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Abstract This paper presents a composite controller
for trajectory tracking ofmoving-base underwater flex-
ible manipulators (UFM). Firstly, a dynamics model of
the moving-base UFM is established, and the model
is decomposed into a slow-varying subsystem and a
fast-varying subsystem by using the singular perturba-
tionmethod. Then, an adaptive non-singular fixed-time
sliding mode controller based on a high-order slid-
ing mode observer is proposed for the slow-varying
subsystem. In this controller, the high-order sliding
mode (HOSM) observers are used to estimate and com-
pensate for lumped disturbances, and adaptive super-
twisting algorithm is used to reduce sliding mode chat-
tering, which overcomes the disadvantage that the tra-
ditional adaptive method is prone to overestimation.
To further suppress the system chattering, a HOSM
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observer is used to obtain the flexible mode derivatives
for the fast-varying subsystem to achieve the suppres-
sion of vibration modes. The main advantages of this
controller are its non-singularity, fast finite-time con-
vergence and good vibration suppression. Extensive
simulation results have validated the effectiveness of
the proposed control method.

Keywords Moving-base · Underwater manipulators ·
Fixed-time · Super-twisting algorithm · Vibration
suppression

1 Introduction

Underwater docking and recovery is a frontier research
in ocean engineering [1]. The recovery and deploy-
ment of autonomous underwater vehicles (AUV) by
large-scale underwater manipulators is an important
approach for collaborative marine operations [2]. This
collaborative approach can expand the functions of
large submersibles, which has broad application pros
pects. The large submarine equipped with a manipu-
lator to recover the AUVs is shown in Fig. 1. Due to
the technical requirements of large-scale operation and
small-space storage of underwater manipulators, the
manipulators are usually made very slender and it is
easier to produce flexible deformation and vibration
under external hydrodynamic disturbance. If the flexi-
ble deformation is not taken into account, it may cause
collisions betweenmanipulators andAUVs, whichwill
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Fig. 1 The AUV recovery and docking system

eventually lead to the failure of recovery. Therefore, it
is of great significance to study the modeling and con-
trol of the underwater flexible manipulators.

At present, the research of underwater manipulators
mainly focuses on rigid manipulators. During the past
decades, scholars have done a lot of research on the
modeling of underwater manipulators. The modeling
methods mainly include Lagrange method and Newton
Euler method [3]. Methods to describe flexible defor-
mation mainly include finite element method(FEM)
and assumedmodemethod(AMM) [4]. Comparedwith
traditional underwater manipulators, underwater flexi-
blemanipulators have dual characteristics of fluid-solid
coupling and rigid-flexible coupling, and the dynamic
response is more complex. Al-Khafaji et al. established
the dynamic model of single-link UFM based on FEM
[5]. Xue et al. further studied the fluid-solid coupling
characteristics of the single-link underwater flexible
manipulator by using Euler equation [6]. Shang et al.
combined Morrison formula with the AMM to estab-
lish a dynamic model of a single-link UFM [7]. In the
modeling of multi-link flexible manipulators, Huang
et al. have taken into account the flexible deformation
and hydrodynamic disturbance comprehensively and
established a more accurate dynamics model of the
multi-link UFM [8,9], but the movement of the car-
rier was not considered. The movement of the carrier
will affect both the flow field and the flexible deforma-
tion. Therefore, the influence of the carrier should be
fully considered in the following research to improve
the accuracy of the model.

The control methods of underwater manipulators
mainly include PID control, sliding mode control,
fuzzy control, adaptive control and neural network con-
trol [10,11].

PID control is often used in the control of under-
water vehicles and underwater manipulators because
they are simple in design and do not depend on prior
knowledge of system dynamic model. Londhe et al.
proposed a nonlinear PID controller for underwater
vehicle-manipulator systems(UVMS) control, which
enhances the overall closed-loop stability [12]. In gen-
eral, the control accuracy of PID control algorithms is
not as good as that of model-based control methods
[13].

Sliding mode control has the advantages of fast
response, insensitivity to parameter uncertainty and
external disturbances. M’Sirdi et al. applied sliding
mode control method to the control of underwater
manipulators, which obtained good trajectory track-
ing precision [14]. Esfahani et al. proposed a terminal
sliding mode control method to improve the trajectory
tracking accuracy under time-delay disturbance [15].
To improve the convergence speed, finite-time slid-
ing mode control has been studied. Wang et al. pro-
posed a non-singular terminal sliding mode controller
(NTSMC) for trajectory tracking control of underwa-
ter manipulators [16,17]. This method could enable the
joint angles to converge to the desired trajectory infinite
time and overcome the singularity problem. Zhou et
al. further proposed an improved non-singular fast ter-
minal sliding mode controller(NFTSMC), which can
achieve higher tracking accuracy [18]. Although the
sliding mode control algorithm has fast response speed
and high control accuracy, it is prone to produce chat-
tering. Therefore, how to improve convergence speed
and suppress sliding mode chattering is the key point
in controlling underwater manipulators.

In recent years, some novel finite-time convergence
control methods have been developed to improve the
convergence performance. Cheng et al. studied finite-
time asynchronous output feedback control for wind
turbine system [19]. He et al. researched a model pre-
dictive finite-time control strategy for discrete-time
semi-Markov systems [20]. Zhang et al. proposed a
finite-time sliding mode control for PDE systems to
ensure finite-time convergence [21]. The sliding time of
these finite-time sliding mode control methods mostly
depends on the initial state and the model. To solve
the problem, Zhang et al. presented a novel fixed-time
sliding mode control for manipulators under lumped
disturbances [22]. Li et al. proposed fixed-time integral
sliding mode control for a mobile robot to achieve fast
trajectory tracking [23]. Kuang et al. developed a novel
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stabilization controller, wherein the actual convergence
time of the controller remains unaffected by the ini-
tial values of system states [24]. Liu et al. proposed
an adaptive fixed-time control method, which enables
the trajectory tracking errors of the manipulator sys-
tem to converge within a faster fixed time with actuator
saturation [25].To reduce the chattering, scholars have
studied STA, an HOSM method which can effectively
reduce the system chattering and does not require the
derivatives of the sliding mode surface. Shtessel et al.
proposed a novel adaptive-gain super-twisting sliding
mode controller [26]. Borlaug et al. used the adaptive-
gain super-twisting sliding mode for trajectory track-
ing of AUVs [27–29]. Zhou et al. applied STA to the
design of disturbance observer for underwater manipu-
lators [18]. Xiong et al. presented a backstepping super-
twisting control method for an underwater dual-arm
manipulator [30]. In summary, high-order slidingmode
method can well suppress sliding mode chattering.

