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Abstract This paper investigates the nonlinear con-
trol of a three-link planar robot, which includes a pas-
sive first link, a passive second link, and an active
last link (subsequently referred to as the PPA robot).
Notably, only the angle between the last link and the
vertical axis is actuated. First, this paper presents and
strictly proves a property of the PPA robot, unaffected
by itsmechanical parameters. This property reveals that
the two passive links of the PPA robot maintain static
positionswhen the active last link remains fixed under a
constant control input. Different from previous studies,
the proof for the PPA robot demonstrates new chal-
lenges and distinctions originated from actuator con-
figuration. Second, leveraging this property, this paper
studies the energy-based control corresponding to the
PPA robot’s upright equilibrium point (UEP), where all
links extend upward. Under the derived energy-based
controller, this paper conducts a global motion analy-
sis of the closed-loop system to show that if the control
gains satisfy certain requirements, then all initial states,
apart from those in a set of Lebesguemeasure zero, con-
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verge to an invariant set in which the last link extends
upward and the robot’s total mechanical energy coin-
cides with its value at the UEP. Finally, this paper pro-
vides numerical simulation to validate the developed
theoretical results and to demonstrate the effectiveness
of applying the derived controller along with an LQR
controller to the swing-up and stabilizing task of the
PPA robot.

Keywords Underactuated robotic system · Three-link
planar robot · Active last link · Energy-based control ·
Motion analysis · Swing-up control

Abbreviations

COM Center of mass
PPA robot Three-link planar robot with active last

link
UEP Upright equilibrium point

Symbols

θi Angle measured in the counter-
clockwise direction from the ver-
tical to link i

θ Generalized coordinate vector
[θ1, θ2, θ3]T

Ωs Equilibrium set
R Field of real numbers
R

+ Field of positive real numbers
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S Circle (a 1-sphere)
diag{a1, a2, . . . , an} Diagonal matrix with entries

a1, a2, . . . , an from the upper left
corner

0n×m Zero matrix of size n × m
A = [ai j ] Matrix A with the element of the

i th row and the j th column being
ai j

|A| Determinant of the square matrix
A

a ≡ b Equivalence between two sides at
all time

B Weight matrix of input
C Coriolis and centrifugal matrix
E Total mechanical energy of the

PPA robot
Er Total mechanical energy of the

PPA robot at the UEP
G Vector of gravity terms
g Gravitational acceleration
I Identity matrix
J Jacobian matrix
Ji Moment of inertial of link i around

its center of mass
kD , kP , kV Control gains of the energy-based

controller
li Length of link i
lci Distancemeasured from joint i to

the center of mass of link i
M Inertial matrix
mi Mass of link i
P Potential energy of the PPA robot
u3 Single control input driving link

3
V Lyapunov function
W Invariant set
Wr Invariant set when θ3 = 0
x State vector [θ1, θ2, θ3, θ̇1, θ̇2, θ̇3]T

1 Introduction

Underactuated systems, which possess fewer actua-
tors than degrees of freedom, take the form of various
applications. Typical examples of such systems include
cranes [21,29], unmanned aircraft [24], underwater
vehicles [5], flexible links [16,30], gymnastic robots
[13], and intentionally designed systems using reduced
actuation. Currently, applications of underactuated

systems in cutting-edge fields like high-performance
robotics and biomimetics have attracted increasing
attention. Reference [9] presented a motion optimiza-
tion strategy for a planar spring-loaded monopod robot
with single actuator executing double backflip. Refer-
ence [10] designed a minimalist underactuated brachi-
ating robot composed of one actuator and two grip-
pers, and realized brachiation with three different con-
trol schemes. Reference [4] proposed a novel path-
following scheme for an underactuated robotic fish sub-
jected to time-varying sideslip, which utilizes sliding-
mode controllers and nonlinear disturbance observer.
Reference [8] drew inspiration from birds, and inves-
tigated the control problem of tracking a trajectory
while maintaining balance for an n-link manipulator
with static friction at the unactuated first revolute joint.
Reference [3] developed a biomimetic morphing wing
made up of forty underactuated feathers and four con-
trollable joints to study the morphing pattern of birds,
providing insight for bioinspired aircraft design.

Within the advances and broad spectrum of underac-
tuated systems, multi-link planar robots serve as typi-
cal models for studying underactuated dynamics. In the
context of these robots, [14] defined the link angle as the
angle between a link and the positive vertical direction.
The joint angle is designated as the difference between
the link angles of two adjacent links connected at a
joint, with the first joint angle being identical to the
first link angle. Consequently, a link (joint) is active if
the corresponding link (joint) angle represents an actu-
ated variable, and passive if that angle represents an
unactuated variable [14].

For a three-link planar robot with passive first joint,
[27] addressed the swing-up control by introducing the
notion of virtual composite link, which combines the
last two links as a single virtual link. In [13], this notion
was further extended to tackle the set-point control for
a folded configuration. Regarding stabilizing control,
[11] estimated the region of attraction of an equilib-
rium point with sum of squares and trajectory reversing
methods, and enlarged the estimation by using impulse
manifold method. For a three-link planar robot with
single active joint, prior works have mainly focused on
achieving the swing-up control via trajectory planning.
Reference [22] designed a two-segment trajectory for
the active joint, and optimized the trajectory parameters
with PSO algorithm to ensure the simultaneous conver-
genceof the passive joints.Reference [2] introduced the
time-reversal symmetry characteristic of such system
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and utilized this characteristic to design a swing-up tra-
jectory by reversing a swing-down trajectory in time.
However, these approaches require meticulous design
or selection of suitable trajectories.

For underactuated systems exhibitingnonholonomic
characteristics and complex dynamics, [6,12] proposed
an energy-based control approach,whoseobjective is to
design a controller to stabilize the actuated variable(s)
and regulate the system’s total mechanical energy to a
predetermined value simultaneously. The feasibility of
this objective has been examined for several systems
with one underactuated variable [7,12,26].

However, it remains a challenging problem to inves-
tigate whether the energy-based control objective can
be achieved for systems containing more than one
underactuated variable, especially for multi-link planar
robots. For the double pendulum on a cart, [25] demon-
strated a parallel control of regulating the system’s total
mechanical energy and stabilizing the cart’s horizontal
displacement. For a three-link planar robot with active
first link, [15] proved that the objective corresponding
to the robot’s upright equilibrium point (UEP), where
all links extend upward, can be achieved for almost all
initial states. In either case, the closed-loop analysis
under the energy-based controller was carried out with
the aid of an important property; that is, if the actu-
ated variable remains stationary under a constant con-
trol input, then the underactuated variables of the sys-
tem remain stationary.Despite the physical intuition, an
effective method was proposed in [15] to strictly prove
this property, which involves the derivation and utiliza-
tion of a holonomic constraint and does not require any
prior assumption regarding the mechanical parameters
of the system or the constant input.

Shifting focus to other actuator configuration, the
feasibility of achieving the energy-based control objec-
tive for three-link planar robots with a single actua-
tor acting on the last link has not yet been reported.
Following the definition in [14], two distinct types of
such robots exist. The directly driven type uses the
joint angle of the last link as the actuated variable. In
contrast, the remotely driven type treats the link angle
of the last link as the actuated variable. The directly
driven type can be compared to a simplified depiction
of a gymnast performing on rings [20], thereby serving
as platform for robotic and biomimetic investigation.
However, controlling this type with energy-based con-
trol approach proves more challenging compared to its
remotely driven counterpart.

For this reason, and as an initial focus, this paper
investigates the remotely driven type of three-link pla-
nar robot, which comprises a passive first link, a pas-
sive second link, and an active last link. This robot is
referred to as the PPA robot. The present work is based
on the idea sketched in [23] and extended and proven
in the general case here. First, we extend the method
proposed in [15] to prove an essential property for the
PPA robot, regardless of its mechanical parameters or
the constant control input. This property states that if
the active last link is held fixed under a constant control
input, then the PPA robot stays at an equilibrium point.
Due to inherent difference in actuator configuration,
the strict proof for the PPA robot requires a deeper uti-
lization of the aforementioned holonomic constraint,
compared to its proximal-actuated counterparts in [15]
and [25]. More complicated manipulations and extra
discretion are thereby demanded. Next, we derive an
energy-based controller for the PPA robot and explore
the feasibility of achieving the control objective that
corresponds to theUEP. Leveraging the above property,
we analyze the globalmotion of the closed-loop system
by examining the convergence of energy. Results show
that the control objective can be achieved for almost all
initial states. Finally, we verify the theoretical results
via numerical simulation and demonstrate the effec-
tiveness of the energy-based controller along with an
LQR controller for the swing-up and stabilizing task
[19], which involves swinging the robot to a vicinity of
its UEP and stabilizing it at that point.

