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Abstract In this paper, the combination resonance

characteristics of a high-dimensional dual-rotor-bear-

ing-casing system with bearing nonlinearities are

presented. All the periodic solution branches, includ-

ing the unstable solutions of the system, are obtained

by the semi-analytical harmonic balance method. Two

primary and two combination resonance regions are

found in the amplitude–frequency responses, with the

vibration jump and multiple solutions phenomena

being observed. Furthermore, the amplitude–fre-

quency responses with separated frequencies are

analyzed; it is shown that the vibration responses of

the combination resonance regions are dominated by

the combination frequencies of the rotating speeds of

the high- and low-pressure rotors. Moreover,

parametric analysis shows that the combination reso-

nances are sensitive to the change in the inter-shaft

bearing clearance. With the increase in clearance, the

combination resonance regions are widened. The

results in this paper provide a better understanding

of the combination resonances in high-dimensional

dual-rotor-bearing-casing systems.

Keywords Combination resonance � Semi-

analytical harmonic balance method � Dual-rotor-

bearing-casing system � Multiple solutions �
Unstable solutions

1 Introduction

The dual-rotor system is widely used in modern aero-

engine due to its high thrust-weight ratio and signif-

icant advantage in stability. In a dual-rotor system, the

back end of the high-pressure (HP) rotor is supported

on the rotating shaft of the low-pressure (LP) rotor by

the inter-shaft bearing. Thus, the rear fulcrum of the

HP rotor no longer requires a bearing seat, reducing

the weight of the system. However, on the one hand,

the use of the inter-shaft bearing will cause the

vibration coupling between two rotors. On the other

hand, the nonlinear restoring force of the inter-shaft

bearing contains many coupling nonlinearities includ-

ing fractional exponential function, radial clearance,

and variable stiffness excitations; this induces a series

Y. Chen � L. Hou (&) � R. Lin � Y. Wang � Y. Chen

School of Astronautics, Harbin Institute of Technology,

Harbin 150001, China

e-mail: houlei@hit.edu.cn

N. A. Saeed

Department of Physics and Engineering Mathematics,

Faculty of Electronic Engineering, Menoufia University,

Menouf 32952, Egypt

N. A. Saeed

Department of Automation, Biomechanics, and

Mechatronics, Faculty of Mechanical Engineering, Lodz

University of Technology, 90924 Lodz, Poland

N. A. Saeed

Mathematics Department, Faculty of Science, Galala

University, Galala City 43511, Egypt

123

Nonlinear Dyn (2024) 112:4063–4083

https://doi.org/10.1007/s11071-024-09282-8(0123456789().,-volV)( 0123456789().,-volV)

http://orcid.org/0000-0003-0271-7323
http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-024-09282-8&amp;domain=pdf
https://doi.org/10.1007/s11071-024-09282-8


of nonlinear vibration behaviors [1], such as vibration

jump, resonance hysteresis, multiple solutions and

combination resonance. Studying the nonlinear

dynamic characteristics of the dual-rotor system is

significant to the health and parametric optimization of

aero-engines.

The dynamic characteristics of dual-rotor systems

have been studied widely using numerical simulations

and experiments, where the effect of nonlinearities of

bearing and faults was analyzed in detail. First of all, the

basic dynamic characteristics [2] of dual-rotor systems

are discussed, including critical speed, mode and the

sense of the whirl, etc. The modeling [3] and model

reduction methods are studied, and simplified models of

dual-rotor systems with several degrees of freedom are

established, in which the nonlinearities of the bearings

and the coupling effect of the two rotors are considered.

Studies on the local defect of the inter-shaft bearing [4]

and the thermo-mechanical coupled characteristics [5]

are analyzed, revealing that the radial clearance has a

great effect on the nonlinear responses of the system. Ma

et al. [6] investigated the effects of squeeze film damper

and showed that the oil film clearance affects the

damping performance of the squeeze film damper.

Unbalanced vibration characteristics, the effects of

dual-frequency excitations [7], base excitation [8] and

the coupling effect of bending-torsional [9] were

analyzed in detail. It was found that the vibration

response of the dual-rotor system is related to the

unbalanced position and the unbalanced phase. The

nonlinear characteristics of dual-rotor system with

nonlinear faults [10], including the non-concentricity

faults [11], the rubbing fault [12], and the inter-shaft rub-

impact [13], were also studied; the results show that the

faults will cause complicated responses of the system,

which contain complex frequency components. The

above studies have obtained many nonlinear vibration

properties of the dual-rotor system and revealed the

effect of bearing nonlinearities and nonlinear faults.

However, there are insufficient investigations on the

nonlinear vibration mechanism.

In order to get a further understanding of the

nonlinear vibration mechanism, the harmonic balance-

alternating frequency/time domain (HB-AFT) method

has been widely applied in the analysis of rotor

systems. The basic idea of the HB-AFT method

[14, 15] is to convert the differential equations of the

system into algebraic equations using the harmonic

balance (HB) program. The Newton–Raphson

iterative procedure is then employed to obtain the

periodic solution, in which the Jacobian matrix of the

nonlinear parts needed in the process is obtained by the

alternating frequency/time domain (AFT) procedure.

HB-AFT method is a semi-analytical method; it is able

to handle a variety of nonlinear problems [16, 17],

including fractional exponential function [18], clear-

ance [19], time-varying stiffness [20], self-excited

vibration [21] and so on. Furthermore, by combining

with the numerical continuation procedure [22–25],

HB-AFT is able to obtain the different solution

branches for nonlinear systems. Compared with

numerical methods [26], it is not only highly effi-

ciency, but also able to obtain all periodic solution

branches (including the unstable solutions) [27, 28].

Based on the HB-AFT method, much work has been

carried out in the nonlinear dynamics analysis of rotor

systems. A series of nonlinear characteristics, includ-

ing quasi-periodic response [29, 30], the primary

resonant [31], the combination resonance [32], the

super-harmonic resonance [33], the internal resonance

[34], bifurcation and stability [35], are analyzed in

detail. The effects of the bearing’s nonlinearities on

rotor system [18, 36] and the mechanism of the

varying compliance parametric resonances [37, 38]

were revealed; it was found that the nonlinearities of

the bearing would introduce instability to the system.

