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Abstract In this paper, the nonlinear traveling wave

vibrations are investigated for the graphene-reinforced

porous aluminum-based sandwich rotating conical

(GRPA-SRC) shell with the arbitrary boundary con-

ditions. The material of the rotating conical shell is the

sandwich structure composed of the graphene-rein-

forced porous aluminum-based (GRPA) material. Two

surfaces of the rotating conical are made of the

metallic aluminum and central core layer is the GRPA.

There are three graphene distribution types and three

porosity distributions applied to the nonlinear vibra-

tion analysis. We consider the comprehensive effect of

combining the transverse harmonic excitation and in-

plane load on the nonlinear traveling wave vibrations

of the rotating conical shells. The first-order shear

deformation theory (FSDT) and von Kármán nonlin-

ear strain–displacement relations are employed in the

structural modeling. The effects of Coriolis forces and

initial hoop tensions are considered to obtain the

kinetic energy, potential energy and external force

work. Since the vibration form of the rotating conical

shell is the traveling wave vibration, the trigonometric

functions are used to represent the mode in the

circumferential direction. Chebyshev polynomials are

used to solve the axial direction. Further utilizing

energy principle, the nonlinear ordinary differential

equations are obtained for the GRPA-SRC shell with

two degrees of freedom. The amplitude–frequency

response curves, force–amplitude response curves,

bifurcation diagrams, maximum Lyapunov exponent,

waveforms, phase portraits and Poincare map of the

GRPA-SRC shell are calculated by using Runge–

Kutta method. Adding the springs at both ends of the

GRPA-SRC shell can simulate the arbitrary boundary

conditions. During the solution process, the circum-

ferential direction of the GRPA-SRC shell is repre-

sented by the trigonometric function, and direction of

the generatrix is denoted by using Chebyshev poly-

nomials. The arbitrary boundary conditions are

obtained for changing the spring potential energy.

This work is expected to provide the practical value for

the nonlinear vibrations of the graphene-reinforced

porous metal rotating shell with the arbitrary boundary

conditions.
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1 Introduction

The GRPA materials retain the excellent properties of

the graphene-reinforced composites, including two-

dimensional open large surface, high conductivity and

high thermal conductivity. Additionally, research has

demonstrated that the graphene-reinforced porous

materials can exhibit unique properties including the

open band gap, large specific surface area and high

mechanical strength [1–3]. The rotating conical shells

are widely used in the aerospace, missile nose cones,

gas turbines, high-speed centrifugal separators, high-

power jet engines, motors and rotor systems. The top

of the missile, namely the missile nose cone, is the

conical shell structure with the cantilever boundary

condition. In the design process, starting from the

requirements of the lightweight structure, the metal

porous materials are widely used in this structure.

Adding a small amount of the graphene materials will

cause the changes of the significant structural param-

eters. In order to meet the requirements of the

structural performance, the material selected in this

article is the GRPA material. This article conducts the

theoretical research on the nonlinear vibrations of the

GRPA-SRC shell and provides the practical references

for the engineering fields. The GRPA-SRC shells are

influenced by Coriolis force and initial ring tensor,

making the nonlinear vibrations of the GRPA-SRC

shells more complex and requiring investigation

through the traveling wave vibrations [4–6]. At

present, a significant amount of researches have been

conducted on the conical shells with the classical

boundary conditions, such as the simply supported,

clamped supported and free boundary conditions.

However, some structures cannot be described by the

classical boundary conditions. The novelty of this

paper is the adding the springs at both ends of the

GRPA-SRC shell to simulate the arbitrary boundary

conditions. The circumferential direction of the

GRPA-SRC shell is represented by the trigonometric

function, and the direction of the generatrix is solved

by using Chebyshev polynomials during the solution

process. The arbitrary boundary conditions are

achieved by changing the spring potential energy.

This paper provides the valuable ideas for studying of

the nonlinear vibrations in other rotating shells with

the arbitrary boundary conditions.

The graphene-reinforced composites can signifi-

cantly impact the mechanical properties of various

composite structures, and a majority of researches

have been conducted as referenced in [7–11]. The

vibration researches of the graphene-reinforced metal

porous (GRMP) focus on the beam, plate and shell

structures. Kitipornchai et al. [12] examined the

vibration characteristics of the GRMP beams based

on the Timoshenko beam theory and found that the

smaller the number of pores on the upper and lower

surfaces of the beam, the larger the vibration fre-

quency. Yas and Rahimi [13] investigated the thermal

vibration of the functionally graded porous nanocom-

posite beams reinforced by the graphene platelets. Pan

et al. [14] employed the differential quadrature

method to solve the natural vibration problem of the

GRMP plates. Using the FSDT and Chebyshev

polynomials, Yang et al. [15] conducted research on

the free vibration and buckling of the GRMP

nanocomposite plates. Through the improved Donnell

shell theory and Hamilton’s principle, the control

equations of the GRMP cylindrical shells are obtained.

The nonlinear frequencies of the GRMP cylindrical

shells are determined by using the multi-scale method,

as described in reference [16]. Dong et al. [17]

explored the dimensionless natural frequency and

critical velocity of the GRMP rotating cylindrical

shells.

There are amounts of literatures interested in the

free vibration and buckling of the rotating shell

structures and other’s structures with the linear

strain–displacement relations. Civalek et al. [18, 19]

conducted the free vibration and buckling analysis on

the carbon nanotube-reinforced composite material

rectangular and non-rectangular plates by using the

discrete singular convolution method. Sobhani et al.

[20, 21] studied the vibration characteristics of the

cowl shell-like structures and hemispherical–cyclical–

conical shell structures. Yang et al. [22, 23] conducted

studies on the free vibration and buckling analysis of

the eccentric rotating cylindrical shells, utilizing

carbon fiber-reinforced composites and graphene-

reinforced composites as materials, respectively.

Ghasemi and Meskini [24] explored the free vibration

of the porous laminated composite rotating cylindrical
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shells under the simply supported boundary condi-

tions. Song et al. [25] employed a combination of the

orthogonal polynomials with Rayleigh–Ritz method to

investigate the free vibration of the rotating cylindrical

shells. Alujević et al. [26] analyzed the natural

vibrations and mode shapes of the rotating cylindrical

shells with the free boundary condition, assuming that

the modes are represented by the trigonometric

functions in the circumferential direction and the axis

direction is represented by the sum of eight weighted

exponential functions. Dey and Karmakar [27] utilized

the finite element method to analyze the free vibration

of the delaminated twisted graphite–epoxy cross-ply

composite rotating conical shells. Under various

classical boundary conditions, Hossein et al. [28, 29]

examined the forward and backward wave frequencies

of the thick rotating conical shells using the graphene

nanoplatelet-reinforced materials and functionally

graded agglomerated carbon nanotubes materials.

Shakouri et al. [30], based on the generalized differ-

ential quadrature method and Donnel shell theory,

considered the thermal condition and rotational speed

to solve the natural vibration characteristics of the

functionally graded material truncated conical shells.

There have been extensive researches on the

nonlinear vibrations of the non-rotating cylindrical

shells, conical shells and shells with interesting

shapes. Among them, references [31–34] utilized

various deformation theories and methodologies,

exploring various boundary conditions in their inves-

tigation of the nonlinear vibrations of these shells.

Pinho et al. [35] used Sanders-Koiter’s nonlinear

strain–displacement relationship to obtain the nonlin-

ear dynamic governing equation of motion for the

hyperbolic shell on the nonlinear free vibration.

Dastjerdi et al. [36] studied the nonlinear dynamics

of the functionally graded materials toroidal shape and

cylindrical shell structures and took into account the

combined effects of the temperature and humidity.

