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Abstract With the recent success in using time

series data, many nonlinear identification tools have

emerged to learn the nonlinear dynamics of unknown

physical systems. However, if the nonlinearity level is

very high or too small, in many cases, the identified

model fails to precisely learn the actual dynamics of

the system, which in turn makes the closed-loop

control more challenging. Finding out a suitable sys-

tem identification routine for identifying a given

nonlinear system based on the nonlinearity level is

still cryptic. In this article, we propose an integrated

framework ‘System identification in coherence with

nonlinearity measure’ that involves three reliable

nonlinear system identification methods and a ‘Con-

vergence area-based Nonlinear Metric’ (CANM). The

nonlinear identification methods in order are (a) An

enhanced key term-based Sparse Identification of

Nonlinear Dynamics with control (kSINDYc)

(b) Standard Nonlinear Least Square method (NL2SQ)

and (c) Neural Network-based Nonlinear Auto

Regressive Exogenous input (N3ARX) schemes. This

article revolves around the central idea of developing

kSINDYc to capture the nonlinear dynamics of high

nonlinear systems. Furthermore, the nonlinear metric

CANM computes the process nonlinearity in the

dynamic physical systems that classify the unknown

process under mild, medium or highly nonlinear

categories. Simulation studies are carried out on five

industrial systems with divergent nonlinear dynamics.

The user can make a flawless choice of a specific

identification method suitable for a given process from

CANM.

Keywords kSINDYc � Nonlinear least square �
Nonlinear dynamics � System identification �
Nonlinearity measure � CANM

1 Introduction

Most of the physical systems in real-life applications

are nonlinear in nature. Safe operational practice of

various industrial units needs mathematical modeling

of the physical system, optimization and design of the

control system. In the past, researchers contributed a

lot of work in obtaining the mathematical model of a

nonlinear system from its first principle concepts. The

First Principle (FP) concept was desirable for only
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systems where adequate knowledge of it is available.

Moreover, if the assumptions made in the derived

models are inadequate or unrealistic, then the FP-

based model might fail to capture the essential process

dynamics. An alternative proposition to build a

nonlinear model directly from the observation of

measured data of the process is called system identi-

fication. In many of the process industries, whose

internal functions are complex to understand, formu-

late and compute, parametric and nonparametric

nonlinear system identification are adopted, by pro-

viding the measured input and output data. The main

advantage of nonlinear system identification is the fact

that, even, if an unknown system is given, just with the

measured input and output data, the nonlinear dynam-

ics of the process can be retrieved accurately. In recent

years, many literatures have brought out the features,

pros and cons of the usage and complexity of many

notable identification algorithms for nonlinear sys-

tems. To manifest a few, Schoukens and Ljung

presented a review of identification methods of linear

and nonlinear systems [1]. The article also indexed an

exemplary summary of many parametric identification

methods. Block-oriented nonlinear models can be

classified under (i) Hammerstein (ii) Wieners (iii)

Voltera-series. The review article conferred by [2], not

only portrayed the block-oriented identification meth-

ods, but also delivered a deep thought on the most

prominent nonlinear control schemes of recent times.

A non-stochastic subspace algorithm was considered

for multi-dimensional nonlinear system identification

based on measured output data. However, the proce-

dure was not tested for systems with different struc-

tural nonlinearities [3]. The autoregressive models

with exogenous inputs are employed in applications

where state transitions are triggered by external events

[4]. Stochastic gradient parametric estimation using

moving window data was presented in [5] to estimate

the system’s response to discrete measured data.

However, the effectiveness of the method was shown

only by using numerical examples and not on physical

systems. The identification of LPV time-delay systems

with missing output data using multiple-model

approach is framed in [6]. Output-error (OE) model

representing the process dynamics of CSTR and

continuous fermenter, are recovered using the

expectation–maximization (EM) algorithm to obtain

the final global model. Reference [7] is concerned with

the parametric identification of a special class of

nonlinear systems called as bilinear state space

systems. Parametric identification of time-delay sys-

tems was discussed in [8, 48]. Multi-innovation theory

is put forward in stochastic gradient algorithm based

on state observer and recursive least-squared identi-

fication algorithm to improve their accuracy and

convergence rate. In another work by [9], a general-

ized identification scheme for integral-order systems

is utilized for the identification of fractional-order

nonlinear systems with both non-chaotic and chaotic

behaviors. Being under the class of black-box mod-

eling, Hammerstein-Wiener models can be employed

for the identification of complex nonlinear systems

with static nonlinearity as well as dynamic linear

regions [10, 11]. Machine learning approaches are

very powerful tools to identify a variety of highly

nonlinear systems. The approaches come out with high

fidelity models, that reflect the underlying physics of

the nonlinear system.Many standardmachine learning

methods have shown spectacular performance in

predicting dynamics of any interpolated system, but

the resulting models usually lack generalizability and

interpretability [12, 13]. Recently, in one article by

[14], the authors reviewed system identification in

context to powerful tools of computational intelli-

gence methods which include genetic algorithm,

particle swarm optimization and differential evolu-

tion. A variety of highly nonlinear occurrences are

contemplated to assess the competence and the fast

computing intelligence of genetic programming in

[15]. Control of pH using adaptive nonlinear model-

based control was implemented where process param-

eters were estimated [49]. Takagi–Sugeno (TS) fuzzy

modeling with an unscented Kalman filter was carried

over for a practical heat exchanger process [16]. Yet,

the real challenge lies in the choice of fuzzy rule

numbers on the output precision. In another research,

the authors of [17] have put forth a Reliable Fuzzy

Neural Network (ReFNN) which can handle reliability

of nonlinear systems using an information reliability

measure. The Stone-Weierstrass theorem was used to

prove the universal approximation property of

ReFNNs. Results showed that ReFNNs outperformed
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traditional Feed forward Neural Networks in terms of

error and sensitivity, especially in the presence of

noise. Nevertheless, an integrated framework using

data driven system identification tools and nonlinear

metric has not executed by the researchers up to this

point. In this article, we propose an integrated

framework relating these two concepts. Nonetheless,

there are several identification methods where the real

challenge lies in developing a parsimonious model

with the smallest possible number of parameters that

can adequately describe the dynamics of the physical

system. Also, the confrontation lies in determining the

underlying dynamics of the process from the measured

data. It becomes difficult to select suitable identifica-

tion techniques for a given system with unknown

dynamics and unmeasured nonlinearity. In this article,

we emphasize the importance of quantifying nonlin-

earity in order to choose an appropriate identification

method. A control-relevant nonlinearity measure

(CRNM) was proposed for measuring the nonlinear

degree of a system when a linear control strategy is

selected [18]. The CRNM method is an integrated

multi-model control framework based on the gap

metric and the gap metric stability margin. In spite of

the investigations on two CSTR systems, the nonlinear

metric failed to classify them based on nonlinearity

level. Jiang et al. proposed a nonlinearity measure-

based damage location method for beam-like struc-

tures [19]. Nonlinearity degree of the characteristic

points in undamaged and damaged structures was

compared to identify the location of damage by finding

positions of maximal change. Nonlinear approaches

are more sensitive in detecting breathing cracks in

blades. A bicoherence-based nonlinearity measure-

ment method was intended for identifying the location

of breathing cracks in blades, which evaluated the

extent of nonlinearity in the responses of blades under

random excitations [20]. The Total Nonlinearity Index

was used to establish the indicators of the cracks in

blades, and the crack location was identified by finding

the maximum components of the indicators. Gener-

ally, tools for analyzing nonlinear systems, like,

describing function, phase portrait, perturbation, sta-

bility criteria (Lyapunov or Popov), and passivity are

well-established. However, some of the existing units

demand fault diagnosis and model order reduction of

complex systems. Another salient aspect in the

analysis of nonlinear physical systems, is the synthesis

of closed loop systems with advanced control tech-

niques. Zhaou [21], in his article focused on stability

analysis and controller synthesis for stochastic net-

worked control systems (NCS) under aperiodic denial-

of-service (DoS) jamming attacks. An observer was

constructed to estimate unmeasurable states, and a

new adaptive event-triggered mechanism was pro-

posed to reduce the transmission burden and mitigate

the effects of DoS attacks. Furthermore, an observer-

based controller was designed, and a switched system

with time-varying delays was introduced in a mass-

spring-damper mechanical system. In another work, a

new control strategy for stochastic nonlinear systems

(SNS) with state constraints and time-varying delays

was presented [22]. The strategy used an event-

triggered adaptive artificial neural network (AANN)

and a barrier Lyapunov function (BLF) to handle the

state constraints. The constructed AANN control

scheme guaranteed stability and did not violate

predefined constraints. The developed method also

enriched the AANN control design of SNS. Alterna-

tively, the design of the controller or achieving better

closed loop-performance requires a pertinent identifi-

cation scheme.

1.1 Motivation

The above discussion reveals that there are indigenous

number of articles that discuss the concepts of system

identification and measurement of nonlinear metric in

separate attempts. However, there exists a break in the

continuity between these two concepts for over years.

