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Abstract Soliton and breather solutions to the non-
local Hirota–Maccari equation with a periodic wave
background are constructed via theKPhierarchy reduc-
tion approach. By constraining tau functions of bilinear
equations in the KP hierarchy, we obtain general 2N -
line solitons and N -breather solutions with a periodic
wave background. What needs to be emphasized are
the two-soliton can be divided into non-degenerate and
degenerate soliton according to the asymptotic anal-
ysis. Meanwhile, one- and two-breather solutions in
a periodic wave and constant background are investi-
gated.

Keywords Nonlocal Hirota–Maccari equation ·
Soliton solution · Breather solution · Periodic wave
background · Kadomtsev–Petviashvili hierarchy
reduction method

1 Introduction

The study of the dynamical behavior of physical sys-
tems has been, and continues to be, a major source of
mathematical inspiration. In nonlinear physics, PT -
symmetry can be used to describe energy transfer
and wave behavior [1–5]. Due to the potential appli-
cation in nonlinear optics, a new class of integrable
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systems known as nonlocal models has just recently
been proposed. The first PT -symmetric nonlocal inte-
grable equation was introduced by Ablowitz and Mus-
slimani [6]. In the past few years, some research on
PT -symmetric equations has achieved new results in
both theory and applications [7–12].

Nonlinear integrable equations can be solved in
a variety of methods, such as the Darboux trans-
formation [13], the Riemann–Hilbert approach [14],
the Kadomtsev–Petviashvili (KP) hierarchy reduction
method [15–17], and so on. Among them, the KP hier-
archy reduction method is a powerful tool because it
can bypass the spectral problem and the Lax pair of
the equation and directly obtain the exact solution in a
concise form.

In our recent work [18], inspired by Yang [19], a
nonlocal Hirota–Maccari (HM) equation was proposed

ut − iuxy+βuxxx+ur + βuu∗(−x, y,−t)ux=0,

3irx − (uu∗(−x, y,−t))y = 0, (1)

where u stands for the long wave, r is short wave and β

is real parameter. By replacing x → i x, t → −i t, y →
−y, the nonlocal HM equation reduces to the local
Hirota–Maccari equation:

iut + uxy + iβuxxx + ur − iβ|u|2ux = 0,

3rx + (|u|2)y = 0,
(2)

which comes from a higher-dimensional generalization
of the Hirota equation [20–22]. Notably, compared to
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the local Eq. (2), this solution of the nonlocal Eq. (1) at
position (x, t) relies on both the local solution at (x, t)
and the nonlocal solution at (−x,−t). Meanwhile, the
nonlocal HM equation admits some interesting phys-
ical phenomenon for its new time- or space-coupling,
which could lead to new physical consequences and
encourage new practical applications [23]. From our
work, we derived degenerate and non-degenerate soli-
tons and examined the dynamical behavior of rational
and lump-soliton solutions. Indeed, it is clearly richer
than the variety of exact solutions in the localHMequa-
tion [24–26].

Furthermore, regarding soliton solutions studied on
a periodic wave background also attracts attention.
Tian and his group have discussed N -soliton solu-
tions on the nonzero background in the Korteweg–de
Vries–Calogero–Bogoyavlenskii–Schif equation [27].
Rao and his collaborators have studied various kinds
of solutions on a periodic background to the Dave–
Stewartson I equation [28]. Zha et al. have investigated
breathers and rogue waves on a double-periodic wave
background in the Gerdjikov–Ivanov equation [29]. It
should be noted that the local HM equation don’t have
the soliton solutions with a periodic wave background.
Thus, a natural motivation is to use the KP hierarchy
reduction method to study the dynamical behavior of
a periodic wave background in the nonlocal HM equa-
tion.

The structure is as follows. The characteristics of
line solitons in Eq. (1) are described and examined in
Sect. 2. In Sect. 3, we are committed to investigating the
breather solutions on both a constant and periodic back-
ground. In Sect. 4, we discuss the solutions in detail.
Section 5 is the conclusion.