Underwater manipulators are subject to the dis-
turbances of complex hydrodynamic and modeling
error, intelligent control methods, such as fuzzy con-
trol, adaptive control, neural network control, and deep
learning algorithms, are commonly used to deal with
the disturbances. Wang et al. proposed a hybrid con-
troller combining neural network and fuzzy algorithm
for underwater manipulators, which has higher tra-
jectory tracking accuracy and better real-time anti-
disturbance capability [31]. Salloom et al. used adap-
tive neural network method to estimate the hydrody-
namic disturbance, and used genetic algorithm to rec-
tify the gain parameters [32]. Zhong and Yang pro-
posed an improved adaptive fuzzy sliding mode con-
trol algorithm for underwater manipulators to reduce
system chattering and improve the control accuracy
[3]. Zhang et al. proposed an adaptive terminal slid-
ing mode control method for trajectory tracking by
using radial basis function neural network(RBFNN)
[33]. Han et al. proposed an adaptive waveform neu-
ral network controller with force estimation for under-
water manipulators under lumped disturbances [34].
Jiang et al. adopted deep learning algorithm to over-
come external disturbance to ensure stable grasping
performance of the manipulator in dynamic environ-
ment [35]. Zhou et al. proposed an adaptive robust
controller to estimate the unknown disturbance online
[36]. Furthermore, both the adaptive control method
and neural networkmethod exhibit commendable com-
pensation capabilities for systems with motion con-

straints and input saturation constraints. Liu et al. pro-
posed an adaptive controller for hypersonic flight vehi-
cles (HFVs) with limited angle-of-attack, significantly
enhancing the transient characteristics of HFVs [37].
Sun et al. presented an adaptive neural network non-
singular terminal sliding mode controller for manipu-
lators subject to input saturation [38]. From the studies
mentioned above, intelligent control methods are too
dependent on prior knowledge and experience because
they are not based on an accurate mathematical model.
In addition, these methods are computationally inten-
sive and slow in convergence, which makes it difficult
to obtain steady control performance [39,40].

Compared with intelligent control algorithms, dis-
turbance observers have the advantages of simple
design, low computational complexity, and no reliance
on prior knowledge, which are also often used to
estimate and compensate for external disturbances
[41,42]. Santhakumar designed a robust controller
based on a proportional differential observer for tra-
jectory tracking control of underwater manipulators
[43]. Then, Santhakumar proposed a nonlinear distur-
bance observer to estimate the unknown perturbation
[44]. Vinoth et al. proposed a disturbance-observer-
based terminal sliding mode control scheme for under-
water manipulators [45]. Londhe et al. improved the
overall stability of UVMS with parameter uncertainty,
ocean current disturbances, and measurement noise by
using a disturbance observer [46]. Han et al. proposed
a sliding mode control method based on an extended-
state observer to achieve asymptotic stabilization of
the tracking error [47]. Although all the above studies
achieved good control results, most of them simplified
the hydrodynamics and did not consider the flexible
deformation.

In addition to improving the anti-disturbance ability,
to suppress the flexible vibration is another challenge.
The manipulator with flexible deformation is a typical
under-actuated system. In order to avoid the singularity
of inertia matrix inversion while reducing the compu-
tational difficulty of higher-order models, the singu-
lar perturbation method is commonly used to decom-
pose the system into a slow-varying subsystem and a
fast-varying subsystem [4].Hisseine andLohmannpro-
posed a dual-time-scale controller based on the singu-
lar perturbation method and verified the performance
of the proposed controller by experiments [48]. Salehi
and Vossoughi proposed a composite controller includ-
ing a sliding mode control law and a feedback control
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law to suppress the vibration [49]. Chen et al. pro-
posed a slow-varying subsystem controller with a non-
linear disturbance observer to compensate for external
disturbances [50]. The above studies did not consider
the disturbance of hydrodynamics. In a recent study
on underwater flexible manipulators, Xue and Huang
designed a feedforward control method and used dis-
continuous piecewise smoothing filter to reduce the
vibration [6]. Shang et al. studied the coupling char-
acteristics of a single-link underwater flexible manip-
ulator and designed a controller with neural network
compensation [7]. Huang designed an adaptive slid-
ing mode controller for multi-link underwater flexible
manipulators, which achieved higher trajectory track-
ing accuracy [9]. Among all the research on underwater
manipulators, flexible deformation and disturbance of
the moving carrier were barely considered. In addition,
the control system design of flexible manipulators is
based on the assumption that all states of the control
system can be obtained directly. In fact, the flexible
modal derivatives are difficult to be measured directly
by sensors.

In order to solve the motion disturbance of the mov-
ing carrier and the indirect measurement of the flex-
ible modal derivatives, and to improve convergence
speed, anti-disturbance ability and vibration suppres-
sion performance of the controller, a dynamics model
of moving-base UFM is established in this paper. This
model is decomposed into a slow-varying subsystem
and a fast-varying subsystem by using the singular per-
turbation method. An adaptive non-singular fixed-time
sliding mode controller with a HOSM observer is pro-
posed for the slow-varying subsystem. The sliding time
of the controller is independent of the model and the
initial state. To reduce the chattering and overestima-
tion, the adaptive STA is introduced. To further sup-
press the flexible vibration, the other HOSM observer
is used to obtain the flexible modal derivatives for the
fast-varying subsystem.

The main contributions of this paper are as follows:

(i) The dynamics model of the moving-base UFM is
firstly established and the motion of the base and
hydrodynamic disturbances are fully considered
in the dynamic modeling.

(ii) An adaptive non-singular fixed-time slidingmode
controller is proposed. The sliding timeof the con-
troller is independent of the model and the initial

state. The adaptive STA is introduced to reduce
the chattering and overestimation.

(iii) HOSM observers are used to compensate for
lumped disturbances and to estimate flexible
modal derivatives.

(iv) The superiority of the proposed ANFSMC in
termsof fast finite-time convergence andvibration
suppression is verified by comparing with exist-
ing controlmethods [18,22,47] based onADAMS
and MATLAB.

This paper is organized as follows. Section2 is the
materials and methods, in which the methods for
deriving dynamical equations and hydrodynamics of
moving-base UFM are introduced. Section3 is the
design of controller. In this section, an adaptive non-
singular fixed-time sliding mode controller with a
HOSM observer is proposed. Section4 is the stabil-
ity analysis. A new Lyapunov function is designed to
prove the stability of the controller. Section5 is the sim-
ulation verification. The effectiveness of the proposed
controller is analyzed and discussed. Section6 is the
summary of the whole paper.

2 Materials and methods

In this section, some notions and lemmas and the mod-
eling methods of moving-base UFM are introduced.

2.1 Notation

For vector x = [x1, x2 . . . , xn]T , xi ∈ Rn is a real
number. sigΓ (xi ) and sigΓ (x) ∈ Rn are defined as

sigΓ (xi ) = |xi |Γ · sgn(xi ) (1)

sigΓ (x) = [|x1|Γ · sgn(x1), |x2|Γ · sgn(x2) · · · ,

|xn|Γ · sgn(xn)
]T

(2)

where sgn(·) denotes the signum function and Γ is a
positive real number.

The nonlinear function f (xi ) and its first derivative
h(xi ) are introduced in Sect. 4. The vector F(x) ∈ Rn

and the diagonal matrix H(x) ∈ Rn×n are defined as

F(x) = [ f (x1), f (x2) · · · , f (xn)]T (3)

H(x) = diag
{
[h(x1), h(x2) · · · , h(xn)]

T
}

(4)

where diag {·} denotes the diagonal matrix.
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The diagonal matrix DΓ (x) ∈ Rn×n is defined as

DΓ (x) = diag
{[|x1|Γ , |x2|Γ · · · , |xn|Γ

]T }
(5)

2.2 Lemmas

Lemma 1 [51]
U and V are symmetric positive definite matrices. If

UV = VU , then, UV is a symmetric positive definite
matrix.

Lemma 2 [52,53]
For the following dynamical system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ1 = x2
ẋ2 = x3

...

