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Abstract The nonlinear dynamic model of the NW
(planetary gear structure with internal and external
meshing and without planet carrier) planetary gear
bearing was established in this study, taking into
account factors such as random wind speed, time-
varying support stiffness, bearing clearance, transmis-
sion error, tooth backlash, flexible ring gear, time-
varying meshing stiffness, and tooth surface friction.
The system’s nonlinear behavior was described using
phase trajectory plane, time—frequency analysis, time
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history, 3D frequency spectrum, FFT spectrum, phase
diagram, and Poincaré map, as well as bifurcation
diagram. Additionally, the superharmonic resonance
characteristics of the system were analyzed using a
multi-scale method, and the stability conditions for
superharmonic resonance were determined through
numerical analysis. Furthermore, the effects of mesh-
ing damping, displacement control parameters, and
speed control parameters on the amplitude—frequency
characteristics of the NW planetary gear-bearing
system were examined. The conclusions indicate that
the NW planetary gear-bearing system exhibits vari-
ous nonlinear characteristics, and the system’s stabil-
ity can be improved by increasing damping and
selecting appropriate time delay parameters.

Keywords Nonlinear dynamics - NW planetary
gear - Time-varying support stiffness - Ring gear
flexibility - Bifurcation and chaotic - Superharmonic
resonance

1 Introduction

The old energy structure is gradually evolving as
society and technology improve, and renewable green
energy will eventually overtake fossil fuels as the
primary energy source. The most popular renewable
energy is wind energy, which is also one of the trends
of new energy development in the future. [1, 2]. As an
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important component of wind turbines, gearboxes play
an important role in wind power generation, because
they can transmit power and change speed. Because of
its wide transmission ratio range, traits of compact
radial size, and high transmission efficiency, NW-type
(planetary gear structure with internal and external
meshing and without planet carrier) planetary trans-
mission structure is gradually reused and employed in
high-power wind turbine turbochargers. In order to
determine the working conditions of NW wind
turbines, the nonlinear dynamic analysis of the NW
planetary gear structure is very necessary.

The nonlinear behavior and superharmonic resonance
features of gear systems have been extensively studied by
many academics for a variety of reasons. Many
researchers have created nonlinear dynamic models and
taken into account the impacts of pitch deviation, tooth
backlash, and tooth center deviation. [3—6]. Wang and
Zhu [7-9] researched the effects of meshing stiffness,
tooth surface friction, tooth backlash, and bearing
clearance, and established a geared turbofan engine
gearbox’s fixed-axis straight-tooth planetary gear-rotor-
bearing system’s nonlinear dynamic model. Many studies
have considered the temperature rise caused by gear
friction and established dynamic models, including
nonlinear factors such as gear thermal deformation.
[10-13]. Mo et al. [14-16] studied the evolution of
nonlinear global behavior of non-orthogonal face gear-
bearing system, described the development of the overall
behavior of the system with excitation frequency, load
change, and meshing damping, and studied the asym-
metric meshing characteristics and load sharing charac-
teristics of gears. Shuai et al. [17, 18] studied the
nonlinear vibration characteristics of non-orthogonal face
gear-bearing system and the load sharing characteristics
of elastically supported herringbone planetary gear train
and floating sun gear. Zhao et al. [19] Li et al. [20] Wei
et al. [21] Xiang et al. [22] Qiu et al. [23] established a
nonlinear model of planetary gear transmission system
considering the factors such as segmented clearance,
gravity, pitch, and inclination of the table.

Wind power accelerator is an important part of
wind turbines, many scholars have undertaken exten-
sive research on it. Zhao et al. [24] conducted a study
on the impact of external excitation, mesh stiffness,
and static transmission error on the torsional vibration
of wind turbine transmission systems. Chen et al. [25]
investigated the effects of random wind speed and
random backlash on the vibration of wind turbine
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transmission systems. Guo et al. [26] employed the
modified harmonic balance method with simultaneous
excitation to study the dynamics of wind turbine
planetary gear sets under the influence of gravity. Zhu
et al. [27] developed a coupled dynamic model for
wind turbine gearboxes with flexible pinions. Zhang
et al. [28] considered the different meshing of the
internal and external teeth of the planetary gear and the
mixed effect of elastic hydrodynamic lubrication and
boundary lubrication when analyzing the composite
gear transmission system of wind turbines.

The multi-scale method was proposed by Sturrock,
Cole, Nayfeh, et al. and then further developed later.
Moradi and Salarieh [29] used a multi-scale method to
study the forced vibration response of a single-degree-
of-freedom gear system, including nonlinear factors
such as gear clearances. Wang et al. [30] examined the
parametric resonance and stability of cracked gear
systems; he then used the multi-scale method to show
how important parameters like damping ratio affected
the stability of the system.

The current research on transmission systems mainly
focuses on single-stage gear pairs with multi-factor
coupling and planetary gear systems with single or few-
factor couplings. However, there is a lack of studies on
the nonlinear dynamics modeling of the entire trans-
mission system under multi-factor coupling effects.
This paper establishes a nonlinear dynamics model of a
wind turbine transmission system considering multiple
factors such as random wind speed, time-varying mesh
stiffness, time-varying support stiffness, tooth backlash,
gear flexibility, and tooth surface friction. It also takes
into account the coupling effects of bearings in the
planetary gear system, as well as the influence of bearing
clearance. By incorporating multiple parameters into
the coupled transmission system model described
above, the resulting nonlinear dynamics model becomes
more realistic and accurate, leading to higher precision.

The primary objective of this paper is to analyze the
nonlinear dynamic response and superharmonic reso-
nance properties of the NW planetary gear-rotor bearing
system, considering factors such as random input load,
time-varying meshing stiffness, flexible ring gear, tooth
backlash, transmission error, bearing clearance, and
friction. The structure of this paper is as follows: In
Sect. 2, the dynamic model of the NW planetary gear-
bearing system is created, including the input model
considering random wind speed input, bearing force
analysis with bearing clearance, calculation model of
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helical gear friction, and force analysis of the inner ring
gear considering flexibility. Section 3 develops the
vibration differential equation of the NW planetary
gear-bearing system. Section 4 elaborates on the impact
of excitation frequency on the NW planetary gear-
bearing system, presenting time history, frequency
diagram, phase diagram, Poincaré map, time-—fre-
quency, phase trajectory plane, and 3D frequency
spectrum. Section 5 derives the stability condition of
superharmonic resonance of the NW planetary gear-
bearing system using the multi-scale method, and
simulates the influence of meshing damping, displace-
ment control parameters, and speed control parameters
on superharmonic resonance using the numerical
method. Finally, Sect. 6 draws the conclusion.
Through the above 6 sections, we can get that the NW
planetary gear-bearing system exhibits various nonlinear
characteristics. Meshing damping, velocity delay param-
eters, and displacement delay parameters have obvious
influence on the amplitude of the system. The stability of
the system can be improved by increasing the damping
and selecting the appropriate time delay parameters.

2 NW planetary gear nonlinear model
2.1 NW wind power gear model

Figure 1 depicts the structure of the NW wind power
accelerator transmission, which consists of a first-
stage NW planetary gear and a first-stage parallel-axis
herringbone gear. The power generated by natural
wind driving the blade is input through the inner gear
ring, and after passing through the gear structure, it is
output by the herringbone gear. In this context, Tin and
Tout represent the input torque and output torque,
while 7, p, s, and /1 denote the inner ring gear, planetary
gear, sun gear, and herringbone gear, respectively.

2.2 Random wind speed

The natural wind drives the wind blades, forming the
input torque of the NW wind power planetary gearbox,
hence the pattern of natural wind speed change has a
significant impact on the input torque. In this article, a
two-parameter Weibull distribution with a shape
parameter of 5.0 and a scale value of 11.5 is employed
to simulate the speed of natural wind. Figure 2 shows
the random wind speed within 400 s.

Weibull distribution model:
Y
Flv)=1- e (®) (1)

where K represents the shape parameter, which is used
to explain how observations of wind speed vary,
C represents the scale parameter which is connected to
the mean wind speed, and v is wind speed.

For NW wind turbine, the variation of the input
speed and input torque of the gearbox is depicted in
Fig. 3. When the natural wind speed is between the
cut-in wind speed and the rated wind speed, the
variation of the input torque and the input speed with
the wind speed is depicted in Eq. (2).

T,
2
Tin = V—zv
e 2
Vvate ( )
Vin =
v,

e

where T, is the rated torque, v, is the rated wind speed,
and vy, 1S the rated speed.

Depending on the characteristics of the NW wind
turbines shown in Table 1, the input speed and torque
versus time curves of the NW wind turbine gearbox
are depicted in Fig. 4.

2.3 Time-varying mesh stiffness

The meshing of helical gear and herringbone gear
begin at one end of the tooth and gradually spread to
the entire tooth surface, and the meshing stiffness
without mutation point. Figure 5 shows the meshing
stiffness of the three-stage gear pair. The numerical
calculation of the meshing stiffness of the three-stage
gear pair refers to ISO-6336-1:2019.