2 High-order solitons with a periodic background

General soliton solutions of Eq. (1) with a periodic
wave background are examined in the part. To demon-
strate the general 2N -soliton solutions of (1) on the
periodic background, we first give the following The-
orem. And the appendix includes relevant proofs.

Theorem 2.1 The nonlocal (1) with a periodic wave
background has soliton solutions

u = g

f
, r = −2i(ln f )xy, (3)

with f and g shown by determinants

f =

⎛
⎜⎜⎜⎝

ciδi j e−χi + 1
pi+p∗

j

1
pi−p∗

j

1
pi−p∗

2N+1

− 1
pi−p∗

j
−c∗

i δi j e
−χ∗

i (−x,y,−t)− 1
pi+p∗j − 1

pi+p∗
2N+1

1
p2N+1+p∗

j

1
p2N+1−p∗

j
ic2N+1e−χ2N+1 + 1

p2N+1−p2N+1∗

⎞
⎟⎟⎟⎠

0≤i, j≤N

,

g =

⎛
⎜⎜⎜⎝

ciδi j e−χi − pi
p∗
j

1
pi+p∗

j

pi
p∗
j

1
pi−p∗

j

pi
p∗
j

1
pi−p∗

2N+1

− pi
p∗
j

1
pi−p∗

j
−c∗

i δi j e
−χ∗

i (−x,y,−t)+ pi
p∗j

1
pi+p∗j pi

p∗
2N+1

1
pi+p∗

2N+1

− p2N+1
p∗
j

1
p2N+1+p∗

j

p2N+1
p∗
j

1
p2N+1−p∗

j
ic2N+1e−χ2N+1 + p2N+1

p∗
2N+1

1
p2N+1−p2N+1∗

⎞
⎟⎟⎟⎠

0≤i, j≤N

,

(4)

and

χi = 2pi Rx√
6

− 2pi R pi I y

−
√
6

9
(βt + x)(2p3i R − 6pi R p

2
i I ) + χ0,i ,

χ2N+1 = 2i p2N+1,I x√
6

− 2p2N+1,R p2N+1,I y

−
√
6

9
(βt + x)(6i p22N+1,R p2N+1,I

−2i p32N+1,I ) + χ0,2N+1, (5)

where δi j is the Kronecker symbol, ci , pi are complex,
χ0,i are real for i = 0, 1, . . . , N, and p2N+1 is imagi-
nary number.

To better understand the actions of the line solitons
with a periodic wave background, we take N = 0 in
Theorem (2.1), then f , g could be denoted as

f = ic1e
l−χ0,1 + 1

2i p1I
,

g = ic1e
l−χ0,1 + 1

2i p1I

p1R + i p1I
p1R − i p1I

,

(6)
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Fig. 1 Periodic wave solution with β = 2, b1 = 1
4 , p1 = i, χ0,1 = π

where l = − 2p1Rx√
6

+2p1R p1I y+
√
6
9 (βt + x)(2p31R −

6p1R p21I ).
As discussed in Ref. [30], in order to avoid the solu-

tion being singular, we take p1R = 0. Then the solution
is independent of y. It is important to emphasize that
χ0,1 controls the amplitude of periodic wave. Fig. 1
shows the periodic wave.

Further, the two-soliton solution with a periodic
wave background is derived when setting N = 1 and
the expressions for f1, g1 are given

f1 =

⎛
⎜⎜⎝

c1e−χ1 + 1
p1+p∗

1

1
p1−p∗

1

1
p1−p∗

3

− 1
p1−p∗

1
−c∗

1e
−χ∗

1 (−x,y,−t)− 1
p1+p∗1 − 1

p1+p∗
3

1
p3+p∗

1

1
p3−p∗

1
ic3e−χ3 + 1

p3−p∗
3

⎞
⎟⎟⎠ ,

g1 =

⎛
⎜⎜⎝

c1e−χ1 − p1
p∗
1

1
p1+p∗

1

p1
p∗
1

1
p1−p∗

1

p1
p∗
3

1
p1−p∗

3

− p1
p∗
1

1
p1−p∗

1
−c∗

1e
−χ∗

1 (−x,y,−t)+ p1
p∗1

1
p1+p∗1 p1

p∗
3

1
p1+p∗

3− p3
p∗
1

1
p3+p∗

1

p3
p∗
1

1
p3−p∗

1
ic3e−χ3 + p3

p∗
3

1
p3−p∗

3

⎞
⎟⎟⎠ ,

(7)