In summary, the contributions of this paper are as
follows.

(1) Strict proof of a property of the PPA robot that the
system stays at an equilibrium point, if the active
last link is held fixed under constant control input.

(2) Global motion analysis of the closed-loop sys-
tem under the energy-based controller, showing
the feasibility of achieving the objective targeting
the UEP.

(3) Simulation demonstration of performing swing-up
and stabilizing task with the energy-based control
and the LQR control.

The structure of the remainder is as follows: The
dynamics of the PPA robot and the control objective
are given in Sect. 2. An important property of the robot
is presented in Sect. 3. The energy-based controller is
derived and the closed-loop solution is analyzed in
Sect. 4, followed by numerical simulations in Sect. 5
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Fig. 1 PPA robot: three-link planar robot with active last link

and the conclusion in Sect. 6. Two proofs are included
in the appendices to increase readability.

2 System dynamics and control objective

In this section, we revisit the dynamics of the three-link
planar robot and state our control objective regarding
the energy-based control approach.

2.1 System dynamics

The three-link planar robot with active last link, as
depicted in Fig. 1, is considered. The symbols involved
are defined and collected in the Nomenclature section.

The robot’s dynamics are derived in [28] and
expressed as

M (θ) θ̈ + C
(
θ , θ̇

)
θ̇ + G (θ) = Bu3, (1)

where (θ1, θ2) ∈ S × S (a torus) and θ3 ∈ R constitute
the generalized coordinate vector θ = [θ1, θ2, θ3]T;
M(θ) ∈ R

3×3 is the symmetric positive definite inertia
matrix M(θ) = [αi j cos(θ j − θi )]; C(θ , θ̇) ∈ R

3×3

is C(θ , θ̇) = [−αi j θ̇ j sin(θ j − θi )]; G(θ) ∈ R
3 is

G(θ) = [−βi sin θi ]; and B = [0, 0, 1]T. In these
expressions,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

αi i = Ji + mil2ci + l2i
3∑

k=i+1
mk, 1 ≤ i ≤ 3,

αi j = α j i = m jli lcj + li l j
3∑

k= j+1
mk, 1 ≤ i < j ≤ 3,

(2)

βi =
(

milci + li

3∑

k=i+1

mk

)

g, 1 ≤ i ≤ 3. (3)

The PPA robot’s total mechanical energy is

E
(
θ, θ̇

) = 1

2
θ̇
T
M (θ) θ̇ + P (θ) , (4)

where P(θ) = ∑3
i=1 βi cos θi is the potential energy.

Direct computation gives

Ė
(
θ, θ̇

) = θ̇3u3. (5)

2.2 Control objective

In this paper, we design an energy-based controller for
the PPA robot in (1) that aims at achieving the following
control objective:

lim
t→∞ E

(
θ , θ̇

) = Er, lim
t→∞ θ3 = 0, lim

t→∞ θ̇3 = 0,

(6)

which corresponds to the UEP (θ1, θ2, θ3, θ̇1, θ̇2, θ̇3) =
(0, 0, 0, 0, 0, 0)with Er = ∑3

i=1 βi being the potential
energy of the robot at the UEP.

3 Property of PPA robot

In this section, we present an important property of the
PPA robot, which is stated in Theorem 1 below and
proved in “Appendix A”.

Theorem 1 Suppose that link 3 of the PPA robot sat-
isfies constraints

θ3 ≡ θ∗
3 , u3 ≡ u∗

3, (7)

with θ∗
3 and u∗

3 being constants; that is, the angle of
link 3 is held fixed under a constant control input. Then,
links 1 and 2 of the PPA robot maintain static positions;
that is,

θ̇1 ≡ 0, θ̇2 ≡ 0, (8)

regardless of its mechanical parameters, θ∗
3 , and u∗

3.
Equivalently, θ1 ≡ θ∗

1 and θ2 ≡ θ∗
2 , with θ∗

1 and θ∗
2

being constants.
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Fig. 2 Illustrative example of the equilibrium configuration of
the PPA robot, when link 3 is held in a horizontal position under
a constant control input

The essence of the property in Theorem 1 is that if
the actuated variable remains still under a constant con-
trol input, then thewhole system stays at an equilibrium
configuration.Wehave tried to prove this property from
a physical perspective by looking into the forces exert-
ing on each joint; however,we cannot extract new infor-
mation beyond the dynamics in (1). Even so, this prop-
erty cannot be simply revealed by straightforward anal-
ysis of the dynamics, which are in the form of second-
order nonholonomic constraints. Thus, we transform
the dynamics with (7) into a holonomic constraint in
terms of a 28th-order polynomial. Under this particular
constraint, we show that the PPA robot cannot move for
any possible mechanical parameters in (2) and (3), any
position of the actuated link 3, and any corresponding
constant control input.

It is worth noting that the most difficult part of the
proof is to prove the following result, which represents
a special case of Theorem 1 with the constraint in (7)
being further specified.

Corollary 1 Suppose that link 3 of the PPA robot is
further constrained to the horizontal position, with
θ3 ≡ θ∗

3 = ±π/2 and u3 ≡ u∗
3. Then, the motion

of the PPA robot satisfies: i) the link 3 is parallel to
X-axis with its distance to X-axis remains fixed, and ii)
(8) holds.

Similarly, Corollary 1 indicates a special equilib-
rium configuration for the PPA robot, such as the illus-
trative example shown in Fig. 2. The proof of Corollary
1 is given in Case 2.2 of “Appendix A”.

4 Energy-based control

In this section, we derive an energy-based controller
targeting the UEP and analyze the global motion of the

closed-loop system by utilizing the property in Theo-
rem 1.

4.1 Design of energy-based controller

Take the Lyapunov candidate proposed in [28] as

V = 1

2

(
E

(
θ , θ̇

) − Er
)2 + kD

2
θ̇23 + kP

2
θ23 , (9)

where kD ∈ R
+ and kP ∈ R

+ are constant control
gains. Taking the time derivative of V along (1) with
(5) gives

V̇ = θ̇3

((
E

(
θ , θ̇

) − Er
)
u3 + kD θ̈3 + kPθ3

)
.

If we can design u3 satisfying

(
E

(
θ, θ̇

) − Er
)
u3 + kD θ̈3 + kPθ3 = −kV θ̇3, (10)

where kV ∈ R
+ is a constant control gain, thenwe have

V̇ = −kV θ̇23 ≤ 0. (11)

Since M(θ) is a positive definite matrix, from (1),
we have

θ̈3 = BTM−1 (θ)
(
Bu3 − C

(
θ , θ̇

)
θ̇ − G (θ)

)
. (12)

Substituting (12) into (10) yields

Λ
(
θ , θ̇

)
u3 = kDBTM−1 (θ)

(
C

(
θ, θ̇

)
θ̇

+G (θ)
) − kPθ3 − kV θ̇3,

where

Λ
(
θ , θ̇

) = (
E

(
θ , θ̇

) − Er
) + kDBTM−1 (θ) B. (13)

Hence, if Λ(θ , θ̇) is nonzero for any state (θ , θ̇), then
we obtain

u3 = kDBTM−1 (θ)
(
C

(
θ , θ̇

)
θ̇ + G (θ)

) − kPθ3 − kV θ̇3

Λ
(
θ , θ̇

) .

(14)

We present Lemma 1 below regarding the controller
in (14) and the behavior of the corresponding closed-
loop system.
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Lemma 1 Consider the closed-loop system consisting
of the PPA robot in (1) and the energy-based controller
in (14). The controller in (14) is free of singular points
if and only if

kD > kDm = max−π≤θi≤π
(1≤i≤3)

((
Er−P (θ)

)(
BTM−1 (θ) B

)−1
)
.

(15)

Consequently, any closed-loop trajectory approaches
an invariant set described as:
1

2
α11θ̇

2
1 + α12θ̇1θ̇2 cos (θ2 − θ1)

+1

2
α22θ̇

2
2 + P

(
θ1, θ2, θ

∗
3

) ≡ E∗, (16)

W = {(
θ , θ̇

)∣∣(θ1, θ2, θ̇1, θ̇2
)
satisfies (16), θ3 ≡ θ∗

3

}
,

(17)

with E∗ and θ∗
3 being constants.