The HB-AFT method was also modified to deal with

the nonlinear stochastic dynamics problems [39–41]

of rotor system; the results show that the modified HB-

AFT method is high-efficiency and high-precision. In

addition, the nonlinear dynamic characteristics of

rotor systems with nonlinear faults, including

misalignment [42], rub-impact [43–45], synchronous

impact [46], are detected by HB-AFT method, show-

ing that nonlinear faults would make more complex

frequency components in the responses of the system

and even cause abnormal resonances in some cases.

The above studies provide in-depth understanding of

the mechanism of nonlinear behaviors such as vibra-

tion jump, multiple solutions and bifurcation of rotor

system. However, most of these studies focused on the

Jeffcott rotor model or simple dual-rotor model with

several degrees of freedom, and there is insufficient

research on high-dimensional complex rotor systems.

The motivation of this paper is to detect the

combination resonances of a dual-rotor-bearing-cas-

ing system with 284 degrees of freedom. Wherein the

Hertz contact model of the nonlinear restoring force of
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the inter-shaft bearing is utilized, in which the

fractional exponential function, the radial clearance

and the variable stiffness excitation are considered.

The semi-analytical harmonic balance (SAHB)

method is employed to obtain all the periodic solution

branches of the high-dimensional nonlinear system,

providing an overall understanding of the nonlinear

dynamic characteristics of the system. Two distinct

combination resonance regions are found, wherein the

vibration jump, multiple solutions and circular phe-

nomena are observed. Moreover, the dominant fre-

quency components of the combination resonances are

determined, the nonlinear force of the inter-shaft

bearing is calculated, providing a further understand-

ing of the combination resonance mechanisms.

2 Dynamic model of the dual-rotor-bearing-casing

system

The dynamic model of the dual-rotor-bearing-casing

system (Ref [1]) is established in this section, in which

the characteristics of the system are introduced and the

motion equations of the system are given.

Figure 1 shows the schematic diagram of the dual-

rotor-bearing-casing system, which consists of four

parts, i.e., the low-pressure rotor (LP rotor), the high-

pressure rotor (HP rotor), the inner casing and the

outer casing. The LP rotor and the HP rotor are

connected by the inter-shaft bearing. Furthermore, the

LP rotor is composed of a flexible rotating shaft and

three rigid disks with gyroscopic effect consolidated

on it. The HP rotor contains a flexible rotating shaft

and eight rigid disks with gyroscopic effect consoli-

dated on it. The rotating speeds of the LP rotor and HP

rotors are x1 and x2, respectively, and the rotating

speed ratio of the two rotors is defined as

k ¼ x2=x1.The finite element method is employed

to establish the dynamic model of the system, in which

the LP rotor is divided into nodes 1–20, the HP rotor is

divided into nodes 21–35, the inner casing is divided

into nodes 36–44 and the outer casing is divided into

nodes 45–71. The motion of each node is described in

four degrees of freedom, i.e., the horizontal displace-

ment x and the vertical displacement y, and the

corresponding rotating angle is denoted as hx and hy.
Therefore, the total degrees of freedom of the system’s

dynamic model are 284. In addition, the nonlinear

restoring force of the inter-shaft bearing is modeled by

the Hertz contact model [47], where the fractional

exponential function, the radial clearance and the

variable stiffness excitation are considered. Interested

readers may refer to Ref [1] for more details about the

dynamic model of the system.

According to the finite element method [48], based

on the dynamic equation of the rigid disks, flexible

shaft segments and the casings, the nonlinear force of

the inter-shaft bearing, the dynamic equation of the

whole rotor system can be expressed as follows:

M €X þ C _X þ KX ¼ FðX; tÞ ð1Þ

where M, C and K are the mass matrix, damping matrix

and stiffness matrix, respectively. In addition, the

gyroscopic effect matrix is integrated into the matrix

C. F denotes external force on the system, including the

LP rotor unbalanced excitation, HP rotor unbalanced

excitation and the nonlinear force of the inter-shaft

bearing. X, _X and €X denote the displacement, velocity

and acceleration of the system, respectively.

3 Methodology formulation

According to the characteristics of the system’s

dynamics equation, a (SAHB) method is proposed in

this section, which is able to obtain the periodic

solutions (including the unstable solutions) of the

system efficiently.

As Eq. (1) shows, the motion equation of the system

is not only highly dimensional, i.e., contains 284

degrees of freedom, but also contains nonlinearities

from the inter-shaft bearing, including the fractional

exponential function, the radial clearance and the

variable stiffness excitation. As such, neither the

traditional analytical method nor the numerical method

can give its periodic solution efficiently and compre-

hensively. Thus, the SAHB method is proposed to

handle it. In the SAHB method, the periodic solution of

the system is set as a truncated Fourier series, and the

residual of the equations obtained by the harmonic

balance method is generated by the discrete Fourier

transform (DFT) procedure; both the periodic solution

and the residual are written as the product of the

harmonic basis matrix and the harmonic expending

coefficients matrix. Then, the harmonic expending

coefficients matrix of the residuals is generated by the
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inverse discrete Fourier transform (IDFT) procedure in

the time domain. Thereafter, the Jacobian matrix of the

residuals can be calculated programmatically and

efficiently by the chain derivative rule. Consequently,

the harmonic expending coefficients matrix of the

periodic solution can be updated efficiently by the

Newton–Raphson iterative procedure until the norm of

the residual is less than the preset error. In addition, the

different solution branches of the system can be

obtained by combining the SAHB method with the

arc length continuation procedure [25], and the stabil-

ities of the different solution branches can be analyzed

by the Floquet theory [49].

In the procedure of the SAHB method, first of all, a

time-scale normalization is performed in the equation

of motion (1) of the system, set s ¼ x1t, then

_X ¼ dX

ds
ds
dt

¼ x1X0; €X ¼ d _X

ds
ds
dt

¼ x2
1X00 ð2Þ

in which ð�Þ0 denotes the first-order derivative and

ð�Þ00 represents the second-order derivative with

respect to s, substituting Eq. (2) into Eq. (1), then

x2
1MX00 þ x1CX0 þ KX ¼ FðX; sÞ: ð3Þ

For the equation of motion (3), the periodic solution

of each freedom of the system is set as a truncated

Fourier series, i.e.,

X ¼

a0�1 þ
Ps

p¼1

ðap�1 cos psþ bp�1 sin psÞ

..