where f1, g1 both are 3 × 3 determinants and

χ1 = 2p1Rx√
6

− 2p1R p1I y −
√
6

9
(βt + x)(2p31R

− 6p1R p
2
1I ) + χ0,1,

χ3 = 2i p3I x√
6

−2p3R p3I y−
√
6

9
(βt + x)(6i p23R p3I

− 2i p33I ) + χ0,3. (8)

The patterns of the two-soliton solution with a periodic
wave background are the same as those with a constant
background due to the soliton interacts elastically with
the periodic line waves.

In what follows, by removing the third row and third
column of the determinant (7), we explore the asymp-
totic results for two soliton. The asymptotic soliton

along the two lines 2p1Rx√
6

− 2p1R p1I y −
√
6
9 (βt +

x)(2p31R−6p1R p21I )+χ0,1 and− 2p1Rx√
6

−2p1R p1I y+

√
6
9 (βt+x)(2p31R−6p1R p21I )+χ0,1, which have some
different results:

(i) Before collision (x → −∞)
Soliton 1 (χ1 ≈ 0, χ∗

1 (−x, y,−t) → +∞):

u−
1 �

c1e−χ1 − 1
p1+p∗

1

p1
p∗
1

c1e−χ1 + 1
p1+p∗

1

, (9)
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Fig. 2 Five types of the two line-soliton solutions at t = 5 with
p1 = −1 − i, p3 = −3i, c3 = i

4 , χ0,1 = 0, χ0,3 = π . a, b
Two antidark-soliton solution with c1 = 1 + i . c, d A antidark-
dark-soliton solution with c1 = 1 + i

2 . e, f Two dark-soliton

solution with c1 = −1 − 2i . g, h Degenerate dark-soliton solu-
tion with c1 = 1 − i . i, j Degenerate antidark-soliton solution
with c1 = 1 + i

Soliton 2 (χ∗
1 (−x, y,−t) ≈ 0, χ1 → −∞):

u−
2 � − p1

p∗
1

c∗
1e

−χ∗
1 (−x,y,−t)+θ − 1

p1+p∗
1

p1
p∗
1

c∗
1e

−χ∗
1 (−x,y,−t)+θ + 1

p1+p∗
1

, (10)

where eθ = − (p1−p∗
1 )

2

4p1 p∗
1

.

(ii) After collision (x → +∞)
Soliton 1 (χ1 ≈ 0, χ∗

1 (−x, y,−t) → −∞):

u+
1 � − p1

p∗
1

c1e−χ1+θ − 1
p1+p∗

1

p1
p∗
1

c1e−χ1+θ + 1
p1+p∗

1

, (11)

Soliton 2 (χ∗
1 (−x, y,−t) ≈ 0, χ1 → +∞):

u+
2 �

c∗
1e

−χ∗
1 (−x,y,−t) − 1

p1+p∗
1

p1
p∗
1

c∗
1e

−χ∗
1 (−x,y,−t) + 1

p1+p∗
1

, (12)

Since u+
1 (χ1) = (− p1

p∗
1
)u−

1 (χ1 − θ) and | −
p1
p∗
1
| = 1, thus these properties imply that the ampli-

tude and velocity of the two-soliton are the same
before and after collision. Meanwhile, |u j | has a max-
imum value expressed as |u j |max along the line χ j −
1
2 ln(4p

2
1,R(c21,R + c21I )) = 0 for j = 1, 2. Accord-

ing to the above analysis, Fig. 2 displays all forms of
the two-soliton, namely, two-antidark-antidark-soliton

(see Fig. 2a, b), two-dark-antidark-soliton (see Fig. 2c,
d), two-dark-dark-soliton (see Fig. 2e, f), degenerate
two-antidark soliton (see Fig. 2g, h), degenerate two-
dark soliton (see Fig. 2i, j).