There exist enumerable identification methods and

methods for quantification of nonlinearity. However,

well-designed directions or guidelines for the selec-

tion of identification algorithms (based on nonlinear-

ity-measure) are rare and need to be established. The

motivation for this research comes up with a bang by

readdressing the issues of system identification and the

concept of nonlinear metrics in a joint venture. The
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research idea discussed in this article will overcome

the existing disruption by formulating an integrated

framework that relates the nonlinear metric (D0) with

three noteworthy system identification tools.

1.2 Major contributions

Research studies in the past have not attempted to

employ the identification schemes (kSINDYc, NL2SQ

and N3ARX) for mild, medium and highly nonlinear

systems in the process engineering domain. The

readers may refer to our earlier research contribution

on the nonlinear metric CANM [23], to understand the

detailed concepts of quantification of nonlinearity.

Furthermore, in this article, we have made a reminis-

cent improvement from our earlier work on CANM

[23], by introducing the D0 criteria for stable, unsta-

ble and marginally stable systems. In this research, we

have proposed a new framework for making an

appropriate choice of system identification method

by inspecting the degree of nonlinearity of the

nonlinear system under investigation. The substruc-

ture of the proposed framework involves three steps.

1. To conduct nonlinear system identification of the

physical system using (a) proposed data-driven

kSINDYc identification (b) Neural network-based

data-driven N3ARX method (c) parametric

NL2SQ identification method.

2. To measure the degree of nonlinearity of the

physical system at the specified operating region

using the nonlinearity measure CANM D0ð Þ.
3. To make a suitable choice of system identification

by mapping the nonlinearity level D0 with the

identification method that dispenses the least

RMSE.

4. Furthermore, the nonlinear metric, namely CANM

method, is upgraded in this article by recommend-

ing certain directives, on the computation ofD0 for

stable, unstable and marginally stable systems.

Besides, assimilating the proposed framework for

five different physical systems from chemical engi-

neering units with different nonlinear levels has not

been carried out in the existing literature. The data

driven SINDYc identification proposed in [24], does

not provide descriptive library terms based on the

nonlinearity, which in turn makes it ill-conditioned in

the prediction of complex nonlinear processes. This

major concern is drenched here, by choosing a fewer

number of relevant key terms in the candidate library

of the kSINDYc scheme. This paper also addresses

this issue by providing the relevant choice of key terms

based on the degree and type of nonlinearity of

dynamic nonlinear systems. The paper is divided into

six Sects. Section 1 has introduced the literature

review of many system identification routines and

nonlinear metric tools. Section 2 investigates the

nonlinearity metric CANM for stable, unstable and

marginally stable systems. Section 3 elucidates the

concept of the proposed framework consisting of the

three identification methods kSINDYc, NL2SQ and

N3ARX and nonlinear metric CANM. It is followed

by simulation results in Sect. 4 which show that the

computed nonlinearity D0 as well as evaluation index

RMSE witness a major lively role in deciding the

choice of nonlinear identification method for the five

dynamic systems with contrasting nonlinearity.

Besides, Sect. 4 also adds increased flavor to the

current study by suggesting a suitable parsimonious

model for every physical system under study and

Sect. 5 concludes the article. Section 6 presents the

future directions of research of this article.

2 Nonlinearity metric–CANM

The nonlinearity of the physical systems is an

important characteristic to be inscribed in controller

design, bifurcation and uncertainty analysis. It varies

with respect to the initial condition of state variables,

excitation signals given, and input constraints associ-

ated with it. This research brings out the strength of the

nonlinearity of typical industrial processes and their

impacts on popular system identification schemes.

Nevertheless, there are several nonlinear indices to

mark the value of nonlinearity in dynamic systems

[25–27]. The concept of Convergence-area-based-

nonlinearity measure (CANM) proposed in [23] has
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been endorsed in the current study. Additionally, the

calculation of the nonlinear metric D0 for stable,

unstable and marginally stable systems is, refurbished

in this article by recommending some directives.

Without loss of generality, consider a nonlinear

dynamic system of the form

dxðtÞ
dt

¼ f xðtÞ; uðtÞð Þ ð1Þ

in which xðtÞ 2 Rm denotes the state variables of a

system at a time t.Eq. (1) also generalizes the first

principle model of nonlinear systems. If yTrueðtÞ and
ylinðtÞ represent the measured output (True output) of

the nonlinear system and its linearized response at the

jth operating point Pj, then the nonlinear metric D0j

quantifies the level of nonlinearity as given in Eq. (2).

D0j ¼

Rtf

0

yTruedt

�
�
�
�

�
�
�
��

Rtf

0

ylindt

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Rtf

0

yTruedt

�
�
�
�

�
�
�
�

ð2Þ

where tf represents the settling time of the nonlinear

system. For a nonlinear process with m number of

operating sectors such as P1;P2. . .Pj. . .Pm, the overall

nonlinearity D0nom is shown in Eq. (3)

D0nom ¼
D0P1

þ D0P2
þ � � �D0Pj

þ � � �D0Pm

m
ð3Þ

The CANM method conferred in this work stands

distinct for its amenability in dealing with wide range

of nonlinear dynamic systems. The method uses

Jacobian linearization to find out linear approximation

ylinðtÞ which thoroughly depends on analysis of an

operating point. The stability of the operating point

decides the current dynamic behavior of the plant. A

nonlinear system has multiple operating points, unlike

a linear system which has only one operating point

with zero initial condition. In a nonlinear system, with

multiple operating points, the initial condition by itself

is an operating point, which may be stable or unstable.

Another class of nonlinear systems are chaotic

processes, which don’t have initial conditions. The

scope of study in this manuscript does not include any

chaotic system. Moreover, CANM is an operating

point-dependent nonlinear metric. So to maintain a

standard consistency in the nonlinear metric, the

examples explored in Sect. 4 of this article are

subjected to initial conditions and excitation inputs

at nominal operating points referring to the concerned

literature. The effect of the initial condition and the

type of excitation signal applied to a physical system

will definitely affect D0. Considering this character-

istic, the nonlinear systems elaborated in Sect. 4 are

subjected to step (unom) and PRBS (uprbs) inputs, and

the effect of D0 over the excitation signals is also

investigated.

The simulations for the computation of nonlinearity

CANM are restricted only to SISO systems. CANM

method proposed in [23], is upgraded in this article by

recommending the following directives, on computa-

tion of D0 for stable, unstable and marginally

stable systems.

Case (i): D0 for stable systems.

For any stable system, the eigen values of the

Jacobian linearized model will have their eigen values

on L.H.S of ‘s’ plane. If tf represents the settling time

of the nonlinear system around the vicinity of the

stable steady state operating point P, then D0P is

operating point dependent and is given as

D0 stable ¼

Rtf

0

yTruedt

�
�
�
�

�
�
�
��

Rtf

0

ylindt

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Rtf

0

yTruedt

�
�
�
�

�
�
�
�

ð4Þ

Case (ii): D0 for marginally stable systems.

A crucial point in CANM is finding the nonlinearity

for systemswith transient states (marginally stable sys-

tem and unstable systems). In a marginally stable sys-

tem, the eigen values of the linearized model ðylinÞ are
located on the imaginary axis. The response y will

display sustained oscillations and there is no steady

state tf . While finding D0,instead of choosing tf , it is

suggested to use tcycle as the sustained oscillations

repeat with the same time period after every cycle.

Then D0 becomes
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D0 marg:stable ¼

Rtcycle

0

yTruedt

�
�
�
�

�
�
�
��

Rtcycle

0

ylindt

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Rtcycle

0

yTruedt

�
�
�
�

�
�
�
�

ð5Þ

Case (iii): D0 for unstable systems:

In an unstable system, the eigen values of the

Jacobian linearized model will occur on the R.H.S of

the ‘s’ plane. But there is no steady state tf for

unstable system. (Ex: Batch and transient processes in

Chemical Reactors). The unstable response shows a

transient behavior. Moreover tf cannot be chosen as

infinite. In such cases, local nonlinearity analysis will

be an alternative solution. The nonlinear metric D0 for

unstable system can be obtained by making a trajec-

tory dependent analysis of the measured output. To

attain this feature, the whole sequence of output yTrue
is considered a trajectory which can be broken into

many short time intervals t1; t2; . . .tx. . .tnð Þ with n

number of regions such that we can obtain piece-wise

models. tn corresponds to the time instant applied by

the user to sort out the dynamic transient response.

Then the nonlinearity metric D0 becomes trajectory

dependent and is computed by taking a cumulative

mean from all regions ðR1;R2; . . .Rx. . .RnÞ as follows.