.

a0�i þ
Ps

p¼1

ðap�i cos psþ bp�i sin psÞ

..

.

a0�284 þ
Ps

p¼1

ðap�284 cos psþ bp�284 sin psÞ

2

6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
5

T

ð4Þ

in which s denotes the number of the truncated Fourier

series order, i denotes the number of degrees of freedom,

p stands for harmonic order.a0�i denotes the direct

component of the response in the ith degree of

freedom, ap�i denotes the coefficient of the cosine

component in the ith degree of freedom, bp�i denotes

Fig. 1 Schematic diagram of the dual-rotor-bearing-casing

system, which contains four parts, i.e., the low-pressure rotor

(LP rotor), the high-pressure rotor (HP rotor), the inner casing

and the outer casing. The LP rotor contains a flexible rotating

shaft and three rigid disks, is divided with nodes 1–20; the HP

rotor contains a flexible rotating shaft and eight rigid disks, is

divided with nodes 21–35; the inner casing is divided with nodes

36–44 and the outer casing is divided with nodes 45–71. The LP

rotor and the HP rotor are connected by the inter-shaft bearing.

ki ði ¼ 1 � 9Þ and ci ði ¼ 1 � 9Þ are the stiffness and the

damping coefficients for support 1–9
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the coefficient of the sinusoidal component in the ith

degree of freedom. The periodic solution of the system

in Eq. (4) can be rewritten as the product of the

harmonic basis matrix H and the harmonic expending

coefficients matrix A.

X ¼ HA ð5Þ

The detailed expressions of H and A are as follows:

H ¼ 1 cos s � � � cos ss sin s � � � sin ssð Þ
ð6Þ

A¼
a0�1 a1�1 ��� as�1 b1�1 ��� bs�1

..

. ..
. . .

. ..
. ..

. . .
. ..

.

a0�284 a1�284 ��� as�284 b1�284 ��� bs�284

0

B
@

1

C
A

T

:

ð7Þ

Defining the residual of the dynamic Eq. (3) of the

system as R, i.e.,

Rðs; ~X00
; ~X

0
; ~XÞ¼Fð ~X;sÞ�x2

1M ~X00�x1C ~X0�K ~X¼0:

ð8Þ

Since the external force FðX; sÞ of the system, i.e.,

the unbalanced excitation of the LP rotor and HP rotor,

and the nonlinear force of the inter-shaft bearing, can

be expressed by a truncated Fourier series, R also can

be expressed as a truncated Fourier series, i.e.,

R = HB, where H is the harmonic basis matrix, as

shown in Eq. (6), and B is the corresponding harmonic

expending coefficients matrix; the detailed expression

of B is as follows:

B¼
c0�1 c1�1 ��� cs�1 d1�1 ��� ds�1

..

. ..
. . .

. ..
. ..

. . .
. ..

.

c0�284 c1�284 ��� cs�284 d1�284 ��� ds�284

2

6
4

3

7
5

T

ð9Þ

Therefore, after a harmonic balance procedure, the

differential Eq. (3) of the system is equivalent to the

following algebraic equation:

B Að Þ ¼ 0: ð10Þ

The Newton–Raphson iterative procedure is then

employed to find the fixed point of Eq. (10), i.e.,

Aðkþ1Þ ¼ AðkÞ � J�1B ð11Þ

in which J is the Jacobian matrix, defined as

J ¼ oB

oA
: ð12Þ

Because the harmonic expending coefficients

matrix B contains the Fourier expansion coefficient

of the inter-shaft bearing nonlinear forces, oB=oA

cannot be calculated directly. For this, the procedure

that combines the inverse discrete Fourier transform

(IDFT) with the chain derivative rule is employed to

construct the relationship between B and A; the details

are as follows.

3.1 Discrete sampling

At the beginning, the period T is equally divided into N

points, noting that N must satisfy Nyquist–Shannon

sampling theorem. Then, one can define the sampling

time series as follows:

sk ¼
T

N
k; k ¼ 0; 1; 2; . . .; N � 1 ð13Þ

3.2 Calculate B by the IDFT procedure

Using the IDFT procedure, one can obtain the

components of B in the time domain, i.e.,

c0�i¼
1

N

XN�1

k¼0

Ri skð Þ;cj�i¼
2

N

XN�1

k¼0

Ri skð Þcosjsk;

dj�i¼
2

N

XN�1

n¼0

Ri skð Þsinjsk

ð14Þ

where Ri is the ith row of the residual matrix R,

corresponding to the residual of the ith degree of

freedom of the system.

3.3 Calculate the Jacobian matrix J

After constructing the relationship between B and A,

the Jacobian matrix J can also be calculated in the time

domain by the chain derivation rule, i.e.,

J¼

oB1=oA1 ��� oB1=oAi ��� oB1=oA284

..

. . .
. ..

. . .
. ..

.

oBi=oA1 ��� oBi=oAi ��� oBi=oA284

..

. . .
. ..

. . .
. ..

.

oB284=oA1 ��� oB284=oAi ��� oB284=oA284

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

ð15Þ
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in which Bi ¼
c0�i c1�i � � � cs�i d1�i � � � ds�ið ÞT corre-

sponds to the ith row of matrix B, and then, the chain

derivation rule is employed to calculate oBi=oAi, and

the specific expressions of oBi=oAi are shown in

‘‘Appendix’’.

Substituting the Jacobian matrix J into Eq. (11), the

Newton–Raphson iterative procedure is performed.

A is updated until the norm of B is less than an allowed

error tolerance, and then, the result is deemed to have

converged, as the periodic solution of the system is

X = HA. In addition, Fig. 2 shows the schematic

diagram of the SAHB method proposed in this paper.

The harmonic balance procedure is performed first,

with both the periodic solutions and the residuals of

the dynamic equations expressed as Fourier series.