Due to the fact that the rotating cylindrical and conical

shell belongs to the traveling wave vibration, it is

crucial to study the nonlinear large amplitude vibra-

tion. Based on the Lagrange equation and Chebyshev

polynomials, Chai et al. [37, 38] investigated the

nonlinear frequencies and frequency responses of the

rotating cylindrical shells with the arbitrary elastic

supports boundary conditions. In the study of the

frequency responses, the boundary conditions are

discontinuous. Sun et al. [39–41] explored the

nonlinear traveling wave vibrations of the rotating

thin-walled cylindrical shells with the multiple inter-

nal resonances, considering the influence of carbon

nanotube-reinforced composite materials. Song et al.

[42] conducted theoretical and experimental research

on the nonlinear vibration of rotating cylindrical shells

under the action of tip friction. Zhang et al. [43]

studied the nonlinear forced vibration of the rotating

thin-walled cylindrical shells under the harmonic

excitations. Abdollahi et al. [44] investigated the

nonlinear vibrations of the annular cylinders coupled

with the fluid medium to identify the effective

parameters on the stability margins at different

rotation speeds. Aris and Ahmadi et al. [45] proposed

the semi-analytical method to analyze the nonlinear

vibration responses of the functionally gradedmaterial

rotating conical shells.

One can observe that a large amount of researches

are dedicated to the free vibration of the rotating

cylindrical shells and conical shells, as well as the

nonlinear vibration of cylindrical shells with the

classical boundary conditions. It is a significant

problem to study the nonlinear vibrations of the

rotating conical shells with the general boundary

conditions, for which the arbitrary boundary condi-

tions are obtained by introducing the artificial springs.

Li et al. [46] conducted the nonlinear vibration control

of the cylindrical shell with the discontinuous piezo-

electric plate on the elastic boundary conditions. Li

et al. [47] used the artificial springs on all four sides of

the cylindrical curved plate to simulate actual bound-

ary conditions and analyzed the free vibration and

modal shapes using the differential quadrature

method. Regarding the arbitrary boundary conditions,

references [48–51] analyzed the free vibration analy-

sis of the cylindrical shells, conical shells, joined

cylindrical–conical shells and other coupled shell

structures. Ye et al. [52] established the unified

solution to solve the free vibration problems for

different types of open shell structures, including the

cylindrical, conical and spheres shells with the spring

boundary conditions.

In this paper, the nonlinear traveling wave vibra-

tions are investigated for the GRPA-SRC shell. Five

evenly distributed springs are added to both ends of the

GRPA-SRC shells to obtain the arbitrary boundary

conditions. The material of the rotating conical shell

with the arbitrary boundary conditions is the gra-

phene-reinforced metal porous materials. There are
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three graphene distribution types and three porosity

distributions applied to the nonlinear vibration anal-

ysis. We consider the comprehensive effect of com-

bining the transverse harmonic excitation and in-plane

load on the nonlinear traveling wave vibrations of the

rotating conical shells. The kinetic energy, potential

energy and external force work of the rotating conical

shell are obtained by using the FSDT and von Kármán

nonlinear strain–displacement relations. Since the

vibration form of the rotating conical shell is the

traveling wave vibration, the trigonometric functions

are used to represent the mode in the circumferential

direction. Chebyshev polynomials are used to solve

the axial direction. Further utilizing energy principle,

the nonlinear ordinary differential equations are

obtained for the GRPA-SRC shell with two degrees

of freedom. The amplitude–frequency response

curves, force–amplitude response curves, bifurcation

diagram, maximum Lyapunov exponent, waveforms,

phase portraits and Poincare map of the GRPA-SRC

shell are calculated by using Runge–Kutta method.

The approach in this paper provides a valuable idea for

the study of the nonlinear vibrations in the rotational

shell structures with the arbitrary boundary conditions.

2 Dynamic modeling of vibration

Figure 1a depicts the rotating conical shell model,

where the length of the generatrix, semi-vertex angle,

large radius and small radius are L, b, Rb and Ra,

respectively. The orthogonal curvilinear coordinate

system (x, h, z) is fixed on the middle surfaces of the

rotating conical shell. The conical shell rotates around

the central axis at speed X; two torsion springs

(k/x; k/h) and three linear springs (ku; kv; kw) are

evenly distributed at both ends of the GRPA-SRC

shell. The units for linear springs and rotational

springs are N/m2 and N/rad, respectively. The arbi-

trary elastic support boundary conditions are achieved

by changing the elastic stiffness of the springs. The

arbitrary position radius of the rotating conical shell is

expressed as R ¼ Ra þ x � sin b.
Figure 1b demonstrates the material distribution

types of the sandwich rotating conical shell, where the

material on both sides with the thickness hb is the

metallic aluminum. The material of the central core

layer with the thickness h is the GRPAmaterial. There

are three pore distribution types of the GRPA-SRC

shells. According to the distribution forms of the pores

along thickness of the conical shell, they are divided

into the Type-1, Type-2 and Type-3, as shown in

Fig. 2. The porosity distribution of the Type-1 is

characterized bymore pores in the middle. The Type-2

porosity distribution indicates that there are fewer

pores in the middle. The Type-3 porosity distribution

means that the pores are evenly distributed along the

core layer thickness. Their material properties are

presented as [15]

Type-1:

ET1 zð Þ ¼ E�
G 1� Nc cos

pz
h

� �� �
; qT1 zð Þ

¼ q�G 1� qc cos
pz
h

� �� �
; qT1 zð Þ

¼ q�G 1� qc cos
pz
h

� �� �
ð1aÞ

Type-2:

ET2 zð Þ ¼ E�
G 1� N�

c 1� cos
pz
h

� �� �� �
; qT2 zð Þ

¼ q�G 1� q�c 1� cos
pz
h

� �� �� �
ð1bÞ

Type-3:

Fig. 1 Dynamic model of the GRPA-SRC shell is given, a the

rotating conical shell model, b the material distribution diagram

of sandwich conical shell
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ET3 zð Þ ¼ E�
Ga; qT3 zð Þ ¼ q�Ga

� ð1cÞ

where E�
G and q�G are the effective elastic modulus and

density without the porosity, Nc, N
�
c and a correspond

to the porosity coefficient of three distributions,

respectively, q, q�c and a� are the mass density

coefficients of three distributions, respectively.

Based on the improved Halpin–Tsai micromechan-

ical model [15], the effective Young’s modulus of the

graphene-reinforced composite materials is given as:

E�
G ¼ 3 1þ nLgLVGPLð Þ

8 1� gLVGPLð Þ Em þ 5 1þ nWgWVGPLð Þ
8 1� gWVGPLð Þ Em

ð2Þ

where

gL ¼ EGPL � Em

EGPL þ nLEm

; gW ¼ EGPL � Em

EGPL þ nWEm

; nL

¼ 2lGPL
hGPL

; nW ¼ 2wGPL

hGPL
ð3Þ

where lGPL, wGPL and hGPL are the length, width and

thicknesses of the graphene platelets, respectively, Em

and EGPL represent the Young’s modulus of the metal

matrix and graphene materials, respectively, VGPL

means volume content of the graphene.

According to the extended rule of the mixture, the

density and Poisson’s ratio of the porous graphene-

reinforced functionally gradient materials are obtained

as follows [53]:

q�G ¼ qGPLVGPL þ qm 1� VGPLð Þ; v�G
¼ vGPLVGPL þ vm 1� VGPLð Þ ð4Þ

where qGPL and vGPL are the mass density and

Poisson’s ratio of the graphene material, and qm and

vm denote the parameters of the metal matrix. Pois-

son’s ratio for the open metal foam conical shell is

fixed.

