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Abstract Introducing a time-periodicity into a sys-
tem parameter leads to parametric excitation, which in
general, may cause a parametric resonance with expo-
nentially increased vibration. Applying a parametric
excitation but carefully tuning its frequencies to mul-
tiple parametric anti-resonance frequencies is investi-
gated here. The parametric excitation here is realized by
an open-loop control at the systemboundary that allows
for an energyflow into or from the system.Aparametric
anti-resonance successfully triggers an energy transfer
between specific vibration modes of the system and
occurs in systems with at least two degrees of free-
dom. Such an energy transfer increases the overall dis-
sipation of kinetic energy of a lightly damped system.
This contribution presents an approach to accelerate the
mitigation of transient vibrations by applying a multi-
frequency parametric excitation with two ormore para-
metric anti-resonance frequencies. The potential appli-
cation in a MEMS sensor arrangement consisting of
two and more coupled flexible beams exemplifies the
method. Starting from the minimum system with two
degrees of freedom, the averaging method is applied to
analyze the transient slow flow, leading to an analyti-
cal approximation of the transition time response of a
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pulsed multi-frequency parametric excitation system.
For a specific example, a reduction of 96.7% of the
transient vibrations is achievable.
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1 Introduction

Sensors are utilized in all kinds of applications to mea-
sure a multi-physical system’s transient and steady
states. The design and analysis of dynamics are under
investigation and utilized in many different areas rang-
ing from classical engineering [19,33,37] over physics
[7] up to environmental and biological engineering
[41].

For successful measurements, it is crucial for the
sensor that its own dynamics do not distort the mea-
surement. This is achieved by designing fast dynam-
ics of the sensor. The quality factor limits the speed
of the sensor response dynamics. A high-quality fac-
tor Q is needed to allow for a high sensor sensitivity
[20,25]. However, highQ leads simultaneously to a low
damping and slow sensor transients. The measurement
system must wait for these sensor transients’ decay to
gain a reliable reading of the system dynamics under
investigation, not the sensor dynamics. This contribu-
tion highlights a methodology for speeding up the tran-
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sient time of a sensor while keeping the advantageous
high-quality factor [26].

In the scope of this investigation, we focus on time-
periodic systems. Time-periodic systems have been
investigated for decades. A time-periodicity can be
unavoidable and undesired, e.g. the base excitation of a
motor in a ship subject to an external excitation by the
sea [16]. A time-periodicity can also be implemented
in the context of sensors for exploiting a parametric
resonance that amplifies the sensor sensitivity, e.g. the
[23,32].

Time-periodic systems, even linear ones, cannot be
solved analytically in closed form. However, several
analytical techniques exist which allow for an approxi-
mate solution. The most commonly applied methods
are singular perturbation methods like the multiple
scales method [24], the method of averaging [40] or
complexification [18], and several textbooks exist that
apply them interchangeably [5,35,38]. Both methods
rely on the assumption of small bookkeeping param-
eter ε. It can be shown that for an approximation of
first order in ε both methods lead to the same result on
the time scale of 1/ε. The method of averaging [39]
is followed here, specifically in the general case. The
benefit of this method was outlined in more detail very
recently in [40]. Introducing multiple parametric fre-
quencies in the present work results in a quasi-periodic
parametric excitation for which the method of aver-
aging in the general case remains applicable, and the
findings in [15] can be built upon.

Time-periodic systems exhibit parametric combi-
nation resonances for [9] at which the system vibra-
tions increase, depending on the strength, frequency of
the parametric excitation and the system damping. The
parameter combinations for which an increase of vibra-
tions is observed liewithin the famousArnould tongues
[28] or instability tongues that are visualized in the
Ince-Strutt stability diagram [8]. For amultiple-degree-
of-freedom-system, instability tongues may appear
close to the principal parametric resonance frequen-
cies 2�i/n or at parametric combination resonance
frequencies |�i ∓ � j |/n with n ∈ N and �i being
the natural frequency of the underlying system without
parametric excitation [43].

The numerical stability analysis of time-periodic
systems needs particular attention, and several meth-
ods were developed in the time domain (Monodromy
matrix [27]) and the frequency domain (Hill matrix
[4]). Recent developments for single as well as cou-

pled Mathieu equations can be found in [8], also utiliz-
ing symplectic properties [27,28]. The quasi-periodic
Mathieu equation, the simplest time-periodic system
with multiple frequency excitation, was investigated in
[31,45], showing very rich dynamics. In the present
contribution dealing with a set of coupled Mathieu
equations, such rich dynamics were not observed,
which is why the treatment by singular perturbation
leads to still compact expressions. The numerical anal-
ysis ofmore complex systemswith quasi-periodic para-
metric excitation can be analyzed by following [42].