Because of the helical gear coincidence degree
¢ > 1, in the meshing process, there will be multiple
pairs of gear teeth meshing alternately. Therefore, the
meshing stiffness of the gear pair changes periodically
with the number of meshing teeth. The meshing
stiffness of a gear can be approximated by Fourier
series. In this paper, the first-order Fourier series is
used to approximate the meshing stiffness of a gear
pair KX)[31].

K*(1) = K* + AK* cos (w’,‘nl + ¢}, (3)

where Kk m represents the meshing stiffness of the
three-stage gear pair, AKk m represents the variation
amplitude of the meshing stiffness of the three-stage
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Low-speed gear pair Intermediate gear pair_

(a) Mechanism kinematic diagram (b) Three-dimensional structure

Fig. 1 NW wind power accelerator transmission structure. a Mechanism kinematic diagram, b Three-dimensional structure

Fig. 2 Followed wind 15 T T T
speed graph in 400 s
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Fig. 3 Variation of input speed and torque. a Input speed, b Input torque
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Table 1 Basic p;.lrameters Parameters Value Parameters Value
of NW wind turbine
Rated power (MW) 5 Cut-in wind speed (m/s) 3
Rated wind speed (m/s) 11.5 Cut-out wind speed (m/s) 25
Blade diameter (m) 171 Rated torque (N-m) 43 x 10°
Blade number 3 Rated input speed (m/s) 17.3
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Fig. 4 Torque and speed input in 400 s
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(a) Low-speed gear pair

(b) Intermediate gear pair

(c) High-speed gear pair

Fig. 5 Time-varying mesh stiffness of three-stage gear pair. a Low-speed gear pair, b Intermediate gear pair, ¢ High-speed gear pair

gear pair, wk m is the meshing frequency of the three-
stage gear pair, and @k m is the phase angle of the
three-stage gear pair. (k = I, 11, III).

2.4 Sliding friction of tooth surface

The driving gear’s meshing point goes from the tooth
root to the tooth tip throughout the gear meshing
operation, and its linear velocity steadily decreases.
The meshing point of the driven gear moves from the

tooth tip to the tooth root, and the linear velocity of the
meshing point increases gradually. The sliding friction
between the tooth surfaces is caused by the relative
velocity between the two gears.

As shown in Fig. 6, NIN'IN2N'2 is the theoretical
meshing plane of the two gears, BIB’1B2B'2 is the
actual meshing plane of the two gears, AIA’1A2A’2
represents the meshing area of the gear pair, where f§
represents the helical angle of the helical gear,
B represents the width of the gear, and p,, represents

@ Springer
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Fig. 6 Helical gear
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meshing area diagram. (Color

the pitch, ¢, represents the end coincidence degree of
helical gear, ¢4 represents the axial coincidence degree
of helical gear, and &, represents coincidence degree of
helical gear. The meshing procedure of helical gear
may be separated into five sections, as illustrated in
Fig. 6. (1) Gray part, the actual meshing line length of
the gear into a linear increase, that is, the sliding
friction between the gears gradually increased, and the
direction is positive. (2) Cyan part, the gear meshing
line’s length stays constant. (3) Orange part, the gear
meshing line across the pitch line, the direction of
tooth surface friction force across the pitch line
changes, and the total friction is equal to the two parts
minus. (4) Yellow part, the gear meshing line’s length
stays constant, and the direction of friction is negative.
(5) Blue part, the gear meshing line’s length gradually
decreases, and the friction direction is negative.

The formula of gear friction is derived by taking an
intermediate gear pair as an example. Figure 7 is the
end face projection of the theoretical meshing plane.
Equation (4) illustrates the equivalent front radius of
the engagement of the ith gear tooth between the
planetary gear and sun gear.

11

_ I Il
Yapi = Top tan o,

Ui oo I ol
p — 5P — B tan i, + S;

1
o o_ i 11 I Il 1
Fgsi = Ths tan o —I—Ee“pb + B tanff, — S,

where rll bp, r;,, represent the base circle radius of the
planetary gear and the sun gear, B" represents the
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Fig. 7 End face projection of theoretical meshing plane

width of the intermediate gear pair, and SII i is the
distance from the contact line of tooth i to the front
end. Specific expression like Eq. (5). oll p represents
the rotation angular velocity of the planetary gear.
¢ = mod(Ty,), Ty, represents meshing period of a pair
of teeth.

Si' = mod|w)'f' 4+ 2(i — 1)n/Z), 2ceil(e) )n/Z)} | ry),

(5)

Assuming that the gear’s contact line moves to the
LL' position at a certain moment, the relative sliding
velocity between the intermediate gear pairs is
depicted in Eq. (6).

VI = ok — w,,rﬁp (6)

where rg, represents the radius of curvature of the end
face of the gear contact point to the sun gear, rII Kp
represents the radius of curvature of the end face of the
gear contact point to the planetary gear. Specific
expression like Eq. (7).

oIl
r]g, = rg, + Isin B, ™)
A= 1sinl

where [/ represents the distance between the contact
point and the gear’s front face.

Since the relative sliding speed between gears is
also a periodic variation related to time, the relative
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sliding speed is related to the lubrication state between
gears. In this paper, Buckingham’s semiempirical
formula is used to calculate the friction coefficient
between gears.

@l = 0.05¢"12V" 4 0.002v/V1 (8)

Let the relative displacement between the ith
meshing tooth pair on the intermediate gear pair is
xII nji. The friction per unit length on the meshing line
is shown in Eq. (9).

£t =g k- f G b 9)

where KII ji is meshing stiffness per unit length on the
contact line, f(x);,b") is tooth-backlash function.

Specific expression like Eq. (10).

)lqil - bll xn}l > !
[l b") =<0, | < " (10)
Al pit xH < _pl

nji nji

According to the appeal analysis, the expression of
the friction force on a single tooth pair is as follows.

ff:.”.?“‘{f.’w“ il stte (0 z“p}})
fﬂ“/w /f‘,‘fud] S’[[ c P]pu ; IIpII)
Ll el )11 singl!
(N e P
= J e g ste K% +ej )p“ zi‘p},‘)
ﬁ()é“ £lplh)/sin ) ”d[ slie [}npu }upu)
0 stte [s”p}' +oo)

(11)
The friction forces of planetary gear 2 and sun gear:

ceil (&)

3
11 1l 11
Fyi = z Fji,  Fp = ZFfpl (12)
j:

The friction torques on a single tooth of planetary
gear 2 and sun gear:

M= [t Mg = [ (13)

The friction torques of planetary gear 2 and sun
gear:

ceil(ell) ceil(el!)

My = ZWMFZ% (14)
i=1

Similarly, the friction of inner ring gear and
planetary gear 1:

ceil (!

3
f’:ZF}pi’ fpl_ Z (15)
=1

The friction torques:

ceil(e}) ceil(e

Mr - Mrjza Z (16)

i=1
The friction force of herringbone gear 1 and

herringbone gear 2:

ceil(g]")

Fp = Z Fy, Fp=Fp (17)
i=1

The friction torque:

ceil (s{,” )

Z My, M; =
i=1

ceil(e

Z Ms; (18)

11
)

2.5 Time-varying support stiffness

Taking the cylindrical roller bearing as an example, the
bearing force is derived. Figure 8 is a cylindrical roller-
bearing model. The supporting bearing’s outer ring is
fastened to the bearing seat, and its inner ring is permanently
coupled to the rotating shaft. The inner ring of the bearing
and the center of the bearing coordinate system are aligned,
and the rotary shaft and its axis OZ are aligned as well.

The bearing coordinate system’s origin is at the
heart of its width. The inner and outer rings and the
bearing roller do not slide against one another,
supposing that the bearing rollers are evenly dis-
tributed on the cage. Equation (19) displays the linear
velocities v,; and v, at the bearing roller’s contact
point with the inner and outer circular.

{Vbi = wbir],,‘ (19)

Vbo = Wpol,

where w,,; and wy, are the angular velocities of the
inner and outer rings. r; and r,, are the radius of the
bearing’s inner and outer rings, respectively. @y, is
equal to O since rigid connection of the outer ring and
bearing seat.

The cage’s angular velocity is equal to the bearing
roller’s angular velocity of revolution, which is
denoted by Eq. (20)
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Fig. 8 Cylindrical roller-
bearing model

I element

Roller
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Toi +Tbo  ¥bi + o

It is possible to represent the ith roller’s rotational
angle as a function of time ¢.

9;(2‘):%171)4’60},”[ i=12,...,7, (21)
where Z, indicates the rollers’ number.

Figure 9a is the deformation diagram of the bearing
rolling element, when the bearing is not forced, the
inner and outer ring raceway curvature centers are Oy,
and Oy, and the radius of curvature are r,; and ry,,.
After the bearing is pressed, the center distance of the
inner and outer ring raceways’ curvature centers shifts
from [ to I'. Ignoring centrifugal force and gyroscopic
moment of the rolling element, the contact angle of the
rolling element and inner and outer ring raceway is
equal, contact force is equal. When the bearing is not
stressed, the contact angle is 7. After the bearing is
stressed, the contact angle is 7'. The geometric
relationship is depicted in Fig. 9b. Because the outer
ring of the bearing is fixed to the cylindrical roller-
bearing seat, O, and 0';,’s locations coincide, and the
inner ring’s center of curvature shifts from Op; to O'y;
during load, the outer ring’s position is unaffected.
The rolling element’s axial, radial, and angular
deformations are denoted by the letters J,, J,, and
0¢. Equation (22) can be used to express the center
distance between the inner and outer ring curvature

centers after bearing deformation.