D0Rx
¼

Rtx

tx�1

yTrue xdt

�
�
�
�
�

�
�
�
�
�
�

Rtx

tx�1

ylin xdt

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

Rtx

tx�1

yTrue xdt

�
�
�
�
�

�
�
�
�
�

ð6Þ

D0 unstable ¼
D0R1

þ D0R2
þ � � �D0Rx

þ � � �D0Rn

n
ð7Þ

The main difference between D0 stable,D0 marg:stable

and D0 unstable lies in the time interval limit tf ,tcycle and

tn. This sort of analysis can also be applied to batch

processes in many chemical reactor units. In many

batch processes, the eigen values are stable only at the

beginning, but as the batch process continues, the

eigen values become unstable.

Nonlinearity level ¼
D0 � 0:3; mild nonlinear

0:3\D0 � 0:7; medium nonlinear

D0 [ 0:7; highly nonlinear

8
><

>:

ð8Þ

Equation (8), implies the classification of nonlin-

earity as mild, medium or highly nonlinear using the

CANMmetric where the value of D0 for any nonlinear

system is consigned between 0 and 1. Table 1 gives an

outright summary on the computation of D0 for stable,

Table 1 Computation of D0 for nonlinear systems

System Behavior of the system D0 at operating point P

Stable tf is available, attains steady state

D0 stable ¼

Rtf

0

yTruedt

�
�
�
�

�
�
�
��

Rtf

0

ylindt

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Rtf

0

yTruedt

�
�
�
�

�
�
�
�

Marginally

stable

Oscillatory response. Obtain the time period for one cycle of sustained

oscillations tcycle
D0 marg:stable ¼

Rtcycle

0

yTruedt

�
�
�
�

�
�
�
��

Rtcycle

0

ylindt

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Rtcycle

0

yTruedt

�
�
�
�

�
�
�
�

Unstable No steady state. tf cannot be selected as infinity; Instead consider small time

intervals t1; t2; . . .tnð Þ in regions R1; . . .Rnð Þ t1; t2; . . .tx. . .tnð Þ.Measure D0

from t1 to tn
D0Rx

¼

Rtx

tx�1

yTrue xdt

�
�
�
�

�
�
�
��

Rtx

tx�1

ylin xdt

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Rtx

tx�1

yTrue xdt

�
�
�
�

�
�
�
�

D0 unstable ¼
D0R1

þD0R2
þ���D0Rxþ���D0Rn

n

123

6480 J. Xavier et al.



unstable and marginally stable systems, working at a

single operating point P.

Over and above, that the nonlinearity level of any

dynamic system will have a serious impact on

identifying the dynamics of the complex process. As

many chemical, biomedical and biological processes

often operate on a predesigned operating region with

multiple operating points, this CANM method will be

most beneficial to them.

3 System identification in coherence

with nonlinearity measure

So far, literatures have discussed the idea of nonlinear

system identification and nonlinearity measurement in

individual research studies. Moreover, to this notch,

research on the usage of nonlinear system identifica-

tion based on classification of nonlinearity remains

very limited. This implication necessitates the require-

ment of a mathematical tool to bridge the gap between

nonlinearity measurement and nonlinear system iden-

tification. The primary spotlight of present research is

to encapsulate the nonlinear dynamics identified for

any process with its nonlinearity level through a

mathematical measurement tool. Viewed in this way,

we have proposed a single framework ‘System

identification in coherence with nonlinear measure’

with the assorted combination of (a) nonlinear iden-

tification schemes (kSINDYc, NL2SQ, N3ARX) and

(b) CANM nonlinear metric. This combined frame-

work will ensure an appropriate choice of system

identification by inspecting the degree of nonlinearity

of the nonlinear system under investigation. Among

the three identification methods, kSINDYc identifica-

tion is proposed in this article and its accuracy is

compared with NL2SQ and N3ARX methods avail-

able in existing literature.

3.1 System identification using kSINDYc

The recent impeccable SINDYc (Sparse Identification

of Nonlinear Dynamics with control) algorithm is a

celebrated parsimonious system identification

technique introduced by Brunton [24]. Abundant

collection of technical records is garnered with

widespread curiosity on the remarkable progress made

in sparse dynamics in many disciplines ranging from

biology to control engineering [29–32]. The SINDy

(Sparse Identification of Nonlinear Dynamics) algo-

rithm is a symbolic sparse regression problem, to

identify nonlinear systems. It uses a candidate library

with higher order polynomials, trigonometric terms,

logarithmic functions etc., in Eq. (9) to identify any

unknown process. The term ‘candidate library’ refers

to a set of diversity of many functions to determine the

learned SINDYc models.

HðX;UÞ ¼
j
1

j

j
X

j

j
U

j

j
X � X

j

j
X � U

j
:::

j
sinðXÞ

j
:::

j
eX

j
:::

j
logðXÞ

j

2

6
4

3

7
5

ð9Þ

where X � U denotes the vector of all product

combinations in X and U. The use of higher order

polynomials or trigonometric nonlinearities or other

mathematical functions in Eq. (9) without observing

the system nonlinearity might cause numerical prob-

lems, which in turn engenders unnecessary oscilla-

tions in the predicted model outputs. Moreover,

without descriptive library terms, the size of the

HðX; UÞ grows rapidly, which sequentially drives the
SINDYc library to be ill-conditioned. Recent literature

by [28] have substantiated that SINDYc may be

susceptible to over fitting problem if care is not taken

to balance the model complexity and polynomial order

in its candidate library. In this article, this major

concern is drenched, by the introduction of kSINDYc

identification scheme for nonlinear systems. In

kSINDYc method, we have refined the selection of

the candidate library HðX; UÞ with the inclusion of

key nonlinear terms knlð Þ that describe the system

dynamics. The term knl is chosen as a basic nonlinear

function that plays a vital role in deciding the

nonlinear dynamics of the physical system. Our

research concentrates on establishing a streamlined

library functionHðX; UÞ for kSINDYc, where library
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terms are chosen based on the nonlinearity that

contemplates the system dynamics rather than choos-

ing the library elements in trial and error criteria as in

SINDYc. Even though kSINDYc is a data-driven

approach, dynamic equations describing the identified

model can be obtained from Eq. (11) after the

inclusion of knl in the library HðX, UÞ. Consequently,
the learned model using the data-driven kSINDYc

approach predicts the nonlinear dynamics of the

physical system, with a lesser number of parametric

terms in HðX; UÞ without overfitting issues. Back-

drop in this Section, we provide a brief retrospect to

the SINDYc algorithm, which forms the bottom line of

the proposed ‘kSINDYc’ system identification

methodology. Consider a nonlinear dynamic system

of the form given in Eq. (10).

_xðtÞ ¼ f ðxÞ þ gðx; uÞ ð10Þ

where x 2 Rm denotes the state of the system at time t

and u 2 Rp gives the manipulated input vector. The

function f ð�Þ and gð�Þ represent the system parameters

that capture the physics-based dynamics of the system.

Inspired by its application to many physical systems,

kSINDYc is formulated to determine the nonlinear

dynamics of Eq. (10) using the measured input and

output data. _X is a data matrix that gives the time

derivatives of state variables in the sparse regression

problem in Eq. (11). H is the augmented library

matrix with all the candidate terms in kSINDYc

library. For a time period t ¼ t1; t2. . .tf
� �T

, consider

the input matrix U ¼ u1ðtÞ; u2ðtÞ. . .upðtÞ
� �T2 Rp, the

state vector (data matrix)

X ¼ x1ðtÞ; x2ðtÞ � � � xmðtÞ½ �T2 Rm, then the sparse

regression becomes

_X ¼ H X;Uð Þn ð11Þ

n ¼ n1 n2 . . . nm½ � ð12Þ

Equation (12) is vector that has the sparse co-

efficient n1n2. . .nn corresponding to HðX;UÞ.

X ¼

xTðt1Þ
xTðt2Þ

..

.

xTðtf Þ

2

6
6
6
4

3

7
7
7
5
¼

x1ðt1Þ x2ðt1Þ . . . xmðt1Þ
x1ðt2Þ x2ðt2Þ � � � xmðt2Þ

..

. ..
. . .

. ..
.

x1ðtf Þ x2ðtf Þ � � � xmðtf Þ

2

6
6
6
4

3

7
7
7
5

ð13Þ

U ¼

uTðt1Þ
uTðt2Þ

..

.

uTðtf Þ

2

6
6
6
4

3

7
7
7
5
¼

u1ðt1Þ u2ðt1Þ . . . upðt1Þ
u1ðt2Þ u2ðt2Þ � � � upðt2Þ

..

. ..
. . .

. ..
.

u1ðtf Þ u2ðtf Þ � � � upðtf Þ

2

6
6
6
4

3

7
7
7
5

ð14Þ

_X ¼

_xTðt1Þ
_xTðt2Þ
..
.

_xTðtf Þ

2

6
6
6
4

3

7
7
7
5
¼

_x1ðt1Þ _x2ðt1Þ . . . _xmðt1Þ
_x1ðt2Þ _x2ðt2Þ � � � _xmðt2Þ
..
. ..

. . .
. ..

.