The typical mechanical property of the open-cell

metal foams, Young’s modulus and density of the

porous and non-porous materials are related to [53]

ET zð Þ
E�
G

¼ qT zð Þ
q�G

� �2

ð5Þ

The relationship between the porosity and mass

density coefficients of three porosity distributions is

further obtained as follows

Fig. 2 Sketch maps are given for different porosity distribution types, a Type-1, b Type-2, c Type-3
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1� qc cos
pz
h

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Nc cos

pz
h

� �r
; a� ¼

ffiffiffi
a

p

ð6aÞ

1� q�c 1� cos
pz
h

� �� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� N�

c 1� cos
pz
h

� �� �r

ð6bÞ

Assuming that the mass is equal for the graphene

nanocomposite plates with different pores, it is

deduced that the relationship between the porosities

of the Type-1 distribution and other two distributions

is given as follows

Z h=2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� N�

c 1� cos
pz
h

� �� �r
dz

¼
Z h=2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Nc cos

pz
h

� �r
dz ð7aÞ

Z h=2

0

ffiffiffi
a

p
dz ¼

Z h=2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Nc cos

pz
h

� �r
dz ð7bÞ

Figure 3 demonstrates the distribution patterns of

three graphene nanocomposite plates. In the figure, the

blue color indicates a high graphene content, while the

yellow color indicates a low graphene content. The

GPL-X pattern denotes a low amount of the graphene

in the middle and a high amount of the graphene on

both sides. The GPL-O pattern means a high content of

the graphene in the middle and less on both sides. The

GPL-U pattern represents a uniform distribution of the

graphene in the thickness direction. We assume that

the content of the graphene nanocomposite plates in

each pattern is equal, but the volume composition of

the graphene varies differently along the plate thick-

ness; the mathematical expressions for graphene

volume fraction are as follows [15]

GPL-X

VGPL zð Þ ¼ Vi1 1� cos
pz
h

� �� �
ð8aÞ

GPL-O

VGPL zð Þ ¼ Vi2 cos
pz
h

� �
ð8bÞ

GPL-U

VGPL zð Þ ¼ Vi3 ð8cÞ

Fig. 3 Sketch maps are obtained for different distribution types of the graphene-reinforced types, a GPL-X, b GPL-O, c GPL-U
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where Vi1, Vi2 and Vi3 denote the maximum volume

components of three graphene distributions in the

thickness direction, respectively, and subscripts i = 1,

2 and 3 correspond to the pore distributions of the

Type-1, Type-2 and Type-3, respectively.

The total volume component V�
GPL of the graphene

is expressed by the total content KGPL of the graphene

nanocomposite plates [16]

V�
GPL ¼ KGPLqm

KGPLqm þ qGPL � KGPLqGPL
ð9Þ

where the maximum volume components Vi1, Vi2 and

Vi3 are calculated by the following formula.

GPL-X

V�
GPL

Z h=2

�h=2

qT zð Þ
q�G zð Þdz ¼ Vi1

Z h=2

�h=2

1� cos
pz
h

� �� � qT zð Þ
q�G zð Þdz

ð10aÞ

GPL-O

V�
GPL

Z h=2

�h=2

qT zð Þ
q�G zð Þdz ¼ Vi2

Z h=2

�h=2

cos
pz
h

� �� � qT zð Þ
q�G zð Þdz

ð10bÞ

GPL-U

V�
GPL

Z h=2

�h=2

qT zð Þ
q�G zð Þdz ¼ Vi3

Z h=2

�h=2

qT zð Þ
q�G zð Þdz ð10cÞ

According to reference [15], there is no special

explanation for the material properties of the GRPA-

SRC shell listed as follows

EGPL ¼ 1:01TPa; qGPL ¼ 1062:5 kg=m3; vGPL ¼ 0:186;

lGPL ¼ 2:5lm;wGPL ¼ 1:5 lm; hGPL ¼ 1:5 nm; Em ¼ 70GPa;

qm ¼ 2707 kg=m3; vm ¼ 0:3:

The displacement fields for the GRPA-SRC shell in

the framework of the FSDT are written as:

û ¼ u0 þ z/x; v̂ ¼ v0 þ z/h; ŵ ¼ w0 ð11Þ

where u0, v0 and w0 are the mid-plane displacements

and /x and /h represent the angular displacements

about h and x, respectively.

As a consequence, the following the nonlinear

strain–displacement relationships are obtained as:

ex ¼ e0x þ ze1x ; eh ¼ e0h þ ze1h; cxh ¼ c0xh þ zc1xh

cxz ¼ /x þ
ow0

ox
; chz ¼

1

R

ow0

oh
� v0 cos b

� �
þ /h

ð12Þ

where eij and cixh i ¼ 0; 1; j ¼ x; h; xhð Þ are the expres-

sions for the strain components, as shown in Appendix

A.

In addition, the linear elastic constitutive relation of

the GRPA-SRC shell is given as:

r̂x
r̂h
r̂hz
r̂xz
r̂xh

9>>>>=
>>>>;

¼

8>>>><
>>>>:

Q̂11 Q̂21

Q̂12 Q̂22

KQ̂44

KQ̂55

Q̂66

2
66664

3
77775

ex
eh
chz
cxz
cxh

8>>>><
>>>>:

9>>>>=
>>>>;

ð13Þ

where K = 5/6 is the shear correction coefficient, as

shown in reference [15] and Q̂ij are the stiffness

coefficients are obtained as:

Q̂11 ¼ Q̂22 ¼
ETi zð Þ

1� v�G
� �2 ; Q̂12 ¼ Q̂21

¼ v�GETi zð Þ
1� v�G

� �2 ; Q̂44 ¼ Q̂55 ¼ Q̂66 ¼
ETi zð Þ

2 1þ v�G
� �

ð14Þ

The strain energy is expressed as:

U ¼ Uc þ Uh þ Vs ð15Þ

whereUc is the strain energy of the static conical shell,

Uh is the strain energy caused by initial ring tensor and

Vs is the spring potential energy.

The expressions are obtained as follows

Uc¼
1

2

Z Z Z

V

exr̂xþehr̂hþchzr̂hzþcxzr̂xzþcxhr̂xh
� �

RdV

¼1

2

Z 2p

0

Z L

0

ðNxxe
0
xþMxxe

1
xþNhhe

0
hþMhhe

1
h

þQhzchzþNxhc
0
xhþMxhc

1
xhþQxzcxzÞRdxdh

ð16aÞ

U2¼
1

2

Z Z Z
V

Nh
h

R2
v̂cosb�oŵ

oh

� �2

þ v̂sinb�oû

oh

� �2
 

þ ov̂

oh
þûsinbþŵcosb

� �2
!
RdV

ð16aÞ
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Vs¼
1

2

Z 2p

0

ku0u0þkv0v0þkw0w0þk/x0/xþk/h0/h

	 

x¼0

Radh

þ1

2

Z 2p

0

kuLu0þkvLv0þkwLw0þk/xL/xþk/hL/h

	 

x¼L

Rbdh

ð16cÞ

where the internal forces and moments of the GRPA-

SRC shell are obtained in Appendix B and the initial

hoop tension of the GRPA-SRC shell Nh
h is obtained

by Nh
h ¼ qThX

2R2.

The kinetic energy is represented as

K ¼ 1

2

ZZZ

V

q 2X sin b _̂vû� v̂ _̂u
� �

þ 2X cos b _̂vŵ� _̂wv̂
� ��

þ _̂u2 þ _̂v2 þ _̂w2
� �

þ X2v̂2 þ X2 û sin bþ ŵ cos bð Þ2
�
RdV

ð17Þ

The work done by the in-plane load and transverse

harmonic excitation in terms of the transverse dis-

placement is written as:

W ¼ 1

2

Z 2p

0

Z L

0

P
ow

ox

� �2

Rdxdh

þ 1

2

Z 2p

0

Z L

0

FwRdxdh� 1

2

Z 2p

0

Z L

0

lw _wRdxdh

ð18Þ

where the in-plane load P ¼ P0 þ Pa cosð-tÞ, P0 and

Pa are the amplitudes of the static and dynamic parts of

the in-plane load P, respectively, F ¼
Fa cosð-tÞ sin nhð Þ þ cos nhð Þð Þ is the transverse har-

monic excitation, Fa is the amplitude of F, l is the

damping coefficient and - represents the external

excitation frequency.