Proof We say that the controller in (14) is free of sin-
gular points if Λ(θ , θ̇) �= 0. Owing to E(θ , θ̇) ≥ P(θ)

and Er ≥ P(θ), if (15) holds, we obtain Λ(θ, θ̇) > 0
directly from (13). Thus, (15) is a sufficient condition
such that the controller in (14) is free of singular points.
Note that in (15) we have

BTM−1 (θ) B = α11α22 − α2
12 cos

2 (θ1 − θ2)

|M (θ)| > 0,

(18)

since M(θ) is positive definite.
We now show that (15) is also a necessary condi-

tion by revealing that for any specific kD satisfying
0 < kD ≤ kDm , there exists a state (θ , θ̇) rendering
Λ(θ , θ̇) = 0. To this end, let ζ ∈ R

3 be the value of θ

at which the function in (15) takes its maximum value,
then we have

kDm = (
Er − P (ζ )

)(
BTM−1 (ζ ) B

)−1
. (19)

Take ζ d ∈ R
3 such that

1

2
ζT
dM (ζ ) ζ d = (kDm − kD)

(
BTM−1 (ζ ) B

)
≥ 0.

Then, by using (4) and (13), we have

Λ
(
ζ , ζ d

) = 1

2
ζT
dM (ζ ) ζ d

+P (ζ ) − Er + kDBTM−1 (ζ ) B = 0.

Thus, the controller in (14) is free of singular points if
and only if (15) holds.

From (11), since V̇ ≤ 0, using LaSalle’s invari-
ance principle with (9) and (11) shows that the closed-
loop trajectory eventually approaches an invariant set
W where E(θ , θ̇) and θ3 are constants denoted as E∗
and θ∗

3 , respectively. Finally, substituting E = E∗ and
θ3 = θ∗

3 into (4) gives the characterization ofW in (17).

�

4.2 Global motion analysis

We further analyze the closed-loop trajectory by study-
ing the convergence of the system’s total mechanical
energy.

Define the set
1

2
α11θ̇

2
1 + α12θ̇1θ̇2 cos (θ2 − θ1) + 1

2
α22θ̇

2
2

+ β1 (cos θ1 − 1) + β2 (cos θ2 − 1) = 0,
(20)

Wr = {(
θ , θ̇

)∣∣(θ1, θ2, θ̇1, θ̇2
)
satisfies (20), θ3 ≡ 0

}
,

(21)

and the equilibrium set

Ωs =
{(

θ∗, 03
) ∣
∣θ∗ ≡ [π, π, 0]T , [π, 0, 0]T , [0, π, 0]T

}
,

(22)

which comprises the down–down–up, down–up–up,
andup–down–upequilibriumpoints. The terms “down”
and “up” denote the downward (θi = π ) and upward
(θi = 0) positions of link i , respectively. Define func-
tion

f (ψ) = (−2 (β1 + β2) + (cosψ − 1) β3) β3 sinψ

ψ
,

ψ ∈ [π, 2π ]. (23)

We are ready to present another main result of this
paper.

Theorem 2 Consider the closed-loop system consist-
ing of the PPA robot in (1) and the energy-based con-
troller in (14) with kD satisfying (15), kP > 0, and
kV > 0. If kP further satisfies

kP > kPm = max
π≤ψ≤2π

f (ψ) , (24)

where f (ψ) is defined in (23). Then, the following
statements hold:
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1 If E∗ = Er, then the closed-loop trajectory converges
to the invariant set Wr in (21), where the only equilib-
rium point UEP is strictly unstable.
2 If E∗ �= Er, then the closed-loop trajectory converges
to Ωs in (22), where all three equilibrium points are
strictly unstable.

Proof Substituting θ3 = θ∗
3 and E(θ , θ̇) = E∗ into

(10) yields

(
E∗ − Er

)
u3 + kPθ∗

3 = 0. (25)

If E∗ = Er,weobtain θ∗
3 = 0 from (25),which turns

(17) into Wr in (21). Substituting θ̇1 = 0 and θ̇2 = 0
into (21) gives θ1 = 0 and θ2 = 0. This suggests that
Wr contains the UEP as the unique equilibrium point.

If E∗ �= Er, we obtain u3 = u∗
3 from (25). Since

links 1 and 2 are stationary according to Theorem 1,
using (1), (4), and (10) with θ∗ = [θ∗

1 , θ∗
2 , θ∗

3 ]T then
gives

sin θ∗
i ≡ 0, i = 1, 2, (26)

β3
(
Er − P

(
θ∗)) sin θ∗

3 + kPθ∗
3 = 0. (27)

From (26), we have θ∗
1 and θ∗

2 equal 0 or π under
modulo 2π . In case where θ∗

3 �= 0, (27) can be further
expressed as

kP = −β3
(
Er − P

(
θ∗)) sin θ∗

3

θ∗
3

,

where the numerator of the right-hand side is an even
and periodic function with period of 2π . Due to Er ≥
P(θ∗) and P(θ∗) ≥ −β1 −β2 +β3 cos θ∗

3 , (27) has an
unique solution θ∗

3 = 0 if kP satisfies (24). This implies
that the closed-loop trajectory converges to one of the
three equilibrium points in Ωs.

In what follows, we apply Routh–Hurwitz criterion
to check the stability of equilibrium points in Wr and
Ωs. By calculating the characteristic polynomial of the
robot’s linearization at the UEP, we obtain

|s I − Juuu | = s6+a1s
5+a2s

4+a3s
3+a4s

2+a5s+a6,

where Juuu is the corresponding Jacobian matrix, and

a1 = kV
kD

, a2 = kP
kD

− α22β1 + α11β2

α11α22 − α2
12

,

a3 = −kV (α22β1 + α11β2)

kD
(
α11α22 − α2

12

) ,

Table 1 Mechanical parameters of the physical device of a three-
link planar robot in [17]

Link mi (kg) li (m) lci (m) Ji (kg · m2)

1 0.41 0.268 0.134 4.52 × 10−3

2 4.10 0.258 0.128 6.11 × 10−2

3 0.41 0.268 0.095 4.52 × 10−3

a4 = kDβ1β2 − kP (α22β1 + α11β2)

kD
(
α11α22 − α2

12

) ,

a5 = kVβ1β2

kD
(
α11α22 − α2

12

) , a6 = kPβ1β2

kD
(
α11α22 − α2

12

) .

Using α11α22 − α2
12 > 0 due to M(θ)|θ=03 > 0 shows

thata3 < 0, regardless of the control gains andmechan-
ical parameters. Hence, it can be concluded that the
UEP is strictly unstable, since Juuu possesses no less
than one eigenvalue in the open right-half plane.

The proof of all the equilibrium points in Ωs being
strictly unstable is given in “Appendix B”. 
�

Figure 3 depicts the configurations of the PPA robot
at all possible equilibrium points described in Theorem
2. We give the following remark about Theorem 2.

Remark 1 Since all three equilibrium points in Ωs are
strictly unstable, the set of initial states from which the
closed-loop trajectory converges to Ωs is of Lebesgue
measure zero, see, e.g., [18] (p. 1225). Thus, under
the energy-based controller in (14), every initial state
apart from those in a set of Lebesgue measure zero
converges toWr. This indicates that the objective in (6)
is achieved.

5 Simulation results

In this section, we provide simulation verification
for the developed theoretical results, and demonstrate
an application to the swing-up and stabilizing task.
Notably, in addition to simulations without friction,
we also conduct simulation in the presence of linear
viscous friction to showcase the robustness of our pro-
posed control approach. The mechanical parameters
listed in Table 1 for simulation are extracted from the
physical device of the three-link planar robot in [17].
The gravitational acceleration g is set to 9.81 m/s2.
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Fig. 3 Configurations of
the PPA robot at all possible
closed-loop equilibrium
points described in Theorem
2

Since the PPA robot is linearly controllable at the
UEP regardless of mechanical parameters [14], stabi-
lization around the UEP, if the robot ever comes close
under the controller in (14), can then be accomplished
by switching to a local stabilizing controller:

u3 = −Fx, (28)

where x = [θ1, θ2, θ3, θ̇1, θ̇2, θ̇3]T and F is the state-
feedback gain obtained by the LQR method. Using the
MATLAB function “lqr” with

Q = diag{1, 1, 1, 0.1, 0.1, 0.1}, R = 1,

we obtain

F = [847.7247, −197.3587, 1.4521,

109.9323, 10.6374, 0.9831]. (29)

The local stabilizing controller in (28) is switchedwhen
the PPA robot enters a vicinity of the UEP defined by

d = ∣∣θ1
∣∣+∣∣θ2

∣∣+∣∣θ3
∣∣+0.3

∣∣θ̇1
∣∣+∣∣θ̇2

∣∣+∣∣θ̇3
∣∣ < 0.5. (30)

5.1 Swing-up and stabilizing without friction

Under the mechanical parameters in Table 1, the con-
ditions of the control gains in (15) and (24) are kD >

0.3088 and kP > 3.1235. Below are the results of
the simulation conducted for three initial states. The
dashed vertical line in the figuresmarks the switch from

Fig. 4 Time responses of V , E−Er , and u3 with initial state 1 in
(31) under the swing-up controller in (14) and the LQR controller
in (28)

the energy-based controller to the local stabilizing con-
troller.