@ Springer

I'= \/(lsin 9i 4 24 reodp c0s 0;)% + (I cos y; + xcos 0; + ysin 0;)?
(22)

where x, y, and z represent vibration displacements
along the coordinate axis.

As a result, the rolling element’s deformation can
be expressed as:

s=10-1-c (23)

where c represents rolling bearing clearance.
Following a force-induced deformation, the rolling
element’s contact angle, is expressed as:

, I'siny; + z + rp, cos 0;

tany, =
" lcosy; +xcosl; + ysin0;

(24)

Considering that the positive contact pressure is
generated only when ¢ > 0, the axial and radial
components of the contact force between the rolling
body and the inner and outer rings are shown in
Eq. (25).

{

where the index n represents 3/2 for the roller bearings
and 10/9 for the roller bearings, K, stands for the
support stiffness of the bearing, and H stands for the
Heaviside function.

{

Fu, = K" siny - H(9)

Fy = Kp0" cos ! - H(9) (25)

1, 6>0

H(9) 0, 0<0

(26)
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(a) Rolling element deformation diagram

‘52 +rb05600s0i

'
Obi

0

bo

(b) Geometric relationship diagram

Fig. 9 Rolling deformation. a Rolling element deformation diagram, b Geometric relationship diagram

The bearing force in its coordinate system is
expressed as:

Fpe =37, Frycos0;

Fby = Zizil Fypsin 0; (27)
Z

sz = Zii1 Fu

2.6 Gear ring flexibility

The gear structure of the NW wind speed increaser is
huge and bears the load caused by random wind speed.
In this case, the internal gear ring is equivalent to a thin
ring. Therefore, it is impossible to disregard the
internal gear ring’s flexibility. In this paper, the inner
gear ring is divided into M (M > 100) segments by
using the idea of discretization. The inner gear ring is
regarded as a combination of M rigid bodies and
M springs with a length of 0. The bending section
stiffness of the ring gear is taken as the connection
stiffness between the micro-segments of the ring gear
(Fig. 10).

The end face diagram of the planetary gear and the
micro-segment of gear ring at a certain time is shown
in Fig. 11.¢ = n/M. @,; represents the phase angle of
the gear micro-segment I, ¢,;, = w,t + 27n(i — 1)/M.
CDJI- represents the meshing phase angle of participating
meshing micro-segment of gear ring and planetary
gear j, ®; = ¢! + o]

The equivalent springs between the ring gear’s
micro-segments are projected along the x and y
directions, as depicted in Fig. 11. Micro-segments
centroid position of adjacent ring gear changes from
Criv1s Criy Crigto C'rivy, Chiy Ciy. The relative
displacement of the equivalent springs between adja-
cent ring gear segments along their respective x and y
axes can be shown in Eq. (28).

{ Axyi = Xpi — Xy — acos(E+ @ + uyi) + acos(€& — @y — i)
Ayyi = =Yri + Yric1 — asin(& + @, + uy) — asin(€ — @,y — uy)
(28)

where a is the distance between the connecting spring
and the centroid of the ring gear micro-segment C;.

a=2r.sin(¢/2),é = (n — @)/2.
2.7 Gear meshing force

The vibration displacements of all gears are projected
along their respective meshing lines. Considering the
transmission error, the meshing displacements of the
three-stage gear pair can be obtained as shown in
Eq. (29), (32), and (33), respectively.

Relative meshing displacement of participating
ring micro-segment and jth planetary gear:

Xpl = [iu,., - ull,, - (x,; 7)(,1,,) sin (Ilj[ — (y,.,- —y;j) cos (Djl} cos /)’}7 + (Z,, - z},j) sin /fi, + el(t)

(29)
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Fig.10 Schematic diagram
of low-speed gear pair.

a End face diagram, b Axial
diagram

(a) End face diagram

Fig.11 Geometric relation
diagram of gear ring
deformation.

a Instantaneous meshing
diagram, b Relative position
diagram

(a) Instantaneous meshing diagram

If the action point of meshing force is on C;B;,
Eq. (30) is satisfied.
2n(j — 1 .
1\% — o, — % -+ arccos (%) - 06%} < 1\%
(30)
So, in Eq. (29), ‘+’ takes ‘—,” else ‘+’ takes ‘+.
When the planet gear engages with the micro-segment

i, the meshing point is between A;B;, and Eq. (31) is
satisfied.

2n(j — 1 . 2
%_ q,,ri_%—i—arccos(}%> —(xq < 77:

@ Springer

(b) Relative position diagram

Relative meshing displacement between the sun

gear and the jth planetary gear:
X = [us —ul+ (x.\- - x;[i) sin @' + (ys - yg) cos (I)}I] (32)
cos i} + (zs - Z:,;) sin B} + €' (1)

Relative meshing displacement of high-speed her-
ringbone gear pair:
X3 :[m —uy + (x1 — x2) sin ocln + (y1 — y2) cos ocl”}
cos Bl + (z1 — z2) sin it + &M (1)

(33)

where ek(t) (k =1, II, III) is the static transmission
error of gear pair, it can be fitted by harmonic function:

(1) = & + e sin(ont + gy) (34)
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where ek a represents the error constant, ek r
represents the error fluctuation amplitude, w,, is the
meshing angle frequency of the gear pair, and ¢, is the
phase angle.

Relative meshing displacement according to the
above. The three-stage gear pair’s meshing force can
be written as:

F’Inj = K,Eif(x,,l,bl) + C}nx',,]
ng = Kgf(xnz, bH) + ng'nz (35)
FHI — KHIf(.an;,bIH) + CHIx'n3

2.8 Dynamic model of NW wind power planetary
gear system

As depicted in Fig. 12, a multi-degree-of-freedom
coupled dynamic model of an NW wind power
planetary gear-bearing system is created. The origin
of the coordinate system coincides with the center of
the internal gear ring. The x-axis in every coordinate
system is parallel to the paper’s surface from the inside
out. The origin of the bearing coordinate system is the
center of the support, and the z-axis and the axis of
rotation are parallel.

The system’s vibration model includes the fluctu-
ation of random wind speed, the time-varying meshing
stiffness, friction, transmission error, tooth backlash,
and bearing clearance. In Fig. 12, T;, (¢) is the input
torque considering fluctuations, and 7,,, is the output
torque. The support stiffness of the bearing is repre-
sented by K,;1, Kypo, Kgps Kip, Kz1p, and Koy, The
damping is represented by Cpp1, Cpp, Cspy Cips Caips
and Cyyp.

3 System vibration differential equation

In the vibration model, the gear and the bearing are
regarded as the concentrated mass and are located in
the middle of their respective supports. In the trans-
mission process of helical gear and herringbone gear
pair, the meshing force can be decomposed into three
directions of x, y, and z in the gear coordinate system.
The coordinate system of the micro-segment of the
inner ring gear is established in a dynamic coordinate
system that rotates synchronously with the inner ring
gear with its micro-segment centroid as the center. The

degree of freedom of the NW wind power planetary
gear-bearing system is depicted in Eq. (36).

1 I |
(Mrt;xrnyltyZrt»prlaypblvzpbl, p]a jaypja 'Dj? p]aprZa
Xl 11
Ypb2 s Zpb2,s p]7yp]a p])uS7xS7yS7ZS7xshaysb7Zsb7u17x17

T
Y1,21,X165Y1b, Z1b5 U2, X2, Y2, X21b,Y21b, x22bay22b)
(36)

where u, x, y and z are the degrees of freedom of
torsion, x-axis, y-axis, and z-axis, respectively. Sub-
scripts ri, pj, pb, s, sb, 1, 1b, 2, 2b represent the ith
micro-segment, the jth planetary gear, planetary gear
bearing, sun gear bearing, herringbone gear 1, her-
ringbone gear 1 bearing, herringbone gear 2, herring-
bone gear 2 bearing. Superscripts I II III represent
three-stage gear pair respectively. According to the
above model, NW wind power planetary gear-bearing
system’s nonlinear vibration differential equation can
be created.
Inner ring gear meshing micro-segment:

L\ duyi .
(r ) e +K,mu,,+C,m—+(F:”r,,, M,,)cosﬁ[+akﬂ(s1n/~,-Ax,,-
br

. Tin
+8iny;Ax;i+1 —cos4iAyyi+cosnAyrist) M

dx
Myi———

dx;i
K+ Con 1= (Flysiny) = F cosy) ) + Ko (A= A1) =0
2y dyi oo
m,,‘17 “+-Koiyyri+ Criy—— o (Fm]cost// rmsml//)(.os[i o (Ayri—Ayis1)=0
d’z K. dzn £ g0
My——— i " K &”+C"”d ( m/cosd/ fl,/smlp)sm/ =

(37)

Non-meshing micro-segment of inner gear ring:

I\ duy;i du,,
= 5+ Kurittyi + Curi—— L akK,(sin A;Ax,; + sin17;Axi41
ry,.) dr dr

Tin

— 08 AiAy,i 4+ cos n;Ayyi1) = o

d%x,; dx,;
My ——— df ) + Kmxu + Crtx dr KP(AXH‘ - Aerl) =0
2y dy
Yri
My ——— dr 2 + Krr))rz + Cn} dr - Ke(Ayri - Ayri+l) =0
&z dzyi
My ——- dr2 +Krz Zn+cn" dr =0
(38)
Planetary gear bearing 1:
2 d(x,
d-x, b1 X, dx
Mpp dr’;”‘-*-Km (Xpbl I;/)+C/)r¥+cﬂm#m:_ pblx
d2y, (1= dy,
ml?hl#;l‘*’Km (yhbl*}'};j)+cl’\¥ CI,M%[M:— pbly = Mpb18 (39)
d%z, A7 dzp,
Mypp) d‘:;‘“’K[l:(thl7Z;V)+Cp:¥+6‘phl C{:I:* Pblz
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Fig. 12 Dynamic model of NW wind power planetary gear system

Internal meshing planetary gear:

e o d(u‘.—u' r, /r}‘)
» i gt (0T 1 S\ ™ "o Top L " !
+K,, | u,;—u,— | +C, 77(1“ =M, )cos =0
L r}”’)Z dr? up \ “pi i rll)lp up dr mj" bp P s
&2 d (ZX:,J —Xph1 —Xphz)
ml‘)Tz”UrK,,X (2)(;”-7):,,“ 7):,,,,1) +C,,,\T+ (F,'Wsinl//j'fl"/'ﬂcosl//}) =0
dyt d (2)’,',/ —Ypb1 =Yph2
1 - 1
m:, dt3m+K”y (2}'},1 —Ypbt —y,,,,g) +Cmf— (F,'Wcoswj —Fjlmsmwj)cos/f :—m:,g
&zl d(ZZ;,—z"m —Zpi2

Ky (22h =2 3z ) + e ~ (Fiycos}F},siny)sing' =0

(40)

dr

Planetary gear bearing 2:

I
dxpm d (2’%2 % *"m’) dx
Pb: 1 Al pb2
M= +Kpx (Zx,,bg—xl,/—xﬁ/) +Cpx +G,

@ g, = Fpiae
1 11
Py d (2)'1”72 “Ypi Vi ) dypp
Mppy dtl; +Kpy (Zypb2*YL,*y;,I;) +Cy @ +Coi dpt =—Fppoy—mping
1
&z d (21”;,2 T % ) dzpp2
Mpb2 dtll +K). (22,7;;2*:},]71;']) +Cp: i +Cpi (; . =—Fpp2:

(41)
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External meshing planetary gear:

TR |
M| d2lt n d(“ i Upih /Vb)
b i~ pi bp! bp
|: 2 ’"+K:I” [T 117+(Fnr}fp—M2)c0s[i":0

an P~ pi VII,,, up dr mj

rh)

A2y d(x"-—x,,bz)
n-p iy ”' NSNS | S | SRS |
" +Km(xw—pr2) +Cpy p - (ijbml /i — Fpco8y); )—0
&yl d ()’g —Ypb2 )
2 1 Lol 11
my dtquery(y;.I,»*ypbz)+C,,V m —(F,‘,f,-cosz//,- —Fjsiny] )cos/} =0
a2l d (Z;’I 71”“)
s “p 1 1 0 gl il o pll
) +Kp: (Zn/_zﬂb2)+cpz ar +(Fmi°05¢'i —Fpysiny; )sm/} =0

(42)

Sun gear bearing 1:

d?x, d(xg—x; dx;
me(ziTéh+Kxx(xsb *xx)+cxx%+csb dlb:*Fxbx
d d(ygp— d
msb%""Kw(ysb_ys)+cxy%+csb g;bz_F:hy_mxbg
d“zg d(Zsb _Zs) dzgp,
sb— 5+ Ksz (256 =25 C.vz— Cop——=—Fg;
mspg2 + se(2sp—25) + G TGy, bz

(43)
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Sun gear:

L\ d d(u;— S
(7) K (u,\-—ul%)JrCm e W’"/r' =3 (Flre—.)cos=0
bs. 1

=1

dzx d(2x,—x, 2
M5 + K (2x,—x1 —x33 )+ Cix (2x - +Z(Fm smnﬂ" F" c.osxp")
=
&y, 42y~ " o)\ 0 g 1t
g+ Ke 2y =yi=ya) + o= +Z(1~m]cosw —Fpysiny;] )cosﬁ =—myg
j=1

slm//") sinf'=0

d’z, d(2z—21-20) <
B K 2+ OB S (ot pl,
=1

(44)
Herringbone Gear 1:

(—)—d u‘+Km (m —Ug— )+C di(uliz";m/”)Jr(F,I.‘:lr/u*M.)cos/}"'

) di
’x d(l’fl—-’f\—hh)
dr

mi——+K (2x1 —x;—x15) + Cyy 7(F,',',‘sinx[,"fl"}"cosaz"):0

dZ
m.dd 5+ Ky (2915 —)‘1;,)+C“w+ (F,',:'cosz'"“ —F,'"sina'n")cos[}"':—m.g
2 S
m|d[17+1< (231*2,\*leu)+6,\zwz()
(45)
Herringbone gear bearing 1:
d(xlb ) d-x
mipy——s— dtz P Ko (1 x1)+Csxd7+C ?: Fipe
d? d(yis—y dyw
myp d}t)z +Ky (16— y1)+csy¥+c e =—Fpy—mpg
d2 d(zip—z1) leb
K (z1p Co;———+Cipp——=—Fp;
Ly —L+ (z1p—21)+Cy; & +Cu a 1bz
(46)

Herringbone Gear 2:

L\ d*u
(a) an +K,,2M’+Cm**(1:mrbz M) cosp" =T,

d*x d(2x2—x215— X221 .
m s +sz(2xz 7xz|/,7xzm)+Cu7( 2 dzrlh 2 )+(F,',f'smat,'(“—F;"cosoc,ll") =0

d(2y2—y215—y220)
dr

dz -] | .
”72F+K2\ (2v2=y21=y220) +Coy - (1',',',[0051’,"717‘"511115,")005[3"':0

(47)
Herringbone gear bearing 21:
d’x, d(x21p—x: dx
may r +K2x(-x2lb XZ)‘FCZ)%JFCZH; dztlbiszwx
2
d(y21—y: d
mayp d122 +K2y(y2lb7y2)“FCZy%JFCZIb%szZIbyfmZIbg
(48)
Herringbone gear bearing 22:
dx d(x22p—x: dx;
mzzb%Jer.v(xzzb—xz)+czx%+6‘ 22 (fzb:—Fzzw
%y d(y2p—y dy,
My dM +Kay (y220— YZ)""sz%-‘rC }dt =—Fapy =g

(49)

3.1 Nondimensionalization

The vibration differential equation of the NW gear
speed-up box contains a variety of physical

parameters, and the order of magnitude of the physical
parameters varies greatly. In order to avoid the
calculation time being too long, the calculation failure,
and so on, the system differential equations are

dimensionless. The natural frequency o, =
/K2 /M., of the intermediate gear pair for the NW
wind turbine gearbox is time scale. Displacement scale
with half-backlash of intermediate gear pair.

Inner ring gear meshing micro-segment:

du

d—+kunu +2§W +(fmj,r;,, M ;)cos ' +ak, (sin AT +sinm; AT
= = tin

—C08ZiAY,;+cosi A iy ):M

%

dﬁ+k,ux,,+zgm L (i A cos) ) ke (AT~ ATyi11)=0

d%

b3+ 2y (7 0N =y S O ke (4, 85, 101) =

o g2, d“" o+ (L cosu—fhysing} ) sinf'=0
(50)
Non-meshing micro-segment of inner gear ring:
d’u du, o . _
= >+ kil + 28— e + ak,(sin A;AX,; + sin ;A%
t;
_ IA Ay tin
€08 4iAy; + cos ;AYi1) = 37
2 —
dt 2” + kntfri + 2Crix7’ + Ke(Ml'i - A/Tcri+l) =0
&, dy, e :
a2 + kriyy,i + 2€ny d — ke(AY,; — A)’n'+1) =—f;
d’z dz
S+ kiZri + 20— =0
dr2+ rickri + ~riz g

(51)

Planetary gear bearing 1:

d*x,1 - ] v d(Xpp1 — %) . A% .

d:g + Kppirx (Kpp1 — X,lyj) + 2&,;,7“(7[7 & 2y 28 pp1 d’ = —foblx
Py _ = A1 — ) dy,,

d.:z + keppiy (T — .V,l,j) + 2ppiny % + 201 —— 4 = e —fe
A%z, _ ] . d(Zpn1 z ) L dzy

d.;z + kppb1z(Zpp1 — Z,I;,) + 28 b1z Tm + 201 d’” ~fob1z

(52)

Internal meshing planetary gear:

&'m, _ by g d(“m “w’hp/’hr> "
7 +k, ( iy — T, *’) F2, (f,:,,,,,n',,, *M,,,) cos f' =0

ae e i 1 &
d(zx' — X —,?,,ﬂ)
b _ _ i~ Xpb1 — Xph2 Lo .
drél +km'r\< pi T b1 "‘l”") + 2y P — <fr:w'/ sin ] — fj; cos W/> =0
o o LA T - Tm) N
R (z oo v,,,g) F2,, (f,w cos ) — £ sin x//j)cns =0

d(22) — 7 — 72
@

27I
dzlv+k1 [ 20 _(p 1 Ningl =0
, (22— T — 52 +200 iy €O W — [y sin ¥ ) sin 1 =

(53)
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Planetary gear bearing 2:

< 5l
A% - . d<2"(l”’2 i ’\p/) L A%
a /,z) + Kppb2x (zxphz - ‘f,,/ - ) + 25,,,,17Z(T+ 24,;172 P = o
- Sl
&, _ o . d(z}'nlﬁ i T -Vw) Vo2
d’a] + kppiay (2ypb'l - )',l,j - ‘,‘yl,) + zinnmvTJr 2l dl” = —fpp2y — f¢
S sl
&7 _ a4 . d(z“l"” T zI’/) L Az
FrE Kppbaz (2717112 — %~ 7,,,) + 202z I e 202 & - =

External meshing planetary gear:

211 d( TS R )
Ll g al—a, "” o S\ T ot/ (o = ¥y cos B =0
rhp d

a2 T tw Sup B mipiTbp
&) 1 d(}’l’l’ _ thz) 1 11 1
l/ ¥ 7 9 =
drz I’IW (’C XI”’Z) + 20 T a (f”'ll'/ siny;’ — fl'/ cos §; ) =0
d(V" -, hZ)
m 1 o} Pt . & _ (s ol b Cpll
dﬂ I‘IW\ ( yl’ﬂ) + 251!1)/\ dr fmjlv cos IP fflv sin ‘pj cosfr =0

“-Ilvlj n (4 Al d(zll”' — z”“) 1 IR R | W
+ Kppye (Z, 2,,;,2) +20 - (/m,m cos Y} — fo siny; ) sinf' =0

*ppiz dr
(55)
Sun gear bearing 1:
&xy d(x —
b kst (X — Xs) + 28 e ) +20p—— dx = —fobx
dr dt
d? b . d(y . d? .
d)Z, + kssby (Voo = F5) + 2Ly % + 2écb = ~fay —fe (56)
&, Ve G-
dz ? 4 e (Zp — Zs) + 2Lsshe 4 —2) + Zwy ~fsbz
Sun gear:

3

a%, d(i; —
d,: + ks (m ~ —) + 2~,,VM Z ( misThs — ) cos ' =0

a5 a2 — ‘l “Ta) N (gl 1
d—z+ koo (2%, = X1 = X)) + g ———— Z (f”m siny — £l cos Y] ) =

i
d ) d(2y, — 5, — ¥, 3 X X
+kssy (25, = ¥y = V) + 2y # + Z (f,,',',‘ cos \j/J" 71’,11 sin W,”) cos ' = —f,
/ 1

d’z
dr?

di(f, R Z (f,f,'“ cos 11/:' —fi sin x[;}') sinp! =0

(57)

Fhssz (22— 21 = Zp) + 2

Herringbone Gear 1:

s , d( @ —u 7)
T g —
e (u\ ~ 7 r”') 2 = 4 (M — M) cos 1 =

dr 2 dr ml
%‘f’(\lr(l’fl — Xy — Xip) +2\3|\7d(2i| 7;? —w) ( M Sin of! 7f'" cowm) =0
[37, + oty (291 = 5 = Vi) + 2Lay b P 1) + (f,f,‘,' cos o' — f}i' sin a(“') cos M = —f,
d’z Lod(2z -z, -2
i + k(221 — 2 —Z) + 25\1:% =0
(58)
Herringbone gear bearing 1:
d’xy L . d@@, - % ¥y,
dril + kstpn(F1p — %1) + 281 % +20p—— e —fibx
&y, dG . Ay
42 +krlh»(}llv_‘|)+25\|h)%+251 7:_]“]1,\ —fe (59)
d’z _ _ L d@Zn — dz
dt;h + k(T —21) + 25;1;;:% + ZLU)T = ~firz

Herringbone Gear 2:
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& i
a@ — % 4 kally + 2‘:(12 i — M) cos B = tou

&5 .

d 5+ kooo (26 — X1y — Xo2p) + 2002 i

d(25 = Fa1p — Vaop) (]m cosal — gl sma'") cos f = 0
'f

d(2%; — X21p — X2
A2 — T — o) (7 sin 2t — £ cos xm) _—

2+ Koy (2, = St — o) + 2y

o &
(60)
Herringbone gear bearing 21:
d*x . d(2% vy
gizzlb + knix(¥a1p — %2) + 200014 % + 24011, = —fainx
& A5y, — ¥ > \
dyzz”) (25921 = ¥2) + 2§221)‘%+ 260 —— yz” = —fary —fe
(61)
Herringbone gear bearing 22:
d? d(Xpp — X2 dXn,
dx 2 1 ko (T — 1) + 2(222»:% + 200 —— = —fanx
T d
d* d(¥pp — 3 d
% + ka22py (Fazp — V1) + Zézzzm% + 200 —fooey — Jo
(62)
u X Y
g =4 5 =1 5 29 5 _Z —
where: i, = ok xq—bu,yi = i Zi =3, T=0y
t, ¢ Cpah ¢ Csqh ¢ _ G ko
 5pah T dmgw, 0 554 T 2myw, 0 92ah T 2myw, pgh —

Kpgn Ksqn Kogn _ K, _
mha? ksqj = myw? kagn = m, wz P e T (I} )k fe=

k _ k k _
m"bHu)z’ lpj = +§0_,‘7 u =

1

8 T
e A mq — mkpe? 0 ]?fq

_ mjr M L M,
2 ) fmjr H/,’%r)hllwlzl 1) ri (L—i/"i,)w;%(b")z )

(Li/rs, (
Tk M 211
Mq o 0" 2= Et gt = - gy

—uyi (q=r,pj,s,1,2,pbl,pb2, sb,1b, 21b,22b;h =
x,y,z;k =L ILIL; u = in, out).

Tables 2 and 3 display the gear and bearing
specifications used in this article.

4 System dynamic response

In this part, the impact of external load excitation
frequency on the system’s dynamic properties is
examined. The fourth-order Runge—Kutta method is
used to solve Eqgs. (36)—(62), and the initial displace-
ment and initial velocity of the system are set 0, a
minute later, the vibration displacement response of
NW wind power transmission system is obtained. The
Poincaré section method is used to solve the system
bifurcation diagram, and the excitation is traversed.
The excitation frequency or meshing stiffness is used
to record the vibration of the system in a stable state. In
terms of dynamic displacement, the relationship
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between vibration displacement and parameters is
drawn. The corresponding bifurcation diagram is
obtained.

Figures 13, 14, and 15 examine how the equivalent
displacement X, , X, X,3 has changed along the sys-
tem’s three meshing lines when the excitation fre-
quency o, is 0.170, 0.205, and 0.245. When
w, = 0.170, The time history of the equivalent
displacement x,; shows oscillatory motion with a
periodicity of 2 T, and in the FFT spectrum, the
dominant frequency component is the meshing fre-
quency fp,, followed by the secondary presence of the
double meshing frequency 2 f,; the phase diagram
displays a closed annulus with two windings. There
are just two dots on the Poincaré map, showing that the
low-speed gear pair is roughly conforming to the
period-doubling motion. The time history of the
equivalent displacement X,; exhibits periodic oscilla-
tory motion, and in the FFT spectrum, the dominant
frequency component is the meshing frequency f;,,
followed by the secondary presence of the double
meshing frequency as well as the triple meshing
frequency. The phase diagram displays a closed circle,
with just one dot on the Poincaré map, indicating that
the intermediate gear pair is in periodic motion. The

Table 2 Gear parameters of NW wind power speed increaser

time history of the equivalent displacement X3
displays chaotic oscillatory motion, and in the FFT
spectrum, the dominant frequency component is the
meshing frequency f,,, accompanied by a broad-
spectrum presence; the phase diagram forms a closed
annulus with many windings, and the Poincaré map
displays chaotic disordered dots, indicating that the
high-speed gear is in chaotic motion.