3 Solution method

The vibration problem of the GRPA-SRC shell needs

to investigate from the perspective of traveling wave

vibration [24–27]. Therefore, the circumferential

direction h is represented by the trigonometric func-

tions. The mode function along the x-direction is

solved by Chebyshev polynomials [46].

The five displacement components in the middle

plane are expressed as

u0 ¼
XM
m¼1

UmT
u0
m nð Þ � cos nhþ xtð Þ; v0

¼
XM
m¼1

VmT
v0
m nð Þ � sin nhþ xtð Þ ð19aÞ

w0 ¼
XM
m¼1

WmT
w0
m nð Þ � cos nhþ xtð Þ; /x

¼
XM
m¼1

UxmT
/x
m nð Þ � cos nhþ xtð Þ ð19bÞ

/h ¼
XM
m¼1

UhmT
/h
m nð Þ � sin nhþ xtð Þ ð19cÞ

where n = (2x/L - 1) are coordinate transformations

from x to n. The reason for Chebyshev polynomials is

orthogonal within the range of (- 1, 1). Letter n is the

circumferential wave number. Um, Vm, Wm, Uxm and

Uhm are the unknown coefficients; Ta
m nð Þ (a = u0, v0,

w0, /x, /h) are Chebyshev polynomials and are

obtained as follows [27, 46]

Ta
1 nð Þ ¼ 1; Ta

2 nð Þ ¼ n; Ta
m nð Þ

¼ 2nTa
m�1 nð Þ � Ta

m�2 nð Þ; ðm � 3Þ ð20Þ

The algebraic equations are obtained by substitut-

ing Eqs. (19)–(20) into Eqs. (15)-(17) according to the

Rayleigh–Ritz method.

o Umax � Tmaxð Þ
Umn

¼ 0;
o Umax � Tmaxð Þ

Vmn
¼ 0;

o Umax � Tmaxð Þ
Wmn

¼ 0;
o Umax � Tmaxð Þ

Uxmn
¼ 0

o Umax � Tmaxð Þ
Uhmn

¼ 0; m ¼ 1; 2; 3; :::;M � 1;ð

M: n ¼ 1; 2; 3; :::;N � 1;N:Þ

ð21Þ

In order to obtain the modes and frequencies of the

GRPA-SRC shell, homogeneous linear algebra equa-

tions are solved by ignoring the nonlinear terms in

Eq. (21). We further gain the characteristic equation

matrix.

K1 þ xK2 þ x2M
� �

X ¼ 0 ð22Þ

where

X ¼ U1;U2; :::;UM;V1;V2; :::;VM;W1;W2; :::;WM;½ -

represents displacement vector, K1 and M are the

stiffness matrix and mass matrix, respectively, and K2

represents the gyroscopic effect in spinning state.
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The influence of Coriolis acceleration reflected in

the K2 matrix will cause the traveling wave vibrations

of the GRPA-SRC shell, producing different forward

(xf ) and backward (xb) traveling wave frequencies

under the same mode. Conducting research on the

nonlinear vibrations of the traveling wave for the

GRPA-SRC shell, we use the single-mode vibration

corresponding to the fundamental frequency and

reconsider the modal function expressions [33–35]

u0 ¼ Tu0
1 nð Þ u1 tð Þ cos nhð Þ þ u2 tð Þ sin nhð Þð Þ; v0

¼ Tv0
1 nð Þ v1 tð Þ sin nhð Þ þ v2 tð Þ cos nhð Þð Þ

ð23aÞ

w0 ¼ Tw0
1 nð Þ w1 tð Þ cos nhð Þ þ w2 tð Þ sin nhð Þð Þ; /x

¼ T/x
1 nð Þ /x1 tð Þ cos nhð Þ þ /x2 tð Þ sin nhð Þ

� �

ð23bÞ

/h ¼ T/h
1 nð Þ /h1 tð Þ sin nhð Þ þ /h2 tð Þ cos nhð Þ

� �

ð23cÞ

where us, vs, ws, /xs and /hs(s = 1, 2) represent the

displacement of time t.

The subscript 1 or 2 is added to the generalized

coordinate to indicate if it is associated with the cos or

sin functions in h except for v0 and /h, for which the

two functions are exchanged (this subscript is not used

for axisymmetric terms, since they have no depen-

dence on h). n is the same as that in Eq. (18), and Ta
1

(a = u0, v0, w0 ux, uh) are the first mode shape

functions corresponding to the circumferential wave

number n of the GRPA-SRC shell.

According to the Lagrange equation L = T - U,

the nonlinear dynamic equations of the GRPA-SRC

shell are given as

d

dt

oL

o _qr

� �
� oL

oqr
� oW

oqr
¼ 0 ð24Þ

where qr ¼ u1; u2; v1; v2;w1;w2;/x1;/x2;/h1;/h2½ �T .
The in-plane displacement (us,vs) and rotational

displacement /xs;/hsð Þ are represented by the trans-

verse displacement (ws) according to ignore their

inertial terms (s = 1, 2) [29]. Further, the form of the

nonlinear dynamic equations coupled with w1 and w2

of the GRPA-SRC shell is obtained as:

€w1 ¼l11 _w1 þ n11 þ n12Pað Þw1 þ n13 þ n14Pað Þw2

þ n15w
2
1 þ n16w

2
2 þ n17w

2
1w2 þ n18w1w

2
2

þ n19w
3
1 þ n110w

3
2 þ n111w1 _w1 þ n112 _w1w2

þþn113w1 _w2 þ n114w2 _w2 þ n115w2 þ n116Fa

ð25aÞ

€w2 ¼l12 _w2 þ n21 þ n22Pað Þw1 þ n23 þ n24Pað Þw2

þ n25w
2
1 þ n26w

2
2 þ n27w

2
1w2 þ n28w1w

2
2

þ n29w
3
1 þ n210w

3
2 þ n211w1 _w1 þ n212 _w1w2

þþn213w1 _w2 þ n214w2 _w2 þ n215w1 þ n216Fa

ð25bÞ

where lij and nij are coefficients.
In the following analyses, the nonlinear dynamic

behaviors are investigated of the GRPA-SRC shell

under the in-plane and transverse excitations by using

Runge–Kutta method in Eq. (25). We obtain the

amplitude–frequency response curves, force–ampli-

tude response curves, bifurcation diagrams, maximum

Lyapunov exponent, phase portraits, waveforms and

Poincaré map, the detailed research of the GRPA-SRC

shell with the arbitrary boundary conditions.

The arbitrary spring-supported boundary condi-

tions of the GRPA-SRC shell are obtained by varying

the spring stiffness. Table 1 shows the boundary

conditions corresponding to spring stiffness values,

with C, S and F corresponding to the clamed support,

simple support and free support, respectively. E1, E2

and E3 are the elastic support boundary conditions.

3.1 Convergence and comparison

The material properties, geometric parameters and

dimensionless frequency expressions are selected as

follows:

Table 1 Values of the spring stiffness and its boundary

conditions

Boundary condition ku kv kw kux kuh

C 1013 1013 1013 1013 1013

S 0 1013 1013 0 1013

F 0 0 0 0 0

E1 1013 1013 1013 105 105

E2 105 105 1013 1013 1013

E3 105 105 105 105 105
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b ¼ 30�, n = 1, h/Ra = 0.01, L/Ra = 6,t ¼ 0:3,

x�
b;x

�
f

� �
¼ xb;xf

� �
Rb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2ð Þq=E

p
.