Subsequently, the nonlinear algebraic equation

obtained by the harmonic balance procedure is solved

by utilizing the Newton–Raphson iterative procedure,

in which the Jacobian matrix J is acquired by

combining the IDFT with the chain derivative rule.

Finally, the harmonic coefficients of the periodic

vibration response of the system are obtained when the

Newton–Raphson iteration converges.

4 Results and discussion

In this section, the nonlinear vibration responses of the

system are obtained by employing the SAHB method,

the combination resonance characteristics are ana-

lyzed in detail by utilizing the amplitude–frequency

responses, orbits of the LP rotor and HP rotor.

Furthermore, the combination resonance mechanism

is revealed by the separated amplitude–frequency

responses and the analysis of the inter-shaft bearing

nonlinear restoring force. Finally, the effect of the

inter-shaft bearing clearance is detected.

The Campbell diagram of the dual-rotor-bearing-

casing system is shown in Fig. 3. Setting the rotating

speed ratio as k ¼ 1:2, the first-order critical speed of

the system is determined to be

x1 ¼ 163 rad/s ðx2 ¼ 193 rad/s), and the second-

order critical speed of the system is

x1 ¼ 376 rad/s ðx2 ¼ 462 rad/s). In order to analyze

the nonlinear vibration characteristics near the first-

order critical speed of the system, the sweep frequency

range is set to be

x1 2 ½140; 220� rad/s½140; 220� rad/s. Thus, in addi-

tion to the two rotors excitation frequencies, other

Fig. 2 Schematic diagram

of the SAHB method
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combination frequencies may be closed to the first- or

second-order critical speed of the rotor system.

The SAHB method presented before is employed to

analyze the system’s dynamic characteristics near the

first-order critical rotating speed. In order to get the

combination resonance responses of the system,

through several tests, set the response X as a truncated

Fourier series with 27 frequency components, i.e.,

x1=2, x2=2, x2 � x1=2, 2x1 � x2, x1=2 þ x2=3,

x1, ðx1 þ x2Þ=2, x2, 3x2=2 � x1=2, 2x2 � x1,

3x1=2, 3x2 � 2x1, x2 þ x1=2, 3x1 � x2,

3x1=2 þ x2=3, 2x1, 3x1=2 þ x2=2, x1 þ x2,

3x2=2 þ x1=2, 2x2, 5x1=2, 3x2 � x1, 3x1=2 þ x2,

4x2 � 2x1, 2x2 þ x1=2, 3x1, 5x1=2 þ x2=2, which

adequately reflect the vibration response of the system

after several tests. Substituting the above frequency

components into Eqs. (6) and (7), the harmonic basis

matrix H and the harmonic expending coefficients

matrix A can be expressed as follows:

H¼ 1 cos
x1

2
s cos

x2

2
s ��� cos

5x1

2
þx2

2

� �

s sins sinx2s �� � sin
5x1

2
þx2

2

� �

s

� �

ð16Þ

A¼
a0�1 a1�1 a2�1 � �� a27�1 b1�1 b2�1 � � � b27�1

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

a0�284 a1�284 a2�284 � �� a27�284 b1�284 b2�284 � � � b27�284

2

6
4

3

7
5

T

:

ð17Þ

The response amplitudes for any node of the system

can be calculated as follows:

Amp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X̂N

k¼1

x kð Þ � xð Þ2þ y kð Þ � yð Þ2
� �

=N̂

v
u
u
t ð18Þ

where N̂ represents the discrete sampling number. x

denotes the horizontal displacement response, y is the

vertical displacement response, x and y are the

averages displacement response corresponding to

x and y. The vibration response of each node in the

x and y directions is considered in Eq. (18), which

could accurately reflect the vibration status of the

system.

4.1 The overall vibration responses of the system

The periodic responses of the system with different

rotating speeds (near the first critical speed) of the

system are obtained by employing the SAHB method.

Figure 4 shows the three-dimensional amplitude–

frequency response of each part of the system, in

which the three axes represent the rotating speed of the

rotor, the z coordinate of different nodes and the

vibration amplitudes of each node, which are calcu-

lated by Eq. (18). Furthermore, the amplitude–fre-

quency response curves of each node are plotted in

Fig. 4, in which the orange–red lines represent the

stable solution branches, and the magenta lines denote

the unstable solution branches of the system.

Fig. 3 Campbell diagram of the system, the blue lines represent

the critical speed of the system under HP rotor excitation, and

the cyan lines represent the critical speed of the system under LP

rotor excitation. The points marked in black represent the

critical speed of the system at the speed ratio equal to 1.2
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As shown in Fig. 4, there are two obvious primary

resonance regions marked as P1 and P2, the first

primary resonance peak located at

x1 = 160 rad/s (x2 = 192 rad/s), which is aroused

by the HP rotor passing through the critical rotating

speed of the system; the other one is located at

x1 = 190 rad/s (x2 = 228 rad/s), which is excited by

the LP rotor passing through the critical rotating speed

of the system. The relative position of the two primary

resonance peaks is determined by the rotational speed

ratio. Due to the influence of the nonlinear factors of

the inter-shaft bearing, the amplitude–frequency

response curves of the system bend to the right in

the primary resonance region, which makes the system

show obvious hardening characteristics. Meanwhile,

the vibration jump and bistable phenomenon emerge

here, and there are two stable periodic solutions and

one unstable periodic solution in the bistable regions.

Fig. 4 Three-dimensional amplitude–frequency response of

the system. a LP rotor, b HP rotor, c inner casing, d outer

casing. The solid lines represent the amplitude–frequency

responses curves of each node. P1 and P2 represent the primary

resonance regions; C1, C2 represent the combination resonance

regions
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Furthermore, there is a small resonance peak in the

bottom of the primary resonance region P2, which

gives that there are five solutions in this region. The

reason for these nonlinear phenomena is the nonlinear

force of the inter-shaft bearing that contains fractional

exponential function, radial clearance and variable

stiffness excitation, which are essentially nonlinear.

Note that the primary resonances have been analyzed

in detail in our previous work Ref [1] and will not be

discussed in detail here.