When w, = 0.205, the time history of the equiva-
lent displacement X,; displays chaotic oscillatory
motion, and in the FFT spectrum, the dominant
frequency component is the meshing frequency f,,
accompanied by a broad-spectrum presence. The
phase diagram forms a closed annulus with many
windings, and the Poincaré map displays chaotic
disordered dots, showing that the low-speed gear pair
is in chaotic motion. The time history of the equivalent
displacement X,,, displays chaotic oscillatory motion,
and in the FFT spectrum, the dominant frequency
component is the meshing frequency f;,, accompanied
by a broad-spectrum presence. The phase diagram of
the equivalent displacement X, of the intermediate
gear pair is a closed annulus with many windings, and
the Poincaré map displays chaotic disordered dots,
showing that the intermediate gear pair is in chaotic
motion. The time history of the equivalent displace-
ment X3 shows periodic oscillatory motion, and in the

Parameters r Py Py S h s FFT spectrum, the dominant frequency component is
one-third of the meshing frequency 1/3 f,,, accompa-
Tooth numbers Z o1 228340 131 20 nied by a broad-spectrum presence. The phase
Modules m, (mm) 28 1610 diagram displays a closed annulus with one winding,
Pressure angle o () 20 2015 and there are three dots on the Poincaré map, showing
Helix angle f (°) 40 72 320 that the high-speed gear pair is roughly conforming to
Gear width B (mm) 560 410 365 the period-doubling motion.
Gear backlash b 4550 When w, = 0.245, the time history of the equiva-
(mm) ) lent displacement X,,; shows oscillatory motion with a
Gear quality M (kg) - 3690 950 2320 440 3369 125 periodicity of 2 T, and in the FFT spectrum, the
Backlash 2b,, (pm) 110100 90 90 100 100 dominant frequency component is the meshing fre-
quency fp,; the phase diagram of the equivalent
Table 3 Basic parameters Parameters pbl b2 sb 15 21b 22b
of the bearing
Number of rollers Z, 16 11 12 13 12 12
Inner diameter r,; (mm) 160 300 100 350 40 40
Outer diameter ry,, (mm) 240 365 180 465 70 70
Mass M, (kg) 47 121 50 295 2.2 22
Bearing clearance ¢, (um) 180 160 55 305 50 50
Support stiffness K, Wm) 5 x 10° 8 x 10° 8 x 10° 5x 10° 8 x 10° 2 x 10°
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Fig. 13 Meshing displacement vibration response when w,.
=0.170. (al) Time history, (bl) FFT spectrum, (c1) Phase
diagram, (d1) Poincaré map. (a2) Time history, (b2) FFT
spectrum, (c2) Phase diagram, (d2) Poincaré map. (a3) Time

displacement Xx,; of the low-speed gear pair forms a
closed annulus with two windings, and there are just
two dots on the Poincaré map, showing that the low-
speed gear pair is roughly conforming to the period-
doubling motion. The time history of the equivalent
displacement X,; shows oscillatory motion with a
periodicity of 2 T, and in the FFT spectrum, the
dominant frequency component is the meshing fre-
quency fp,; the phase diagram of the equivalent
displacement X,, of the intermediate gear pair is a
closed annulus with two windings, and there are just
two dots on the Poincaré map, showing that the
intermediate gear pair is roughly conforming to the
period-doubling motion. The time history of the
equivalent displacement X,3 exhibits chaotic
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history, (b3) FFT spectrum, (c3) Phase diagram, (d3) Poincaré
map. (1) Low-speed gear pair (2) Intermediate gear pair (3)
High-speed gear

oscillatory motion, and in the FFT spectrum, there is
only one meshing frequency f,, present; the phase
diagram displays a closed annulus with many wind-
ings, and the Poincaré map displays chaotic disordered
dots, showing that the high-speed gear pair is in
chaotic motion.

The phase trajectory plane and 3D frequency
spectrum of the gear pair are depicted in Figs. 16
and 17. It can be inferred from the phase trajectory
plane and the 3D frequency spectrum that the three-
stage gear pair will transition between periodic motion
state, double-periodic motion state, and chaotic
motion state with a change in excitation frequency.

Wavelet analysis is established to determine time—
frequency characteristics of the three-stage gear pair,
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Fig. 14 Meshing displacement vibration response when w,.
=0.205. (al) Time history, (bl) FFT spectrum, (cl) Phase
diagram, (d1) Poincaré map. (a2) Time history, (b2) FFT
spectrum, (c2) Phase diagram, (d2) Poincaré map. (a3) Time

which are displayed in Fig. 18. When the system
transitions into a state of a periodic or double-periodic
motion, only one or more frequencies will appear in
the time—frequency diagram. When the gear pair
transitions into a state of chaotic motion, a certain
width of the discrete frequency spectrum will appear
in the time—frequency diagram.

The bifurcation diagram with w, as the bifurcation
parameter is drawn using the fourth-order Runge—
Kutta integration with varying steps to better highlight
the impact of excitation frequency on the dynamic
properties of the system. Figures 19, 20, and 21 depict
diagrams of the three-stage gear pairs. When o, is
smaller than 0.204, Fig. 19 demonstrates that the
equivalent displacement X,;; executes periodic motion.

history, (b3) FFT spectrum, (c3) Phase diagram, (d3) Poincaré
map. (1) Low-speed gear pair (2) Intermediate gear pair (3)
High-speed gear

The equivalent displacement performs chaotic motion
when € (0.204,0.212). When ®, €
(0.212,0.220), the equivalent displacement from the
chaotic condition to perform period-doubling motion.
The equivalent displacement returns to a chaotic state
when o, > 0.220. When w, € (0.245,0.260), the
equivalent displacement eliminates the chaotic condi-
tion, performs period-doubling motion, and then
executes periodic motion when w, > 0.260.

Figure 20 demonstrates that the equivalent dis-
placement X,, executes periodic motion when

€ (0.160,0.187). When w, € (0.187,0.218), the
equivalent displacement exhibits chaotic motion. The
equivalent displacement eliminates the chaotic condi-
tion and exhibits period-doubling motion when
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Fig. 16 Phase trajectory plane. a Low-speed gear pair, b Intermediate gear pair, ¢ High-speed gear pair
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(a) Low-speed gear pair

(b) Intermediate gear pair

{r

-
Pl
Q

(c) High-speed gear pair

Fig. 17 3D frequency spectrum. a Low-speed gear pair, b Intermediate gear pair, ¢ High-speed gear pair

w, > 0.218. When w, > 0.223, the equivalent dis-
placement returns to a chaotic state. Furthermore,
when o, is > 0.236, the equivalent displacement from
the chaotic condition to period-doubling motion and
then executes periodic motion when w, > 0.246.

Figure 21 demonstrates that the equivalent dis-
placement X,3 executes chaos motion when
w, € (0.160,0.175). The equivalent displacement
transitions from the chaotic condition to period-
doubling motion when w, € (0.175,0.180). Subse-
quently, when ®, € (0.180,0.196), the equivalent
displacement exits the period-doubling motion state
and enters the periodic motion state. When w,.
> 0.196, the high-speed gear pair’s equivalent dis-
placement X,3 executes period-doubling motion until
o, > 0.210, at which point it transitions to periodic
motion.

5 Super harmonic resonance characteristics
analysis of NW planetary gear system

5.1 Multiple-scales analysis of the NW planetary
gear system

If just torsional vibration is taken into account, the

relative equivalent displacement vibration equation of

the three-stage gear pair can be simplified as follows.
(1) Low-speed gear pair with time delay:

27 dx
d,L-XZn +3 2le d_’: + (kml + kmlkCOS(wmlf))f(XL)

cos ocll cos ! :fg + fi cos(viT) + gdlfz(r — 1)
dJ_CI

+ g d—:(‘c — ‘Ed)

(63)
(2) Intermediate gear pair with time delay:

2! dx, X!
i T3 [2n g+ (1 keos(@m 1) (3)

cos oclll cos pI' = (P + f2cos(va1) + gdﬁg(v: 7))
—II
+ g —+ (‘C - ‘Cd)

dr
(64)
(3) High-speed gear pair with time delay:
25 d7! ~
i T [2@"3 o s (14 kcos(@ns0) f (%,")
cos oM cos fM = £ 1 £ cos(v31)
- dz!

+ <gd3xiu + 83 dz >(T )

(65)

where f(f is the dimensionless external excitation force
equivalent static load,f* is the dimensionless external
excitation force fluctuation amplitude, k,,; is dimen-
sionless meshing stiffness, {,,; is dimensionless mesh-
ing damping, the displacement delay x!'(t — 1)
represents the time difference of the equivalent
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displacement x,, before and after the active control is F(Xn) = 01%, + 0,5 = 01 (T, + do%.) (66)
applied, and the corresponding displacement control
parameters is g; the velocity delay dx!/dr(t — 14)
represents the time difference of the relative velocity
X, on the meshing line before and after the active T,=¢(i=0,1,2...) (67)
control is applied, and the corresponding speed control
parameters is g,;. (k = L II, III; i = 1, 2, 3).

The third-order polynomial, which is fitted to the
tooth-backlash function f(, ), may properly depict the
meshing of the system.

Introduce a high-level minim ¢, lel< <1, and
specify time variables for various scales.

The vibration displacement is described as a
function of time variables with various scales on the
meshing line.
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Xu(t,8) = Zﬁixi(TmTl;TZw“va) (68)
P

where m is the highest degree of higher order small
quantity, and the value of m is determined by the
calculation’s need for precision. Time variables on
various scales. It is possible to think of 7, as a function
of m time variables and consider their independent
variables.