We could also gain the higher-order line solitons
with a periodic wave background. When N = 2, there
are several patterns of the non-degenerate four-soliton
solutions, and three of them are shown in the Fig. 3.

3 Breathers with a consant and periodic
background

Breather solutions are studied from two distinct back-
grounds, namely the constant background and the peri-
odic wave background in this part. We express these
solutions in terms of determinants in the following the-
orem.

Theorem 3.1 The nonlocal HM Eq. (1) has breather
solutions

u = g

f
, r = −2i(ln f )xy, (13)
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Fig. 3 The four-soliton solution at t = 0. a, b Non-degenerate
four-antidark-soliton solution with p1 = − 1

2 − i
2 , p2 = −1 −

4i
5 , p5 = −3i, c1 = 1 + i

2 , c2 = 1 + 2i
5 , c5 = − i

4 , χ0,1 =
0, χ0,2 = 0, χ0,5 = −π . c, d Non-degenerate three-antidark-
one-dark-soliton solution with p1 = − 1

2 − i, p2 = −1− i, p5 =

−i, c1 = 1 + 2i, c2 = 1 + i
2 , c5 = −i, χ0,1 = 3π, χ0,2 =

−3π, χ0,5 = − π
2 . e, f Non-degenerate one-antidark-three-dark-

soliton solution with p1 = − 1
2 − i, p2 = 1 − i, p5 = −i, c1 =

1 + 2i, c2 = 1 + i
2 , c5 = −i, χ0,1 = 3π, χ0,2 = −3π, χ0,5 =

− π
2

with f and g are:

f = �| δi j

ωi eχi
+ 1

1
2 (ωi + ω j ) + i(λi − λ j )

|1≤i, j≤N ,

g = �| δi j

ωi eχi
− ωi + 2iλi

ω j − 2iλ j

1
1
2 (ωi + ω j ) + i(λi − λ j )

|1≤i, j≤N ,

(14)

and

ζi = 1√
6
iωi x + βωiλi y −

√
6

9
i

(
ω3
i

4
− 3ωiλ

2
i

)
(βt + x) + χ0,i , (15)

where� = �N
i=1ωi eχi , andωi , λi , χ0,i are real-valued

parameters.

Remark 3.1 Depending on the parameter constraints,
periodic waves have two dynamical behaviors:

• When N = 2K , ωK+ j = −ω j , λK+ j =
−λ j , χ0,K+i = χ0,i , the breather with a constant back-
ground can be obtained.

• When N = 2K + 1, ωK+ j = −ω j , λK+ j =
−λ j , χ0,K+i = χ0,i , λ2K+1 = 0, we yield the breather
with a periodic wave background.

In what follows, we construct the breather in the
constant background. To this end, by choosing

N = 2, ω2 = −ω1, λ2 = −λ1, ζ0,2 = ζ0,1,

(16)

and the resulting breather read

u = g

f
, r = −2i(ln f )xy, (17)

with

f =
∣∣∣∣∣

1
ω1eζ1

+ 1
ω1

1
2iλ1

1
−2iλ1

1

−ω1e
ζ∗
1

− 1
ω1

∣∣∣∣∣ ,
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Fig. 4 One-breather at
t = 0 with λ1 = 2, ω1 =
2, β = 1, ζ0,1 = 0

g =
∣∣∣∣∣

1
ω1eζ1

− ω1+2iλ1
ω1−2iλ1

1
ω1

ω1+2iλ1
ω1−2iλ1

1
2iλ1

−ω1+2iλ1
ω1−2iλ1

1
2iλ1

− 1

ω1e
ζ∗
1

+ ω1+2iλ1
ω1−2iλ1

1
ω1

∣∣∣∣∣ .