Under certain conditions, parametric combination
resonances can show a stabilizing behaviour observed
initially in [36] wherein the combination between a
destabilizing self-excitation and a parametric combina-
tion resonance led to an overall stable system. This phe-
nomenonwas then termed parametric anti-resonance to
underline the stabilizing behaviour. This observation
was investigated in a series of works analytically and
numerically [10–12,14]. These studies showed that not
the interaction between self-excitation and paramet-
ric excitation leads to vibration mitigation but solely
a properly tuned parametric combination resonance
([10]). This triggered the possibility that any vibrating
system with at least two degrees of freedom and small
damping has the potential to exploit the vibration mit-
igation by a parametric combination resonance. This
finding was confirmed experimentally for several dis-
crete and continuous systems in [13].

MEMS (micro electromechanical systems) are uti-
lized in several applications [2,22] and allow for a sim-
ple electrical implementation of a parametric excita-
tion [1,21,26]. During operation, MEMS can be driven
to linear or non-linear regimes using different actu-
ation mechanisms [44]. MEMS based on resonators
can be composed of coupled structures (mechanically
or electrically) in which coupling and energy transfer
between vibration modes are analyzed for a specific
purpose [17]. This coupling involves various vibration
modes of a structure and exploits an intermodal cou-
pling or the internal resonance phenomenon. These rep-
resent a nonlinear mechanism for transferring energy
fromone vibrationmode to another [3,6]. Furthermore,
these structures can be excited in various ways, in their
first mode or higher modes of vibration [34]. MEMS
resonators possess diverse dynamics and its potential
applications lie in energy harvesting, frequency stabi-
lization in oscillators and synchronization [17]. The
present work focuses exclusively on the linear dynam-
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Fig. 1 MEMS schematic diagram base on [26]

ics and achievesmodal coupling by a parametric excita-
tion. Introducing a specific parametric excitation leads
to a selective modal coupling and consequently to a
selective energy transfer between vibration modes as
originally shown in [11,14]. Doing so we can trigger a
selectivemodal coupling between thefirstmode and the
remaining modes of the system. The usage of a single
frequent parametric excitation for vibration mitigation
was investigated theoretically in [29,30] and verified
for aMEMS sensor in [25].Motivated by the results for
aMEMSwith 2DOF, the configuration is extended here
to multiple DOFs, always leading to linearly coupled
Mathieu equations. The concept is then generalized to
the more complex case of a quasi-periodic paramet-
ric excitation at several parametric anti-resonance fre-
quencies. Analytical conditions for a confined pulses
of parametric excitations are given for achieving a mit-
igation of transient vibrations. The first order approxi-
mation of the slow flow dynamics is derived by apply-
ing the averaging method in the general case [40]. It
shown that driving a linear MEMS at different para-
metric anti-resonance frequencies triggers a continu-
ous energy transfer between selected vibration modes.
The benefit for reducing the settling time for MEMS
with three, four and more beams is highlighted.

In summary, the averaging technique is applied
to a multi-parametric excited NDOF system at the
anti-parametric frequency �p = |�i − � j |; at this
frequency, the averaged system accurately describes
the system’s dynamics under the influence of anti-
parametric excitation. The transfer of energy vibrations
between the system modes is achieved when the para-
metric excitation is tuned at �p. Using these dynam-
ics behaviour, a technique for time-settling reduction
is proposed, leading to a 90.39%, 93.13%, 94.44%
and 96.79% time-settling reduction for 2DOF, 3DOF,
4DOF and 10DOF, respectively.

2 MEMS

The MEMS considered is sketched in Fig. 1 consisting
of two flexible beams that are fixed on both sides to
the same frame as presented in [26]. The beam at the
bottom is the sensor. The external excitation is indicated
by the external forcing f1(t). The beam on the top is
manufactured the same way but is an entirely passive
part of the system. The parametric excitation is applied
to the sensing beam solely.Due to the physical coupling
via the frame, the parametric excitation is also acting on
the other beam. Approximating the dynamics of each
beam by a single mode and its corresponding natural
frequency �i , the equations of motion can be written
as

ẍ1 + d1 ẋ1 + �2
1x1 + b11 p(t)x1 + b12 p(t)x2 = f1(t)

ẍ2 + d2 ẋ2 + �2
2x2 + b21 p(t)x1 + b22 p(t)x2 = 0 (1)

where the parametric excitation p(t) = cos�pt cou-
ples the individual systems. Figure 1 depicts the con-
ceptual configuration of the MEMS resonators accord-
ing to [25,29].