The first simulation starts from initial state 1:

(
θ1, θ2, θ3, θ̇1, θ̇2, θ̇3

) =
(
5π

6
,
6π

7
,
7π

8
, 0, 0, 0

)
,

(31)

under the controller in (14) with kD = 0.3270, kP =
3.1240, and kV = 3.0281. The results are shown in
Figs. 4 and 5.

From Fig. 4, we see that Lyapunov function V in
(9) decreased to 0, and the total mechanical energy E
converged to Er. From Fig. 5, θ3 converged to 0. This
verifies that the closed-loop trajectory converged toWr

in (21), and the objective in (6) is achieved.
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Fig. 5 Time responses of θ1, θ2, and θ3 with initial state 1 in (31)
under the swing-up controller in (14) and the LQR controller in
(28)

Fig. 6 Time responses of V , E−Er , and u3 with initial state 2 in
(32) under the swing-up controller in (14) and the LQR controller
in (28)

Fig. 7 Time responses of θ1, θ2, and θ3 with initial state 2 in (32)
under the swing-up controller in (14) and the LQR controller in
(28)

Next, by linearizing the closed-loop system at the
down–down–upequilibriumpoint (θ1, θ2, θ3, θ̇1, θ̇2, θ̇3)
= (π, π, 0, 0, 0, 0) in (22), we obtain the characteristic
equation as

s6 + 50.98s5 + 416.42s4 + 8615.30s3

+ 46599.37s2 + 164756.28s + 852119.92 = 0.

The roots of the above equation are −45.53, −5.70,
0.03± 4.72 j , and 0.09± 12.14 j . This verifies that the
down–down–up equilibrium point is strictly unstable.
The instability verification for other equilibrium points
is omitted.

From Fig. 5, where we plotted θ1 and θ2 modulo
2π , the PPA robot entered the vicinity of the UEP in
(30) at t = 72.38 s, and thus triggered the switch of
controller. The local stabilizing controller in (28) then
stabilized the robot around the UEP. This demonstrates
a successful swing-up and stabilizing control via the
combination of controllers in (14) and (28).

The second simulation starts from initial state 2:

(
θ1, θ2, θ3, θ̇1, θ̇2, θ̇3

) =
(π

2
,
π

2
,
π

2
, 0, 0, 0

)
, (32)

under the controller in (14) with kD = 0.3163, kP =
3.1240, and kV = 4.5572. From the results shown in
Figs. 6 and 7, we see that the closed-loop trajectory
converged to Wr in (21). This indicates that the objec-
tive in (6) is achieved for another initial state. Under
the energy-based controller in (14), the PPA robot was
driven to the UEP at t = 50.57 s, the switch of con-
troller was then executed to stabilize the robot.

Finally, the third simulation starts from initial state
3:

(
θ1, θ2, θ3, θ̇1, θ̇2, θ̇3

) =
(π

6
,
π

7
,
π

8
, 0, 0, 0

)
, (33)

under the controller in (14) with kD = 0.3527, kP =
3.1240, and kV = 4.9321. The simulation results are
shown in Figs. 8 and 9. The analysis of the closed-loop
trajectory is similar to previous simulations and hence
is omitted for brevity.

5.2 Swing-up and stabilizing with linear viscous
friction

Generally, if friction exists, then the energy-based con-
trol approach cannot theoretically guarantee that (6)
holds. However, it is suggested in [1] that the effect
of friction can be well reduced by increasing Er with
an excess of 10%-20% over the theoretical value in
(6). This would inject more energy than theoretically
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Fig. 8 Time responses of V , E−Er , and u3 with initial state 3 in
(33) under the swing-up controller in (14) and the LQR controller
in (28)

Fig. 9 Time responses of θ1, θ2, and θ3 with initial state 3 in (33)
under the swing-up controller in (14) and the LQR controller in
(28)

Fig. 10 Time responses of V , E − Er , and u3 with initial state 1
in (31) in the presence of linear viscous friction under the swing-
up controller in (14) and the LQR controller in (28)

needed into the system to compensate the energy loss
due to friction.

Below, we demonstrate the swing-up and stabilizing
task in the presence of linear viscous friction:

f (θ̇) = [
μ1θ̇1, μ2θ̇2, μ3θ̇3

]T
,

Fig. 11 Time responses of θ1, θ2, and θ3 with initial state 1 in
(31) in the presence of linear viscous friction under the swing-up
controller in (14) and the LQR controller in (28)

where μi (i = 1, 2, 3) are set to 0.001. We take Er =
1.1(β1+β2+β3), where β1+β2+β3 is the theoretical
value in (6) for the frictionless case. The control gains
are tuned as kD = 0.3346, kP = 3.2810, and kV =
2.1549.

Starting from initial state 1 in (31), the simula-
tion results are depicted in Figs. 10 and 11. As can be
observed, a successful switch from the swing-up con-
troller in (14) to the local stabilizing controller in (28)
was achieved at t = 44.93 s, and the PPA robot was sta-
bilized at the UEP in spite of the existence of friction.
This indicates the robustness of our proposed control
approach.

6 Conclusion

This paper studied a three-link planar robot with active
last link (the PPA robot). In this paper, we made the
following contributions: First, we presented a prop-
erty of the PPA robot with a strict proof. This prop-
erty reveals that if the active last link of the PPA robot
remains stationary under a constant control input, then
the whole system maintains an equilibrium configu-
ration. Though similar properties have been proved
for the double pendulum on a cart and the three-link
planar robot with active first link, we showed in this
paper that the proof for the PPA robot demonstrates new
challenges and distinctions, which demand more com-
plicated manipulations and extra discretion. Second,
with the above property, we derived an energy-based
controller and studied the behavior of the closed-loop
system without any prior assumption on the robot’s
mechanical parameters. The results are: i)wepresented
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a necessary and sufficient condition to rid the energy-
based controller of singular points, and showed that
the total mechanical energy and the angle of the active
last link converge under this controller; ii) we derived
a sufficient condition for the controller to ensure that
the robot stays at one of three equilibrium points with
link 3 being upward, provided that the energy conver-
gence does not equal its value at the upright equilibrium
point (UEP); iii) we showed that all three equilibrium
points are strictly unstable, and thus proved that the
energy-based control objective targeting the UEP can
be achieved for almost all initial states. In addition, we
presented numerical simulations to validate the devel-
oped theoretical results, and to demonstrate the effec-
tiveness of applying the derived controller along with
an LQR controller to the swing-up and stabilizing task
of the PPA robot. This paper gained an insight into the
complexity of analyzing the motion of underactuated
systems with underactuation degree of two under the
energy-based control.
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Appendix A: Proof of Theorem 1

We extend the method in [15] to prove Theorem 1.
Algebraic manipulations are performed using Mathe-
matica 12.1.

To start with, define coordinate transformation:

φ1 = θ∗
3 − θ1, φ2 = θ∗

3 − θ2. (A1)

Using (A1) with θ3 = θ∗
3 and u3 = u∗

3, we rewrite the
dynamics in (1) as

−bφ̈1 − φ̈2 cos (φ1 − φ2) − φ̇2
2 sin (φ1 − φ2)

= f sin
(
θ∗
3 − φ1

)
, (A2)

−φ̈1 cos (φ1 − φ2) − eφ̈2 + φ̇2
1 sin (φ1 − φ2)

= d sin
(
θ∗
3 − φ2

)
, (A3)

−aφ̈1 cosφ1 − φ̈2 cosφ2 + aφ̇2
1 sin φ1 + φ̇2

2 sin φ2

= u∗
3 + β3 sin θ∗

3

α23
, (A4)

where

a = α13

α23
, b = α11

α12
, d = β2

α12
, e = α22

α12
, f = β1

α12
.

(A5)

The newly defined parameters in (A5) are determined
by (2) and (3) and thus are positive constants. They
are used to reduce the complexity of following discus-
sion. Please refer Remark 2 for a detailed explanation
about these parameters and the rewritten dynamics in
comparison with the counterpart in [15].

Below, we present two lemmas concerning the prop-
erties of the parameters in (A5). To prove Theorem 1,
we take full advantage of these properties.