_x1ðtf Þ _x2ðtf Þ � � � _xmðtf Þ

2

6
6
6
4

3

7
7
7
5

ð15Þ

The key terms in the kSINDYc library function

matrix HðX;UÞ are given in Eq. (16)

HðX;UÞ ¼
j
1

j

j
X
j

j
U
j

j
X � X

j

j
X � U

j
:::

j
knl
j

2

4

3

5 ð16Þ

X � U in Eq. (16) denotes the vector of all product

combinations in X andU.It also indicates the quadratic

nonlinearities in the unknown system.

nk ¼ argmin
1

2
n̂k

_Xk �HðX;UÞn̂k
�
�
�

�
�
�
2

2
þk n̂k

�
�
�

�
�
�
1

ð17Þ

The l1 regularized optimization problem given in

Eq. (17) can be evaluated using sparsity promoting

scheme called STLS (Sequential Threshold least

square method). Equation (17) penalizes the number

of active terms in the candidate library HðX;UÞ. The
second part of Eq. (17) has the penalty term with the

tunable weighing parameter k� 0 to establish model

parsimony.nk represents kth row of n and _Xk represents

kth row of _X. Equation (17) is solved iteratively till the

coefficients converge. A notable development is made

on the SINDYc candidate library function, by intro-

ducing the ‘key nonlinear term’ from the plant

dynamics, apart from the other higher-order polyno-

mials of the processes. The algorithmic pseudocode

for the proposed kSINDYc identification is given

below:
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Algorithm 1 Key term SINDYc (kSINDYc)

A coarse sweep of the tunable parameter k in the

range kmin\k� kmax is considered in Algorithm 1 to

attain an optimal solution with minimum error and

maximum convergence rate. The specific convergence

criteria for STLS algorithm in sparse regression

framework is provided in [33]. kSINDYc can handle

large candidate library with the regularizing tuner k.
Not limitingly, the choice of the sparsity knob k is

made in such a way that there is a tradeoff between

accuracy and complexity of the kSINDYc algorithm.

A comparison between the existing SINDy method

and the proposed kSINDYc is summarized in Table 2.

The descriptive library HðX;UÞ built for each non-

linear system is unique and the same is discussed

elaborately in Sect. 4 of this article.

3.2 System identification using NL2SQ

Many works on parametric system identification have

used least square method to estimate the numerical

values of parameters [33, 34]. NL2SQ with

Levenberg–Marquardt algorithm is another estab-

lished method used for optimizing the process param-

eters in the field nonlinear system identification

[35, 36]. An optimization problem on any nonlinear

system targets on maximizing profit or minimizing the

overall cost. The optimization problem so formed will

have a set of independent variables with some

restrictions called constraints. The solution to any

optimal problem depends on the allows set of variables

where the objective function f ðxÞ is minimized and

attains an optimal value. For physical systems with

many nonlinear functions, the objective function f ðxÞ
is framed as the sum of squares of the nonlinear

function rðxÞ as follows

f ðxÞ ¼ 1

2

Xm

j¼1

rjðxÞ
� �2 ¼ 1

2
rðxÞk k22 ð18Þ

In Eq. (17) the objective function f ðxÞ has to be

minimized. Then Eq. (18) becomes
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min
x

f ðxÞ ¼
Xm

j¼1

rjðxÞ
� �2 ð19Þ

In Eq. (18), the sum of least squares of the

nonlinear function rðxÞ is minimized, and hence the

optimization problem with this methodology is called

Nonlinear Least Square method (NL2SQ). If a non-

linear system has a model function /ðxÞ and the

measured output be yTrue then

rjðxÞ ¼ / x; tj
� �

� yTrueðjÞ ð20Þ

rðxÞ ¼ r1ðxÞ; r2ðxÞ; � � � rmðxÞð ÞT ð21Þ

The residual vector rðxÞ has m number of compo-

nents. To solve the least square problem, the most

common algorithms used are Gauss Newton method

and Levenberg Marquardt (LM) methods. Gradient of

the objective function rf ðxÞ is expressed from

Eq. (22) as

rf ðxÞ ¼
Xm

j¼1

rjðxÞrrjðxÞ ¼ JðxÞTrðxÞ ð22Þ

where the Jacobian term JðxÞ is given as

JðxÞ ¼ orj
oxi

� 	

j¼1;:::m; i¼1;:::n

¼

rr1ðxÞT
rr2ðxÞT

..

.

rrmðxÞT

0

B
B
B
@

1

C
C
C
A

ð23Þ

Hessian matrix H f ðxÞð Þ consists of second-order

partial derivatives of rðxÞ and is given by r2f ðxÞ

r2f ðxÞ ¼
Xm

j¼1

rrjðxÞrrjðxÞT þ
Xm

j¼1

rjðxÞr2rjðxÞ

¼ JðxÞTJðxÞ þ
Xm

j¼1

rjðxÞr2rjðxÞ

ð24Þ

The Hessian matrix observed in Eq. (24) must be

positive definite in all the least square solutions.

Equation (23) can be approximated to have the first

term of Jacobian function alone, eliminating the

second term r2rðxÞ, when the residual is very close

to the actual solution. This approximation is followed

in LM method adopted in this article. The Jacobian

matrix JðxÞ of HðxÞ has to be found out to optimize x

form number of samples. Using LM algorithm in [35],

the objective function for NL2SQ method is modified

as hLMðxÞ.

Table 2 Overview of SINDy and kSINDYc

Feature SINDy kSINDYc

Accuracy and

model fit

Noisy or inconsistent data can lead to inaccurate models.

Sufficient data is essential for robust modeling

Works well for systems with limited data samples also.

The identified model is robust to uncertainties

Data

requirements

Requires quality data less corrupted by noise Can handle noisy or sparse data easily

Sparsity Finding a compact and interpretable model that captures

the essential physics of the nonlinear system with

minimal library terms is challenging

A subset of key nonlinear terms is selected in the

candidate library HðX;UÞ based on the nonlinearity

of the system to promote sparsity

Model

complexity

Complexity increases for highly nonlinear systems Comparatively simpler than SINDy for highly

nonlinear systems

Nonlinearity

handling

Works well for mild and medium nonlinear systems with

subset of trigonometric and polynomial terms in the

library

Suitable for highly nonlinear system with a descriptive

key term library

Incorporation

of prior

knowledge

Prior knowledge of nonlinear system is not mandatory Prior knowledge of nonlinear system is important for

choice of candidate library

Computational

efficiency

Comparatively less Fast
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ðJðxÞTJðxÞ þ lIÞhLMðxÞ ¼ �JðxÞT f ðxÞ ð25Þ

hLMðxÞ ¼ �ðJðxÞTJðxÞ þ lIÞ�1JðxÞT f ðxÞ ð26Þ

The damping factor is always l� 0,for which the

following effects are observed. When l[ 0, the co-

efficient ðJðxÞTJðxÞ þ lIÞ is positive definite and so

hLMðxÞ is in descent direction. If l is very large

hLMðxÞ ¼ � 1
l JðxÞ

T f ðxÞ and goes into the steepest

descent direction. On the other hand, if l is very small

hLMðxÞ ¼ hGNðxÞ, the LM algorithm converges with

the Gauss Newton method. In the gradient descent

method, the hLMðxÞ is minimized by updating the

parameters in the steepest-descent direction. The

gradients of the process are calculated using automatic

differentiation. On the other hand, in the Gauss–

Newton method hLMðxÞ is reduced by considering the

least square module to be locally quadratic to its

parameters and sorting out the minimum value from

this quadratic term. The LM algorithm operates

similar to gradient-descent method when the param-

eters are away from their optimal value, and behaves

more like a Gauss–Newton scheme when the param-

eters are very near to the optimal point. It can be

concluded that the LM algorithm involves the cross-

combination of gradient descent and Gauss–Newton

methods.

3.3 System identification using N3ARX

Neural Networks is another computational intelli-

gence approach for identifying nonlinear systems in

real world scenario with accurate estimations [37].