3 Applying averaging method

The coupled Mathieu equations in Eq. (1) without
external excitation, i.e. after themeasurement time, can
be rewritten in a more general form as

ẍ (t) + Dẋ (t) +
(
�2 + B cos

(
�pt

))
x (t) = 0 (2)

where x(t) is an n vector, D, B and Q are n × n con-
stant matrices. Assuming distinct natural frequencies,
we can write the matrix �2 = diag

{
�2

1,�
2
2, . . . , �

2
n

}
being diagonal incorporating the natural frequencies of
the undamped system. Adopting the Einstein summa-
tion as a notation, where repeated indices are implicitly
summed over, Eq. (2) leads to the comprehensive index
form

ẍi (t) + �2
i xi (t) = −ε

[
d̂i j ẋi − b̂i j xi cos

(
�pt

)]
(3)

with i, j = 1, 2, . . ., and where ε is assumed to be a
small parameter needed for the singular perturbation
that rescales the damping and coupling coefficients in
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Eq. (2) according to by di j = εd̂i j and bi j = εb̂i j .
Rescaling the time to normalize the frequency by

τ = �pt (4)

leads to

x ′′
i + ω2

i xi = − ε

�2
p

(
�pd̂i j x

′
i (τ ) + b̂i j xi (τ ) cos τ

)

(5)

where (·)′ is the derivative with respect to τ and
ωi = �i/�p. Defining the amplitude-phase coordi-
nate transformation

xi (τ ) = ui (τ )ci + vi (τ )si

x ′
i (τ ) = −ui (τ )ωi si + vi (τ )ωi ci (6)

using the abbreviations si = sin(ωiτ), ci = cos(ωiτ),
the equations of motion in Eq. (5) can be rewritten into
the so-called quasi-normal form [39]. For the sake of
simplicity, the explicit time dependence on τ is not
written. Applying this transformation yields

−u′
iωi si + v′

iωi ci = ε

�2
p
�i (ui , vi , τ ) (7)

where the scaled right-hand side reads

�i = − �p

∑
j

d̂i j
(−u j� j s j + v jν j c j

)

−
∑
j

b̂i j
(
u j c j + v j s j

)
cos τ

Respecting Eq. (7), Eqs. (5) finally become

u′
i = − ε

�p�i
�i (z, τ )si = εMs

i (z, τ ) (8)

v′
i = ε

�p�i
�i (z, τ )ci = εMc

i (z, τ ) (9)

with vector z = [
u1 v1 u2 v2 . . .

]T
. The functions

on the right-hand side Ms
i (z, τ ) and Mc

i (z, τ ) are not
quasi-periodic and can be split into a finite sum of peri-
odic terms

Ms
i (z, τ ) =

N∑
k=1

Ms
i,k(z, τ ) (10)

Mc
i (z, τ ) =

N∑
k=1

Mc
i,k(z, τ ) (11)

where N is fixed, Ms
i,k(z, τ ) and Mc

i,k(z, τ ) are Tk peri-
odic functions in τ . For this case, the averaging in the
general case can be applied Eqs. (8) and (9) resulting
in

û′
i = ε

N∑
k=1

1

Tk

∫ Tk

0
Ms

i,k(z, τ )dτ (12)

v̂′
i = ε

N∑
k=1

1

Tk

∫ Tk

0
Mc

i,k(z, τ )dτ , (13)

where the hat indicates the time-averaged variables
and the original z (τ ) and averaged ẑ (τ ) solutions dif-
fer in an order of O (ε), on the timescale 1/ε. Using
trigonometric identities, the products of the trigono-
metric terms can be rewritten as a sum of basic trigono-
metric terms of which the period Tk can be determined,
and the integrals in Eqs. (12) and (13) calculated. Res-
onant terms occur at this step at frequencies

�p = 2�i

n
i = 1, 2, . . . n, (14)

and

�
i j
p = |�i ∓ �i |

n
i, j = 1, 2, . . . n, for i �= j (15)

4 Averaging for MEMS with 2-DOFs

Applying the averaging procedure described above to
system in Eq. (2) with n = 2 at the parametric anti-
resonance frequency �21

p = |�2 − �1|. Namely,

ẍ+
[
d11 d12
d21 d22

]
ẋ+

(
�2 +

[
b11 b12
b21 b22

]
cos

(
�21

p t
))

x = 0

(16)

where x = [
x1 x2

]T
and �2 = diag

(
�2

1,�
2
2

)
, we

obtain

ẑ ′
2 = Â2ẑ2 (17)
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with the coefficient matrix

Â2 = 1

�21
p

⎡
⎢⎢⎢⎣

− 1
2d11 0 0 1

4�1
b12

0 − 1
2d11 − 1

4�1
b12 0

0 1
4�2

b21 − 1
2d22 0

− 1
4�2

b21 0 0 − 1
2d22

⎤
⎥⎥⎥⎦

(18)