Table 2 verifies the convergence of Chebyshev

polynomials. The frequency results are compared with

Han and Chu [54] and Dai et al. [55]. The errors in

Table 2 are given the between the existing literature

with the results M = 7. It is seen that the frequency

obtained in this paper is very consistent with the

results of the existing literature. In other words, when

M = 7, the results of this paper converge. Therefore,

M = 7 is considered in the subsequent research.

3.1.1 Comparison 1

The material properties and geometric dimensions are

given as follows:

E ¼ 70Gpa, q ¼ 2707kg=m3, t ¼ 0:3, b ¼ 30�,
Ra ¼ 0:5m, L ¼ 1m.

Table 3 demonstrates the results of frequencies and

mode shapes of the homogeneous material non-

rotating conical shell are compared with ANSYS

software to verify the reliability. Brackets (n, m) rep-

resent the m-th-order frequency corresponding to the

circumferential wave number n. It is seen that the

comparison results are very perfect.

Table 3 Comparison of the frequencies (Hz) and mode shapes for conical shell under the F–C

F–C Mode No

1 2 3 4 5 6 7

Present 181.87 (4, 1) 198.05 (5, 1) 230.69 (3, 1) 246.08 (6, 1) 281.23 (7, 1) 336.25 (8, 1) 353.55 (5, 2)

Ansys 182.44 198.93 230.74 240.47 282.67 328.49 356.54

Error (%) 0.31 0.44 0.02 2.33 0.51 2.36 0.84

Present

Ansys

Table 4 Comparison of the

dimensionless fundamental

frequency parameters for

the rotating conical shell

under the C–C

X̂ m Chai [37] Saito [56] Sun [6] Present

x�
b x�

f x�
b x�

f x�
b x�

f x�
b x�

f

0.0025 2 0.05993 0.05593 0.0599 0.0559 0.0599 0.0559 0.0606 0.0566

3 0.11455 0.11155 0.1146 0.1116 0.1146 0.1115 0.1143 0.1113

4 0.21313 0.21078 0.2131 0.2108 0.2131 0.2108 0.2117 0.2093

5 0.34225 0.34033 0.3423 0.3403 0.3423 0.3403 0.3386 0.3367

0.005 2 0.06216 0.0546 0.0622 0.0546 0.0622 0.0542 0.0628 0.0548

3 0.11652 0.11058 0.1165 0.1106 0.1165 0.1105 0.1163 0.1103

4 0.21486 0.21018 0.2149 0.2102 0.2149 0.2101 0.2134 0.2087

5 0.3438 0.33997 0.3438 0.3400 0.3438 0.3399 0.3401 0.3363

Table 2 Verification of the

convergence of Chebyshev

polynomials

M = 3 M = 5 M = 7 M = 9 Han [54] Error (%) Dai [55] Error (%)

C–C x�
b 1.3802 0.9278 0.8942 0.8933 0.8843 1.12 0.8836 1.20

x�
f 1.0095 0.6238 0.6035 0.6036 0.6021 0.23 0.6018 0.28

S–S x�
b 0.8650 0.7492 0.7279 0.7259 0.7338 0.80 0.729 0.66

x�
f 0.5776 0.5437 0.5401 0.5398 0.5366 0.65 0.5331 0.66
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3.1.2 Comparison 2

Table 4 lists that comparison on the dimensionless

frequency parameters of the rotating conical shell with

the C–C boundary condition. X̂ ¼ XR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2ð Þq=E

p

and x�
b;x

�
f

� �
¼ xb;xf

� �
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2ð Þq=E

p
are

expressed for the dimensionless frequencies and

dimensionless rotating speeds. The results indicate

that there is high consistency between the present

work and existing researches [6, 37, 56].

4 Amplitude–frequency and force–amplitude

response curves

It is noticed that unless otherwise specified, the

physical dimensions of the GRPA-SRC shell are

given as follows:

b ¼ 30�, Ra ¼ 0:5 m, L ¼ 2 m, h ¼ 0:005m,

hb ¼ 0:001m, Nc ¼ 0:2, KGPL ¼ 1:0%,

X ¼ 200 rad=s,P0 ¼ 1000N, P0 ¼ 6000N,

Ft ¼ 300N.

Figure 4 illustrates the influence of the dimension-

less frequency of the GRPA-SRC shell with the

circumferential wave number n. In Fig. 4a, the

representation is for the stationary conical shell at

X ¼ 0, and Fig. 4b denotes the rotating conical shell.

The results indicate that when the conical shell is

stationary, a circumferential wave number n corre-

sponds to a frequency. At this time, the GRPA conical

shell is subjected to the standing wave vibrations. The

influence of Coriolis force and initial ring tensor, the

rotating conical shells exhibit two different frequen-

cies corresponding to a circumferential wave number

n, namely the forward traveling wave frequency and

backward traveling wave frequency, as shown in

Fig. 4b. Therefore, the rotating conical shells are the

traveling wave vibrations. During the vibration of the

GRPA-SRC shell, the main vibration is low-order

mode vibration. Therefore, the first-order mode is

taken in subsequent investigates. Figure 5 shows the

first-order modal diagrams are obtained with X ¼ 0

(n = 4) and X ¼ 200 rad=s (n = 2).

Fig. 4 Variation in the dimensionless frequency of the GRPA-

SRC shell with the n in the Type-1 and GPL-X under the C-F

boundary condition, a ~X ¼ 0, b ~X ¼ 0:1

Fig. 5 Modal diagrams are given of the GRPA-SRC shell with

the C-F boundary condition, a n = 2, b n = 4
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Figure 6 reveals the amplitude–frequency response

curves of the non-rotating GRPA sandwich conical

shell under the C-F boundary condition. It is easy to

observe that the amplitude–frequency response curves

exhibit the jumping phenomenon and hard spring

characteristic, which are the typical nonlinear charac-

teristic. The amplitude difference between the forward

sweep and backward sweep is not significant. Fig-

ures 7, 8, 9 and 10 present the amplitude–frequency

response curves of the GRPA-SRC shell. There is no

obvious jumping phenomenon and the amplitudes of

the forward and backward sweeps are the same,

indicating that the rotating conical shells exhibit weak

nonlinear characteristics. It is also shown that the

nonlinear vibrations of the GRPA-SRC shells are more

difficult to excite than the static vibration. There are

two resonance peaks in the amplitude–frequency

response curves, corresponding to the forward and

backward traveling wave frequencies, respectively.

Additionally, the external excitation frequencies of

resonance are greater than the frequencies of the

stationary conical shell.

The amplitude–frequency response curves of the

GRPA-SRC shell under different graphene distribu-

tions of the Type-1 are investigated, as shown in

Fig. 7a, b. The amplitude–frequency response curves

of the GPL-X pattern with different porosity distribu-

tions are shown in Fig. 7c, d. For w1 and w2, the GPL-

O pattern has a higher jump phenomenon, indicating a

larger resonance region. The amplitude of w1 is higher

than that of w2. Figure 7c, d gives that the amplitudes

of the three porosity distributions are almost the same.

The Type-2 has higher amplitudes than the other two

distributions, which means the Type-1 and Type-3

stiffness are larger.

Figure 8a, b describes that the amplitude–fre-

quency response curves of the GRPA-SRC shell under

different VGPL with the Type-1 and GPL-X. As shown

in this figure, the greater the frequency ratio (-=xi)

when reaching the first and second resonance peaks

and increased resonance area with reduce of the VGPL

for w1 and w2. Figure 8c, d indicates the amplitude–

frequency response curves of the GRPA-SRC shell

under different Nc with the Type-1 and GPL-X. It is

illustrated that increasing the porosity of the GRPA-

SRC shell, the lower the stiffness of the system, the

higher the amplitude of reaching the resonance peaks,

increasing the resonance area and the greater the

resonance frequency ratio (-=xi).