Define the partial derivative operator D, = 0/0T,
as shown in Eq. (69).

d < d

dfzﬁ"aT =Dy+eD)+2Dy+--4-&" Dyt
_ n

& d

m a
<Zg" ) =D3+2eDoD; +&*(D?4-2DoD; ) +--
n=1

d de aT,

(69)

Define the meshing frequency of gear teeth as
o = wy + ew| + 2wy + ..., where w, denotes the
natural frequency of the intermediate gear pair. The
meshing damping, meshing stiffness fluctuation term,
and nonlinear term are defined as the same order
quantities in order to produce an efficient approxima-
tion. (i = &lpi, k = ¢k, ga = €8a,8v = €8y, 00 = &dp.
Substituting the approximate solution X,(t,¢) and
partial derivative operator into Egs. (70)—(72), only
taking the first power of ¢ after expansion, and we may
get the approximation differential equations for each
order by equating the coefficients of the same power
term of e.

Take the differential equation of the intermediate
gear pair as an example:

02 Dixo + wixo = fo +f cos(vy7)
! ZD%X] + CO%.X] = —ZD()D]X()

70
—(2,uDoD1x0 — 52x(3)) cos ocH cos " (70)
— gk cos(wnt)xo + gaxXoa + &Doxov
Suppose the solution of Eq. (71) is:
0 = Ae'™T0 1 f5 207 + Ae™ 0 + cc (71)
where A represents the amplitude, A =jf/[2

(w3 —Vv3)], cc represents the conjugate complex
number of the previous term, and v, is excitation the
frequency of the external load.

Substituting Eq. (71) into Eq. (70), we obtain:

@ Springer

Dix)+ iy =— [2iw0(D|A+{mzA)+6ézcosaf,lcosﬁ”AA2
+30, coso(LIcosﬁ"AzA] efolo_ (3zcoso<gcos[?” [Asezi"""Il’ A3

+3A2A821m(;10eir31],+3X2Ae—2uuo’lhewz’1“+3AA2 jionTo y2ivaTy

+3AA2eiw0T0g=2iv2To 4 — (fU ) +3 fo t<)«»Tn+';fJ Ae2To

2?2 o} o}
f('Az 21»‘4,T(»+3f) 2’”7"+3AAf +3A2f)
o5 5
+3 fo AAeluuTﬁe—n TU+3 fo AAEMUT‘,E“ n,]

7/\(215,“2113+35700w“cosﬁ"/\2+6cosm cnsﬁ"AZ)e"”T"

fo

1
751«11 Ae”’”"”r +/\e“ To Ae=ionTo 4 Ae=210 ) coswrcosal'cosf!

fu

A o i p ]

Tg [inAe,mH/ +leAEn_ ) _jopghe 010

—ivyAe 2 w)} “+ce
(72)

Because the superharmonic resonance of the sys-
tem is examined in this part, the offset parameter of
excitation frequency o is added, making
3v, = wg + ¢0. Equation (71) cosine function with
excitation frequency is recast as follows in light of
Eq. (67) and Euler equation:
wgy + €0 woTy + oT)
71) = cos <7>

COS VT = cos(
3 3

1 zaTl IU()TO
==e3e3 +cc
2

(73)

Incorporate Eq. (73) into Eq. (72), and the follow-
ing equation must be guaranteed in order to avoid the
secular term.

2iwgD1A + 0, cos acInI cos "

(mog 5A 4+ 6AA + 3A%A + 3A3%T 3f° )
0

—|—A(gdefw°” — iwogvefiwor”) =0
(74)

Rewrite A in Eq. (71) as: A(T}) = 0.5a(T})e?™),
where A(T1) and (T1) stand for the slow variations in
frequency and amplitude. By dividing the real and
imaginary parts, the following equations can be
produced.

ZyUDOCOSWOT, gaoSiNWoTy  05c080,c0s

Asing
2mg 2mg [on

Dyo=—"{,,0cosa,cos i+

24OUCOSWOTy—LyonsiNWTy  07C080t,cos !

oDy p=00+ Acosp

2mp wo

240A25,cost,c08 i 43063 5, cosu, cos 4 IZ%aégcosocncosﬁ"
i

8wy

(75)
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where @ = T, — " describes the real-time phase of
the intermediate gear pair.

The specific solution of Eq. (75) that matches the
nonzero requirement corresponds to the system’s
steady periodic motion. If the algebraic equation that
amplitude o and phase o satisfy may be written as:

(i cOS 01y cOS I — W1)2 + (0o — Wz)2 = W32

(76)
where W, W,, W5 can be expressed as:
ZyIMOCOSM)T, —g0SINWOTy
W=
2myp
Wz:gdowosword7g\,ocwusinwor‘, 241A253+3o€352+120{52/02/wg osaycos!
2w 8wy
W :52cosx,,cos[>’HA3
[O0)
(77)

The stability of superharmonic resonance of the
intermediate gear pair is analyzed. The characteristic
equation of the equilibrium point of the system is:

V] -2 —O(VQ
det| 1 <V2 ~ 30s0.c0s fcos oc,,) Vol = 0
o 4wy
(78)
In Eq. (78),

v v COS WTy, — g4 SIN Ty
| =

11
— COSs o, COS ﬁ
2600 Cm2 n

3020, 4 24A%0, + 12f20
V,=¢g— %702+ g 2+ 120 2cosoc”cosﬁH
o

(79)

It can be determined that the need for the system to
stay stable when {,,,, > 0 is.

30,0 cos oy, cos B
20* COS oLy, COS 3 ) >0
4(1)0

Vi+V, (Vz - (80)

5.2 Numerical analysis of superharmonic
resonance

This part explores the impacts of meshing damping
and time delay parameters in order to research the NW
planetary gear system’s dynamic characteristics.
Define the initial parameters of Eq. (63), k = 0.3,
m =006, =10, f 1 0=02, g5 =0.1, g,
= 0.1,74 = T/9, 1, = T/9. Define the initial parameters
of Eq. (64), k = 0.4, {,» =0.05, />, =4.0,f110 = 0.5,

g =— 0.1, g, =-0.0574 =T/9, 7, =T/9. Define
the initial parameters of Eq. (65), k = 0.4, {,,5 = 0.05,
f2=40,flI1 0=05, g;3=0.2, g,3=0.1,74 = T/9,
T, = T/9.

5.2.1 Low-speed gear pair

The initial parameters are taken into account by
Eq. (63). The family of amplitude—frequency charac-
teristic curves with {,,,; as the parameter, which depicts
the connection between the system’s amplitude «; and
excitation frequency wy, is depicted in Fig. 22a. The
shaded circle in Fig. 22a depicts the system’s unsta-
ble branches when (,,; ranges from 0.02 to 0.08. The
amplitude o, of the low-speed gear pair’s superhar-
monic resonance lowers with an increase in (,,;, and
the unstable branch gradually contracts. The unsta-
ble branch vanishes when {,,; is set to 0.1, demon-
strating that meshing damping can be appropriately
increased to improve the low-speed gear pair stability.

The family of amplitude—frequency characteristic
curves with (,,; as the parameter, illustrating the
connection between the amplitude and the meshing
damping, is depicted in Fig. 22b. The amplitude o«; of
the low-speed gear pair’s superharmonic resonance
decreases with an increase in (,,; when w, takes a
value between 0.1590 and 0.1594. The amplitude o, of
the low-speed gear pair’s superharmonic resonance
progressively develops unstable multi-branches when
w; exhibits a discontinuity 0.1596 and 0.1598, indi-
cating that the curve will appear to contain multiple
values. The region where the amplitude o, exhibits a
discontinuity when w; = 0.1598 is indicated by the
shaded area in Fig. 22b. As {,,; increases, the ampli-
tude o, is slowly lower, moving from point A4 to point
A3. With further increases in {,,;, the amplitude o,
jumps from point A3 to point Al. After point Al, a
steady decline in «; is observed along the curve. When
the process is reversed, the amplitude «; jumps from
point A2 to point A4.

The family of amplitude—frequency characteristic
curves with g, as the parameter, depicting the
relationship between the amplitude o and excitation
frequency @, is depicted in Fig. 23a. The shaded
circle in Fig. 23a depicts the unstable branches of the
low-speed gear pair when g, ranges from -0.4 to 0.
The unstable branch vanishes when g is set to 0.2 and
0.4, demonstrating that appropriate displacement
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Fig. 22 Influence of meshing damping on the low-speed gear pair. a Family of curves w;-o, b Family of curves {,,;—o,

control parameters can improve the low-speed gear
pair stability.

The family of amplitude—frequency characteristic
curves with g, as the parameter, illustrating the
connection between the amplitude and the displace-
ment control parameters, is depicted in Fig. 23b. The
amplitude «; of the low-speed gear pair’s superhar-
monic resonance drops with an increase in g,;; when
oy assumes 0.1590. The amplitude o of the low-speed
gear pair’s superharmonic resonance progressively
develops unstable multi-branch when g,; takes 0.1592
to 0.1598, indicating that the curve will appear to
contain multiple values. The region where the ampli-
tude o, skips when w; = 0.1598 is indicated by the
shaded area in Fig. 23b. As g, increases, the ampli-
tude o is slowly lower, moving from point A4 to point
A3, and as g, increases more, the amplitude o, skips
from point A3 to point Al, after point Al, a steady
decline in o is seen along the curve. When the process
is reversed, the amplitude o skips from point A2 to
point A4.