Note that the damping and coupling coefficients are
rescaled back according to di j = εd̂i j and bi j =
εb̂i j . The difference between the original solution

z2 = [
u1 v1 u2 v2

]T
and the averaged solution ẑ2 =[

û1 v̂1 û2 v̂2
]T

is of order ε, i.e. ẑ2(τ )−z2(τ ) = O(ε)

on the time scale 1/ε. Tuning the parametric excitation
to the parametric anti-resonance frequency �p = �21

p ,
note that the direct coupling coefficients bii as well as
the off-diagonal damping coefficients di j do not appear
in the first order approximation in Eqs. (18). This fact
was already observed in [15]. The slow flow of the sys-
tem in Eq. (2) at �p = �21

p is entirely characterized
by the coupling terms b12 and b21, and the diagonal
damping coefficients d11 and d22.

The coefficient matrix Â2 possesses two repeated

eigenvalues λ̂
Â2
1 = λ̂

Â2
3 and λ̂

Â2
2 = λ̂

Â2
4 given by

λ̂
Â2
1,2 = − 1

4�p

(
d11 + d22 ±

√
(d11 − d22)2 − b12b21

�1�2

)

(19)

They represent the behaviour of the dynamics on the
slow time scale which refers to the envelope of the
system response in Eq. (18) and is shown in Fig. 2.
Therefore, if λ̂12 are purely real, the response envelope
decreases exponentially in time, as shown in Fig. 2a.
Alternatively, complex conjugate eigenvalues corre-
spond to a modulated envelope, sometimes called a
beating signal as depicted in Fig. 2b. Thus, to determine
this nature of the stable response λ̂12 ∈ R or λ̂12 ∈ C

it is sufficient to verify the following inequality [10]

(d11 − d22)
2 >

b12b21
�1�2

≥ 0. (20)

If this inequality is fulfilled, λ̂12 are real.Otherwise, λ̂12
are complex-valued in this case the imaginary part of
λ̂12 can be interpreted as the frequency of the envelope

t

Response
Envelope of the response

(a) Envelope of the system response for

(d11 − d22)2 >
b12b21

Ω1Ω2
> 0.

t

Response
Envelope of the response

(b) Envelope of the system response for
b12b21

Ω1Ω2
>

(d11 − d22)2 ≥ 0.

Fig. 2 Characterization of the response envelope of the system
in Eq. (16) according to inequality in Eq. (19)

signal

ωÂ2
= ± 1

4�21
p

√
b12b21
�1�2

− (d11 − d22)2. (21)

Moreover, the two envelope response signals for the
system in Eq. (16) are in anti-phase because there are
two equal frequencies. Therefore, it is possible to deter-
mine the period of the envelope signals in anti-phase.
Rescaling the time τ according to Eq. (4) and consid-
ering ωÂ2

as the frequency, we estimate the period of
the slow motion as

TÂ2
= 8π√

b12b21
�1�2

− (d11 − d22)2
(22)
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Table 1 2DOF system parameters

�i in Mrad/s Q
[×104

]
bi j in 1/s2

�1 = 1.8316 Q1 = 4.6964 b12 = b11 = 1.3 × 109

�2 = 1.8390 Q2 = 4.7154 b21 = b22 = 1.2 × 109

100 110 120 130 140 150 160 170 180
-0.01

0

0.01

Fig. 3 Envelope of the time responses of the system inEq. (16) at
�21

p = |�2 − �1|. The analytical prediction in Eq. (22) matches
the observed period TÂ2

To highlight the prediction quality of Eq. (22), the
simulation of a specific system represented by equa-
tions of motion in Eq. (16) is performed. The fol-
lowing system parameter were chosen according to
[25,26] and are listed in Table 1 where the quality fac-
tors are defined as Q1 = �1/d11 and Q2 = �2/d22.
The envelopes of the system responses Env[x1(t)] and
Env[x2(t)] are shown in Fig. 3. The period identified
from the numerical simulation TÂ2

= 38.4383ms coin-
cides with the analytical prediction in Eq. (22). A direct
comparison between the solution x of the original sys-
tem in Eq. (16) and the solution ẑ resulting from the
averaged system is given in the appendix.