After a simple algebraic calculation, the final form of
the breather solution reads

u =
(−16λ41 + 16iλ31ω1 + 4iλ1ω3

1 + ω4
1)e

2c1R + 16((−ω2
1
4 − λ31)e

c∗
1 +

(
ω2
1
4 + λ21

)
ec1 + iω1λ1 − ω2

1
4 + λ21)λ

2
1

(4(iλ1 − ω1

2
)2((4λ21 + ω2

1)e
2c1R + 4λ21(e

c1 + ec
∗
1 + 1)),

r = −2i ln

(
−

(
1

ω2
1

+ 1

4λ21
+ 1

ω2
1e

c1
+ 1

ω2
1e

c∗
1

+ 1

ω2
1e

2c1R

))

xy

. (18)

The above solution contains trigonometric functions,
thus the solution is periodic as c1 = c1R+ic1I .Notably,
the periodic solution does not progress in the y direc-
tion. Fig. 4 illustrates one breather for two independent
variables.

With a larger K , the N -breathers with the con-
stant background could be given. In this case, we take
K = 2, the corresponding solution has two individual
breathers, and possesses interesting involution patterns.
In order to observe the more interesting phenomenon
of the two breathers, we fix the value of χ0,1 and take
different values of χ0,2. Hence, we take the following
parameters choices:

λ1 = 2, λ2 = 2, λ3 = −2, λ4 = −2,

ω1 = 2, ω2 = 1

2
,

ω3 = −2, ω4 = −1

2
, β = 1, χ0,1 = 0.

(19)

With the parameter choices described above, Fig. 5
shows the evolutionary patterns of the two breathers.
One can directly find that χ0,1 controls breather-1
and χ0,2 controls breather-2. When χ0,2 	 0, there
is a large distance between the two breathers. When

χ0,2 → 0, two breathers are in close proximity and start
interacting. When χ0,2 
 0, two breathers will first
form a single breather, after which the two breathers
will separate from each other. We find the collision
between two breathers is an elastic collision.

In order to examine the moving features of breathers
with a periodic wave background, by taking K = 1 and
the parameters are satisfying

ω2 = −ω1, λ2 = −λ1,

λ3 = 0, χ0,2 = χ0,1, (20)

then we obtain one breather with a periodic wave back-
ground

u = g2
f2

, (21)
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Fig. 5 The two-breather
solution on a constant
background with
parameters: a χ0,2 = −2π ;
b χ0,2 = − π

2 ; c χ0,2 = 0; d
χ0,2 = 2π

where f and g are

f2 =

⎛
⎜⎜⎝

1
ω1eχ1 + 1

ω1

1
2iλ1

1
1
2 (ω1+ω3)+iλ1

1
−2iλ1

1

−ω1e
χ∗
1

− 1
ω1

1
1
2 (ω2+ω3)+iλ2

1
1
2 (ω3+ω1)−iλ1

1
1
2 (ω3+ω2)−iλ2

1
ω3eχ3 + 1

ω3

⎞
⎟⎟⎠ ,

g2 =

⎛
⎜⎜⎝

1
ω1eχ1 − ω1+2iλ1

ω1−2iλ1
1
ω1

ω1+2iλ1
ω1−2iλ1

1
2iλ1

−ω1+2iλ1
ω3

1
1
2 (ω1+ω3)+iλ1

−ω1+2iλ1
ω1−2iλ1

1
−2iλ1

1

−ω1e
χ∗
1

+ ω1+2iλ1
ω1−2iλ1

1
ω1

−ω2+2iλ2
ω3

1
1
2 (ω2+ω3)+iλ2

− ω3
ω1−2iλ1

1
1
2 (ω3+ω1)−iλ1

− ω3
ω2−2iλ2

1
1
2 (ω3+ω2)−iλ2

1
ω3eχ3 − 1

ω3

⎞
⎟⎟⎠ ,

(22)

and

χ1 = 1√
6
iω1x + λ1ω1y −

√
6i

9(
ω3
1

4
− 3λ21ω1

)
(x + t) + χ0,1,

χ3 = i√
6
ω3x −

√
6i

9

ω3
1

4
(t + x) + χ0,3. (23)

Based on the analysis of the solution, we thus conclude
that the breather remains periodic in the (x, t) plane and
localizes along y. The location of one breather is deter-
mined by χ0,3. Figure 6 illustrates different dynamics
of the one-breather with distinct χ0,3.