As shown in Fig. 9, there are the amplitude–

frequency response curves of the GRPA-SRC shell

under different rotation speeds. The results are shown

that as the dimensionless rotational speeds ~X increase,

the frequency ratio increases when the resonance peak

reached. For the w1, the amplitude of the GRPA-SRC

shell gradually decreases with increasing speeds,

while for the w2, the amplitude of the GRPA-SRC

shell remains almost unchanged with the change of

speeds; only the external excitation frequency that

reaches the resonance peak changes.

The amplitude–frequency response curves of the

GRPA-SRC shell with the Type-1 and GPL-X under

different boundary conditions are shown in Fig. 10.

The values of spring stiffness corresponding to the

boundary conditions are obtained and presented in

Table 1. The primary focus of the research is on small

end the clamed support, large end the free support and

elastic support of the rotating conical shells. The

Fig. 6 Amplitude–frequency response curves are obtained of

the non-rotating GRPA conical shell in the Type-1 and GPL-X,

a amplitude frequency response curve of w1, b amplitude

frequency response curve of w2
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results indicate that the resonance peak and resonance

region at the C–F boundary are the largest, followed

by the C–E3, C–E1, C–C and C–E2. It is worth

mentioning that the frequency ratio of the first

resonance peak at the C–E3 boundary is less than 1.

At the C–E1, C-E2 and C–C boundary conditions,

there is only one resonance peak for w1.

The effects of different graphene distributions on

the force–amplitude response curves of the GRPA-

SRC shell are provided, as shown in Fig. 11. It is

found that the amplitudes among three different

graphene distributions increase in the GRPA-SRC

shell with increasing for the transverse excitations Fa

and vibration amplitudes have a small difference for

the w1. With the increase in external excitation Fa, the

amplitude difference of the three porosity distributions

gradually increases. There is a small difference

between the forward and backward sweep amplitudes

for the porosity distribution of the Type-1. For the w1,

the amplitudes of three graphene distributions from

large to small are the GPL-X, GPL-O and GPL-U,

respectively. For the w2, the amplitudes of three

graphene distributions from large to small are the

GPL-U, GPL-O and GPL-X, respectively.

Figure 12 demonstrates that the force–frequency

response curves of the GRPA-SRC shell under differ-

ent porosity distributions. From Fig. 12, it reveals that

for three different porosity distributions, the

Fig. 7 Amplitude–frequency response curves are obtained of

the GRPA-SRC shell under different graphene distributions and

porosity distributions, a–b amplitude–frequency response

curves of the Type-1 with three different graphene distributions,

c–d amplitude–frequency response curves of the GPL-X pattern

with three different porosity distributions
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amplitudes of the GRPA-SRC shell monotonically

increase with the increase in the transverse excitations

Fa. For the w1, when Fa\ 0.35 9 105 N, the ampli-

tudes of three different porosity distributions from

large to small are the Type-2, Type-3 and Type-1,

respectively. The amplitude of the final the Type-1

porosity distribution is the larger, while the Type-3

porosity distribution is the smallest. For the w2, the

amplitudes of three different porosity distributions

from large to small are the Type-2, Type-3 and Type-

1, respectively. The amplitude difference between the

Type-2 and Type-3 porosity distributions of the

GRPA-SRC is very small.

Figure 13 exhibits the force–amplitude response

curves of the GRPA-SRC shell under different volume

fraction of graphene VGPL. It is demonstrated that the

amplitude of graphene with different volume fraction

monotonically increases with the increase in trans-

verse force Fa, and the amplitude difference also

gradually increases. This means that the more the

graphene content, the smaller the amplitude of the

GRPA-SRC shells. This also indicates that increasing

the content of the graphene will increase the stiffness

of the GRPA-SRC shell. There is a special phe-

nomenon for the Type-2 when Fa[ 0.34 9 105N, the

amplitude of GRPA-SRC shell VGPL = 5% is greater

than VGPL = 1%.

Fig. 8 Amplitude–frequency response curves are obtained of

the GRPA-SRC shell under different VGPL and Nc, a–
b amplitude–frequency response curves of the Type-1 and

GPL-X with different VGPL, c–d amplitude–frequency response

curves of the Type-1 and GPL-X pattern with different porosity

Nc
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The force–amplitude response curves of the GRPA-

SRC shell under different boundary conditions are

presented, as shown in Fig. 14. It is observed that the

amplitude of different boundary conditions increases

with the increase in transverse force Fa. For w1, it is

seen that when Fa\ 0.35 9 105 N, the amplitude of

the GRPA-SRC shell corresponding to the C–F and C–

E3 boundary conditions is the highest, while the

amplitude of the C–E2 boundary condition is the least.

When Fa[ 0.35 9 105N, the C–F boundary condi-

tion has the largest amplitude and the C–C and C–E1

boundary conditions have the least amplitude. For w2,

it is seen that when Fa\ 0.1 9 105 N, the amplitude

of the GRPA-SRC shell corresponding to the C–F

boundary condition is the highest. When Fa-

[ 0.1 9 105 N, the C–E3 boundary condition of the

GRPA-SRC shell has the largest amplitude and the C–

C boundary condition has the least amplitude.

5 Effect of transverse excitation on nonlinear

vibrations

In this section, the effect of the transverse external

excitations Fa on the nonlinear dynamic characteris-

tics of the GRPA-SRC shell is studied under three

different porosity distributions of the GPL-O. The

material properties and geometric dimensions are the

same as the previous study on the amplitude–fre-

quency response curves. The external excitation

frequencies of the bifurcation diagrams are obtained

the frequency at which the amplitude–frequency

response curves reach the first resonance peak. The

initial conditions are chosen as

w1 ¼ �0.0001, _w1 ¼ 0,w2 ¼ �0.000025, _w2 ¼ 0,

and t ¼ 0.

Figures 15, 16 and 17 describe the bifurcation

diagrams and maximum Lyapunov exponent of the

GRPA-SRC shell with three types of porosity distri-

butions under the GPL-O when the transverse excita-

tions Fa increase from 0.45 9 107 to 0.9 9 107 N.

Fig. 9 Amplitude–frequency response curves are obtained of

the GRPA-SRC shell under different rotation speeds, a ampli-

tude frequency response curve of w1, b amplitude frequency

response curve of w2

Fig. 10 Amplitude–frequency response curves are obtained of

the GRPA-SRC shell under different boundary condition,

a amplitude frequency response curve of w1, b amplitude

frequency response curve of w2
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Figure (a) depicts the bifurcation diagram of the

relationship between w1 and Fa. Figure (b) illustrates

the bifurcation diagram of the relationship between w2

and Fa. Figure (c) shows the relation on the maximum

Lyapunov exponent versus Fa. It is observed that the

vibration laws of the GRPA-SRC shell are demon-

strated as follows: the periodic vibrations ? chaotic

vibrations ? periodic vibrations (including the chao-

tic vibrations window) ? chaotic vibrations, as

shown in Figs. 15, 16 and 17. In Figs. 15 and 17, the

GRPA-SRC shells of Type-1 and Type-3 exhibit the

inverse-period doubling bifurcation, while Type-2

shows no the bifurcation behavior.