Besides, as shown in Fig. 4, there are two small

resonance peaks near the primary resonance peaks: the

first one is marked as C1, the second one is marked as

C2. The resonance peaks C1, C2 are excited by the

combination frequencies close to the system’s first-

order critical speed. In addition, it is worth noting that

the vibration amplitudes of the combination reso-

nances C1 and C2 are smaller than that of the primary

resonance, but it is much more violent than that of non-

resonance points. On the other hand, the amplitude–

frequency responses also bend to the right at the

combination resonance regions. As a result, the

vibration jump and multiple solutions phenomena

also emerge in these regions, which are harmful to the

healthy operation of the system. Furthermore, the

combination resonances are also synchronized in each

part of the system.

In addition, the dynamic mode of the LP rotor, the

HP rotor, the inner casing, the outer casing with

respect to the primary resonance regions and the

combination resonance regions are shown in Fig. 5.

As shown in Fig. 5, the dynamic modes of the LP

and HP rotor are the same in different resonance

regions, but the modes of the casings in combination

resonance region C2 are different from that in the

primary resonance regions and combination resonance

C1. As for the inner casing, the vibration amplitude

increases gradually from left to right in region P1, P2

and C1. However, in region C2, the vibration ampli-

tude decreases first and then increases. As for the outer

casing, the vibration amplitude is larger in the middle

and tail, but smaller in the front in the resonance

regions P1, P2 and C1. However, the vibration

amplitude of the front and tail is larger, while that of

the middle is smaller in resonance region C2. In

general, the combination resonance C2 would change

the dynamic modes on the system’s casing, but has

little effect on the rotors’ mode.

4.2 The nonlinear resonances of the system

In order to give an insight into the nonlinear

resonances of the system, the amplitude–frequency

responses curve of the LPT rotor disk (Node 19) is

shown in Fig. 6. (As shown in Fig. 4, the vibration

characteristics of each node of the system are similar,

so selecting one node of that to display in detail is

enough.) The solid line represents the stable periodic

solutions, and the dotted line represents the unsta-

ble periodic solutions obtained by the SAHB method.

The primary resonance regions marked as P1 and P2,

and the combination resonance regions marked as C1

and C2 correspond to the resonance regions shown in

Fig. 4. It is found that the amplitude–frequency

response curves of the system behave like the hard-

ening characteristic both in the primary resonance

regions and the combination resonance regions. In the

resonance region C1, there are three periodic solu-

tions, in which the solutions with smaller and larger

amplitude are stable, and the solution in the middle is

unstable. In the resonance region C2, there is a circle

phenomenon, which makes the multiple solutions

phenomena emerge in this region, i.e., there are three

periodic solutions, in which the biggest one is

unstable.

In addition, the periodic solutions of the system

obtained by the Newmark method are also shown in

Fig. 6, marked with asterisks. It is found that the

amplitude–frequency response curves of the system

obtained by the two methods are basically consistent.

The difference is that the SAHB method can obtain the

unstable periodic solution of the system, so as to give

the whole picture of the system solution, which is very

important for the in-depth analysis of the nonlinear

resonance characteristics of the system. Therefore, the

SAHB method has more advantages than the New-

mark method in analyzing combination resonances.

In order to further detect the vibration response

characteristics of the system, point A1

(x1 ¼ 160 rad/s, x2 ¼ 192 rad/s) in the primary res-

onance P1, point A2

(x1 ¼ 165:1 rad/s,x2 ¼ 198:1 rad/s) in the combina-

tion resonance region C1, point A3

(x1 ¼ 190 rad/s,x2 ¼ 228 rad/s) in the primary reso-

nance P2, point A4 (x1 ¼ 205:7 rad/s,

x2 ¼ 246:8 rad/s) in the combination resonance

region C2 are taken out from the amplitude–frequency

response curves shown in Fig. 6, and the orbits of the
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LP rotor and HP rotor are given, as shown in Fig. 7, in

which z represents the position of the nodes, x, y

denotes the horizontal displacement and vertical

displacement, respectively. The curves in different

colors represent the orbits of different nodes.

As shown in Fig. 7, the orbits of each node of the

LP rotor and the HP rotor are regular circles in the

primary resonance region P1 and P2; however, the

orbits of each node of the two rotors become chaotic

and are no longer regular circles in the combination

resonance region C1, C2. This is because in the

primary resonance regions, the vibration responses of

the system are mainly dominated by the excitation

frequency of the HP rotor or the LP rotor, while in the

combination resonance regions, there are numerous

frequency components. More details about these will

be analyzed later. Furthermore, the black curves

represent the dynamic mode of the rotors, and they

are consistent with Fig. 5; it is found that the closer to

the inter-shaft bearing, the more intense the vibration

of the node, which makes the operating environment

of the bearing more severe and harmful to its health.

Fig. 5 Dynamic mode of the system. a primary resonance region P1 (x1 ¼ 160 rad/s); b combination resonance region C1

(x1 ¼ 165:1 rad/s); c primary resonance region P2 (x1 ¼ 190 rad/s); d combination resonance region C3 (x1 ¼ 205:7 rad/s)
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4.3 The combination resonance analysis

of the system

In the procedure of the SAHB method, as shown in

Sect. 3, the periodic responses of the system are

expressed as the truncated Fourier series, i.e.,

X = HA, so the exact expressions of the responses

corresponding to each frequency component of the

solution X could be obtained. One can define the

vibration responses of a separated frequency compo-

nent at a wanted degree of freedom as follows:

xxi
¼ axi

cosðxitÞ þ bxi sinðxitÞ ð19Þ

where axi
and bxi is the Fourier expansion coefficients

corresponding to the ith frequency component of

X. The effective values of response amplitudes for

each node in a separated frequency component are also

calculated by Eq. (18); then, one can obtain the

separated amplitude–frequency responses of each

node of the system. In order to further analyze the

combination resonance characteristics, the separated

amplitude–frequency responses of the LPT rotor disk

(Node 19) corresponding to Fig. 6 are shown in Fig. 8.