5 Pulse of parametric excitation in 2DOF

A continuous parametric excitation at a paramet-
ric combination resonance frequency leads to a steady
energy transfer between the modes of the system, as
discussed in more detail in [14]. Starting with vibra-
tion in beam 1, such a continuous excitation results in
an energy transfer into beam to within the period esti-
mated in Eq. (22). After this time however, the energy
is transferred back, at least what is left after dissipation

0  20 40 60 80 100 120 140 160 180 200
-0.1

0   

0.1 

0.2 

0  20 40 60 80 100 120 140 160 180 200

-0.1

0   

0.1 

0.2 

0.3 

0  20 40 60 80 100 120 140 160 180 200

-1

0

1

2

Fig. 4 Time responses of the 2DOF-MEMS in Eq. (1) with a
settling time ts = 100 ms

0  20 40 60 80 100 120 140 160 180 200
-0.1

0   

0.1 

0.2 

0  20 40 60 80 100 120 140 160 180 200
-0.1

0   

0.1 

0  20 40 60 80 100 120 140 160 180 200
-1

0

1

2

0  20 40 60 80 100 120 140 160 180 200

-1

0

1

2

Fig. 5 Time responses of the 2DOF-MEMS in Eq. (1) under the
effect of a parametric excitation pulse tp = 9.8 ms. The settling
time is reduced to ts ≈ 9.8 ms
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within the next period. This back and forth transfer hap-
pens continuously until all kinetic energy is eventually
dissipated by the damping coefficients of both beams.
In order to avoid this back-channeling of kinetic energy
from beam 2 to beam 1, we apply the parametric exci-
tation only within a short pulse with time of a single
period. The time response of the 2DOF-system subject
to an external excitation f1(t) is shown in Fig. 4. The
steady-state of beam 1 is reached after 100 ms. After
this measurement, the excitation is switched of and the
vibration level of beam 1 decays exponentially due to
its damping. Beam 2 is not affected during this opera-
tion.

In contrast to this, we apply a parametric excitation
right after the measurement time during the short pulse
time tp2 = TÂ2

/4 given in Eq. (22). This operation
is highlighted in Fig. 5 and confirms the fast decay of
kinetic energy in beam 1 and increase in beam 2. The
reverse energy flow, however, is eliminated by switch-
ing off the parametric excitation, which generates a
single pulse of parametric excitation. The general idea
was outlined already in [29].

6 Multiple parametric excitations in 3DOF

The concept of reducing the settling time by a dupli-
cation of the structure is extended to more beams. It is
straightforward to do this numerically. However, for a
practical implementation, we need to know the time
period(s) of the pulsed parametric excitations upfront.
For this, we apply the averaging method to a system
consisting of three beams, one sensing beam and two
structural duplicates possessing similar but not exactly
the same natural frequencies. With three beams, we
have more than one possibility of transferring energy
between the first modes of each beam, so we introduce
a quasi-periodic parametric excitation of the form

ẍ+Dẋ+
(
�2 + B

[
cos

(
�21

p t
)

+ cos
(
�31

p t
)])

x = 0

(23)

where x = [
x1 x2 x3

]T
, �2 = diag

{
�2

1,�
2
2,�

2
3

}

and D =
⎡
⎣
d11 d12 d13
d21 d22 d23
d31 d32 d33

⎤
⎦ and B =

⎡
⎣
b11 b12 b13
b21 b22 b23
b31 b32 b33

⎤
⎦

being fully occupied coefficient matrices for damp-
ing and time-periodic coupling. The parametric exci-

100 105 110 115 120 125 130 135 140 145 150
-0.1

0   

0.1 

100 105 110 115 120 125 130 135 140 145 150

-0.1

0   

0.1 

100 105 110 115 120 125 130 135 140 145 150

-0.1

0   

0.1 

100 105 110 115 120 125 130 135 140 145 150
-1

0

1

100 105 110 115 120 125 130 135 140 145 150
-1

0

1

Fig. 6 Envelope of the time responses of the 3DOF-MEMS
in Eq. (23) at continuous, quasi-periodic parametric excitation
�21

p and �31
p . The analytical prediction in Eq. (29) matches the

observed period TÂ3

100 105 110 115 120 125 130 135 140 145 150
-0.1

0   

0.1 

100 105 110 115 120 125 130 135 140 145 150

-0.1

0   

0.1 

100 105 110 115 120 125 130 135 140 145 150

-0.1

0   

0.1 

100 105 110 115 120 125 130 135 140 145 150
-1

0

1

100 105 110 115 120 125 130 135 140 145 150
-1

0

1

Fig. 7 Envelope of the time responses of the 3DOF-MEMS in
Eq. (23) at quasi-periodic parametric excitation �21

p and �31
p

pulsed during tp3 predicted in Eq. (29). The settling time reduces
to ts3
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tation consists of two periodic signals that are tuned
each at a parametric anti-resonance frequency: �21

p =
|�2 − �1| and �31

p = |�3 − �1|. The system in
Eq. (23) describes a dynamic system with a multiple
parametric excitation, a quasi-periodic parametric exci-
tation.