It is seen from Fig. 15 that the periodic vibration

occurs for the GRPA-SRC shell with the GPL-O and

Type-1 when the transverse excitations are

Fa� 0:45� 107N� 0:51� 107N
� �

andFa� 0:6847� 107N� 0:7385� 107Nð Þ:

When the transverse excitations Fa are

0.4877 9 107N, the GRPA-SRC shell undergoes

bifurcation behavior. When Fa = 0.7 9 107N, there

exists a chaotic vibration windowwithin the periodical

vibrations. When the transverse excitation is Fa-

= 0.7385 9 107N, the chaotic vibrations occur in

the GRPA-SRC shell.

Figure 16 exhibits that the periodic vibrations

occur for the GPL-O and Type-2 of the GRPA-SRC

shell when the transverse excitations are

Fa� 0:45�ð -

When the transverse excitations are between

0.5068 9 107 and 0.5182 9 107N, the GRPA-SRC

shell undergoes the almost periodic vibrations, includ-

ing the chaos vibrations windows in here. When the

transverse excitations are between 0.5183 9 107N

and 0.637 9 107N, there are the multi periodic

vibration windows in the chaotic vibrations. When

the transverse excitation is Fa = 0.7153 9 107N, the

chaotic vibrations occur in the GRPA-SRC shell.

Fig. 11 Force–amplitude response curves are obtained of the

GRPA-SRC shell under different graphene distributions,

a force–amplitude response curve of w1, b force–amplitude

response curve of w2

Fig. 12 Force–amplitude response curves are obtained of the

GRPA-SRC shell under different porosity distributions, a force–

amplitude response curve of w1, b force–amplitude response

curve of w2
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Figure 17 demonstrates that the periodic vibrations

occur for the GPL-O and Type-3 of the GRPA-SRC

shell when the transverse excitations are given as

Fa� 0:45� 107N� 0:517� 107N
� �

and

Fa� 0:6492� 107N� 0:734� 107Nð Þ:
When the transverse excitations Fa are

0.49 9 107N, the GRPA-SRC shell undergoes bifur-

cation behaviors. When the transverse excitations are

between 0.517 9 107N and 0.53 9 107N, the GRPA-

SRC shell undergoes the almost periodic vibrations. In

the transverse excitations Fa e (0.6492 9 107–

0.8 9 107N), both the chaotic and periodic vibrations

occur. According to the above analysis, under the

same graphene distribution pattern, the stiffness of the

GRPA-SRC shell with three different porosity distri-

butions has little difference and Type-2 shows no

bifurcation behavior, as shown in Figs. 15, 16 and 17.

Figures 18, 19 and 20 depict the waveforms, phase

portraits and Poincare maps of the GRPA-SRC shell

with the GPL-O and Type-2 under different transverse

excitations. (a) and (c) are the waveforms of w1 and

w2, respectively. (b) and (d) are the phase portraits on

planes w1; _w1ð Þ, and w2; _w2ð Þ. (e) and (f) are the

Poincare maps of w1 and w2, respectively. Figure 18

demonstrates the periodic vibrations of the GRPA-

SRC shell with the GPL-O and Type-2 when the

transverse excitation Fa = 0.5 9 107N. Figure 19

denotes the almost periodic vibrations of the GRPA-

SRC shell with the GPL-O and Type-2 when the

transverse excitation Fa = 0.51 9 107N. Figure 20

illustrates the chaotic vibrations of the GRPA-SRC

shell with the GPL-O and Type-2 when the transverse

excitation Fa = 0.8 9 107N.

6 Effect of in-plane load on nonlinear vibrations

This section investigates the nonlinear vibrations of

the GRPA-SRC shells with the GPL-O under the in-

Fig. 14 Force–amplitude response curves are obtained of the

GRPA-SRC shell under different boundary conditions, a force–

amplitude response curve of w1, b force–amplitude response

curve of w2

Fig. 13 Force–amplitude response curves are obtained of the

GRPA-SRC shell under different VGPL, a force–amplitude

response curve of w1, b force–amplitude response curve of w2
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plane loading and different porosity distribution when

the in-plane load Pa increases from 0 to 3.5 9 107N.

Other material properties and geometric parameters

are the same as before. The initial conditions are

chosen as w1 ¼ �0.0001, _w1 ¼ 0, w2 ¼ �0:000025,

_w2 ¼ 0, and t ¼ 0. Figure (a) represents the bifurca-

tion diagram of w1. Figure (b) shows the bifurcation

diagram of w2. Figure (c) indicates the maximum

Lyapunov exponent. Figures 21, 22 and 23 depict

bifurcation diagrams of the in-plane load variation Pa

within the GRPA-SRC shells for Type-1, Type-2 and

Type-3, respectively.

Figure 21 shows the bifurcation diagram of the

GRPA-SRC shell with the Type-1 porosity distribu-

tion as the in-plane load Pa. The vibration pattern

follows: the periodic vibrations ? chaotic

Fig. 15 Bifurcation diagrams and the maximum Lyapunov

exponent are obtained of the GRPA-SRC shell under the

transverse excitations with the Type-1, a the bifurcation

diagram of w1, b bifurcation diagram of w2, c maximum

Lyapunov exponent

Fig. 16 Bifurcations diagrams and the maximum Lyapunov

exponent are obtained of the GRPA-SRC shell under the

transverse excitations with the Type-2, a bifurcation diagram of

w1, b bifurcation diagram of w2, c the maximum Lyapunov

exponent
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vibrations ? periodic vibrations (with a brief chaotic

vibrations window) ? chaotic vibrations. There is the

chaotic vibration window near the in-plane load

Pa = 1.3562 9 107N.

Figure 22 illustrates the bifurcation diagram of the

GRPA-SRC shell with Type-2 porosity distribution as

the in-plane load (Pa) varies. The vibration pattern

follows: the periodic vibrations ? quasi-periodic

vibrations ? periodic vibrations ? quasi-periodic

vibrations ? chaotic vibrations ? periodic vibra-

tions ? chaotic vibrations. When the in-plane loads

Pa are between 1.47 9 107 and 2.0225 9 107 N the

quasi-periodic vibrations, there exists the periodic

vibration window near 1.89 9 107N.

Figure 23 depicts the bifurcation diagram of the

GRPA-SRC shell with Type-3 porosity distribution as

the in-plane load (Pa) varies. The vibration pattern: the

periodic vibrations ? quasi-periodic vibra-

tions ? periodic vibrations ? chaotic vibrations

(with a simultaneous presence of the periodic vibra-

tions window) ? periodic vibrations.

Figures 24 and 25 depict the waveforms, phase

portraits and Poincare maps of the GRPA-SRC shell

with the GPL-O and Type-1 under different in-plane

loadings. (a) and (c) are the waveforms of w1 and w2,

respectively. (b) and (d) are the phase portraits on

planes w1; _w1ð Þ, and w2; _w2ð Þ. (e) and (f) are the

Poincare maps of w1 and w2, respectively. Figure 24

illustrates the almost periodic vibrations of the GRPA-

SRC shell with the GPL-O and Type-2 when the in-

plane load is Pa = 0.8 9 107N. Figure 25 demon-

strates the chaotic vibrations of the GRPA-SRC shell

with the GPL-O and Type-2 when the in-plane load is

Pa = 2.5 9 107N.

7 Conclusions

This paper investigates that the nonlinear traveling

wave vibrations of the GRPA-SRC shell with the

arbitrary boundary conditions. Five evenly distributed

springs are added to both ends of the GRPA-SRC

shells to obtain the arbitrary boundary conditions. The

elastic potential energy of the GRPA-SRC shell is

altered by changing the elastic stiffness of the springs.

Therefore, we obtain the arbitrary elastic support

boundary conditions. In the study of the vibration

process for the rotating conical shells, it is necessary

for us to analyze these boundary conditions through

using the traveling wave vibrations. The circumfer-

ential direction of the GRPA-SRC shell is represented

by using the trigonometric functions and solution of

the generatrix direction is denoted by using Cheby-

shev polynomials. The nonlinear ordinary differential

equations of the GRPA-SRC shell with two degrees of

freedom are obtained through the energy principle.