As shown in Fig. 8, the amplitude–frequency

responses curve corresponding to the excitation

frequency x1 of the LP rotor is the largest one in the

primary resonance region P1, and the amplitude–

frequency responses curve corresponding to the

excitation frequency x2 of the HP rotor is the largest

one in the primary resonance P2, which proves that the

first formant is excited by the HP rotor passing through

the critical rotation speed and the second formant is

excited by the LP rotor passing through the critical

rotation speed. Furthermore, in the combination

resonance regions, the amplitude–frequency responses

curve corresponding to the frequency components

ðx1 þ x2Þ=2, x1=2 þ x2=3, 2x1 � x2 are notable;

meanwhile, other combination frequencies such as

x1=2, x2=2,3x2=2 � x1=2, 2x1, 2x2, 2x2 � x1,

3x2 � 2x1 also have some contribution to the com-

bination resonances. It is worth noting that the

amplitude–frequency responses curve of the system

shown in Fig. 6 is just the integration of the separated

amplitude–frequency responses corresponding to each

frequency shown in Fig. 8. Thus, based on the SAHB

method, one can accurately obtain the contribution of

each frequency component to the vibration of the

system, which is of great significance for understand-

ing the nonlinear vibration mechanism and vibration

control of the system.

In order to give an insight into the nonlinear

vibration characteristics of the combination reso-

nance, the separated amplitude–frequency responses

curves of the system in regions C1, C2 are obtained, as

shown in Figs. 9 and 10.

Fig. 6 Amplitude–frequency responses curve of the LPT rotor

disk, in which the solid lines represent the stable periodic

solutions, the dotted lines represent the unstable periodic

solutions obtained by the SAHB method, and the lines marked

with asterisks represent the periodic solutions obtained by the

Newmark method. A1, A3 are points in the primary regions, A2,

A4 are points in the combination resonance regions
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4.3.1 Combination resonance in region C1

Figure 9 shows the separated amplitude–frequency

responses of the LPT rotor disk in region C1. As

shown in the figure, the amplitude–frequency response

curve corresponding to the combination frequency

ðx1 þ x2Þ=2 is the most notable one. It is indicated

that the vibration responses of the system in region C1

are mainly composed of the combination frequency

ðx1 þ x2Þ=2, the excitation frequency of the LP rotor

Fig. 7 Orbits of the LP rotor and HP rotor. a, c, e, g, are for the

LP rotor; b, d, f, h are for the HP rotor; a, b are for point A1:

x1 ¼ 160 rad/s,x2 ¼ 192 rad/s; c, d are for point A2:

x1 ¼ 165.1 rad/s, x2 ¼ 198:1 rad/s; e, f are for point A3:

x1 ¼ 190 rad/s,x2 ¼ 228 rad/s; g, h are for point A4:

x1 ¼ 205:7 rad/s, x2 ¼ 246:8 rad/s). The curves in different

colors represent the orbits of different nodes, and the black

curves represent the dynamic mode of the rotors
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x1 and the excitation frequency of the HP rotor x2.

Meanwhile, combination frequencies 3x2=2 � x1=2,

x1=2 þ x2=3 also take a prominent role in the

responses of the system, while other combination

frequencies have little contribution. It is worth noting

that the response amplitude of the combination

frequency x1=2 þ x2=3 exceeds that of the system’s

excitation frequency x1 and x2, and the shape of the

amplitude–frequency response curves of the system

(as shown in Fig. 6) in this region is consistent with

that of the frequency x1=2 þ x2=3, which indicates

that the combination resonance region C1 is domi-

nated by x1=2 þ x2=3. The resonance in region C1

illustrates that when the combination frequency

x1=2 þ x2=3 is close to the critical speed of the

system, it will also arouse resonance.

4.3.2 Combination resonance in region C2

Figure 10 shows the separated amplitude–frequency

responses of the LPT rotor disk (node 19) in the

combination resonance region C2. It is observed that

the amplitude–frequency response curve correspond-

ing to the combination frequency 2x1 � x2 is the most

notable one, which indicates that the vibration

responses of the system in region C2 are mainly

composed of the combination frequency 2x1 � x2

and the excitation frequency x1, x2; meanwhile, the

frequency components x2=2, 2x2 � x1, 3x2 � 2x1,

3x1 � x2, x1 þ x2, 2x2 are also have significant

contributions to the responses. Furthermore, the

separated amplitude–frequency responses of the fre-

quency 2x1 � x2 are the most notable one in Fig. 10,

and the shape of the amplitude–frequency response

curves of the system (as shown in Fig. 6) in this region

is consistent with that of the combination frequency

2x1 � x2, which indicates that the combination

resonance region C3 is dominated by 2x1 � x2.

4.3.3 Discussion

Through detailed analysis, it is found that the vibration

responses of the combination resonance regions of the

system are jointly determined by the excitation

frequency and the combination frequencies of them.

The combination resonance region C1 is dominated by

the frequency ðx1 þ x2Þ=2; the separated amplitude–

frequency responses of the combination frequency

2x1 � x2 are the most notable in the combination

resonance region C2. The reason for the combination

Fig. 8 Separated amplitude–frequency responses of the LPT

rotor disk, in which the different colored lines represent

separated amplitude–frequency responses curve corresponding

to different frequency components, the frequency components

that are notable are circled by dotted boxes in the legend
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resonance is the combination frequencies closing to

the critical speed of the system. Furthermore, the

emergence of the combination frequencies is origi-

nated from the nonlinear restoring force of the inter-

shaft bearing, which contains three nonlinear factors,

namely fractional exponential function, the clearance

and time-variable stiffness, and intrinsic nonlinear

characteristics.

4.4 The nonlinear restoring force of inter-shaft

bearing

As shown in Ref [1], the nonlinear restoring force of

the inter-shaft bearing contains three kinds of nonlin-

ear factors, i.e., the fractional exponential function, the

radial clearance and the variable stiffness excitation.

The nonlinear restoring force of the inter-shaft bearing

Fig. 9 Separated amplitude–frequency responses of the LPT

rotor disk in region C1, in which the different colored lines

represent separated amplitude–frequency responses curve

corresponding to different frequency components, the frequency

components that are notable are circled by dotted boxes in the

legend

Fig. 10 Separated amplitude–frequency responses of the LPT

rotor disk in region C2, in which the different colored lines

represent separated amplitude–frequency responses curves

corresponding to different frequency components, the frequency

components that are notable are circled by dotted boxes in the

legend
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has intrinsic nonlinear characteristics, which is the

inducement of nonlinear vibration phenomena of the

system. In order to further analyze the characteristics

and mechanism of the combination resonances of the

system, corresponding to the amplitude–frequency

responses of the system (as shown in Fig. 6), the

effective values of the nonlinear restoring forces of the

inter-shaft bearing are calculated by Eq. (20), in which

Fx and Fy are the component of the force in the x and y

directions, Fx and Fy denote the averages correspond-

ing to them, N represents the discrete sampling

number.