ẋn−1 = u + f1

(6)

The disturbance f1 meets Lipschitz continuity con-
dition, and there is a small positive constant δ0, so that∥∥ ḟ1

∥∥ ≤ δ0.
A HOSM observer takes the following form

⎧
⎪⎨

⎪⎩

˙̂xi = x̂i+1 + ϕi si g
n−i
n (x̃1), i = 1, 2, · · · , n − 2;

˙̂xn−1 = x̂n + u + ϕn−1sig
1
n (x̃1);˙̂xn = ϕnsgn(x̃1)

(7)

and the differentiation error can be expressed as

⎧
⎪⎨

⎪⎩

˙̃xi = −ϕi si g
n−i
n (x̃1) + x̃i+1, i = 1, 2, · · · , n − 2;

˙̃xn−1 = −ϕn−1sig
1
n (x̃1) + x̃n˙̃xn = −ϕnsgn(x̃1) + ḟ1

(8)

where ϕi (i = 1, · · · , n) are the gains of the observer;
the observation error variable x̃i = xi − x̂i (i =
1, · · · , n − 1), and the variable x̃n = −x̂n + f1.

The HOSM observer has finite-time stability and
high observation accuracy under the bounded distur-
bance.

Fig. 2 The simplified coordinate frames of the moving-base
UFM

2.3 Dynamic models

The control object in this paper is a simplified moving-
base UFM system, which just considers its 2D plane
motion, as shown in Fig. 2. In the moving-base UFM
system, link 1 is a rigid manipulator and link 2 is a
flexiblemanipulator. The coordinate system XOY is an
inertial reference frame. X0O0Y0 and X1O1Y1 are local
coordinate systems which were respectively fixed to
the submarine and the rigid manipulator. X2O2Y2 and
X 2̃O0Y2̃ are local coordinate systemswere respectively
fixed to the joint and the end actuator of flexible manip-
ulators respectively. In this section, the dynamic model
of the UFM is established by combining the AMM and
Lagrange equation.

Supposing that �1, �2, �3 respectively represent the
unit vectors along the axis X1, X2,Y2, then �1, �2, �3
can be expressed as

�1 = [cos(α − θ1), sin(θ1 − α)]T (9)

�2 = [cos(θ1 + θ2 − α), sin(θ1 + θ2 − α)]T (10)

�3 = [− sin(θ1 + θ2 − α), cos(θ1 + θ2 − α)]T (11)

The position vector of the carrier can be expressed
as

o0o1 = l0[sin(α + β), cos(α + β)]T (12)

r0 = [x0, y0]T (13)

To simplify the calculation, o0o1 is made perpendic-
ular to the carrier while β = 0. At this time, the vectors
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have the following geometric relationships

r1 = r0 + o0o1 + x�1 (14)

r2 = r0 + o0o1 + l1�1 + x�2 + w�3 (15)

where l1 is the length of link 1, w is flexible displace-
ment of end-effector of flexible manipulator.

The kinetic energy and potential energy of the
manipulator system are expressed as [8,9]

T = 1

2
ρ1

∫ l1

0
ṙT1 ṙ1dx+

1

2
ρ2

∫ l2

0
ṙT2 ṙ2dx + 1

2
m ṙT2 ṙ2

(16)

U =
∫ l2

0

1

2
E Iw

′′2dx +
∫ l1

0
ρ1r1T gdx

+
∫ l2

0
ρ2r2T gdx + mr2T g (17)

where g = [0, g]T , g is the gravitational acceleration
and m is the mass of the end load.

By using the AMM, the flexible displacement can
be expanded as

w(x, t) =
n∑

i=1

φi (x)qi (t) (18)

A generalized coordinate ql is defined as ql= [θ,q].
By intercepting the first twomodes of flexible displace-
ment and substituting them into the Lagrange equation,
the dynamic equation of underwater flexible manipu-
lators can be deduced as follows:

(
Mθθ Mθq
Mqθ Mqq

)(
θ̈

q̈

)
+
(

Cr
Kqq + C f

)
=
(

τ

0

)
+
(
Fθ

Fq

)

(19)

where θ = [
θ1 θ2

]T
; q = [

q1 q2
]T
; Kq =

[
Kq1 Kq2

]T
is the stiffness matrix; Cr and C f are the

nonlinear coupling terms of centrifugal forces, coriolis
forces, and gravity; τ is input torque; Fθ and Fq are
the generalized hydrodynamic force.

The inertia matrix and stiffness matrix of the
moving-base UFM are the same as those of the fixed-
base UFM [8,9]. Since the motion of the manipulator
is coupled with that of the carrier, the Cr and C f of
moving-base UFM are more complex than those of the
fixed-baseUFM.The non-linear force/torque vectorCr

and C f are shown in Appendix.

2.4 Hydrodynamic force

The movement of the carrier will influence the flow
field of the manipulator. This paper deduces the hydro-
dynamic force of the moving-base UFM from the pre-
vious hydrodynamic research of the fixed-base UFM
[8,9]. The angular velocity of the moving base is
0ω0 = α̇. angular acceleration is 0ω̇0 = α̈. The velocity
and acceleration can be expressed as

0v0 = [ẋ0 + l0α̇ cosα, ẏ0 − l0α̇ sin α]T

0v̇0 = [ẍ0 + l0α̈ cosα − l0αα̇ sin α, ÿ0

−l0α̈ sin α − l0α̇
2 cosα

]T
(20)

According to the velocity transfer formula between
links, the velocity and acceleration of twomanipulators
in the local coordinate systems can be calculated [9].
By defining c1 = cos θ1, c2 = cos θ2, s1 = sin θ1,
s2 = sin θ2, A1 = ẋ0 + l0α̇ cosα, A2 = ẏ0 + l0α̇ sin α,
the velocity and acceleration at any position on the rigid
manipulator are

1v(x)1 =
⎡

⎣
c1A1 + s1A2

−s1A1 + c1A2 + x(−α̇ + θ̇1)

0

⎤

⎦ (21)

1v̇(x)1 =
⎡

⎣
c1 Ȧ1 + s1 Ȧ2 − x(−α̇ + θ̇1)

2

−s1 Ȧ1 + c1 Ȧ2 + x(−α̈ + θ̈1)

0

⎤

⎦ (22)

The velocity of the joint of the flexible manipulator
is

2v2

=
⎡

⎣
c1c2A1 + s1c2A2 − s1s2A1 + c1s2A2 + s2l1(−α̇ + θ̇1)

−c1s2A1 − s1s2A2 − s1c2A1 + c1c2A2 + c2l1(−α̇ + θ̇1)

0

⎤

⎦

(23)

The velocity at any position on the flexiblemanipulator
is

2̃v(x)2̃

=
⎡

⎣
cosαw

2v2(1) + sin αw
2v2(2) − cosαwwA3 + sin αwx A3

− sin αw
2v2(1) + cosαw

2v2(2) + sin αwwA3 + cosαwx A3

0

⎤

⎦

(24)

where αw = ∂w
∂x , A3 = (−α̇ + θ̇1 + θ̇2).
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The acceleration of the joint of the flexible manipu-
lator is

2v̇2 =

⎡

⎢
⎢
⎢
⎢
⎣

(
c1c2 Ȧ1 + s1c2 Ȧ2 − s1s2 Ȧ1 + c1s2 Ȧ2
+s2l1(−α̈ + 1̈θ1) − c2l1(−α̇ + θ̇1)

2

)

(−c1s2A1 − s1s2A2 − s1c2A1 + c1c2A2
+c2l1(−α̈ + θ̈1) + s2l1(−α̇ + θ̇1)

2

)

0

⎤

⎥
⎥
⎥
⎥
⎦

(25)

The acceleration at any position on the flexible manip-
ulator is

2̃v̇(x)2̃ =

⎡

⎢⎢
⎢
⎢
⎣

cosαw
2v̇2(1) + sin αw

2v̇2(2)
+ cosαw(−w Ȧ3 − x A3

2) + sin αwx Ȧ3
− sin αw

2v̇2(1) + cosαw
2v̇2(2)

− sin αw(−w Ȧ3 − x A3
2) + cosαwx Ȧ3

0

⎤

⎥⎥
⎥
⎥
⎦

(26)

After deriving the velocity, acceleration and its normal
value of the two manipulators ivn(x)i , i v̇n(x)i , (i =
1, 2, 2̃), the water resistance and additional mass force
of each manipulator can be calculated by substituting
them into Morrison formula.