Lemma 2 Regarding the parameters in (A5), the
inequalities below hold:

0 < a < b, (A6)

f > ad, (A7)

be > 1, (A8)

b + e > 2. (A9)

Proof Equations (A6), (A7), and (A8) can be shown by
using (2) and (3) directly. Using (A8) with (2) yields
b + e ≥ 2

√
be > 2, which shows (A9). 
�

Lemma 3 If

e = 1 + a2 − ab

a
, (A10)

then a �= 1.

Proof Assume that a = 1, we then obtain b + e = 2
from (A10), which contradicts (A9). Thus, we have
a �= 1. 
�

Using θ3 = θ∗
3 with (5) gives E(θ , θ̇) = E∗, where

E∗ is a constant. In what follows, two steps are under-
taken to prove Theorem 1.
Step 1By progressively eliminating the nonlinear cou-
pling in (A2)–(A4), we obtain a holonomic constraint
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of underactuated variable φ1 (or θ1, equivalently) alone
in the following high-order polynomial form:

L =
28∑

i=0

ξi sin
i φ1 (t) = 0, for ∀t, (A11)

where ξi (i = 0, 1, . . . , 28) are constants consisting of
the parameters in (A5), sine and cosine of any possible
θ∗
3 , and any possible E∗. We partition Step 1 into the
following substeps and present the details.
Step 1.1 Performing the integration of (A4) with
respect to time t gives

−aφ̇1 cosφ1 − φ̇2 cosφ2 =
(
u∗
3 + β3 sin θ∗

3

)
t

α23
+ λ1,

(A12)

with λ1 being constant. The boundedness of φ̇1 and
φ̇2 are guaranteed by E = E∗. This leads to u∗

3 +
β3 sin θ∗

3 = 0. Thus, integrating (A12) yields

−a sin φ1 − sin φ2 = λ1t + λ, (A13)

with λ being constant. Using the boundedness of sine
and cosine in (A13) gives λ1 = 0. Thus, from (A12)
and (A13), we have

aφ̇1 cosφ1 + φ̇2 cosφ2 = 0, (A14)

a sin φ1 + sin φ2 = λ. (A15)

In what follows, we replace sin φ2 with (A15), and we
keep the highest order of cosφ1 or cosφ2 equals to one
by using

cos2 φ1 = 1 − sin2 φ1, or

cos2 φ2 = 1 − sin2 φ2 = 1 − (λ − a sin φ1)
2 . (A16)

Step 1.2We eliminate φ̈1 and φ̈2 in this substep. To this
end, using (A2)–(A4) gives

⎡

⎣
−b − cos (φ1 − φ2) σ1

− cos (φ1 − φ2) −e σ2
−a cosφ1 − cosφ2 σ3

⎤

⎦

⎡

⎣
φ̈1

φ̈2
1

⎤

⎦ =
⎡

⎣
0
0
0

⎤

⎦ ,

where

σ1 = −φ̇2
2 sin (φ1 − φ2) − f sin

(
θ∗
3 − φ1

)
,

σ2 = φ̇2
1 sin (φ1 − φ2) − d sin

(
θ∗
3 − φ2

)
,

σ3 = aφ̇2
1 sin φ1 + φ̇2

2 sin φ2.

To avoid contradiction, the determinant of the square
matrix in the above equationmust equal zero. This leads
to

F1φ̇
2
1 + F2φ̇

2
2 + F3 = 0, (A17)

where Fi (i = 1, 2, 3) comprise sin φ1, cosφ1, and
cosφ2.
Step 1.3We eliminate φ̇1 and φ̇2 in this substep. First,
substituting (A1), (A15), and E = E∗ into (4) and
using (A5), we obtain

b

2
φ̇2
1 + e

2
φ̇2
2 + cos θ∗

3 ( f cosφ1 + d cosφ2)

+ φ̇1φ̇2 cos (φ1 − φ2)

+ sin θ∗
3 ( f sin φ1 + d sin φ2) = γ, (A18)

where constant γ is defined as

γ = E∗ − β3 cos θ∗
3

α12
. (A19)

Next, we use (A14) to eliminate terms of φ̇2 via two
ways.By computing ((A17)×e/2-(A18)×F2)×cosφ2,
we obtain

G11 + G12φ̇
2
1 = 0. (A20)

By computing E × cos2 φ2, we obtain

G21 + G22φ̇
2
1 = 0, (A21)

where Gi j (i, j = 1, 2) comprise sin φ1, cosφ1, and
cosφ2.

Finally, eliminating φ̇1 from (A20) and (A21) gives

G11G22 − G12G21 = Q1 + Q2 cosφ2 = 0, (A22)

where Qi (i = 1, 2) comprise sin φ1 and cosφ1. Note
that the order of cos θ∗

3 remains to be one during the
above derivation. Thus, Qi (i = 1, 2) can be expressed
as

Q1 = Q11 + Q12 cos θ∗
3 , (A23)
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Q2 = Q21 + Q22 cos θ∗
3 , (A24)

where the explicit expressions of Qi j (i = 1, 2) are
omitted.
Step 1.4 Using (A22), we obtain

Q2
1 − Q2

2 cos
2 φ2 = Q2

1 − Q2
2

(
1 − sin2 φ2

)
= 0.

(A25)

By using (A15), (A25) can be further expressed as

R1 + R2 cosφ1 = 0, (A26)

where R1 and R2 are polynomials in terms of sin φ1

with respective orders of 14 and 13. Deleting cosφ1

from (A26) yields (A11); that is,

L = R2
1 − R2

2

(
1 − sin2 φ1

)
= 0. (A27)

Notably, if cos θ∗
3 = 0, then R2 in (A26) equals zero,

and cosφ1 does not exist in (A25). Indeed, Q11 can be
written as Q̂11×cosφ1 with Q̂11 not containing cosφ1,
and Q21 itself does not contain cosφ1. Thus, from
(A23) and (A24), if cos θ∗

3 = 0, then (A25) becomes
(1−sin2 φ1)Q̂2

11−Q2
21(1−sin2 φ2) = 0, where cosφ1

does not exist. In this case, (A27) can be simplified to
L = R1.
Step 2 Assume φ̇1 = −θ̇1 �≡ 0; that is, the PPA robot
is not at an equilibrium configuration under the derived
holonomic constraint in (A11). This is equivalent to the
polynomial equation having infinite number of solu-
tions, since sin φ1 is time-varying. Thus, the coeffi-
cients in (A11) must satisfy

ξi = 0, i = 0, 1, . . . , 28. (A28)

In this step, we reveal the existence of at least one
nonzero coefficient for any possiblemechanical param-
eters and any given values of θ∗

3 and E∗. Consequently,
this proves that (A28) does not hold. The details are
given below.

To start with, consider ξ28 in (A11); that is,

ξ28 = 16a16
(
1 + a2 − ab − ae

)2

(
( f − ad)2 + 4ad f sin2 θ∗

3

)

× ((
1 − 3a2 + 2ab

)
ad + (−3 + a2 + 2ae

)
f
)2

.

(A29)

Using f > ad in Lemma 2 yields ( f − ad)2 +
4ad f sin2 θ∗

3 �= 0. Thus, from (A29) and ξ28 = 0,
we discuss the following two cases based on whether

1 + a2 − ab − ae �= 0, (A30)

which is equivalent to e �= (
1 + a2 − ab

)
/a holds or

not:
Case 1: e = (

1 + a2 − ab
)
/a

Case 2: e �= (
1 + a2 − ab

)
/a

Case 1: In this case, we obtain ξ27 = 0 and

ξ26 = 1024a18 (a − b)4 ( f − ad)2
(
( f − ad)2 cos2 θ∗

3

+ ( f + ad)2 sin2 θ∗
3

)
λ2.

Since 0 < a < b and f > ad from Lemma 2, we see
that ξ26 = 0 shows λ = 0. This further yields ξ25 = 0
and

ξ24 = a12
(
−1 + a2

)2
( f − ad)2

(
( f − ad)2 cos2 θ∗

3

+ ( f + ad)2 sin2 θ∗
3

)
η2,

where

η =
(
1 + 3a2 − 4ab

) (
1 + 5a2 − 6ab

)
. (A31)

From Lemma 3, we have a �= 1 for Case 1 and all
its subcases. Thus, ξ24 = 0 shows η = 0. Regarding
whether b = (

1 + 3a2
)
/ (4a), we consider the follow-

ing two cases:
Case 1.1: e = (

1 + a2 − ab
)
/a and b = (

1 + 3a2
)
/

(4a)

Case 1.2: e = (
1 + a2 − ab

)
/a and b �= (

1 + 3a2
)
/

(4a)

Below we present the details of each case.
Case 1.1: We have ξ23 = ξ22 = ξ21 = 0, but

ξ20 = 1

16
a8

(
−1 + a2

)6 (
1 + a2

)2
( f − ad)2

×
(
( f −ad)2 cos2 θ∗

3 +( f + ad)2 sin2 θ∗
3

)
>0,

which contradicts (A28).
Case 1.2: From (A31) and η = 0, we have b = (1 +
5a2)/(6a). This yields ξ23 = 0 and

ξ22 = 4
81a

12
(−1 + a2

)6
γ 2

(
( f − ad)2 cos2 θ∗

3

+ ( f + ad)2 sin2 θ∗
3

)
. (A32)

From (A32) and ξ22 = 0, we have γ = 0. To avoid
analyzing complicated coefficients, we always search
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for the one with the simplest structure in the remain-
der of Step 2. For this case, we skip the intermediate
coefficients and obtain

ξ0 =
(−1 + a2

)12
(a f − d)4 sin4 θ∗

3

1679616a8
. (A33)

From (A33) and ξ0 = 0, if sin θ∗
3 = 0, we obtain

ξ4 =
(−1 + a2

)12 (
d2 − f 2

)2

20736a4
.