Fb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1 FxðiÞ � Fx

� �2þ FyðiÞ � Fy

� �2
� �

N

v
u
u
t

ð20Þ

The nonlinear restoring force–frequency responses

curve is shown in Fig. 11, in which the solid lines

represent the nonlinear restoring force corresponding

to the stable periodic solution of the system, and the

dotted lines represent the restoring force correspond-

ing to the unstable periodic solution. It is found that

there are also two primary resonance regions (P1 and

P2) and two combination resonance regions (C1, C2

and C3) corresponding to Fig. 6. The vibration jump

phenomenon also occurs in the nonlinear restoring

force–frequency responses of the inter-shaft bearing;

the maximum jump amplitudes of the force at each

resonance regions are shown in Table 1. In the

primary resonance region A1 and A2, the maximum

jump amplitude of the force is 1610N and 1769N,

respectively. It is worth noting that the maximum

jump amplitude of the force is 228N and 124N in

regions C1, C2. The vibration jump phenomenon

would cause a bad load environment to the inter-shaft

bearing, which is detrimental to its health.

Furthermore, corresponding to the rotors’ orbits of

the LP rotor and HP rotor in Fig. 7, the nonlinear

restoring force responses (including the time history

and the frequency spectrum) of the inter-shaft bearing

at point A1 (x1 ¼ 160 rad/s, x2 ¼ 192 rad/s) in the

primary resonance P1, point A2 (x1 ¼ 165:1 rad/s,

x2 ¼ 198:1 rad/s) in the combination resonance

region C1, point A3 (x1 ¼ 190 rad/s,

x2 ¼ 228 rad/s) in the primary resonance P2, point

140 160 180 200 220
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1500

2000
F b(N
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Fig. 11 Nonlinear restoring force–frequency responses of the

inter-shaft bearing, the solid lines represent the nonlinear

restoring force corresponding to the stable periodic solution of

the system, and the dotted lines represent the restoring force

corresponding to the unstable periodic solution

Table 1 Maximum jump amplitude of the inter-shaft nonlin-

ear restoring force Fb in each resonance region

Resonance region Maximum jump amplitude of Fb (N)

P1 1610

P2 1769

C1 228

C3 124

P1, P2 represent the two primary resonance region, C1, C2

denote the combination resonance regions
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A4 (x1 ¼ 205:7 rad/s, x2 ¼ 246:8 rad/s) in the com-

bination resonance region C2 are shown in Fig. 12.

As shown in Fig. 12a, b, in the primary resonance

P1, the time history of the inter-shaft bearing nonlinear

force is a regular periodic response curve, and there

are only two frequency components in the frequency

spectrum, the excitation frequency x2 of the HP rotor

is dominant. Meanwhile, corresponding to Fig. 7a, b,

the rotors’ orbits of the LP rotor and HP rotor are

regular circles.

Fig. 12 Time history and frequency spectrum of the nonlinear

restoring force. a, b for point A1:x1 ¼ 160 rad/s,

x2 ¼ 192 rad/s; c, d for point A2: x1 ¼ 165.1 rad/s,

x2 ¼ 198:1 rad/s; e, f for point A3: x1 ¼ 190 rad/s,

x2 ¼ 228 rad/s; g, h for piont A4: x1 ¼ 205:7 rad/s,

x2 ¼ 246:8 rad/s
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As shown in Fig. 12c, d, in the combination

resonance region C1, the time history of the inter-

shaft bearing nonlinear force is a periodic response

curve and there are four distinct peaks, but there are

more frequency components in the frequency spec-

trum, the frequency of inter-shaft bearing cage ðx1 þ
x2Þ=2 plays a dominant role in the response; mean-

while, the x2, x1, x1=2 þ x2=3 and 3x2=2 � x1=2

are also notable; this is consistent with the perfor-

mance of the system responses in combination reso-

nance region C1 shown in Fig. 9.

As shown in Fig. 12e, f, in the primary resonance

P2, the time history of the inter-shaft bearing nonlinear

force is a regular periodic response curve similar to

that of A1. Furthermore, there are only two frequency

components in the frequency spectrum; the excitation

frequency x1 of the LP rotor is dominant. Meanwhile,

corresponding to Fig. 7e, f, the rotors’ orbits of the LP

rotor and HP rotor are regular circles.

As shown in Fig. 12g, h, in the combination

resonance region C2, the time history of the inter-

shaft bearing nonlinear force is a periodic response

curve and there are eight distinct peaks. Meanwhile,

there are many frequency components in the fre-

quency spectrum, in which the frequency x1 and

2x1 � x2 play a dominant role in the response, and the

frequency components x2, x2=2, 2x1, x1 þ x2, 2x2

are also notable; this is consistent with the perfor-

mance of the system responses in combination

resonance region C2 shown in Fig. 10. It is worth

noting that the frequency division, frequency doubling

and frequency combination of the excitation fre-

quency are obvious.

In summary, in the primary resonance regions, the

response of the nonlinear force of the inter-shaft

bearing only contains the HP and LP rotor excitation

frequencies, but in the combination resonance regions,

due to the effect of nonlinearities, there will be more

frequency components in the response of the inter-

shaft bearing force, one of these frequency compo-

nents will be close to the critical rotating speed of the

system in the combination resonance region, which is

the reason for the combination resonance of the

system.