The water resistance of the flexible manipulator is

2̃ f D2̃ = 1

2
ρ f CDD

∫ l2

0

2̃vn(x)2̃

∥
∥∥2̃vn(x)2̃

∥
∥∥

√

1 +
(

∂w

∂x

)2

dx

(27)

The additional mass force of the flexible manipulator
is

2̃ f M 2̃ = ρ f CM Ad

∫ l2

0

2̃v̇n
2̃

√

1 +
(

∂w

∂x

)2

dx (28)

The water resistance of the rigid manipulator is

1 f D1 = 1

2
ρ f CDD

∫ l1

0

1vn(x)1
∥∥∥1vn(x)1

∥∥∥ dx1 (29)

The additional mass force of the rigid manipulator is

1 f M1 = ρ f CM Ad

∫ l1

0

1v̇n(x)1dx1 (30)

In addition, the buoyancy of manipulators can be
expressed as

f B = −ρ f

ρm
G (31)

where ρ f is the density of water, ρm is the density of
the manipulators and G is gravity.

3 Controller design

In this section, themoving-baseUFMsystem is decom-
posed into a slow-varying subsystem and a fast-varying
subsystem.Acomposite controller is designed for these
two subsystems.

3.1 Singular perturbation decomposition

The singular perturbation method is a method for cal-
culating asymptotic solutions of differential equations,
which has been widely used for controller design of
flexible manipulators in recent years [4,48]. The sin-
gular perturbation method takes advantage of the dif-
ference in time scale between the joint angles and the
flexible modes to decompose the higher-order flexible
manipulator system into a slow-varying subsystem and
a fast-varying subsystem.

First, the steady-state solution of slow variables is
obtained by ignoring the fast variables of the system.
The specific approach is to introduce a small parameter
ε (ε2= 1/min (Kq)i j ), making K̃q = ε2Kq , ε2ξ = q.
The slow-varying subsystem is transformed into the
following form

{
ẋ1 = x2
ẋ2 = M̄θθ (x1)−1[−C̄r (x1, x2) + τ̄ + F̄θ ] (32)

where (·) is a matrix corresponding to (·) when ε = 0;

x1 = [
θ̄1 θ̄2

]T
, x2 =

[ ¯̇
1θ

¯̇
2θ

]T
; τ̄ is input torque of

slow subsystem.
Then, the boundary layer correction term is calcu-

lated based on a fast variable time scale, which can be
written as

ξ̄ = −K̃q
−1 ¯Nqq

−1 ( ¯Nqθ C̄r + ¯Nqq C̄ f

− ¯Nqθ τ̄ − ¯Nqθ F̄θ − ¯Nqq F̄q
)

(33)
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where

[
Nθθ Nθq

Nqθ Nqq

]
=
[
Mθθ Mθq

Mqθ Mqq

]−1

.

The fast-varying state variable can be expressed as

ζ1 = ξ − ξ̄ , ζ2 = εξ̇ (34)

The fast-varying subsystem is expressed as

dζ

dtε
= Aεζ + Bετ f (35)

whereζ = ( ζ1
T ζ2

T )T , Aε =
(

0 I2×2

− ¯Nqq K̃q 0

)
,

Bε =
(

0
¯Nqθ

)
, tεε = t , I2×2 is unit matrix, τ f is

input torque of fast-varying subsystem.

3.2 Controller design of the slow-varying subsystem

The design objectives of this controller are to improve
convergence speed, anti-disturbance ability and vibra-
tion suppression performance. In this section, an
adaptive non-singular fixed-time sliding mode control
method is proposed by combining the advantages of
adaptive controlmethods and slidingmode control. The
method introduces an adaptive super-twisting approach
law, which can reduce the chattering and overestima-
tion. A non-singular fixed-time sliding mode surface is
used to overcome the drawback of slow convergence
of ordinary sliding modes. Also, it does not introduce
additional time-varying gain matrixes in the case of
combining the terminal sliding mode method with the
STA. Since the lumped disturbances frommodel errors,
carrier motion, and hydrodynamic forces are difficult
to be obtained directly in practice, high-order sliding
mode observer is used to estimate and compensate for
lumped disturbances.

When the model error was taken into account, eq.
(32) can be rewritten as

ẍ1 = M̄θθ (x1)
−1[−C̄r(x1, x2) + τ̄ + F̄θ + FL] (36)

where FL is the lumpeddisturbanceof the slow-varying
subsystem.

FL = −ΔM̄θθ ẍ1 + ΔC̄r(x1, x2) + ΔF̄θ (37)

By defining x1d and ˙x1d as the desired position and
velocity of the joint angle, the tracking error and its
derivative can be expressed as e = x1 − x1d , ė =
ẋ1 − ˙x1d , ë = ẍ1 − ¨x1d .

To design a sliding mode, a nonlinear function is
defined [22,54]

f (xi ) =
{
KasigΓ1(xi ) + Kbσ

|xi |xi , |xi | < σ

sigΓ2(xi ) , |xi | ≥ σ
(38)

where Γ1 = Γ2 + 1, Γ2= 1 − σ , σ ∈ (0, exp(−1)) is
a positive constant, and

{
Ka = −1−ln σ

Γ2−λ ln σ

Kb = σ 2Γ2−2

Γ2−σ ln σ

(39)

The first-order derivative of f (x) with respect to x is
expressed as

h(xi ) =
{
KaΓ1|xi |Γ1−1 + Kb (|xi | ln σ + 1) σ |xi | , |xi | < σ

Γ2|xi |Γ2−1(xi ) , |xi | ≥ σ

(40)

The non-singular fixed-time sliding mode term is writ-
ten as

s = ė + C1F(e) + C2sig
Γ3(e) (41)

The derivative of s with respect to time is

ṡ = ë + C1H(e)ė + C2DΓ3−1(e)ė (42)

To reduce the chattering of the system, the STA is
introduced into the controller. The form of the STA
is [26,55]

{
u = −K1sig1/2(s) + �

�̇ = − 1
2 K2sgn(s)

(43)

where K1= diag(K1i ), K2= diag(K2i ) is gain.
The following adaptive law of the gain is adopted

K̇1i =
{
k1
√

γ1
2 sgn(|si | − αa), i f K1i > Km

βa, i f K1i ≤ Km

(44)

K2i = 2κK1i (45)

where k1, γ1, αa , βa and κ are positive constants.
To further improve the control accuracy of the con-

troller, the HOSM extended state observer is used to
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estimate and compensate for the lumped disturbance.
TheHOSMextended state observer takes the following
form

⎧
⎪⎪⎨

⎪⎪⎩

ˆ̇1x = x̂2 + ϕ1sig2/3(x̃1)˙̂x2 = x̂3 + M̄θθ (x1)−1[−C̄r(x1, x2) + τ̄ + F̄θ ]
+ϕ2sig1/3(x̃1)˙̂x3 = ϕ3sgn(x̃1)

(46)

where the observer gain ϕi (i = 1, 2, 3) is a positive
constant, x̃1 = x1 − x̂1 and x̃2 = x2 − x̂2. By defining
observation disturbance as Fo, Fd = M̄θθ (x1)−1FL +
Fo, x̃3 = Fd − x̂3, the error model of the observer can
be obtained

⎧
⎨

⎩

˙̃x1 = −ϕ1sig2/3(x̃1) + x̃2˙̃x2 = −ϕ2sig1/3(x̃1) + x̃3˙̃x3 = −ϕ3sgn(x̃1) + F′
d

(47)

Assumption 1 The disturbance Fd meets Lipschitz
continuity condition, and

∥∥F′
d

∥∥ is bounded.