Note that ξ4 = 0 shows f = d, and thus gives

ξ20 = 1

144
a8

(
−1 + a2

)10
(1 + a)6

(

5

(
−1

5
+ a

)2

+ 24

5

)2

d4 > 0,

which contradicts (A28).
If sin θ∗

3 �= 0, to render ξ0 = 0, we have f = d/a
yielding

ξ20 = 25

144
a4

(
−1 + a2

)8 (
1 + a2

)2
d4

( (
−1 + a2

)2
cos4 θ∗

3

+ 2
(
1 + a4

)
cos2 θ∗

3 sin
2 θ∗

3

+
(
1 + a2

)2
sin4 θ∗

3

)
> 0,

which contradicts (A28).
Case 2: In this case, we obtain from (A29) and ξ28 = 0
that

(
1 − 3a2 + 2ab

)
ad + (−3 + a2 + 2ae

)
f = 0. (A34)

Note that

−3 + a2 + 2ae �= 0. (A35)

Otherwise, if −3 + a2 + 2ae = 0, then (A34) yields
1 − 3a2 + 2ab = 0; that is, b = (−1 + 3a2

)
/ (2a),

since ad > 0. This further yields

e = 3 − a2

2a
=

1 + a2 + a
1 − 3a2

2a
a

= 1 + a2 − ab

a
,

which raises a contradiction. Thus, from (A34), we
have

f = − (
1 − 3a2 + 2ab

)
ad

−3 + a2 + 2ae
. (A36)

By substituting (A36) into (A11), we obtain

ξ26 = 256a18
(
1 + a2 − ab − ae

)2

(−3 + a2 + 2ae
)4

( (
1 + a2 − ab − ae

)2
cos2 θ∗

3

+
(
2 − 2a2 + ab − ae

)2
sin2 θ∗

3

)
d2ε, (A37)

where

ε = ε21 + ε22 ,

ε1 =
(
1 − 14a2 + a4 + 6ab + 6a3e

)
dλ cos θ∗

3 ,

(A38)

ε2 =
(
−1 + a2

) (
−3 + a2 + 2ae

)
γ

−
(
1 − 14a2 + a4 + 6ab + 6a3e

)
dλ sin θ∗

3 .

(A39)

Note that

2 − 2a2 + ab − ae �= 0. (A40)

Otherwise, putting ae = 2−2a2+ab into (A36) yields
f = −ad, which contradicts the fact that f in (A5) is
always positive. Thus, from (A37) and ξ26 = 0, we
have ε = 0. This yields ε1 = 0 and ε2 = 0.

Before proceeding to discuss Case 2 further, we first
analyze a special circumstance of a = 1. From (A38)
and (A39), if a = 1, then we have ε = 36d2(−2 +
b + e)2λ2 = 0. This shows λ = 0, since b + e > 2
from Lemma 2. However, this further renders all the
coefficients of polynomial L in (A11) to become zero;
that is, (A28) holds. To deal with this, we derive and
study another holonomic constraint of φ1. From (A15)
and λ = 0, we have

φ1 = −φ2, φ̇1 = −φ̇2, φ̈1 = −φ̈2, (A41)

which implies a specific configuration for thePPA robot
that θ1+θ2 = 2θ∗

3 . By adding (A41) into the derivation
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in Step 1 with a = 1, λ = 0, and (A36), the derived
holonomic constraint becomes

La =
12∑

i=0

ξia sin
i φ1 (t) = 0, for ∀t. (A42)

Consider ξ12a in (A42); that is,

ξ12a = 16d2
(
(−2 + b + e)2 cos2 θ∗

3 + (b − e)2 sin2 θ∗
3

)

(−1 + e)2
.

Note that e �= 1. Otherwise, we have −3+a2 +2ae =
0, which contradicts (A35). We now show b − e �= 0.
On the contrary, assume b− e = 0, then putting b = e
and a = 1 into (A36) yields f = −d. This, together
with b+e > 2 from Lemma 2, gives ξ12a > 0 and thus
concludes the discussion for (A42).

Thus, returning to the analysis of (A11),we just need
to consider a �= 1 for Case 2 and all its subcases. In
such circumstance, from (A38) and (A39), we have

(
1 − 14a2 + a4 + 6ab + 6a3e

)
λ cos θ∗

3 = 0, (A43)

γ =
(
1 − 14a2 + a4 + 6ab + 6a3e

)
dλ sin θ∗

3(−1 + a2
) (−3 + a2 + 2ae

) .

(A44)

We start by proving

1 − 14a2 + a4 + 6ab + 6a3e > 0 (A45)

in (A43) and (A44). By using be > 1 in (A8), we have
6ab + 6a3e ≥ 12a2

√
be > 12a2. This, together with

1 + a4 ≥ 2a2, yields 1 − 14a2 + a4 + 6ab + 6a3e >

2a2 + 12a2 − 14a2 = 0. Based on (A43) and (A44),
we consider the following two cases for ξ26 = 0:
Case 2.1: e �= (

1 + a2 − ab
)
/a and cos θ∗

3 �= 0
Case 2.2: e �= (

1 + a2 − ab
)
/a and cos θ∗

3 = 0
Below we present the details of each case.
Case 2.1: From (A43) and (A44), we have λ = 0 and
thus γ = 0. These lead to

ξ0 =
(−1 + a2

)4 (−2a + b + a2e
)4

d4ω4 sin4 θ∗
3

(−3 + a2 + 2ae
)4 ,

(A46)

where

ω = 4a − 3b − 3a2e + 2abe. (A47)

Note that −2a + b + a2e ≥ −2a + 2a
√
be > −2a +

2a = 0 due to be > 1 in (A8). We now show ω �= 0.
On the contrary, assumeω = 0, substituting (A47) into
(A36) gives f = (3a − 2b) d. It immediately follows
that 0 < a < b and f > ad do not hold simultane-
ously. This contradicts Lemma 2.

Thus, from (A46) and ξ0 = 0, we have sin θ∗
3 = 0

yielding

ξ24 = 144a16
(−1 + a2

)2 (
1 + a2 − ab − ae

)4
d4ε2

(−3 + a2 + 2ae
)4 ,

(A48)

where

ε = 1−6a2 +a4 +ab−a3b+a
(
−1 + a2 + 4ab

)
e.

(A49)

From (A30), we see that ξ24 = 0 gives ε = 0. We
now show −1 + a2 + 4ab �= 0 in (A49) by contra-
diction. Substituting −1 + a2 + 4ab = 0 into (A49)
gives

(−5 + a2
) (−1 + 5a2

)
/4 = 0. If −5 + a2 = 0

holds, then −1 + a2 + 4ab = 4 + 4ab > 0. If
−1 + 5a2 = 0 holds, then by using (A6) we have
−1 + a2 + 4ab > −1 + 5a2 = 0.

Thus, from (A48) and ξ24 = 0, we have

e = −1 + 6a2 − a4 − ab + a3b

a
(−1 + a2 + 4ab

) . (A50)

This further yields

ξ20 = 1600a18
(−1 + a2

)6
(a − b)6

(
1 + a2 + 6ab

)2
d4

(−1 + a2 + 4ab
)2 (−1 − 8a2 + a4 + 14ab − 6a3b

)4

×
((−7 + a2 − 2ab

)2 (−3 + a2 + 2ab
)2)

.