Fig. 17 Bifurcation diagrams and the maximum Lyapunov

exponent are obtained of the GRPA-SRC shell under the

transverse excitations with the Type-3, a the bifurcation

diagram of w1, b bifurcation diagram of w2, c maximum

Lyapunov exponent
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Runge–Kutta method is used to solve the amplitude–

frequency response curves, force–amplitude response

curves, bifurcation diagram, maximum Lyapunov

exponent, waveforms, phase portraits and Poincare

map of the GRPA-SRC shell. This paper provides a

valuable approach for the vibration analysis of the

rotating shell structures with the arbitrary boundary

conditions. Numerical simulations and theoretical

analysis are depicted and the conclusions are drawn

as follows.

Fig. 18 Periodic vibrations of the GPL-O and Type-2 are obtained when the transverse excitation is Fa = 0.5 9 107 N, a and c
waveforms of w1 and w2, b and d phase portraits on planes w1; _w1ð Þ and w2; _w2ð Þ
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Fig. 19 Almost periodic vibrations of the GPL-O and Type-2 are obtained when the transverse excitation is Fa = 0.51 9 107 N, a and

c waveforms of w1 and w2, b and d phase portraits on planes w1; _w1ð Þ and w2; _w2ð Þ
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Fig. 20 Chaotic vibrations of the GPL-O and Type-2 are obtained when the transverse excitation is Fa = 0.8 9 107 N, a and c
waveforms of w1 and w2, b and d phase portraits on planes w1; _w1ð Þ and w2; _w2ð Þ
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Fig. 21 Bifurcation diagrams and maximum Lyapunov expo-

nent are obtained of the GRPA-SRC shell under the in-plane

loads with the Type-1, a bifurcation diagram ofw1, b bifurcation

diagram of w2, c maximum Lyapunov exponent

Fig. 22 Bifurcation diagrams and maximum Lyapunov expo-

nent are obtained of the GRPA-SRC shell under the in-plane

loads with the Type-2, a bifurcation diagram ofw1, b bifurcation

diagram of w2, c maximum Lyapunov exponent
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1. In the comparison with the shell structures

[16, 20, 21, 34], it is observed that a mode shape

of the rotating conical shell corresponds to two

different frequencies, which are referred to as the

forward traveling wave frequency and backward

traveling wave frequency. Due to the presence of

this unique property, the vibration analysis of the

GRPA-SRC shells must be conducted by using the

traveling wave vibrations. The nonlinear charac-

teristics of the stationary conical shell are rela-

tively obvious with a jumping phenomenon in the

amplitude–frequency response curves. The ampli-

tude–frequency response curves of the rotating

conical shell exhibit weak nonlinear characteris-

tics, but there are two resonance peaks for the

GRPA-SRC shell.

2. The influence of the graphene distribution types

and porosity distribution types on the amplitude–

frequency response curves of the GRPA-SRC

shells illustrates that there is a relatively small

difference in the vibration amplitude. Reducing

the graphene content and increasing the porosity

content lead to the decrease in the stiffness for the

GRPA-SRC shell. Consequently, this causes an

increase in the amplitude of the GRPA-SRC shell

and expands the resonant regions.

3. For the impact of the rotation speed on the

amplitude–frequency response curves for the

GRPA-SRC shell, the results are indicated that

as the dimensionless rotational speeds ~X increase,

the frequency ratio increases when the resonant

peaks are reached. The effect of the boundary

conditions on the amplitude–frequency response

curves for the GRPA-SRC shells is more complex.

The resonant peak and resonant region of the C-F

boundary condition are larger.

4. The force–amplitude response curves of the

GRPA-SRC shell monotonically increase with

the increase in the transverse external excitation

Fa. The impact of different porosity distributions

and graphene distribution types on the structure is

relatively small. The higher graphene content

results in the lower amplitude corresponding to the

force–amplitude response curve of the GRPA-

SRC shell, which indicates that adding graphene

to the porous metal conical shell will increase the

structural stiffness.

5. When the transverse excitations Faincrease from

0.45 9 107 to 0.9 9 107N, bifurcation behaviors

of the Type-1 and Type-3 occur. The GRPA-SRC

shells with the Type-2 and Type-3 porosity

distributions change from the periodic vibrations

to the quasi-periodic vibrations and then enter the

chaotic vibrations. In contrast, the GRPA-SRC

shell with the Type-1 porosity distribution does

not exhibit the quasi-periodic vibrations.

Fig. 23 Bifurcation diagrams and maximum Lyapunov expo-

nent are obtained of the GRPA-SRC shell under the in-plane

loads with the Type-3, a bifurcation diagram ofw1, b bifurcation

diagram of w2, c maximum Lyapunov exponent

123

4386 H. Li et al.



Fig. 24 Almost periodic vibrations of the GPL-O and Type-2 are obtained when the in-plane load is Pa = 0.8 9 107N, a and c
waveforms of w1 and w2, b and d phase portraits on planes w1; _w1ð Þ and w2; _w2ð Þ, e and f Poincare map of w1 and w2
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Fig. 25 Chaotic vibrations of the GPL-O and Type-2 are obtained when the in-plane load is Pa = 2.5 9 107N, a and c are waveforms

of w1 and w2, b and d phase portraits on planes w1; _w1ð Þ and w2; _w2ð Þ, e and f Poincare maps of w1 and w2
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Appendix A

The expressions for the strain components are

obtained as follows

e0x ¼
ou0
ox

þ 1

2

ow0

ox

� �2

; e0h

¼ 1

R
u0 sin bþ w0 cos bþ ov0

oh

� �
þ 1

2R2

ow0

oh

� �2

ðA1Þ

c0xh ¼
1

R

ou0
oh

� v0 sinbþ ow0

oh
ow0

ox

� �
þ ov0

ox
; e1x

¼ o/x

ox
; e1h ¼

1

R
/x sin bþ o/h

oh

� �

ðA2Þ

c1xh ¼
1

R

o/x

oh
� /h sin bþ R

o/h

ox

� �
ðA3Þ

Appendix B

The expressions for the stress resultants of the GRPA-

SRC are given as follows

Nxx ¼ A11e
0
x þ A12e

0
h þ B11e

1
x þ B12e

1
h; Nhh

¼ A12e
0
x þ A22e

0
h þ B12e

1
x þ B22e

1
h ðB1Þ

Mxx ¼ B11e
0
x þ B12e

0
h þ D11e

1
x þ D12e

1
h; Mhh

¼ B12e
0
x þ B22e

0
h þ D12e

1
x þ D22e

1
h ðB2Þ

Nxh ¼ A66c
0
xh þ B66c

1
xh; Mxh ¼ B66c

0
xh þ D66c

1
xh; Qhz

¼ A44chz; Qxz ¼ A55cxz
ðB3Þ

where Aij, Bij, and Dij represent the tensile stiffnesses,

tensile-bending coupled stiffnesses and bending stiff-

nesses, respectively, expressed as follows

Aij;Bij;Dij

� �
¼
Z h=2

�h=2

Q̂ij 1; z; z
2

� �
dzþ

Z �h=2

�h=2�hb

Q̂ij 1; z; z
2

� �
dz

þ
Z h=2þhb

h=2

Q̂ij 1; z; z
2

� �
dz i; j ¼ 1; 2; 6ð Þ;

Aij ¼
Z h=2

�h=2

Q̂ijdzþ
Z �h=2

�h=2�hb

Q̂ijdz

þ
Z h=2þhb

h=2

Q̂ijdz: i; j ¼ 4; 5ð Þ

ðB4Þ
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