Similarly, high order breathers with a periodic wave
background are obtained from the Theorem (3.1). For
example, we take K = 2 and

λ5 = 0, λ3 = −λ1, λ4 = −λ2,

ω3 = −ω1, ω4 = −ω2 (24)

the two breathers with a periodic wave background
would be derived. According to the different values
of χ0,1, the two breathers will be displayed in Fig. 7.

4 Discussion on solutions

In this section, we mainly discuss the influence of
parameters on the solutions. By substituting two inde-
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Fig. 6 One-breather with a periodic wave background at t = 1 with: a χ0,2 = −2π ; b χ0,2 = 0; c χ0,2 = 2π

Fig. 7 Two-breather solution with a periodic wave background at t = 1 with λ1 = 2, λ2 = 2, ω1 = 1, ω2 = 1
2 , ω5 = 1, χ0,3 =

0, χ0,5 = 4π
5 : a χ0,1 = −10π ; b χ0,1 = − π

2 ; c χ0,1 = 10π

pendent variables in the τ function, soliton solutions
and breather solutions can be constructed respectively.
For line solitons on the periodic wave background,
when N = 0, the periodic wave is shown in Fig. 1.
If N = 1, through asymptotic analysis, we conclude
that u+

1 (χ1) = (− p1
p∗
1
)u−

1 (χ1 − θ) and | − p1
p∗
1
| = 1.

The elastic collision of two-soliton occurs at this time,
including degenerate soliton and non-degenerate soli-
ton. With respect to general two-soliton, |u| compo-
nent possesses five dynamical patterns with a periodic
wave background (see Fig. 2), while |r | component
only appears the two-antidark-antidark-soliton. Mean-
while, the high-order line soliton solutions with a peri-
odic wave background are demonstrated (see Fig. 3).

In the case of introducing parameters pi = ωi
2 + iλi ,

qi = ωi
2 − iλi , we derive the breather solutions. To

manipulate the breathers in both constant and peri-
odic wave background, our careful adjustment involves
dividing the determinant’s order inEq. (41).When N =
2K , ωK+ j = −ω j , λK+ j = −λ j , χ0,K+i = χ0,i , the
breather with a constant background can be obtained,
as shown in Fig. 4-5. When we fix χ0,1 and take differ-
ent values for χ0,2, the two breathers will interact. It’s
fascinating that two breathers will exhibit a triangular
pattern in the case ofχ0,2 is close toχ0,1. Conversely, if

N = 2K + 1, ωK+ j = −ω j , λK+ j = −λ j , χ0,K+i =
χ0,i , λ2K+1 = 0, we acquire the breathers within the
periodic wave background (see Fig. 6-7). As for the
rational solutions obtained by taking the long wave
limit on the periodic solutions, we have studied it in
Ref. [18].

5 Conclusion

In this paper, we mainly utilize the KP reduction
method to construct the solitons and breathers with a
periodic wave background in Eq. (1). Taking differ-
ent parameter constraints on the tau functions, the 2N
solitons and the N breather solutions with a periodic
wave background could be expressed.Within the back-
ground of a periodic wave, line solitons exhibit a clas-
sification of five distinct wave types. The breathers on
both the constant background and the periodic wave
background can be formed when the order of the deter-
minant (41) is either odd or even. Elastic collisions
between twobreathers are observed through an analysis
of their dynamic behavior on a constant background.
It is apparent that when the order of the determinant
increases, the period of the periodic wave also strength-
ens. Besides, the form of these solutions that we obtain
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ismore concise andmeaningful for the research of non-
linear mathematical physical models.
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Appendix A

In this part, we will prove the Theorem (2.1) and The-
orem (3.1). Firstly, we utilize the variable transforma-
tions

u = g

f
, u∗(−x, y,−t) = h

f
, r = −2i(ln f )xy,

(25)

to convert the Eq. (2) into the bilinear equation

(Dt − i Dx Dy + βD3
x + βDx )g · f = 0,

(3D2
x + 1) f · f = gh.

