutter analysis method
	Novel finite element model for nonlinear flutter analysis
	Algorithm implementation in ANSYS
	Determination of flutter derivatives at different spanwise locations
	Solution of full-mode coupled nonlinear flutter


	Time-dependent nonlinear numerical scheme
	Time-dependent linear self-excited force model
	Time-dependent nonlinear self-excited force model

	Parameters identification and validation
	Engineering background
	Amplitude-dependent flutter derivatives
	Identification and validation of coefficients in amplitude-dependent RFs model

	Influence of geometric nonlinearity on post-flutter responses
	3D nonlinear flutter analysis for a suspension bridge with four main cables
	Influence of geometric nonlinearity on stable amplitude
	Influence of geometric nonlinearity on mean displacements
	Super-harmonic resonance behavior induced by geometric nonlinearity
	Cases without structural damping
	Cases with structural damping


	Conclusions
	Author contributions
	Availability of data and material
	References