According toAssumption 1 andLemma2, the obser-
vation error x̃i (i = 1, 2, 3) can converge to zero in
finite time, that is, x̂3 = Fd .

The joint control input based on adaptive STA and
HOSM extended state observer is designed as

⎧
⎪⎪⎨

⎪⎪⎩

τ̄ = τ̄ eq + τ̄ re

τ̄ eq = C̄r(x1, x2) − F̄θ + M̄θθ (x1)( ¨x1d
−C1H(e)ė − C2DΓ3−1(e)ė − x̂3)
τ̄ re = M̄θθ (x1)( − K1sig1/2(s) + � )

(48)

3.3 Controller design of the fast-varying subsystem

The fast-varying subsystem is a fully controllable linear
system, and the dynamic equation can be written as

d2ζ2
dtε

2 = − ¯Nqq K̃qζ2 + N̄qθ τ f + f (49)

where f is the lumped disturbances of the fast-varying
system.

By defining e f = ζ1 − ζ1d , the sliding surface is
designed as

s f = de f

dtε
+ C3e f (50)

The derivative of the s f is

ds f
dtε

= d2e f
dtε2

+C3
de f
dtε

= − ¯Nqq K̃qζ2+ ¯Nqθ τ f +C3ζ2+ f

(51)

Since ζ2 cannot be directly obtained, it is estimated
by using the other HOSM extended state observer. This
observer is designed as

⎧
⎪⎪⎨

⎪⎪⎩

ζ̂1
dtε

= ζ̂2 + ϕ4sig2/3(ζ̃1)
ζ̂2
dtε

= ζ̂3 − ¯Nqq K̃q ζ̂2 + N̄qθ τ f + ϕ5sig1/3(ζ̃1)
ζ̂3
dtε

= ϕ6sgn(ζ̃1)

(52)

where the observer gain ϕi (i = 4, 5, 6) is a diagonal
matrix, ζ̃1 = ζ1 − ζ̂1, ζ̃2 = ζ2 − ζ̂2. By defining obser-
vation disturbance fo, fd = f + fo, ζ̃3 = fd − ζ̂3,
and the error model of the observer can be obtained

⎧
⎪⎪⎨

⎪⎪⎩

ζ̃1
dtε

= ζ̃2 − ϕ4sig2/3(ζ̃1)
ζ̃2
dtε

= ζ̃3 − ϕ5sig1/3(ζ̃1)
ζ̃3
dtε

= −ϕ6sgn(ζ̃ 1) + fd ′
(53)

Assumption 2 The disturbance fd meets Lipschitz
continuity condition, and

∥∥ fd ′∥∥ is bounded.

According toAssumption 2 andLemma2, the obser-
vation error ζ̃i (i = 1, 2, 3) can converge to zero infinite
time, that is, ζ2 = ζ̂2.

The control torque of the fast-varying subsystem is
designed as

τ f = N̄qθ
−1

( ¯Nqq K̃q ζ̂2 − C3ζ̂2 − C4sgn(s f )
)

(54)

The diagram of the composite controller can be seen in
Fig. 3.

4 Stability analysis

To prove the finite-time convergence of the controller,
a special Lyapunov function is chosen. The stability
of slow-varying subsystem and fast-varying subsystem
are discussed separately.

123



4418 H. Huang et al.

Fig. 3 Diagram of composite controller

4.1 Stability analysis of the slow-varying subsystem

To prove finite time convergence in the approach phase,
a new state variable χ is defined

χ =
[

χ1

χ2

]
=
[
sig1/2(s)

�

]
(55)

The time derivative of χ is

χ̇ =
[

χ̇1

χ̇2

]
=
[ 1

2 D
−1/2(s)ṡ
�̇

]

=
[ 1

2 D
−1/2(s)(−K1sig1/2(s) + � + E2)

− 1
2 K2sgn(s)

]

= −1

2

[
D−1/2(s) 0

0 D−1/2(s)

]−1

([
K1 −I
K2 0

] [
sig1/2(s)

�

]
−
[
E2

0

])

= −1

2

[(
D−1/2(s)

)−1
0

0
(
D−1/2(s)

)−1

]

(
Aχ −

[
E2

0

])

= −1

2

[(
D−1/2(s)

)−1
0

0
(
D−1/2(s)

)−1

]

Ãχ

= −1

2
Ω1 Ãχ (56)

where Ω1 =
[(

D−1/2(s)
)−1

0

0
(
D−1/2(s)

)−1

]

, A =
[
K1 −I
K2 0

]
, Ã =

[
K1 − ηI −I

K2 0

]
.

Assumption 3 Supposing that the disturbance E2 is
bounded, E2 can be expressed as

E2 = η(x1, t)sig1/2(s) = η(x1, t)χ1 (57)

where 0 < η(x1, t) < δ.

To prove the stability, the following Lyapunov func-
tion is taken

V = V0+ 1

2γ1

2∑

i=1

(
K1i − K1i

∗)2+ 1

2γ2

2∑

i=1

(
K2i − K2i

∗)2

(58)

where γ1, γ2 are positive constants, V0 = χT Pχ , P
is a positive definite matrix.

P =
[

(μ + 4κ2)I2×2 (−2κ)I2×2

(−2κ)I2×2 I2×2

]
, μ > 0, κ > 0

(59)

Combining eq. (56), the time derivative of V0 can be
deduced as

V̇0 = χ̇T Pχ + χT P χ̇
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= −1

2

(
χT

(
Ã
)T

Ω1Pχ + χT PΩ1 Ãχ

)

= −1

2
χT

((
Ã
)T

Ω1P + PΩ1 Ã
)

χ

= − 1

2 ‖χ1‖χT
((

Ã
)T

P + P Ã
)

χ

−1

2
χT

((
Ã
)T

Ω2P + PΩ2 Ã
)

χ

= − 1

2 ‖χ1‖χT
((

Ã
)T

P + P Ã
)

χ

−1

2
χT

((
Ã
)T

P + P Ã
)

Ω2χ

= − 1

2 ‖χ1‖
[
χT (Q1 + Q2)χ

]

−1

2
χT (Q1 + Q2) Ω2χ (60)

where

Q1 =
[

2K1(μ + 4κ2) − 4K2κ ∗
(−μ − 4κ2)I2×2 − K1κ + K2 4κ I2×2

]
(61)

Q2 = −η

[
2
(
μ + 4κ2

)
I2×2 ∗

−2κ I2×2 0

]

(62)

Ω2 =

⎡

⎢
⎢
⎢
⎣

(
D−1/2(s)

)−1 − 1
‖χ1‖ I2×2 0

0
(
D−1/2(s)

)−1

− 1
‖χ1‖ I2×2

⎤

⎥
⎥
⎥
⎦

(63)