Neural networks are well-suited for nonlinear model-

ing tasks because they can learn complex patterns and

relationships in the data, without knowing any prior

knowledge about the dynamics of the system. N3ARX

combines exogenous inputs (X) using feed forward

neural networks to capture complex nonlinear rela-

tionships in time-series data and make predictions

based on both past values of the series and external

inputs. The exogenous inputs (X) represent additional

factors or variables that may influence the time series

but are not directly part of the series itself are fed into

the neural network along with the autoregressive

inputs (AR). The N3ARX method is a standard

identification technique and is found in enormous

literatures [38–41]. A novel optimal identification

algorithm is presented for NMPC based on the Neural

network model for different operating regions of

highly nonlinear dynamic processes in [42]. Hybrid

combination of Neural network algorithm with NARX

method is investigated in this research to make a

strong comparison with the kSINDYc method of

identification. The N3ARX model employs neural

networks to capture nonlinear relationships between

the autoregressive and exogenous inputs and the target

variable. The hidden layers of the neural network

enable the model to capture and represent these

nonlinear relationships. The number of neurons

required to identify each process will differ depending

upon the nonlinearity and operating region. The

number of hidden layer nodes in N3ARX method is

chosen iteratively. A simple Neural network structure

is taken with 1 hidden layer, and nonlinear Rectified

linear Activation function (RELU) for the simulation

studies carried out in this article. The regressor

equation for the N3ARX model is given by

yðtÞ ¼ F yðt � 1Þ; yðt � 2Þ; . . .; yðt � nÞ; uðtÞ; uðt � 1Þ; . . .; uðt � mÞð Þ

ð27Þ

where yðtÞ refers the target variable at time t. yðt �
1Þ; yðt � 2Þ; . . .; yðt � nÞ are the past value of the

target variable also called AR inputs. uðtÞ; uðt �
1Þ; . . .; uðt � mÞ are the exogenous inputs (X) at time

t and their past values. The function F is the

feedforward neural network architecture with the

weights and bias terms learned during the training

process. It is evident from Eq. (27) that F maps the

inputs to the target variable yðtÞ. The N3ARXmodel is

trained using the historical time-series data with

corresponding exogenous inputs. Followingly, the

predicted model is optimized by adjusting the weights

and biases of the neural network to minimize the

prediction error between the model’s output and the

actual target values. This is typically done using

gradient descent optimization algorithm. Given the

previous values of the time series and the correspond-

ing exogenous inputs, the N3ARXmodel can generate

predictions for the future values of the target variable.

3.4 Proposed framework

In Fig. 1, the terms kpara and xinit denote the nominal

input parameters and initial states of the nonlinear

system, respectively. The excitation signal u and the
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nonlinear output yTrueðtÞ from the nonlinear process

are treated as measured input and output data. Region I

contain the proposed kSINDYc algorithm to learn the

dynamics of yTrueðtÞ.
The most essential term in the kSINDYc library,

which plays a critical role in determining the nonlinear

dynamics, is weighed from the governing equations of

the physical system. The predicted output ypredðtÞ of
Region I and measured output yTrueðtÞ are used to

calculate performance using RMSE criteria. On the

flip side, the nonlinear system under study is linearized

about its operating point Pj using Jacobian lineariza-

tion and is expressed as ylinðtÞ. The metric D0 is

computed using CANM method as given in Eq. (2).

On completion of the learned dynamics using

kSINDYc, Region I of Fig. 1 is replaced by N2LSQ

and N3ARX identification methods, that makes

ypredðtÞ ¼ ykSINDYc; yNL2SQ; yN3ARXf g. The steps

involved in the proposed view of nonlinear system

identification and nonlinearity quantification are as

follows:

1. Measure the nonlinearity D0 of the nonlinear

dynamic system (Plant -P) under study using the

CANM metric.

2. Identify (Predict) the dynamics of the plant ypredðtÞ
using (a)kSINDYc (b)NL2SQ and (c) N3ARX

methods.

3. Create a graphical mapping between D0 obtained

in step 1 and ypredðtÞ acquired in step 2 using a

performance index.

4. Sort out the suitable choice of system identifica-

tion from kSINDYc, NL2SQ and N3ARX, by

mapping the nonlinearity level D0 with the

identification method which dispenses least eval-

uation index.

The crucial step in the proposed framework is the

selection of an applicable identification from kSIN-

DYc, NL2SQ and N3ARX methods. A graphical plot

is made between D0 and RMSE to fill the leveraging

gap between computation of nonlinearity and the

suitable choice of identification for nonlinear dynamic

physical systems. This article differs from the existing

literature by providing guidelines for suitable nonlin-

ear identification from the three methods based on D0.

The proposed substructure also serves as a bridge to

fill the leveraging gap between the computation of

nonlinearity and the suitable choice of nonlinear

system identification for nonlinear dynamic physical

systems.

Fig.1 Proposed

framework- System

identification in coherence

with nonlinear measure
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4 Simulation study

A reliable quantitative analysis is exemplified to

cohere the nonlinear metric D0 with the above said

identification methods for five nonlinear systems with

divergent nonlinear strengths. The simulation study is

carried out on five Industrial physical systems with

different nonlinearity levels, ranging from chemical to

biological domain from the process engineering field.

The nonlinear metric D0 subjected to excitations unom
and uprbs are figured out for all the examples of Sect. 4.

The computed values of D0 can be inspected in

Tables 4 and 5, to check whether the nonlinear system

falls under mild, medium or highly nonlinear. The

measured data yTrueð Þ for all the five case studies are

obtained from the first principle equations (also called

true models). The measured outputs yTrueð Þ are utilized
in the data driven identification of kSINDYc and

N3ARX methods. The models developed using

kSINDYc, N3ARX and NL2SQ identification tech-

niques are called predicted models (learned models)

whose outputs are indicated as ypred
� �

. The nominal

operating data of all the simulation examples dis-

cussed in this Section can be referred from the relevant

literatures cited inside the article. In order to acquire

an accurate estimate of the learned models, two test

signals namely the step ðunomÞ and PRBS ðuprbsÞ
signals are input excited on all the examples. Consider

the set of input output data ZN obtained using first

principle equations.

ZN ¼ ½uð1Þ; yð1Þ; uð2Þ; yð2Þ:::uðNÞ; yðNÞ� ð28Þ

u and y corresponds to the excitation signal and the

response of the SISO system, tf denotes the final time

for the Nth sample. The data set ZN is subjected to pre-

processing before proceeding with the prediction, by

splitting it into training set ZNtrainð Þ and testing set

ZNtestð Þ

ZNtrain ¼ 0:7ZN ð29Þ

ZNtest ¼ 0:3ZN ð30Þ

where

N ¼ N train þ N test; ð31Þ

N train and N test conform to the training and testing

data samples. As observed from Eq. (29) and (30),

70% of ZN is taken randomly for training and

remaining data (30%) for testing purpose. All the case

studies are simulated with a sampling time of Ts ¼
0:01 s in N number of sample space.ZNtrain intends the

input–output data taken for training kSINDYc,

N3ARX and NL2SQ algorithms and remaining ZNtest

corresponds to testing dataset. The following Sec-

tion exemplifies five industrial systems with divergent

nonlinear dynamics and their time response to non-

linear system identification methods at unom and uprbs.

Example 1: Three tank process A three-tank

hydraulic process with the configuration of first pump

supplying a liquid to first tank is considered in the

present work. The objective is to control liquid levels

in 3rd tank by measuring the level in each tank. The

dynamic equations and the associated process param-

eters c12; c23; c3;A1 are acquired from [43]. The terms

h1; h2 and h3 stand for the individual level of each

tank in the cascaded-arrangement of three-tank pro-

cess, respectively. The state variable h3 is the only

measurable output when the input flow rate to Tank 1

is q1 m
3 s�1. The nonlinear differential equations of the

three-tank system are given by Eq. (32–34). The

initial level of the all the tanks is assumed to be zero.

q1 denotes the inflow rate of the liquid in the first tank

with the constraint u ¼ q1 m
3 s�1 q1 2 ½0�

1e�5�m3s�1 and unom ¼ 0:5e�5m3s�1.

_h1 ¼
q1
A1

� c12
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h1 � h2

p
ð32Þ

_h2 ¼ c12
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h1 � h2

p
� c23

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 � h3

p
ð33Þ

_h3 ¼ c23
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 � h3

p
� c3

ffiffiffiffiffi
h3

p
ð34Þ

yTrue ¼ h3 ð35Þ

The step response for the tank level yTrueðtÞ from
Eq. (34) is compared with that ypredðtÞ obtained from

the predicted models identified by kSINDYc, N3ARX

and NL2SQ where the training dataset ZN train is

presented in Fig. 2.The nonlinearity of the three-tank

using CANM adheres to The three-tank process has a

large settling time of around 5000 s with a weak

nonlinear behavior.

A �10% variation in feed flow rate from unom also

termed as uprbs is adopted (through PRBS mode) to

check the open loop response of tank level h3 in

Fig. 3.The height of h3 swirls over a level band

between ð0� 1:5Þmwhen subjected to uprbs unlike the
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response to unom that attains the steady state at

h3 ¼ 0:7m. The system suffers from mild nonlinearity

where the value of D0\0:3 using CANM. It has been

observed that NL2SQ identification approach outper-

forms kSINDYc in predicting the dynamics of yTrue ¼
h3 for a sluggish nonlinear system like three-tank

process.

Example 2: CSTR An exothermal, continuous

stirred tank reactor (CSTR) is widely used to convert

reactants to products ðA ! PÞ. The reactor suffers

from operational difficulties like complex behavior,

output multiplicity (as it shows multiple steady states),

oscillations and chaos due to its nonlinear dynamics.

Here we consider a uniformly mixed CSTR which

undergoes a single irreversible, exothermic reaction.

Rate of reaction and heat transfer from heating media

to reactor wall impose nonlinearity to the system.

Sometimes, due to economic reason, the reactor is

Fig. 3 True and learned

model response of three-

tank process for input at uprbs

Fig. 2 True and learned model response h3 of three tank process for step input at unom ¼ 0:5e�5m3s�1
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preferred to be operated at an unstable steady state.