Given the identical structure of the MEMS consid-
ered, each flexible beam has similar quality factors
Qi = �i/dii . To simplify the subsequent analysis, it
is assumed that each beam possesses the same direct
damping coefficient, i.e. d11 = d22 = d33 = d. Apply-
ing the averagingmethod described in the previous sec-
tion on the system in Eq. (23) with the time rescaling

τ = �21
p t, (24)

the following slow flow is obtained

ẑ ′
3 (τ ) = Â3ẑ3(τ ) (25)

with the coefficients matrix

Â3 = 1

�21
p

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

− d
2 0 0 b12

4�1
0 b13

4�1

0 − d
2 − b12

4�1
0 − b13

4�1
0

0 b21
4�2

− d
2 0 0 0

− b21
4�2

0 0 − d
2 0 0

0 b31
4�3

0 0 − d
2 0

− b31
4�3

0 0 0 0 − d
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(26)

The coefficient matrix for the 2DOF-system in Eq. (18)
can be identified as a submatrix. Again, only the diag-
onal damping coefficients and the coupling terms are
needed for describing the slow in this first order approx-
imation. For the chosen parametric excitation frequen-
cies �21

p and �31
p this results in b12, b21 and b13,

b31. Since bi j > 0 and d > 0 hold for this specific
MEMSconfiguration, the coefficientmatrix Â3 has two
repeated purely real-valued eigenvalues

λ
Â3
1 = λ

Â3
2 = − d

2�21
p

(27)

Fig. 8 MEMS schematic diagram with 4DOF

and two repeated pairs of complex conjugates

λ
Â3
34 = λ

Â3
56 = 1

2�21
p

(
−d ± j

√
b13b31
4�1�3

+ b12b21
4�1�2

)

For bi j > 0 and d > 0, the frequency of the slow flow
reads

ω̂Â3
= 1

2�21
p

√
b12b21
4�1�2

+ b13b31
4�1�3

(28)

The prediction of the period of the slow flow of the
system response in Eq. (23) is obtained by rescaling the
time to the original physical time according to Eq. (24)

TÂ3
= 4π

√
4�1�2�3

�3b12b21 + �2b13b31
= 4tp3 (29)

Herein, tp3 is the pulse time for achieving an energy
transfer from beam 1 to beam 2 and beam 3 simul-
tanously. The envelopes of the time responses of the
3DOF-MEMS inEq. (23) at continuous, quasi-periodic
parametric excitation �21

p and �31
p are shown in Fig. 6.

The period TÂ3
coincides with the analytical predic-

tion in Eq. (29). Envelope of the very same system but
activating the quasi-periodic parametric excitation only
during the pulsation time tp3 defined inEq. (29) reduces
the settling time to tp3 = 6.8 ms and is shown in Fig. 7.

7 Multiple parametric excitations in 4DOF

Attempting to generalize the reduction of settling
time presented for 2DOF-MEMS and 3DOF-MEMS,
the 3DOF-MEMS in the previous section is extended
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by an additional beam with nominally identical param-
eters, see Fig. 8. By adding another beam to the struc-
ture, the system now consists of one sensing beam
and three duplicates. This configuration is expected to
allow for further reduction of the settling time because
one additional parametric anti-resonance frequency is
introduced.

For a MEMS with four beams, the equations of
motion read

ẍ + Dẋ +
(
�2 + Bp(t)

)
x = 0 (30)

Herein, x = [
x1 x2 x3 x4

]T
, �2 is the diagonal matrix

of the natural frequencies of the underlying system
with constant coefficients and the damping and cou-
pling coefficient matrices are fully occupied and of size
4×4, and the parametric excitation p(t) is the sum har-
monic parametric excitations at each parametric anti-
resonance frequency that enables an energy transfer
with beam 1. For a 4DOF-MEMS, the quasi-periodic
parametric excitation consists of three harmonics

p(t) = cos
(
�21

p t
)

+ cos
(
�31

p t
)

+ cos
(
�41

p t
)

(31)

experiencing the parametric anti-resonance frequen-
cies �21

p = |�2 − �1|, �31
p = |�3 − �1| and

�41
p = |�4 − �1|. Averaging the equations of motion

in Eq. (30) for the system in Fig. 8 yields

ẑ ′
4 (τ ) = Â4ẑ4(τ ) (32)

with the coefficients matrix

Â4 = 1

�21
p

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−d
2 0 0 b12

4�1
0 b13

4�1
0 b14

4�1

0 −d
2

−b12
4�1

0 −b13
4�1

0 −b14
4�1

0

0 b21
4�2

−d
2 0 0 0 0 0

−b21
4�2

0 0 −d
2 0 0 0 0

0 b31
4�3

0 0 −d
2 0 0 0

−b31
4�3

0 0 0 0 −d
2 0 0

0 −b41
4�4

0 0 0 0 −d
2 0

−b41
4�4

0 0 0 0 0 0 −d
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(33)