According to Assumption 3, it can be deducted that

V̇0 = − 1
2‖χ1‖

[
χT (Q1 + Q2) χ

] − 1
2χT (Q1 + Q2) Ω1χ

≤ − 1
2‖χ1‖χT Qχ1 − 1

2χT QΩ1χ

(64)

where

Q =
[
2K1(μ + 4κ2) − 4K2κ − 2δ

(
μ + 4κ2

)
I2×2 ∗(−μ − 4κ2 + 2κδ

)
I2×2 − 2K1κ + K2 4κ I2×2

]

(65)

By substituting K2 = 2κK1 into eq. (65), it can be
obtained that

Q =
[
2K1μ − 2δ

(
μ + 4κ2

)
I2×2 ∗

(−μ − 4κ2 + 2κδ)I2×2 4κ I2×2

]
(66)

The matrix Q will be positive definite if

K1i >

(
μ + 4κ2 + 2κδ

)2

8μκ
, i = 1, 2 (67)

It is easy to prove that Ω = QΩ1 = Ω1Q, where
Ω1 is a symmetric positive definite matrix. According
to Lemma 1, when Q is a symmetric positive definite
matrix, Ω is also a positive definite symmetric matrix.
Thus, when (67) is satisfied, it can be deducted that

V̇0 ≤ − 1

2 ‖χ1‖χT Qχ − 1

2
χT QΩ1χ

≤ − 1

2 ‖χ1‖χT Qχ

≤ − 1

2 ‖χ1‖λmin(Q)χTχ

= − 1

2 ‖χ1‖λmin(Q)‖χ‖2 (68)

where λmin(Q) is the minimum eigenvalue of Q.

Since ‖χ‖ = ‖χ1‖ + ‖χ2‖ ≥ ‖χ1‖ and
V 1/2
0 (χ)

λ
1/2
max(P)

≤
‖χ‖ ≤ V 1/2

0 (χ)

λ
1/2
min(P)

, it can be obtained that

V̇0 ≤ − 1

2 ‖χ1‖λmin(Q)‖χ‖2

≤ −1

2

λmin(Q)λ
1/2
min (P)

λmax (P)
V 1/2
0 (χ)

= −r1V0
1/2 (69)

whereλmax (P) andλmin (P) is themaximumandmin-

imumeigenvalueof P respectively, r1= 1
2

λmin(Q)λ
1/2
min(P)

λmax(P)
.

V̇ = V̇0 + 1

2γ1
tr
[(
K1 − K1

∗)2] + 1

2γ2
tr
[(
K2 − K2

∗)2]

≤ −r1V0
1/2 + 1

2γ1
tr
[(
K1 − K1

∗)2]

+ 1

2γ2
tr
[(
K2 − K2

∗)2]

≤ −r1V0
1/2 + 1

γ1

2∑

i=1

K̃1i K̇1i + 1

γ2

2∑

i=1

K̃2i K̇2i

≤
⎛

⎝−r1V0
1/2 − k1√

2γ1

2∑

i=1

∣
∣
∣K̃1i

∣
∣
∣ − k2√

2γ2

2∑

i=1

∣
∣
∣K̃2i

∣
∣
∣

⎞

⎠

+ k1√
2γ1

2∑

i=1

∣
∣
∣K̃1i

∣
∣
∣

+ k2√
2γ2

2∑

i=1

∣
∣∣K̃2i

∣
∣∣ + 1

γ1

2∑

i=1

K̃1i K̇1i
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+ 1

γ2

2∑

i=1

K̃2i K̇2i (70)

V̇a = −r1V0
1/2 − k1√

2γ1

2∑

i=1

∣∣
∣K̃1i

∣∣
∣ − k2√

2γ2

2∑

i=1

∣∣
∣K̃2i

∣∣
∣

= −
⎛

⎝r1V0
1/2 + k1√

2γ1

2∑

i=1

∣
∣∣K̃1i

∣
∣∣ + k2√

2γ2

2∑

i=1

∣
∣∣K̃2i

∣
∣∣

⎞

⎠

≤ −
⎛

⎜
⎝
(
r1V0

1/2
)2 +

⎛

⎝ k1√
2γ1

2∑

i=1

∣
∣
∣K̃1i

∣
∣
∣

⎞

⎠

2

+
⎛

⎝ k2√
2γ2

2∑

i=1

∣
∣
∣K̃2i

∣
∣
∣

⎞

⎠

2
⎞

⎟
⎠

1/2

(71)

where r2 = min(r1, k1, k2).
The adaptive gains K1i and K2i are bounded [40],

that is, K̃1i < 0, K̃2i < 0, then

V̇b = k1√
2γ1

2∑

i=1

∣∣∣K̃1i

∣∣∣ + k2√
2γ2

2∑

i=1

∣∣∣K̃2i

∣∣∣

+ 1

γ1

2∑

i=1

K̃1i K̇1i + 1

γ2

2∑

i=1

K̃2i K̇2i

= −
2∑

i=1

∣∣∣K̃1i

∣∣∣
(

1

γ1
K̇1i − k1√

2γ1

)

−
2∑

i=1

∣∣∣K̃2i

∣∣∣
(

1

γ2
K̇2i − k2√

2γ2

)
(72)

The time derivative of V is

V̇ = V̇a + V̇b ≤ −r2V
1/2 + V̇b (73)

The V̇b is discussed in the following three situations.
Case1. when |si | > αa(i = 1, 2) and K1i > Km , the

adaptive gain takes K̇1i = k1
√

γ1
2 and K̇2i = 2κ K̇1i .

By setting κ = k2
2k1

√
γ2
γ1
, then, V̇b = 0 and

V̇ = V̇a ≤ −r2V
1/2 (74)

The K1i will increase in accordance with K̇1i =
k1
√

γ1
2 until (67) and (74) is satisfied. The sliding sur-

face will reach a very small range |si | ≤ αa in finite
time.

Case2. When
∣∣s j

∣∣ < αa( j = 1or j = 2), the adap-
tive gain takes the following form

K̇1 j =
{

−k1
√

γ1
2 , i f K1 j > Km

βa, i f K1 j ≤ Km

(75)

and

V̇b =

⎧
⎪⎪⎨

⎪⎪⎩

−
∣
∣∣K̃1 j

∣
∣∣
(
− 2k1√

2γ1

)
, ifK1 j > Km

− ∣∣Km + η.t − K1 j
∗∣∣
(

βa
γ1

− k1√
2γ1

)
,

ifK1 j ≤ Km

(76)

When K1 j ≤ Km , K1 j will increase linearly with
speed βa until K1 j > Km . If K1 j > Km , it is easy to
determine that V̇b > 0. According to eq. (72), the sign
of Lyapunov function may change, and then

∣∣s j
∣∣ may

be greater than αa . Once
∣∣s j

∣∣ > αa , the condition of
case1 is met, the sliding surface s j will reach a small
range

∣
∣s j

∣
∣ ≤ αa again in finite time. Finally, the sliding

mode variable will converge in a neighborhood
∣∣s j

∣∣ ≤
αm(αm > αa) in finite time.

Case3. When |si | < αa(i = 1, 2)

V̇b =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−
2∑

i=1

∣∣∣K̃1i

∣∣∣
(
− 2k1√

2γ1

)
, ifK1i > Km

−
2∑

i=1

∣∣Km + η.t − K1i
∗∣∣
(

βa
γ1

− k1√
2γ1

)
,

ifK1i ≤ Km

(77)

the sliding mode variable will converge in a neighbor-
hood

∣∣s j
∣∣ ≤ αm(αm > αa) in finite time as case2.