The rate of heat generation and rate of heat removal

should be balanced by rate of cooling for efficient

control so that dynamic disturbances can be safely

handled. The standard state variable representation of

the reactor is given in Eqs. (36, 37). The coolant flow

rate qc ¼ unom is considered as manipulated input and

temperature of the reactor T is the output variable. The

states are concentration of reactants Ca and temper-

ature of reactor T . The nominal operating data for the

reaction is available in [44]. The initial states and

steady state points of the Concentration gradient Ca of

the species A and the effluent Temperature of the

reactor T are assumed to be the same where

ðCanom; TnomÞ ¼ ð0:08235 mol l�1; 441.81KÞ.The
open loop study obtained for a nominal input unom ¼
102 lmin�1 can be viewed from Fig. 4.

_Ca ¼
q

V
Caf � Ca

� �
� k0Ca exp � E

RT

� 	

ð36Þ

_T ¼ q

V
Tf � T
� �

þ �DHð Þk0Ca

qCp
exp � E

RT

� 	

þ qcCpc

qCpV
qc 1� exp � hA

qcqcCpc

� 	� �

Tc � Tð Þ

ð37Þ

yTrue ¼ T ð38Þ

By carefully observing Eqs. (36) and (37), we can

clearly understand that the activation energy level E

has an effect on rate-constant of reaction which further

influences the outputs of the CSTR, and depends upon

the operating conditions and mechanism of species A

undergoing the reaction ðA ! PÞ. Therefore, the key

term for the kSINDYc identification method in an

exothermal CSTR appears in the term exp � E
RT

 �
.

The open loop (temperature) responses, with the

jacketed-coolant flowrate at unom ¼ 102 lmin�1 of the

CSTR studied in Fig. 4, ensures that both kSINDYc

and NL2SQ expedite the process dynamics more

accurately. Moreover, the N3ARX method shows

notable deviations in predicted temperature (ypredðtÞ)
from the true reactor temperature yactðtÞ where accu-

racy falls down with a value of RMSE = 3.2382. The

input PRBS region,

uprbs 2 ½90; 110� l min�1½90; 110� l min�1 is near the

vicinity of the steady state point unom. The results are

obtained with respect to reactor temperature, TðKÞ.
The open loop simulations for �10% unom type of

changes on the coolant flow rate at uprbs ¼ ð90�
110Þ l min�1 are presented in Fig. 5. These graphs,

showing outlet temperatures, in Fig. 4 and Fig. 5

prove that the dynamic characteristics of CSTR

undergo wide variations when it is operated at input

regions unom and uprbs. Identification using N3ARX at

unom resulted in a small offset error from the steady

state at yTrue ¼ 440:31 K with yN3ARX ¼ 440:22K.

The learned dynamics from kSINDYc ðykSINDYcÞ and
NL2SQ ðyNL2SQÞ identification method outperformed

Fig. 4 True and learned

model response of CSTR

process for step input unom
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N3ARX for the medium nonlinear CSTR process

ð0:3\D0 � 0:7Þ by tracking the steady state at yTrue.

Example 3: Heat exchanger A Heat Exchanger

(HE) is a device where a cold fluid is heated by another

hot stream mostly by convection principle. Recently,

first principle modeling of a heat exchanger for a high

temperature milk pasteurization unit was enumerated

using log mean temperature difference approach [45].

In our research, a nonlinear physical model of a fluid–

fluid HE processes is detailed is adopted from [46].

Here, we consider the outlet temperature of the

process fluid Tpo as the controlled variable and flow

rate Fc of the heating fluid as the manipulated variable.

The operating conditions and parameter of the heat

exchanger are acquired from [46]. The steady state

values and the initial states ðTco nom; Tpo nomÞ are

found to be ð115; 150Þ 	F. The nonlinear material

balance equations of the process are given in Eqs. (39,

40).

_Tco ¼
2

Mc
Fc Tci � Tcoð Þ � UADTlm=Cpp

� �� �
ð39Þ

_Tpo ¼
2

Mp
Fp Tpi � Tpo

� �
� UADTlm=Cpp

� �� �
ð40Þ

DTlm ¼
Tpo � Tci
� �

� Tpi � Tco
� �

log Tpo � Tci
� �

� log Tpi � Tco
� � ð41Þ

DTlm is the logarithmic mean temperature differ-

ence of the Heat exchanger system.

yTrue ¼ Tpo ð42Þ

The process fluid temperature from the Heat

Exchanger yTrueðtÞ ¼ TpoðtÞ also called, outlet fluid

temperature depicted in Fig. 6, reveals that HE model

is highly nonlinear where Tpo values drop drastically

from 150	F to a new steady state at Tpo ¼ 44:62	F at

unom. The predicted response of the fluid temperature

ypredðtÞ of kSINDYc method reached the steady state

surpassing other identification schemes for a highly

nonlinear heat exchanger at unom ¼ 40 lbm min�1.

The output variable Tpo is plotted for all the three

methods kSINDYc, NL2SQ and N3ARX in Fig. 7

when the excitation signal is uprbs 2 36; 44½ �
lbm min�1. The measured temperature yTrue for

PRBS excitation displays a steady state at yTrue ¼
44:7	F which is relatively closer to the response at

unom. The predicted response of ykSINDYc and yNL2SQ
follows yTrue accurately compared to yN3ARX when

excited at uprbs. The high level of nonlinearity

D0 [ 0:7 for step and PRBS inputs of the Heat

Exchanger can be noticed from Tables 5 and 6.

Example 4: Bio reactor A bioreactor otherwise

called a fermenter, a special type of heterogeneous

reactor, is an essential automated system used in food

processing and pharmaceutical industries. A fed-batch

reactor with the manipulated input of dilution rate D

and the process output, biomass concentration X is

adopted from [47]. The mass balance equations

representing the kinetic model of the bioreactor are

Fig. 5 True and learned

model response of CSTR

process for input uprbs
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given in Eqs. (43–45). At high substrate concentration,

S, rate of product formation is independent of S due to

limited amount of enzyme; at low substrate concen-

tration, the rate of product formation becomes pro-

portional to S and follows first-order kinetics.

Fermenters generally produce heat respiration and

maintenance of bio-chemical pathways by microbes.

Control becomes essential in large scale installations.

However, lack in proper knowledge behind kinetic

pathways, calculation of cooling, aeration, pH, and

agitations need attention. Here growth rate ðlmaxÞ,
yield factor ðYXSÞ, rate constant for conversion of

substrate to product ðKmÞ and rate of inhibition ðK1Þ

are the vital process parameters. The manipulated

input D occupies the region ½0; 0:6� hr�1. The initial

values and nominal (operating) points of the state

variables are ðXnom; SnomÞ ¼ ð1:530; 0:174Þ g l�1. The

density of microbial cells also called biomass con-

centration X of any microorganism grows by consum-

ing the substrate S fed to it.

_S ¼ �1

YXS
l Sð ÞX þ D Sin � Sð Þ ð43Þ

Fig. 7 True and learned

model response of heat

exchanger process for step

input at uprbs

Fig. 6 True and learned

model temperature

responses Tpo of heat
exchanger process for step

input at unom
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_X ¼ ðlðSÞ � DÞX ð44Þ

where a Haldane type of specific growth rate is given

by

lðSÞ ¼ lmax

S

Sþ Km þ K1S2ð Þ ð45Þ

yTrue ¼ X ð46Þ

The nonlinearity of the bioreactor varies w.r.t the

specific growth rate lðSÞ, the type of excitation given

ðuÞ, initial states of ðS; XÞ and the operating region of

dilution rate ðu ¼ DÞ.Therefore a bioreactor can be

contemplated as a very sensitive nonlinear system,

subjected to the above actors. The Bioreactor is highly

sensitive, whose nonlinearity may switch from mild to

medium based on the excitation input u ¼ D.The input

constraints of the Bioreactor lies in the range

u ¼ ð0:1� 0:3Þhr�1. For dilution rate D\0:3, the

Bioreactor system remains in the mild nonlinear

category. The step input at Dc ¼ 0:3 is called critical

dilution rate where the biomass concentration Xð Þ
disappears, and the system becomes unstable [46]. In

this example, we restrict our analysis with the

operating point P at D ¼ 0:27, as the microbial cell

growth gets affected beyond Dc.

Figure 8 represents the response yTrue ¼ Xðg l�1Þ at
steady state, when the dilution rate is operated at

unom ¼ 0:27 hr�1. The bioreactor is operated at the

stable operating point unom. It can be observed that the

predicted response generated by NL2SQ,N3ARX and

Fig. 8 True and learned

model response of

bioreactor process for input

unom

Fig. 9 True and learned

model response Xðg/litreÞ of
bioreactor process for input

uprbs
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kSINDYc methods, show a pattern that follows the

nonlinear dynamics of the bioreactor very accurately

for ypred ¼ ykSINDYc; yNL2SQ; yN3ARXf g with the steady

state of biomass concentration ðXÞ at unom ¼
0:27 hr�1 to settle at yTrueðtÞ ¼ 1:547 g l�1. The

response of X (g/litre) due to PRBS input which has

a feed flow uprbs ¼ �10% unom is portrayed in Fig. 9.