The time was rescaled by applying τ = �21
p t sim-

ilarly to Eq. (4) and the direct damping coefficients
were assumed to be identical d11 = d22 = d33 =
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Fig. 9 Envelope of the time responses of the 4DOF-MEMS
in Eq. (30) at �21

p , �31
p and �41

p . The analytical prediction in
Eq. (35) matches the observed period TÂ4

d44 = d. The coefficient matrices for the 2DOF-system
in Eq. (17) and for the 3DOF-system in Eq. (26) can be
identified as submatrices. Similarly to the last sections,
the only coefficients that describe the dynamics of the
slow flow in a first order approximation of the quasi-
periodic parametric excitation are the direct damping
coefficients d and the coupling coefficients (b12, b21),
(b13, b31), (b14, b41). These coupling coefficients cor-
respond to the parametric anti-resonance frequencies
�21

p , �31
p and �41

p , respectively, to which the harmonic
components in Eq. (31) are perfectly tuned to.

The coefficient matrix Â4 has four repeated purely

real-valued eigenvalues λ
Â4
1234, that are identical to

Eq. (27), and two repeated pairs of complex conjugates

λ
Â4
5678 = − d

2�21
p

± jω̂Â4
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Fig. 10 Envelope of the time responses of the 4DOF-MEMS
under the pulses of excitation �21

p = |�2 − �1|, �31
p =

|�3 − �1| and�41
p = |�4 − �1| for tp4 in Eq. (35). The settling

time reduces to ts4

The frequency of the slow flow reads similarly to
Eq. (28)

ω̂Â4
= 1

2�21
p

√
b12b21
4�1�2

+ b13b31
4�1�3

+ b14b41
4�2�3

(34)

The period of the envelope of slow dynamics becomes
in physical time

TÂ4
= 4π

√
4�1�2�3�4

�3�4b12b21 + �2�4b13b31 + �2�3b14b41

(35)

The pulse time results in tp4 = TÂ4
/4 during which

an energy transfer from beam 1 to beam 2, beam 3 and
beam 4 is achieved simultanously. The envelopes of the
time responses of a 4DOF-MEMSat continuous, quasi-
periodic parametric excitation �21

p , �31
p and �41

p are

shown in Fig. 9. The system parameters are listed in the
first four lines in Table 2. The period TÂ4

coincideswith
the analytical prediction in Eq. (35). The Envelope of
the very same system but activating the quasi-periodic
parametric excitation only during the pulsation time tp4
defined in Eq. (35) reduces the settling time to 5.6 ms
and is shown in Fig. 10.

8 Multiple parametric excitations in NDOF

In general, for an arbitrary number of beams m, the
equations of motion are equivalent to Eq. (30). Herein,

x = [
x1 x2 . . . xm

]T
, �2 is the diagonal matrix of the

natural frequencies of the underlying system with con-
stant coefficients and the damping and coupling coef-
ficient matrices are fully occupied and of size m × m
and the parametric excitation is the sum harmonic para-
metric excitations at each parametric anti-resonance
frequency �i1

p = |�i − �1| that enables an energy
transfer with beam 1,

p(t) =
m∑
i=2

cos(�i1
p t) (36)

We attempt an approximation of the period for
energy transfer at this highly tuned quasi-periodic para-
metric excitation based on the structure observed in
Eqs. (22), (29) and (35). For a MEMS design similar to
the one shown in Fig. 8 consisting of m similar beams,
the period for energy transfer appears to be

TÂm
= 4π√√√√

m∑
i=2

b1i bi1
4�1�i

= 4tpN (37)

The analytical prediction in Eq. (37) is tested for
NDOF-MEMS with one to nine beam duplicates, e.g.
MEMS possessing two to ten DOF. The envelope
response of the sensing beam 1 is shown in Fig. 11.
The system parameters are chosen according to the
values listed in Table 2. The decrease of the settling
time, the time for energy transfer from beam 1 to
all other beams by a pulsed quasi-periodic paramet-
ric excitation is clearly highlighted. Finally, we com-
pare the pulse time tpN , or equivalently settling time
of the NDOF-MEMS, to the analytical prediction in
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Fig. 11 Envelope of the time responses of the NDOF- MEMS
starting with 2DOF in Fig. 5, 3DOF in Fig. 7, 4DOF in Fig. 10
up to 10DOF. Parameter values are according to Table 2
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Fig. 12 Pulse or settling time in dependency of the number of
beams: derivation from numerical time integration of the equa-
tions motion according to Fig. 11 in comparison to the analytical
approximation in Eq. (37)

Eq. (37) in Fig. 12. The analytical prediction fits per-
fectly to the settling time derived from the direct numer-
ical integration of the equations of motion for the indi-
vidual MEMS-configurations in Fig. 11. This compar-
ison confirms that in the case of identical beams, the
settling time is proportional to 1/

√
N . The diagram

allows for an extrapolation of the number of beams N
of the NDOF-MEMS and provides an answer on how
many similar beams are needed for achieving a certain
settling time.