In sliding phase, the tracking errors converge to a
small designed domain δ within a fixed-time Ts , when
the nonsingular fixed-time sliding eq. (41) is adopted
[22]. Ts ≤ 2

c1(2−Γ1)
+ 2

c2(Γ3−1) , where c1, c2 is respec-
tively the minimum component of C1, C2.

According to the above cases, the finite time stability
of the slow-varying subsystem has been proved.

4.2 Stability analysis of the fast-varying subsystem

The following Lyapunov function is chosen

V f = 1

2
s f

T s f (78)
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By combining eq. (51), the derivative of V f with
respect to fast-varying time can be written as

dV f

dtε
= s f

T ds f
dtε

= s f
T (− ¯Nqq K̃qζ2 + N̄qθ τ f + C3ζ2 + fd)

= s f
T ( fd − C4sgn(s f )

)

≤ 0 (79)

The stability of the fast-varying subsystem has been
proved.

5 Simulation studies

In this section, to illustrate the effectiveness of the pro-
posed controller, the simulations are conducted to show
the performance improvement comparedwith the exist-
ing finite-time convergence controllers. The numerical
simulations are carried out by combining ADAMS and
MATLAB. A computer with 6 cores and 12 threads
CPU is used for simulation calculation. The discrete
method is used to simplify the hydrodynamic force.
Specifically, each manipulator is divided into 10 units,
and the water resistance and additional mass force are
loaded at the midpoint of each unit. The velocity and
acceleration of the midpoint of the unit are taken as the
velocity and acceleration of the whole unit, as seen in
Fig. 4a.

The size of the manipulators and the submarine
are reduced proportionally to the actual object. The
length of the manipulators are set as l1 = 0.975m,
l2 = 1m; the distance between the manipulator base
and the rotation axis of the submarine is l0 = 2.0m;
the bending stiffness of the flexible manipulator is
E I = 5.3125 × 104N · m2; the density of the manip-
ulators are ρ1 = 13.507kg/m, ρ2 = 12.363kg/m;
the hydrodynamic coefficients areρ f = 1025.9kg/m3,
CD = 1.1, CM = 1.

The desired trajectory of the manipulator end-
effector is a circle trajectory (Fig. 4b), which is given
as

{
xd = −1.775 + 0.2 × cos(π+2 × t)
yd = 0.6 + 0.2 × sin(π+2 × t)

(80)

The motion parameters of the submarine are X =
−0.1 × t,Y = 0.01 × t, α = 0.02 ∗ t . The lumped
disturbances contain model errors and the external
disturbances. The model uncertainty comes from two

aspects: (a) The AMM is used to model the flexible
body and the high-order mode is ignored, which pro-
duces certain modeling error compared with the flexi-
ble body established by ADAMS. (b) The geometry of
physical model is irregular, and the end load is regarded
as a particle, which has geometric modeling errors. The
external disturbance is Y-direction disturbance of the
submarine, which is set as YL = 0.02× sin(t). In addi-
tion, we also take into account the measurement error
of the joints and the maximum measurement error is
0.006rad. The initial positions of the two joints are
θ0 = [π/12, π/12].

5.1 Results

Case study 1
To verify the fast finite-time stability of the ANF-

SMC, the simulation comparisons are performed with
the NFTSMC [18] and integral fast terminal sliding
mode controller(IFTSMC) [47]. In order to facilitate
comparison, the same HOSM observer and adaptive
super-twisting approach law are adopted.

The sliding surface of NFTSMC is given as

s = e + C5sig
Γ4(e) + C6sig

Γ5(ė) (81)

where Γ5 = p1/p2, p1 and p2 are positive odd num-
bers, 1 < Γ5 < 2 and Γ4 > Γ5.

The derivative of sliding mode surface is

ṡ = ė + Γ4C5DΓ4−1(e)ė + Γ5C6DΓ5−1(ė)ë (82)

The control input is given as

τ̄ = C̄r(x1, x2) + M̄θθ (x1)( ¨x1d + (−I2×2

−Γ4C5DΓ4−1(e)) · (Γ5C6)
−1

·sig2−Γ5(ė) − x̂3) + M̄θθ (x1)( − K1sig
1/2(s)

+� ) − F̄θ (83)

The sliding surface of IFTSMC is given as

s = z + C7

∫ t

0
sigΓ6(z) + C8

∫ t

0
sigΓ7(z) (84)

where z = ė + C9e is an auxiliary term, Γ6 > 1 and
0 < Γ7 < 1 are positive constants.

The derivative of sliding mode surface is

ṡ = ż + C7sig
Γ6(z) + C8sig

Γ7(z) (85)
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Fig. 4 a Hydrodynamic load of manipulator, b desired trajectory of end actuator

Table 1 The parameter values of the controllers

Controller Parameter values

ANFSMC C1 = diag(7, 5), C2 = diag(5, 7), C3 = diag(0.01, 0.01), C4 = diag(0.01, 0.01), ϕ1 = 40,
ϕ2= 120,ϕ3= 80, ϕ4 = diag(1000, 1000),ϕ5 = diag(800, 200), ϕ6 = diag(100, 100),σ = 0.2,

Γ1 = 1.8, Γ2= 0.8,Γ3 = 1.2, k1
√

γ1
2 = 200,κ = 10, Km = 0.5, αa = 0.05, βa = 0.5

NFTSMC [18] C3 = diag(0.01, 0.01), C4 = diag(0.01, 0.01),C5 = diag(1100, 900), C6 = diag(3, 4), Γ4 =
2, Γ5= 5/3, ϕ1 = 40, ϕ2= 120, ϕ3= 80, ϕ4 = diag(1000, 1000), ϕ5 = diag(800, 200), ϕ6 =
diag(100, 100), k1

√
γ1
2 = 200,κ = 10, Km = 0.5, αa = 0.05, βa = 0.5

IFTSMC [47] C3 = diag(0.01, 0.01), C4 = diag(0.01, 0.01), C7 = diag(0.01, 0.01),C8 = diag(0.01, 0.01),
C9 = diag(15, 15), Γ6 = 2, Γ7= 0.6, ϕ1 = 40,ϕ2= 120, ϕ3= 80,ϕ4 = diag(1000, 1000), ϕ5 =
diag(800, 200), ϕ6 = diag(100, 100), k1

√
γ1
2 = 200, κ = 10, Km = 0.5,αa = 0.05, βa = 0.5

NFSMC [22] C1 = diag(7, 5), C2 = diag(5, 7), C3 = diag(0.01, 0.01),C4 = diag(0.01, 0.01), C10 =
diag(80, 80), C11 = diag(60, 60),Γ1 = 1.8, Γ2= 0.8, Γ3 = 1.2,Γ8 = 2, Γ9 = 0.6, ϕ1 = 40,ϕ2= 120,
ϕ3= 80,ϕ4 = diag(1000, 1000), ϕ5 = diag(800, 200), ϕ6 = diag(100, 100)

The control input is given as

τ̄ = C̄r(x1, x2) + M̄θθ (x1)( ¨x1d − C9 ż

−C7

∫ t

0
sigΓ6(z) − C8

∫ t

0
sigΓ7(z) − x̂3)

+M̄θθ (x1)( − K1sig
1/2(s) + � ) − F̄θ (86)

The control parameters of Case study 1 should
ensure that the first-order vibration modes and control
torques of the flexible manipulator under three differ-
ent controllers are in a relatively similar range. The
control parameters of Case study 1 and Case study 2
are selected by numerous tests until an optimal perfor-
mance is obtained, which is listed in Table 1.