It can be noticed that the three methods of identifica-

tion ðykSINDYc; yNL2SQ; yN3ARXÞ showed excellent

tracking of the biomass-concentration with very sharp

variations when excited with PRBS signal also.

However, the evaluation criteria RMSE, is very small

for yN3ARX than kSINDYc and NL2SQ identification

both for unom and uprbs excitations. The N3ARX

identification is also computationally faster compared

to the other two methods for the bioreactor, which

exhibits mild nonlineatity of D0\0:3 when operated

below the critical dilution rate u\0:3 hr�1.

Example 5: Distillation column A 9 stage (ns ¼ 9)

binary Distillation Column (DC), to separate metha-

nol–water mixture, operated in the LV (liquid–vapour)

configuration with the manipulated variable as reflux

rate to the column unom ¼ 2:704 kmolmin�1 is taken

for the study from [47]. The distillate composition xD
(mole fraction) which is the top most product is the

output variable y. The feed mixture containing 50%

Methanol has to be rectified continuously to 98%

purity. The common problems are vapor cross-flow

channeling, foaming and unaccounted interactions.

The presence of many state-variables and process

parameters make the simulation of DC model more

complex. Accordingly, certain process assumptions

are made as follows for an easier analysis: A uniform

binary mixture with constant pressure, no vapor

holdup, and constant relative volatility, on all stages

are considered. The ordinary differential equations

governing the DC are Eqs. (47–51).

Condenser Stage:

_x1 ¼
1

MD
VR y2 � y1ð Þ½ � ð47Þ

Rectifying section above feed tray (i=2 to NF-1)

_xi ¼
1

MT
LRxi�1 þ VRyiþ1 � LRxi � VRyi½ � ð48Þ

Feed stage (NF)

_xNF ¼ 1

MT
LRxNF�1 þ VRyNFþ1 þ FzF � LSxNF � VRyNF½ �

ð49Þ

Rectifying section below feed tray (i=NF?1 to NS-1)

_xi ¼
1

MT
LSxi�1 þ VSyiþ1 � LSxi � VSyi½ � ð50Þ

Re-boiler Stage

_xNS ¼
1

MB
LSxNS�1 � BxNS � VSyNS½ � ð51Þ

yTrue ¼ xD ð52Þ

The DC model when operated in a wider operating

region instead of a fixed input at unom imparts a

Fig. 10 True and learned

model response xD of

distillation column process

for step input at unom
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massive nonlinear phenomenon and does not suit the

normal operation. Therefore, the initial conditions of

distillate xD and bottoms composition xB are carefully

chosen to be ð0:005; 1:05Þ. The nominal operating

values so obtained are

ðxDnom; xBnomÞ ¼ ð0:775; 0:2225Þ. The time response

of xD in Fig. 10 is noticed when the DC is operated at

reflux rate unom ¼ 2:704 kmol min�1.Fig. 11 flaunts

the time response of xD when excited in the PRBS

range uprbs 2 ð2:43; 3Þ kmol min�1. Except for

N3ARX method, the learned models ypredðtÞ from

kSINDYc and NL2SQ approaches bear a very close

follow up to the true output of the distillate compo-

sition yTrue ¼ xD ¼ 0:775 . The DC exhibits medium

nonlinearity using CANMmethod withD0 in the range

0:3\D0 � 0:7 when excited by both unom and uprbs.

4.1 Selection of key nonlinear terms knl

The key nonlinear term knl in every system taken for

the study is the predominant nonlinear function that

determines the nonlinear dynamics of the physical

system. In each Example, the dynamic equations have

some mathematical terms that will have the most

significant influence on the system’s behavior. This

could be found out by careful examination of the

Ordinary Differential Equation (ODE) of every

Example from (Eqs. 32–52). Nonlinear terms typically

include products, powers, trigonometric functions,

exponential functions, and other nonlinear operations.

In the examples considered for the present study, the

significant terms in each ODE equation that involve

nonlinear functions of the dependent variable(s) or

their derivatives are carefully observed based on prior

knowledge of the system. These terms often have

larger coefficients or play a central role in the

dynamics. Alternatively, numerical simulation tools

can also be adopted (e.g., differential equation solvers)

to simulate the dynamic response of the nonlinear

system to different inputs and initial conditions. In

such cases, the transient behavior of all examples has

to be carefully analyzed for any observation of any

nonlinear effects, oscillations, or stability issues.

Moreover, interest readers may refer Global Sensitiv-

ity Analysis (GSA) methods reported in [50] for

sorting out knl of complex nonlinear systems. Apply-

ing GSA will definitely assess how changes in various

parameters (e.g., reaction rate constants, flow rates,

temperature) affect the system’s response. Further-

more, this method will also reveal the predominant

terms that have the most significant impact on the

system’s nonlinear behavior. Table 3 shows the

kSINDYc library terms obtained for all the five

examples elaborated in Sect. 4. kSINDYc is an

empirical data driven method, which needs only the

measured input and output data to identify any

nonlinear system. Even if kSINDYc is data driven

identification, using the sparse regression and key

nonlinearity terms knlð Þ in its library function, the

governing equation can be found out along with the

parameters.

The parametric coefficients of each example can be

found out after solving AlgorithmA1 in iterative steps.

Table 3 summarizes the basis terms to be carefully

placed inside the candidate library for all the five case

studies. The nonlinear function of each process is

decided by the rudimentary key term knl. The candi-

date library H has relatively a fewer functional terms.

knl term is chosen carefully by checking the influenc-

ing terms from the dynamic equations of every

process. The active terms in the dynamics from the

library HðX;UÞ are identified using the sparse regres-

sion algorithm defined in Eq. (17). It is evident that

compared to SINDYc identification, the proposed

kSINDYc scheme requires only a smaller number of

relevant key terms in the candidate library, thereby

Table 3 Key term-based

SINDYc (kSINDYc)
Process Key nonlinear term ‘knl’ Candidate Library HðX;UÞ

Three Tank
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h1 � h2

p
,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 � h3

p
,

ffiffiffiffiffi
h3

p
knl u h1 h2 h3 h1h2 h2h3 h3h1 h1u h2u h3u½ �

CSTR e
�E
RTð Þ knl u Ca T C2

a T2 CaT Cau Tu
� �

HE log
Tpo�Tci
Tpi�Tco

 �
knl u Tco Tpo T

2
co T

2
po TcoTpo Tcou Tpou

h i

Bioreactor lmax

K1S2
knl u X S X2 S2 SX Su Xu½ �

DC ax
1þða�1Þx knl u xi¼1:::ns x

2
i¼1:::ns

xi¼1:::nsu
h i
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reducing the number of parameters required to identify

the nonlinear system. Using the candidate library

terms of kSINDYc in Table 3, every nonlinear process

can be identified using higher-order polynomial

equations. Moreover, introducing the key nonlinear

terms in the candidate library function of kSINDYc is

intended to build models of dynamic physical systems

with diverse nonlinear behavior. It is always interest-

ing to observe how the dynamics of nonlinear system

changes in response to different excitations/test

signals.

4.2 Performance evaluation

In our proposed framework we intend to validate the

performance of kSINDYc, NL2SQ and N3ARX for all

examples subjected to step and PRBS excitation. By

looking at Table 4, a major conclusion can be brought

over in the concept of data driven modeling. A careful

observation of the ypred at unom and uprbs in all the

examples signify that N3ARX does not mimic the

system dynamics accurately for CSTR and Heat

exchanger process. This inspection ensures that

N3ARX identification can be adopted for systems

with mild nonlinearity. However, it predicts the PRBS

response of all the exampleswith an acceptable RMSE.

Furthermore, the identified model using kSINDYc and

NL2SQ under unom and uprbs, predicted the nonlinear

dynamics of all the examples with high accuracy. The

predicted model accuracy of each identification

method (kSINDYc, NL2SQ, N3ARX) are validated

using the performance Index RMSE. By inspecting the

level of nonlinearity using CANM, a user can flexibly

choose the appropriate identification method among

the three methods investigated in the study. To

emphasize this point, in all the five case studies, the

RMSE at unom and uprbs are summarized in Table 3 and

D0 computed using CANM are graphically related

Fig. 11 True and learned

model response xD of

distillation column process

for step input at uprbs

Table 4 Comparison of

RMSE for System

identification using

kSINDYc, N3ARX and

NL2SQ methods

Process RMSE for unom RMSE for uprbs

kSINDYc N3ARX NL2SQ kSINDYc N3ARX NL2SQ

Three Tank 0.0050 0.0569 1.632e-6 0.0282 0.0043 0.0070

CSTR 1.2954e-6 0.0160 2.493e-4 0.0184 3.2382 0.0521

HE 4.311e-4 0.2282 4.2615 0.0322 0.3154 0.0403

Bioreactor 0.00832 0.0015 0.00561 0.0102 0.0049 0.0065

DC 3.314e-4 0.0098 5.212e-6 6.273e-3 0.0054 2.641e-5
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using scatter plot in Figs. 12 and 13.The quantitative

analysis in Figs. 12 and 13 are very important

graphical representations that relates the nonlinearity

of each system with the three nonlinear system

identification methods in terms of performance eval-

uation criteria.