The family of amplitude—frequency characteristic
curves with g,; as the parameter, illustrating the
connection between the amplitude o; and excitation
frequency @, is depicted in Fig. 24a. The shaded
circle in Fig. 24a depicts the unstable branches when
g,1 ranges from 0 to 0.4. The unstable branch vanishes
when g, is set to — 0.2 and — 0.4, demonstrating that
appropriate speed control parameters can improve the
low-speed gear pair stability.

@ Springer

The family of amplitude—frequency characteristic
curves with g,; as the parameter, illustrating the
connection between the amplitude and the speed control
parameters, is depicted in Fig. 24b. The amplitude o; of
the low-speed gear pair’s superharmonic resonance
increases rapidly with an increase in g,; when
assumes 0.1590 and 0.1592. The amplitude o, of the
low-speed gear pair’s superharmonic resonance pro-
gressively develops unstable multi-branch when g,
takes 0.1594 to 0.1598, indicating that the curve will
appear to contain multiple values. The region where the
amplitude o, skips when w; = 0.1598 is indicated by the
shaded area in Fig. 24b. As g, increases, the amplitude
o increases rapidly, moving from point Alto point A2,
and as g, increases more, the amplitude o; skips from
point A2 to point A4, after point A4, a steady decline in
o is seen along the curve. When the process is reversed,
the amplitude o; skips from point A3 to point Al.

5.2.2 Intermediate gear pair

The initial parameters are taken into account by
Eq. (64). The family of amplitude—frequency charac-
teristic curves with {,,» as the parameter, which depicts
the connection between the amplitude o, and excita-
tion frequency w,, is depicted in Fig. 25a. The
amplitude o, of the superharmonic resonance lowers
with an increase in (,,, and the unstable branch
gradually contracts. The unstable branch vanishes
when {,,,» is set to 0.06, 0.08, and 0.10, demonstrating
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Fig. 24 Influence of speed control parameters on the low-speed gear pair. a Family of curves w;—o;, b Family of curves g,;—o;

that meshing damping can be appropriately increased
to improve the intermediate gear pair stability.

The family of amplitude—frequency characteristic
curves with (,, as the parameter, illustrating the
connection between the amplitude and the meshing
damping, is depicted in Fig. 25b. The amplitude o, of
the superharmonic resonance drops with an increase in
{,;» when @, assumes a value between 0.3290 and
0.3296. The amplitude o, of the superharmonic
resonance progressively develops unstable multi-
branch when w, takes 0.3298, indicating that the
curve will appear to contain multiple values.

The family of amplitude—frequency characteristic
curves with g, as the parameter, illustrating the
connection between the amplitude o, and excitation
frequency w,, is depicted in Fig. 26a. The unsta-
ble branch vanishes when g, is set to 0, 0.2, and 0.4,
demonstrating that appropriate displacement control
parameters can improve the stability.

The family of amplitude—frequency characteristic
curves with g, as the parameter, which illustrates the
connection between the amplitude and the displace-
ment control parameters, is depicted in Fig. 26b. The
amplitude o, of the superharmonic resonance drops
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Fig. 25 Influence of meshing damping on the intermediate gear pair. a Family of curves w,—o,, b Family of curves (-,

with an increase in g, when w, assumes 0.3294 to
0.3298. The amplitude o, of the superharmonic
resonance progressively develops unstable multi-
branch when g, takes 0.3300 to 0.3302, indicating
that the curve will appear to contain multiple values.

The family of amplitude—frequency characteristic
curves with g, as the parameter, illustrating the
connection between the amplitude o, and excitation
frequency @,, is depicted in Fig. 27a. The unsta-
ble branch vanishes when g, is set to 0, — 0.2, and
— 0.4, demonstrating that appropriate speed control
parameters can improve the stability.

The family of amplitude—frequency characteristic
curves with g,, as the parameter, which illustrates the
connection between the amplitude and the speed
control parameters, is depicted in Fig. 27b. The
amplitude o, of the superharmonic resonance
increases rapidly with an increase in g,, when w,
assumes 0.3290 to 0.3294. The amplitude o, of the
intermediate gear pair’s superharmonic resonance
progressively develops unstable multi-branch when
g2 takes 0.3296 and 0.3298, indicating that the curve
will appear to contain multiple values.

5.2.3 High-speed gear pair
The initial parameters are taken into account by
Eq. (65). The family of amplitude—frequency charac-

teristic curves with {,,;3 as the parameter, which depicts
the connection between the amplitude o3 and excitation

@ Springer

frequency ws, is depicted in Fig. 28a. The shaded circle
in Fig. 28a depicts the high-speed gear pair’s unsta-
ble branches when {,,; ranges from 0.02 to 0.04. The
amplitude o3 of the high-speed gear pair’s superhar-
monic resonance lowers with an increase in {,,.3, and the
unstable branch gradually contracts. The unsta-
ble branch vanishes when ,,; is set to 0.06, 0.08, and
0.10, demonstrating that meshing damping can be
appropriately increased to improve the high-speed gear
pair stability.

The family of amplitude—frequency characteristic
curves with (,3 as the parameter, illustrating the
connection between the amplitude and the meshing
damping, is depicted in Fig. 28b. The amplitude o3 of the
high-speed gear pair’s superharmonic resonance drops
with an increase in {,,,3 when w3 assumes a value between
0.3565 and 0.3568. The amplitude o3 of the high-speed
gear pair’s superharmonic resonance progressively
develops unstable multi-branch when w; takes 0.3569,
indicating that the curve will appear to contain multiple
values. The region where the amplitude o3 skips when
w3 = 0.3569 is indicated by the shaded area in Fig. 28b.

The family of amplitude—frequency characteristic
curves with g,; as the parameter, illustrating the
connection between the amplitude o3 and excitation
frequency s, is depicted in Fig. 29a. The shaded
circle in Fig. 29a depicts the high-speed gear pair’s
unstable branches when g,; ranges from — 0.4 to O.
The unstable branch vanishes when g3 is set to 0.2 and
0.4, demonstrating that appropriate displacement
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control parameters can improve the high-speed gear
pair stability.

The family of amplitude—frequency characteristic
curves with g,; as the parameter, illustrating the
connection between the amplitude and the displace-
ment control parameters, is depicted in Fig. 29b. The
amplitude o3 of the high-speed gear pair’s superhar-
monic resonance drops with an increase in g3 when
w3 assumes 0.3571 to 0.3577. The amplitude o5 of the
high-speed gear pair’s superharmonic resonance pro-
gressively develops unstable multi-branch when g3

takes 0.3579, indicating that the curve will appear to
contain multiple values. The region where the ampli-
tude o3 skips when w; = 0.3579 is indicated by the
shaded area in Fig. 29b.

The family of amplitude—frequency characteristic
curves with g,; as the parameter, illustrating the
connection between the amplitude o3 and excitation
frequency ws, is depicted in Fig. 30a. The shaded
circle in Fig. 30a depicts the high-speed gear pair’s
unstable branches when g3 ranges from 0 to 0.4. The
unstable branch vanishes when g, is set to — 0.2 and

@ Springer
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— 0.4, demonstrating that appropriate speed control
parameters can demonstrate that meshing damping
can be appropriately increased to improve the high-
speed gear pair stability.

The family of amplitude—frequency characteristic
curves with g,3 as the parameter, illustrating the
connection between the amplitude and the speed
control parameters, is depicted in Fig. 30b. The
amplitude o3 of the high-speed gear pair’s superhar-
monic resonance increases rapidly with an increase in
g3 when ws; assumes 0.3567 and 0.3568. The
amplitude o3 of the high-speed gear pair’s

@ Springer

superharmonic resonance progressively develops
unstable multi-branch when g,; takes 0.3569 to
0.3571, indicating that the curve will appear to contain
multiple values. The region where the amplitude o5
skips when w3 = 0.3571 is indicated by the shaded
area in Fig. 30b.

6 Conclusion

The method proposed in this paper considers the
degree of freedom in four directions. Compared with
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the pure torsional vibration model, the results of this
paper have higher accuracy. In addition to the degree
of freedom, this paper establishes a nonlinear dynamic
model of wind power transmission system under
multi-parameter coupling. Other studies do not con-
sider the effects of random wind speed, bearing
clearance and gear ring flexibility at the same time,
which also shows that the research method proposed in
this paper has higher accuracy. The main conclusions
of this paper can be summarized as follows:

(1) The NW planetary gear-bearing system with
bending-torsion coupling has rich nonlinear charac-
teristics. With the change of parameter, NW planetary
gear-bearing system will undergo periodic motion,
bifurcation solution motion, and chaotic motion.

(2) Increasing meshing damping has obvious
advantages in reducing unstable branches, preventing
amplitude jumps, and suppressing excessive ampli-
tude. Adjusting the displacement control parameters
and speed control parameters is beneficial to reduce
the system amplitude and improve the stability of the
system.

(3) Due to the influence of stimulation frequency,
the system will become unstable. In order to ensure the
stability of the NW planetary gear-bearing system in
the near-superharmonic resonance state, the excitation
frequency needs to be adjusted.
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