(26)

Taking reduction condition

(∂x − ∂s) f = c f, (27)

the (3 + 1) dimensional system of Eq. (1) can be
obtained

(Dt − i Dx Dy + βD3
x + βDx )g · f = 0,

(3Dx Ds + 1) f · f = gh,
(28)

under the nonlocal condition

f (x, y, t)g∗(−x, y,−t) = f ∗(−x, y,−t)h(x, y, t),

(29)

where c is constant, g, h are complex-valued functions,
and f is a real-valued function.

Based on the Sato theory [31,32], the bilinear equa-
tions in the KP hierarchy

(D3
x1 + 3Dx1Dx2 − 4Dx3)τn+1τn = 0,

(Dx1Dx−1 − 2)τnτn = −2τn+1τn−1,
(30)

exist the determinant

τn = det
1≤i, j≤N

(m(n)
i j ), (31)

where

m(n)
i j = c̃iδi j + pi + si

pi + q j

(−pi
q j

)n

eξi+η j ,

ξi = 1

pi
x−1 + pi x1 + p2i x2 + p3i x3 + ξ0,i ,

η j = 1

q j
x−1 + q j x1 − q2j x2 + q3j x3 + η0, j .

(32)

In order to obtain periodic solutions, we employ the
independent variables x1 = 1√

6
x , x2 = 1

2 iβy, x3 =
−

√
6
9 βt −

√
6
9 x , then the Eq. (31) can rewrite

τn =
N∏
i=1

(pi + si )e
ζi det

1≤i, j≤N
(
̂

m(n)
i j ), (33)

where

̂

m(n)
i j = c̃iδi j e

−ζi
1

pi + si
+ 1

pi + q j
(− pi

q j
)n, (34)

with

ζi = ξi + ηi

= 1√
6
(pi + q j )x + i

2
β(p2i − q2j )y

−
√
6

9
(βt + x)(p3i + q3j ) + χ0,i .

(35)

To yield soliton solutions, we consider M = 2N +
1 in Eq. (31) and restrict the parameters obeying the
following conditions

s j = −p j + 1, pM+i = −pi , qM+i = −qi , qi = p∗
i ,

q2M+1=−p∗
2M+1, c̃ j =b j , cM+i =−c∗i , c̃2M+1= ic2M+1,

(36)

then one can obtain

χ∗
2M+1(−x, y,−t) = χ2M+1(x, y, t),

χ∗
M+i (−x, y,−t) = χi (x, y, t),

(37)

and derive

̂

m∗(n)
M+i, j (−x, y,−t) = −c∗

i δM+i, j e
−χi

− 1

p∗
i + pM+ j

(
− pM+ j

p∗
i

)−n

= −m̂i,M+ j
(−n)

(x, y, t),

(38)

which implies

τ ∗
n (−x, y,−t) = (−1)3N τ−n(x, y, t). (39)

As a result, Eq. (30) can be reduced to the bilinear
Eqs. (28) with f = τ0, g = τ1, h = τ−1.
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To generate breathers to Eq. (1), we select several
variable transformations

x−1 = − 1√
6
is, x1 = 1√

6
i x, x2 = −1

2
iβy,

x3 = −i

√
6

9
βt − i

√
6

9
x, (40)

then the tau function becomes

τn =
N∏
i=1

(pi + si )e
χi det

1≤i, j≤N
(m(n)

i, j ), (41)

where m(n)
i, j is given by

m(n)
i j = c̃iδi j

(pi + si )eξi+η j

+ 1

pi + q j

(
− pi
q j

)n

,

χi = ξi + ηi = 1√
6
(pi + p∗

i )i x − 1

2
iβ(p2i − p∗2

i )y

−
√
6

9
i(p3i + p∗3

i )(βt + x) + χ0
i . (42)

When the parameters satisfy c̃i, j = 1, s j =
q j , q j = p∗

j , one could conclude thatχ
∗
i (−x, y,−t) =

χi (x, y, t). In this case, we further derive

m∗(−n)
j,i (x, y, t) = m∗(n)

i, j (−x, y,−t),

τ ∗
n (−x, y,−t) = τ−n(x, y, t). (43)

Additionally, determining f = τ0, g = τ1, h = τ−1

and letting

pi = ωi

2
+ iλi , qi = ωi

2
− iλi , (44)

solutions for the breather are discovered.
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