Note that the denominator of ξ20 does not equal zero.
Otherwise, under (A36) and (A50), −1 − 8a2 + a4 +
14ab−6a3b = 0 yields−3+a2+2ae = 0;−7+a2−
2ab = 0 yields a > b; and −3 + a2 + 2ab = 0 yields
f = ad. These are all impossible due to (A35) and
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Lemma 2. Thus, we have ξ20 > 0, which contradicts
(A28).
Case 2.2: In this case, if λ = 0, then γ = 0 and we can
use (A46) with sin θ∗

3 = ±1 to show ξ0 �= 0. Thus, we
just need to consider λ �= 0. Note that from Step 1.1,
by substituting (A1) into (A15) with cos θ∗

3 = 0 and
using (A5) with (2), we obtain

l1 cos θ1 + l2 cos θ2 = l2λ.

This implies that link 3 of the PPA robot is in the hori-
zontal position and maintains a constant height. More-
over, from Step 1.4, we have R2 = 0 when cos θ∗

3 = 0.
Thus, in this case, we study L = R1 = 0 instead of
(A11). By using (A36) and (A44) with cos θ∗

3 = 0, we
obtain from R1 a polynomial equation of sin φ1 with
the highest order being equal to 12; that is,

L =
12∑

i=0

ξi sin
i φ1 (t) = 0, for ∀t. (A51)

Consider ξ12 in (A51); that is,

ξ12 = 4a8
(
1 + a2 − ab − ae

) (
2 − 2a2 + ab − ae

)
d2

(−1 + a2
) (−3 + a2 + 2ae

)2

×
((−1 + a2

)2
Θ12 + 12aΔ12λ

2
)

, (A52)

where

Θ12 = 6 + 20a2 + 6a4 − 9ab − 3a3b

−
(
3a + 9a3 + 8a2b

)
e, (A53)

Δ12 = −6a − 6a3 + b + 3a2b

+
(
3a2 + a4 + 2ab + 2a3b

)
e. (A54)

By using (A30), (A35), and (A40), from (A52) and
ξ12 = 0, we have

(
−1 + a2

)2
Θ12 + 12aΔ12λ

2 = 0. (A55)

Below we show Δ12 �= 0. Suppose that Δ12 equals
zero, then from (A55), Θ12 must also equal zero since
a �= 1. Using (A53) and (A54), we obtain b and the

corresponding e from Θ12 = 0 and Δ12 = 0 as

b = 3 − a2

2a
, e = −1 + 3a2

2a
, (A56)

or

b = 2a3 + 6a5

5 + 3a4
, e = 6 + 2a2

3a + 5a5
. (A57)

Substituting (A56) into (A36) gives f = ad, which
contradicts Lemma 2. As for (A57), by using be > 1
in (A8), we have (2a3+6a5)(6+2a2)−(5+3a4)(3a+
5a5) = −3a(−1 + a2)2(5 + 6a2 + 5a4) > 0, which
raises a contradiction. Thus, Δ12 �= 0.

From (A55), we have

λ2 = −
(−1 + a2

)2
Θ12

12aΔ12
. (A58)

By using (A58), we obtain

ξi = ki ξ̂i , i = 11, 10, 9, (A59)

where ki (i = 11, 10, 9) are guaranteed to be nonzero
terms. We omit the explicit expressions of other ξ̂i in
(A59) and present only that of ξ̂11 below:

ξ̂11 = −42 + 52a2 + 124a4

+ 52a6 − 42a8 + 9ab − 33a3b − 63a5b + 39a7b

− 9a2b2 + 18a4b2 − 9a6b2

+ (
39a − 63b3 − 33a5 + 9a7 + 24b − 86a2b

− 68a4b − 86a6b + 24a8b + 18ab2

+ 6a3b2 + 36a5b2 − 12a7b2
)
e

+ ( − 9a2 + 18a4 − 9a6 − 12ab

+ 36a3b + 6a5b + 18a7b + 16a2b2

+ 16a4b2 + 16a6b2
)
e2.

Thus, ξi = 0 (i = 11, 10, 9) are equivalent to

ξ̂i = 0, i = 11, 10, 9. (A60)

Note that (A60) can be viewed as polynomial equations
with a, b, and e as variables, where the highest order of
e in ξ̂11, ξ̂10, and ξ̂9 are equal to 2, 4, and 5, respectively.
Moreover, we obtain ξ8 from (A51). Below we show
that (A60) and ξ8 = 0 do not hold simultaneously.
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Starting with the assumption that (A60) holds, we
first eliminate e and derive the following three polyno-
mial equations in terms of a and b from (A60):

δi = 0, i = 1, 2, 3. (A61)

To this end, we divide ξ̂10 by ξ̂11 with respect to e to
obtain

ξ̂10 = p10ξ̂11 + k10r10, (A62)

where p10 is the quotient and k10r10 is the remainder
with k10 being the nonzero term. The same notations
(or with bars) apply to the following process of the
derivation of (A61). From ξ̂10 = 0 and ξ̂11 = 0 in
(A62), we have r10 = 0 in which the highest order of e
has been reduced to 1.Moreover, we iterate the division
by taking the divisor and nonzero part of the remainder
in (A62) as the new dividend and divisor; that is, we
divide ξ̂11 by r10 with respect to e to obtain

ξ̂11 = p11r10 + k11δ1,

where δ1 = 0 is now the first polynomial equation,
since ξ̂11 = 0 and r10 = 0. Similarly, we replace ξ̂10
with ξ̂9 and obtain

ξ̂9 = p9ξ̂11 + k9r9, ξ̂11 = p11r9 + k11δ2,

where the highest order of e in r9 is equal to 1. From
k11δ9, we obtain the second polynomial equation δ2 =
0. Finally, we use r9 and r10 to obtain

r9 = p9r10 + k9δ3.

This gives the third polynomial equation δ3 = 0 and
thus leads to (A61). Note that the highest orders of b in
δ1, δ2, and δ3 are equal to 12, 12, and 10, respectively.

Next, by using (A61), we eliminate b and derive two
polynomial equations solely in terms of a. To this end,
we take δ1 and δ3 as the initial dividend and divisor
with respect to b and obtain

δ1 = m1δ3 + k̃1n1,

where m1 is the quotient and k̃1n1 is the remainder
with k̃1 being the nonzero part. This gives n1 = 0 with
the highest order of b being equal to 9. We omit the
subsequent process since it replicates the derivation of

δ1 = 0 with more iteration. From the remainder of
the final division, we obtain the following polynomial
equation with z = a2 > 0:

P1 =
362∑

i=0

ς1,i z
i = Φ P̂1 = 0, (A63)

where ς1,i (i = 0, 1, . . . , 362) are constants and P̂1
and Φ are polynomials of z. Same derivation using δ2
as the initial dividend instead of δ1 yields the second
polynomial equation with z = a2 > 0:

P2 =
382∑

i=0

ς2,i z
i = Φ P̂2 = 0, (A64)

where ς2,i (i = 0, 1, . . . , 382) are constants and P̂2 is
a polynomial of z. The explicit expressions of P̂1, P̂2,
and Φ are omitted.

Then, note that both P1 = 0 and P2 = 0 are derived
from (A61), while (A61) is derived from (A60). Thus, a
necessary condition for (A60) is that (A63) and (A64)
hold simultaneously. In this case, it is equivalent to the
common positive real solutions of P̂1 = 0 and P̂2 = 0
and the positive real solutions of Φ = 0; that is,

z = 0.125043, z = 0.514811, z = 1.942459,
(A65)

and

z = 0.066778, z = 0.125043,

z = 0.140556, z = 0.250000,

z = 4.000000, z = 7.114591,

z = 7.997246, z = 14.97492, (A66)

respectively. We give a detailed explanation of these
solutions in Remark 4.

Finally, we conduct an examination to see whether
ξ8 = 0 holds under these solutions. Specifically, we
substitute each positive a obtained from (A65) and
(A66) into δ1 = 0 in (A61), and solve b from the result-
ing equation. Combining with its corresponding a, we
then substitute the obtained b into ξ̂11 = 0 in (A60) to
solve e and obtain the combination of (a, b, e). Now,
for each combination, we first check whether the prop-
erties in Lemma 2 are satisfied with the aid of (A36).
If so, we then substitute this combination into ξ8 and
check whether ξ8 = 0 or not. Following such exami-
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nation, we find that none of the solutions in (A65) or
(A66) renders ξ8 = 0; that is, (A60) and ξ8 = 0 do not
hold simultaneously. The details are omitted.

Thus, we conclude from (A59) that there exists at
least one nonzero coefficient among ξ11, ξ10, ξ9, and
ξ8, which contradicts (A28). We give some discussion
concerning the analysis of Case 2.2 in Remark 3.