4.5 Effect of the inter-shaft bearing clearance

The inter-shaft bearing clearance is one of the main

inducements of nonlinear dynamic behaviors such as

combination resonance, vibration jump and multiple

solutions of the system. It is significant for the health

and vibration control of the system to study the

influence of the clearance. Figure 13 shows the

amplitude–frequency responses of the LP rotor (node

19) with different clearance (d0 ¼ 0 lm,

d0 ¼ 2 lm,d0 ¼ 4 lm,d0 ¼ 6 lm,d0 ¼ 8 lm), in

which the dotted lines represent the unstable periodic

solution of the system. It is worth noting that the

Fig. 13 Amplitude–frequency responses of the LP rotor (node

19) with different clearances, P1, P2 represent the two primary

resonance regions, C1, C2 represent the two combination

primary resonance regions. The two subgraphs are local

magnifications of the two combination resonance regions
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vibration of each node in the system is synchronous,

and the shape of the amplitude–frequency response of

each node is similar, as shown in Fig. 4, so it is enough

to take one node as an example to illustrate the effect

of the inter-shaft bearing clearance.

As shown in Fig. 13, in appearance, the change of

the clearance of the inter-shaft bearing would hardly

affect the response amplitude of the system. However,

the change of the clearance of the inter-shaft bearing

will shift the amplitude–frequency response curves

(including the primary resonance regions and the

combination resonance regions) to the left. Further-

more, increasing the clearance will make the position

of the bifurcation points under the primary resonance

of the system shift to the left, but the bifurcation points

with small amplitude shift to the left more, resulting in

a wider width of the bistable region under the primary

resonance of the system. As for the combination

resonance regions C1, C2, they also shift to the left as

the increasing of the clearance.

As for the combination resonance region C1, when

the clearance of the inter-shaft-bearing is d0 ¼ 0 lm,

the combination resonance does not occur in the

region. When the clearance is d0 ¼ 2 lm, d0 ¼ 4 lm,

d0 ¼ 6 lm, d0 ¼ 8 lm, the system shows obvious

combination resonance in this area, marked in red,

green, blue and black, respectively. It is found that the

positions of the combination resonance regions move

to the left gradually and the amplitudes corresponding

to the combination resonance regions increase grad-

ually as the increasing of the clearance. Furthermore,

the increase of the clearance will widen the width of

the combination resonance region C1, which means

the multi-solution regions of the system also widen.

For the combination resonance region C2, even if

the clearance of the inter-shaft bearing is zero, there

are still obvious combination resonance in this area,

which suggests that the existence of the combination

resonance in this region is not determined by the

clearance. Similar to region C1, increasing the clear-

ance will hardly affect the amplitudes of the combi-

nation region C2, but the positions will move to the left

with the increase of the clearance. In addition, the

widths of the combination regions gradually widen

with the increase of the clearance.

In summary, the inter-shaft bearing clearance is one

of the determining factors for the appearance of the

combination resonance region C1. The increase of the

inter-shaft bearing clearance will widen the width of

the combination resonance regions, and at the same

time shifts the position of to the left, the reason is that

the clearance will change the contact state of the inter-

shaft bearing rollers, resulting in the change of its

dynamic stiffness.

5 Conclusions

In this paper, the combination resonances of a high-

dimensional dual-rotor-bearing-casing system has

been investigated in detail by employing the SAHB

method. The results show that the SAHB method has

more advantages than the Newmark method, since the

SAHB method can obtain all the periodic solutions

(including the unstable periodic solution) of the

system, thus providing a more comprehensive under-

standing of the combination resonance characteristics

of the system.

The characteristics of the combination resonances

have been analyzed in detail by employing the SAHB

method. Four obvious resonance regions have been

found in the amplitude–frequency responses, of which

the two primary resonance regions are excited by the

two rotors passing through the critical speed, and the

two combination resonance regions are dominated by

the combination frequencies ðx1 þ x2Þ=2, 2x1 � x2,

respectively. In addition, the vibration jump and

multiple solutions phenomena have been observed in

all resonance regions.

More in-depth studies show that the inter-shaft

bearing forces emerge various combination frequency

components under the action of nonlinearities, leading

to the appearance of combination resonances. Through

parametric analysis, it has been shown that the

combination resonances may change the dynamic

modes of the casing. The combination resonances are

very sensitive to the change of the inter-shaft bearing

clearance; the increase of the clearance will widen the

combination resonance regions.

The study undertaken in this work is of great

significance in parameter optimization design and

vibration control for the dual-rotor-bearing-casing

system. In addition, the SAHB method proposed here

is a generalized method; it is an advantageous tool to

analyze the nonlinear dynamic characteristics of high-

dimensional engineering systems with complex non-

linearities. Future works will focus on analyzing the

nonlinear resonances of the high-dimensional rotor
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system with complex coupling nonlinearities and

carrying out the relevant experimental study.
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Appendix
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6
6
6
6
6
6
6
6
6
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7
7
7
7
7
7
7
7
7
7
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oc0�i

oaj�i
¼ 1

N

XN�1

k¼0

oRi skð Þ
oui

� j2
oRi skð Þ
ou00i

� �

cosjsk� j
oRi skð Þ
ou0i

sinjsk

� �
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ocm�i

oaj�i
¼ 2

N

XN�1

k¼0
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oui

� j2
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ou00i

� �

cos jsn � j
oRi skð Þ
ou0i

sin jsk

� �

cosmsk

� �

ð23Þ

ocm�i

obj�i
¼ 2

N

XN�1

k¼0

oRi skð Þ
oui

� j2
oRi skð Þ
ou00i

� �

sin jsk þ j
oRi snð Þ
ou0i

cos jsk

� �

cosmsk

� �

ð24Þ

odm�i

oaj�i
¼ 2

N

XN�1

k¼0

oRi skð Þ
oui

� j2
oRi skð Þ
ou00i

� �

cos jsk � j
oRi skð Þ
ou0i

sin jsk

� �

sinmsk

� �

ð25Þ

odm�i

obj�i
¼ 2

N

XN�1

k¼0

oRi skð Þ
oui

� j2
oRi skð Þ
ou00i

� �

sin jsk þ j
oRi skð Þ
ou0i

cos jsk

� �

sinmsk

� �

ð26Þ

where ui corresponds to the ith row of the solution X, it

represents the displacement response of the system in

ith degrees of freedom. In addition, u0i and u00i are

corresponding to the first and second derivatives of ui,

they denote the velocity response and acceleration

response of the system in ith degrees of freedom,

respectively.
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