Fig. 12 RMSE of learned

models of all systems with

its metric D0 at input unom

Fig. 13 RMSE of learned

models of all systems with

its metric D0 at input uprbs
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RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

XN

i¼1

ðyTrueðtÞ � ypredðtÞÞ2
vu
u
t ð53Þ

The RMSE for N samples are found from Eq. (53)

for all the dynamic physical systems described in this

Sect. As seen from Figs.12 and 13, the crucial factor in

determining the choice of system identification rests

on the minimum RMSE between the actual and

predicted dynamics of the identified model among

all the three identified models

ypred ¼ ykSINDYc; yNL2SQ; yN3ARX
� �

. A graphical com-

parison is made between the RMSE of all the nonlinear

system identification methods for unom is given in

Fig. 12. The scatter plot in Fig. 13 maps the RMSE

with D0 for nonlinear systems excited at uprbs. The

identification method which gives least RMSE under

each class ofD0 imply a better estimate on all basis and

is exclusively picked up for the accurate choice of

system identification.

CANM is an operating point dependent nonlinear

metric. All the five examples examined in this

manuscript, are continuous processes working at a

stable steady state operating point (xas, xbs). The effect

of nonlinearityD0 around the vicinity of the fixed point

(xas, xbs) are carefully investigated in this section. The

usage of NL2SQ method is preferred only for mild

systems like three tank process and Bioreactor.

Diversely, kSINDYc is the best opted non-parametric

model for highly nonlinear processes like Heat

Exchanger. A low value of RMSE ensures that ypred
is very close to yTrueðtÞ capturing the underlying

patterns and the nonlinear dynamics with high preci-

sion. In an application like DC, RMSE is very low in

the order of 10�4 or lesser in the predicted models

kSINDYc and NL2SQ. The RMSE precision of all the

learned models in the Bioreactor implies that even

though the predicted data has high fidelity, the model

is highly sensitive to noise that leads to overfitting of

yTrueðtÞ. By using this combined framework, any user

can find out the conducive system identification

method based on the nonlinearity in the desired

operating region. CANM is an operating point depen-

dent nonlinear metric.

The physical quantities of each process addressed

in Tables 5 and 6, have different orders of magnitude.

To sustain a uniform scale in measuring the nonlin-

earity, the time period t, input u and output variable

yTrueðtÞ of all nonlinear physical process are normal-

ized between 0 and 1, and thereafter the CANM

method D0 is intended from Eq. (2). The performance

index (RMSE) of all the system identification methods

are correlated along with the degree of nonlinearity D0

of each nonlinear system and the outcomes are

enumerated. To verify the impact of excitation inputs

on D0, unom and uprbs are applied to all the examples.

Table 5 System identification from D0 for excitation input unom

Process unom Operating point D0 Class of NL Best choice for system identification

Three Tank 0.5e-5m3s-1
(0.914, 0.80, 0.692) 0.1123 Mild NL2SQ

CSTR 102 l min�1 (0.0823, 441.81) 0.68 Medium kSINDYc

HE 40 lbm min�1 (47.018, 44.58) 0.9328 High kSINDYc

Bioreactor 0:27 hr�1 (1.547, 0.138) 0.055 Mild N3ARX

DC 2:704 kmol/min (0.775, 0.225) 0.501 Medium NL2SQ

Table 6 System identification from D0 for excitation input uprbs

Process uprbs Operating point D0 Class of NL Best choice for system identification

Three Tank ð0� 1Þe�5m3 s�1 (0.914, 0.80, 0.692) 0.135 Mild N3ARX

CSTR ð90� 110Þ l min�1 (0.0823, 441.81) 0.628 Medium kSINDYc

HE ð36� 44Þ lbm min�1 (47.018, 44.58) 0.957 High kSINDYc

Bioreactor ð0:1� 0:3Þ hr�1 (1.547, 0.138) 0.245 Mild N3ARX

DC ð2:435� 2:972Þ kmol/min (0.775, 0.225) 0.546 Medium NL2SQ
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Even though the D0 values were different for unom and

uprbs signals operated at operating point P, the class of

nonlinearity (mild, medium, high) will remained the

same. This perception reveals an important remark

that irrespective of the excitation inputs, the class of

nonlinearity will not change but remains the same

using CANM. Tables 5 and 6 will provide the

inference made on the choice of the appropriate

system identification method, on the basis of D0 and

the RMSE of every Example. The special features of

kSINDYc method lies in its concrete algorithm to

develop an exact model even with limited number of

samples, without involving in under fitting or over

fitting of highly nonlinear systems. kSINDYc proves

to be a better choice for system identification in high

nonlinear process whereas the mild nonlinear systems

can follow N3ARX method and medium nonlinear

units can adopt NL2SQ to learn the process dynamics

as observed from Tables 5 and 6. The effectiveness of

N3ARX approach trails behind kSINDYc and NL2SQ

approaches in terms of RMSE and execution time.

From the detailed system identification analysis car-

ried out on all case studies, some assertive conclusive

remarks are presented below over the selection of

appropriate identification method based on degree of

nonlinearity D0.

Remark 1 N3ARX method requires large number of

training data set to provide accurate solution. The

learned dynamics using this approach did not meet the

acceptable limit at unom.Consequently, it can be used

for systems with broader range of excitation signals

uprbs. The prime hindrance of N3ARX method com-

pared to NL2SQ and kSINDYc schemes is its long

computation time in MATLAB.

Remark 2 The learned dynamics using NL2SQ is

satisfactory for mild and medium nonlinear systems.

As it is a parametric identification scheme it requires a

healthy knowledge of the process parameters and the

nominal operating regions. However, this approach

crashes to identify the process models with less

measured I-O data.

Remark 3 kSINDYc is computationally attractive,

requires less data, assumes a few numbers of candidate

terms in H to make an interpretable efficient model at

unom and uprbs. The method outstrips NL2SQ and

N3ARX by accurately following the plant dynamics of

highly nonlinear systems.

The presented adaptation of these advisable system

identification methods is therefore considered impor-

tant for all users who are interested in finding an

interpretable, identification method for complex and

diverse nonlinear systems. The use of the proposed

kSINDYc identification necessitates the knowledge of

the system dynamics to acquire the key term knl which

appear to be a hindrance in nonlinear systems whose

governing equations are completely unknown and

unpredictable. In such cases, SINDy algorithm per-

forms the same task without involving the system

dynamics in the form of ODEs.

5 Conclusion

Selection of an appropriate identification method is

very decisive for any complex nonlinear system. The

proposed framework ‘System identification in coher-

ence with nonlinearity measure’ indisputably accom-

plishes this task by mathematically relating the

nonlinearity level with the applicable identification

method. An integrated framework comprising three

identification methods (kSINDYc, N3ARX and

NL2SQ) and a nonlinearity measure called CANM is

devised in this research study. In particular, the

proposed data driven kSINDYc scheme, identifies

nonlinear processes under the sparse dimensional

space using key nonlinear terms in its candidate

library. A notable development is made in the

‘kSINDYc candidate library’, by introducing the

‘key nonlinear terms’ from the plant dynamics, along

with the polynomial terms. The kSINDYc identifica-

tion uses a sparcification knob k set between 0 and 10,
to identify nonlinear dynamics of five physical

systems with divergent nonlinear strengths. The

method surmounts NL2SQ and N3ARX by meticu-

lously adopting the process dynamics of highly

nonlinear processes. Additionally, this research com-

prehends the nonlinear metric CANM that targets to

find out the degree of nonlinearity between 0 and 1 and

subclassifies the five examples to fit in mild, medium

or highly nonlinear category. This article exemplifies a

contemporary quantitative analysis that correlates the

nonlinear metric with the system identification

schemes. The proposed framework is tested for five

nonlinear systems with diverse nonlinear strengths.

This article differs from the existing literature by

providing a configuration for suitable system
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identification from the three methods based on the

computed D0 using CANM metric.

6 Scope

The nonlinear systems considered in this study, are

classified as mild, medium and highly nonlinear using

CANM method. However, the measure may be

deficient, when the process is operated in a region

far beyond the operating point. Such deprivation

issues have to be addressed in the sequel while

measuring nonlinearity. Extending the proposed

framework to more complexMIMO process structures

should be carried out without losing the dynamic

behavior of the system. The choice of nonlinear

control schemes based on the computation of D0 is

another decisive study that has to be devised in the

future research. Conclusively, this research study will

be definitely instrumental for the researchers and

academicians of nonlinear dynamics community but

needs to be further tested in real-world physical

systems.
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