Thus far, we have located at least one nonzero coef-
ficient for every case. This proves that (A28) does not
hold in any circumstance. As a result, θ̇1 = −φ̇1 ≡ 0,
which leads to sin φ2 = λ0 with λ0 being a constant.
Consequently, θ̇2 = −φ̇2 ≡ 0, and hence completes
the proof. 
�

The three remarks given below concern the newly
defined parameters in (A5), the analysis of Case 2.2 in
comparison with [15], and the numerical solutions in
(A65) and (A66), respectively.

Remark 2 The definition of newly defined parame-
ters varies with actuator configuration of the three-link
robot. From [15], the rewritten dynamics of the three-
link planar robot with active first link are

aφ̈2 cosφ2 + φ̈3 cosφ3 − aφ̇2
2 sin φ2 − φ̇2

3 sin φ3

= τ ∗
1 + β1 sin θ∗

1

α13
, (A67)

bφ̈2 + φ̈3 cos (φ3 − φ2) − φ̇2
3 sin (φ3 − φ2)

= ad sin
(
φ2 + θ∗

1

)
, (A68)

φ̈2 cos (φ3 − φ2) + eφ̈3 + φ̇2
2 sin (φ3 − φ2)

= d sin
(
φ3 + θ∗

1

)
, (A69)

where the angle of the first link and the control input
are constants, and

a = α12

α13
, b = α22

α23
, d = β3

α23
, e = α33

α23
. (A70)

From (A70),we see that the set of newly defined param-
eters in (A5) inherits the notations but differs in content,
since the PPA robot studied in this paper is actuated
by the last link instead of the first. Note that although
the underactuated parts of the dynamics in (A2) and
(A3) coincide with (A68) and (A69) in structure, com-
paring (A5) with (A70) shows that there is one more
newly added parameter f for the PPA robot. This differ-
ence takes root in the fundamental structure ofmechan-
ical parameters in (2) and (3). Indeed, the counter-
part of f in (A68) can be expressed by a × d, since

a = α12/α13 = β2/β3 holds. However, we cannot find
similar connection between f and the rest in (A5). Con-
sequently, the existence of f significantly complicates
the coefficients of the polynomial in (A11) compared
to that in [15]. To deal with this increased complexity,
we take full advantage of the properties of the newly
defined parameters in Lemma 2 to simplify the discus-
sion and further identify nonzero coefficient(s).

Remark 3 The condition of Case 2.2 is similar to that
of Case 2.2.2 in [15]; that is, the actuated link is in the
horizontal position. It is very difficult to discuss these
two cases, since no useful information can be drawn to
directly ease the strong coupling of the newly defined
parameters inside ξi . To unveil a nonzero coefficient,
weobtain twopolynomial equations solely in termsofa
from ξi . This is achieved by performing a series of itera-
tive polynomial division,which is amethodused in [15]
of eliminating targeted variable(s) from multi-variable
polynomial equations at the expense of increasing the
highest order of other variable(s). However, unlike the
counterpart in [15] where parameter e is fixed, in Case
2.2 it remains indefinite, and thus should be treated as
a targeted variable to eliminate in the same manner as
for b. This difference inevitably aggravates the com-
plexity of iteration, as demonstrated in Case 2.2. As a
result, we end upwith high-order polynomial equations
of a, which demand further analysis and inspection not
encountered in [15].

Remark 4 The numerical solutions in (A65) and (A66)
are calculatedusing theMathematica function “NSolve”.
The “WorkingPrecision” option of this function is set
to 50 to provide solutions with adequate precision of
50-digit, while a lower precision would also suffice to
yield the same conclusion in Case 2.2. For brevity, we
only present the first six digits of these solutions in
(A65) and (A66).

Appendix B: Stability analysis of equilibrium points

By calculating the characteristic polynomial of the
robot’s linearization at the down–up–up equilibrium
point (θ1, θ2, θ3, θ̇1, θ̇2, θ̇3) = (π, 0, 0, 0, 0, 0), we
obtain
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|s I − Jduu |
= s6 + a1s

5 + a2s
4 + a3s

3 + a4s
2 + a5s + a6,

where Jduu is the corresponding Jacobian matrix, and

a1 · Πduu = −kV
(
α11α22 − α2

12

)
,

a2 · Πduu = −kP
(
α11α22 − α2

12

) + kD (−α22β1 + α11β2)

+ 2β1

(
− α2

23β1 + (
α2
13 − α11α33

)
β2

+ α2
12β3 + α22 (α33β1 − α11β3)

)
,

a3 · Πduu = kV (−α22β1 + α11β2) ,

a4 · Πduu = kP (−α22β1 + α11β2) + β1

(
(kD − 2α33β1) β2

+ 2 (−α22β1 + α11β2) β3

)
,

a5 · Πduu = kV β1β2, a6 · Πduu = β1β2 (kP + 2β1β3) ,

with

Πduu = −
(
kD

(
α11α22 − α2

12

) + 2β1
(
α2
13α22 − 2α12α13α23

+ α11α
2
23 − (

α11α22 − α2
12

)
α33

))
. (B1)

We recall the requirement on kD in Lemma 1 for the
controller in (14) to be nonsingular. From (15), we have

kD > (Er − P (θ))
(
BTM−1 (θ) B

)−1 ∣∣∣
θ=[π,0,0]T

= −2β1

α11α22 − α2
12

(
α2
13α22 − 2α12α13α23

+α11α
2
23 +

(
α11α22 − α2

12

)
α33

)
. (B2)

By using (B1), (B2), and α11α22 − α2
12 > 0 due to

M(θ)|θ=03 > 0, we have Πduu < 0. This leads to
a5 < 0 and a6 < 0, regardless of control gains and
mechanical parameters. Hence, it can be concluded that
the down–up–up equilibrium point is strictly unstable,
since Jduu possesses no less than one eigenvalue in
the open right-half plane. The instability of the up–
down–up equilibrium point (θ1, θ2, θ3, θ̇1, θ̇2, θ̇3) =
(0, π, 0, 0, 0, 0) can be proved similarly.

Regarding the down–down–up equilibrium point
(θ1, θ2, θ3, θ̇1, θ̇2, θ̇3) = (π, π, 0, 0, 0, 0), calculating
its characteristic polynomial yields

|s I − Jddu | = s6+a1s
5+a2s

4+a3s
3+a4s

2+a5s+a6,

where Jddu is the corresponding Jacobian matrix, and

a1 · Πddu = −kV
(
α11α22 − α2

12

)
,

a2 · Πddu = −kP
(
α11α22 − α2

12

)

− kD (α22β1 + α11β2) − 2 (β1 + β2)

×
(
α2
23β1 + α2

13β2 − α2
12β3

−α33 (α22β1 + α11β2) + α11α22β3) ,

a3 · Πddu = −kV (α22β1 + α11β2) ,

a4 · Πddu = −kP (α22β1 + α11β2)

− β1β2 (kD − 2α33 (β1 + β2))

− 2 (β1 + β2) (α22β1 + α11β2) β3,

a5 · Πddu = −kVβ1β2, a6 · Πddu

= −β1β2 (kP + 2 (β1 + β2) β3) ,

with

Πddu = −
(
kD

(
α11α22 − α2

12

) + 2
(
β1 + β2

)

(
α2
13α22 − 2α12α13α23

+ α11α
2
23 − (

α11α22 − α2
12

)
α33

))
.

Similarly, exploiting the requirement on kD in Lemma
1 gives

kD > (Er − P (θ))
(
BTM−1 (θ) B

)−1
∣
∣∣
θ=[π,π,0]T

= −2 (β1 + β2)

α11α22 − α2
12(

α2
13α22 − 2α12α13α23 + α11α

2
23 − (

α11α22 − α2
12

)
α33

)
,

which leads to Πddu < 0. Thus, we have a1, a3, a5,
and a6 being positive, regardless of control gains and
mechanical parameters. However, the signs of a2 and
a4 are left undetermined. To reveal the instability of
this equilibrium point, we further compute the Hurwitz
determinant

D3 =
∣∣∣∣∣∣

a1 a3 a5
1 a2 a4
0 a1 a3

∣∣∣∣∣∣
= a1a2a3 − a23 − a21a4 + a1a5,
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which yields

D3 · Π3
ddu = 2k2V (β1 + β2)

(
α22β

2
1 (α13α22 − α12α23)

2 + α11β
2
2

(
α12α13

− α11α23
)2 + 2α12β1β2 (α13α22 − α12α23)

(α12α13 − α11α23)
)
.

Straightforward calculationwith (2) andusingmili lci ≥
Ji + mil2ci from [28] shows α13α22 − α12α23 ≤ 0 and
α12α13 − α11α23 < 0. Thus, D3 < 0 since Πddu < 0.
Hence, Jddu has one eigenvalue in the open right-half
plane at a minimum, indicating that the down–down–
up equilibrium point is strictly unstable. 
�
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