9 Conclusions

The parametric anti-resonance concept is generalized
to a multi-frequency, pulsed parametric excitation in
a multi-degree-of-freedom system in order to achieve
a reduction in the settling time in a specific system.
This open-loop control applies one or more intentional,
confined (pulsed), harmonic parametric excitations. If
properly tuned, a significant reduction of the transient
time is achieved. MEMS show promising applicability
of this concept due to the ability to easily introduce
periodic and quasi-periodic signals tuned to a specific
frequency. This concept triggers multiple simultane-
ous energy transfers from the sensing mode of beam 1
to several beams. The selectivity of which beams are
incorporated in an energy transfer is purely controlled
by the individually chosen excitation frequency and
coupling terms. The concept was shown originally in
[29] for two beams with a single-frequent paramet-
ric excitation at �21

p = |�2 − �1|. Here we greatly
enhance the applicability as well as complexity by
introducing N beams and multiple pulses of paramet-
ric excitation at �i1

p = |�i − �1| with i = 2, 3, . . . N .
The averaging method in the general case is applied to
achieve an analytical prediction at very specific exci-
tation frequencies. The approximate slow flow dynam-
ics can accurately predict the pulsation time needed
for such a quasi-periodic parametric excitation. This
allows for properly designing the necessary pulse for
rapid energy transfer between system modes or indi-
vidual beams, which eventually leads to mitigating the
kinetic energy, and therefore settling time, of the first
mode. The newly proposed method is applied to the
arrays ofMEMS consisting of flexible beamswith high
quality factors. Such beams are prone to long steady-
state transition times that may be too long for certain
fast, repetitive operations. The influence of the number
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Table 2 Paramaters for NDOF-system

�i in Mrad/s Q
[×104

]
bi j in 1/s2

�1 = 1.8316 Q1 = 4.6964 b12 = b21 = 1.2 × 109

�2 = 1.8344 Q2 = 4.7036 b13 = b31 = 1.3 × 109

�3 = 1.8390 Q3 = 4.7154 b14 = b41 = 1.2 × 109

�4 = 1.8499 Q4 = 4.7433 b15 = b51 = 1.2 × 109

�5 = 1.8512 Q5 = 4.7467 b16 = b61 = 1.2 × 109

�6 = 1.8210 Q6 = 4.6694 b17 = b71 = 1.3 × 109

�7 = 1.8433 Q7 = 4.7264 b18 = b81 = 1.2 × 109

�8 = 1.8601 Q8 = 4.7695 b19 = b91 = 1.2 × 109

�9 = 1.8555 Q9 = 4.7577 b12 = b11 = 1.2 × 109

�10 = 1.8255 Q10 = 4.6808 b110 = b101 = 1.2 × 109

The diagonal terms are bkk = 1.2× 109 for k = 1, . . . , 10 and the remaining coupling terms bi, j = b j,i = 1.3× 109 for i = 2, . . . , 10,
j = 2, . . . , 10 and i �= j

of beams in the MEMS is evaluated in more detail and
shows that the original reduction of the settling time by
90.39% for a 2DOF-MEMS is reduced to 93.13% for
a 3DOF-MEMS, to 94.44% for a 4DOF-MEMS and to
96.79% for a 10DOF-MEMS. This study confirms that
a designed pulse of multi-frequency parametric excita-
tion reduces the settling time significantly.
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Appendix

The solution x1(t) of beam 1 of the original systems for
configurations with 2DOF, 3DOF and 4DOF defined
in Eqs. (16), (23) and (30) is compared directly with
the solution |û1| of the approximated slow flows in
Eqs. (17), (25) and (32). This is possible due to the
definition in Eq. (6). The solutions are transformed
according to Eq. (4) into the physical time t . The sys-
tem parameters are taken from the list given in Table 2.
The initial condition is chosen as x1(0) = 0 in all cases.
Figure 13 highlights the quality of the approximation
between the physical time evolution and the envelope
represented by the slow flow.
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Fig. 13 Comparison between the full solution x1(t) of the orig-
inal system and the envelope |û1| of the approximate system
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