The tracking trajectory of the three controllers are
shown in Figs. 5, 6, 7, 89, where Figs. 5, 6 show the
tracking trajectory of two joint angles, and Figs. 7, 8
and 9 show the tracking trajectory of the end-effector.
According to Figs. 5 and 6, the trajectories of joint
angles under three control strategies reach a small
neighborhood, which is close to the desired value after
t=0.3s. The convergence speed of the two joints under

ANFSMC is faster than the other two controllers. In
the initial stage, joint trajectories under ANFSMC
have less chattering than the joint trajectories under
NFTSMC and IFTSMC. In addition, it can be seen that
the trajectory of joint 2 under NFTSMC and IFTSMC
have an overshoot. After reaching steady state, the
ANFSMC has a smaller tracking error than NFTSMC
and IFTSMC. According to Figs. 7, 8 and 9, in the ini-
tial stage, although the NFTSMC has a faster response
speed, the trajectory of the end-effector has obvious
chattering in the X direction and has large overshoot
in the Y direction. The chattering and overshoot under
IFTSMC are smaller than those of NFTSMC. The ini-
tial convergence accuracy of IFTSMC is less than that
of the other two controllers. After reaching steady state,
theANFSMChas a smaller tracking error and less chat-
tering in the X and Y directions than NFTSMC and
IFTSMC.

The tracking error of the manipulator is shown in
Figs. 10, 11, 12 and 13. From Figs. 10 and 11, the
NFTSMC and IFTSMC have more chattering than

123



Adaptive non-singular fixed-time sliding mode control 4423

Fig. 5 Tracking trajectory of joint 1

Fig. 6 Tracking trajectory of joint 2

Fig. 7 X-direction tracking trajectory of end actuator

ANFSMC in the steady state. Although the steady error
of three controllers is less than 0.005 rad, the steady
error of ANFSMC is smaller than that of the other two
controllers. According to Fig. 11, the maximum over-
shoot ofNFTSMCand IFTSMCreaches 0.4 rad and 0.1
rad respectively. Figures12 and 13 show the end posi-
tion tracking error of the flexible manipulator. From

Fig. 8 Y-direction tracking trajectory of end actuator

Fig. 9 Tracking trajectory of end actuator

Fig. 10 Tracking error of joint 1

Figs. 12 and 13, the ANFSMC converges faster than
the other two controllers. In the first 0.1s, although the
response speed of NFTSMC is the fastest, its conver-
gence time is longer than the other two controllers due
to the chattering and overshoot.

Figure14 shows the first-order mode of the flexible
manipulator, which reflects the vibration of the flexible
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Fig. 11 Tracking error of joint 2

Fig. 12 X-direction tracking error of end actuator

Fig. 13 Y-direction tracking error of end actuator

manipulator. From Fig. 14, it can be seen that the first-
order vibrationmodeunderANFSMCand IFTSMCare
close at the initial stage, and the first-order mode under
IFTSMC are slightly larger than that of ANFSMC. The
first-order vibration mode under IFTSMC is maximal,
reaching 0.003m. After reaching steady state, the first-

Fig. 14 The first-order mode of flexible manipulator

Fig. 15 Input torque of joint 1

order mode under NFTSMC fluctuates more greatly
than that of IFTSMC and ANFSMC.

Figures15 and 16 shows the input torques of the
joints. In the initial state, the input torques of NFTSMC
aremuch greater than those of IFTSMCandANFSMC.
After reaching steady state, the input torques of the
three controllers is limited to a relatively close range,
and the control input torques of AFTSMC is slightly
smaller than those of the other two controllers.

Figures17 and 18 show the observed values of the
HOSM observer for the slow-varying and fast-varying
subsystems respectively. As can be seen from Figs. 17
and 18, both of the two extended state observers have
high observation accuracy, and the estimation errors
of joint variables and fast-varying state variables can
converge to a smaller error range within a relatively
short time.

To further compare the control performance of the
three control strategies, the root mean square error
(RMSE) of the tracking trajectory, and average flexi-
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Fig. 16 Input torque of joint 2

ble displacement (AFD) of end-effector are introduced,
which are defined as:

EΛ =
√√√√ 1

Nt1

Nt1∑

i=1

eΛ
2(i) (87)

wA =
√√√√ 1

Nt2

Nt2∑

i=1

w2(i) (88)

where Nt is the number of simulation steps, Λ denotes
the position of joint angle and end-effector, Λ ∈{
θ1, θ2, X,Y,

√
X2 + Y 2

}
.

The steady-state error is calculated in the time inter-
val t=[0.3,2*pi]s. The statistical values of the RMSE
and the AFD under three controllers are shown in
Table 2.

From Table 2, it can be seen that the steady-state
tracking error and flexible vibration under the ANF-
SMC are less than those under the NFTSMC and
IFTSMC. Compared with the NFTSMC, ANFSMC
can reduce the errors of the two joints by 41.18%
and 36.11% respectively, the end-effector by 34.29%,
and the flexible vibration by 61.79%. Compared with
the IFTSMC, ANFSMC can reduce the errors of the
two joints by 48.72% and 17.86% respectively, the
end-effector by 41.03%, and the flexible vibration by
22.89%.

Case study 2
To verify the vibration suppression effect of the

ANFSMC, the simulation comparisons are performed
with the NFSMC. The ANFSMC and NFSMC adopt
the same equivalent control law τ̄eq and the control
parameters are listed in Table 1.

Fig. 17 a Estimated position of joint 1, b estimated position of
joint 2, c estimated velocity of joint 1, d estimated velocity of
joint 2

The control law of NFSMC [22] is given as

{
τ̄ = τ̄ eq + τ 0

τ 0 = −C10sigΓ8(s) − C11sigΓ9(s)
(89)
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Fig. 18 a Estimated value of ζ11, b estimated value of ζ12, c
estimated value of ζ21, d estimated value of ζ22

where C10 and C11 are constant matrix.
Figures19 and 20 show the trajectory tracking

results of themanipulator underANFSMCandNFSMC.

Fig. 19 Tracking trajectory of joint 1

According to Figs. 19 and 20, compared with NFSMC,
ANFSMC has smaller overshoot, faster convergence
speed and higher control accuracy. Figure21 shows the
first-order mode of the flexible manipulator. Figures22
and 23 shows the control torques of the two joints.
According to Figs. 22 and 23, the first-order mode and
control input torques of the transient and steady-state
under ANFSMC are much smaller than those under
NFSMC.

From Table 2, it can be seen that the steady-state
tracking error and flexible vibration under the NFSMC
are much larger than those under the ANFSMC. Com-
pared with the NFSMC, ANFSMC can reduce the
errors of the two joints by 44.44% and 8% respectively,
the end-effector by 45.88%, and the flexible vibration
by 57.34%.

Figures24 and 25 show the nephogram of the flex-
ible manipulator at t=0.1s and t=2.4s respectively. It
can be seen from the figures that the strain value of the
flexible manipulator under ANFSMC is much smaller
than that under NFSMC, which further confirms the
good vibration suppression effect of ANFSMC.

5.2 Discussion

The simulation of Case study 1 has verified the effec-
tiveness of the proposed extended state observers,
which can accurately identify the lumped disturbance
and derivatives of flexible modes. The trajectory track-
ing results show that the proposed ANFSMC has a
faster convergence speed than NFTSMC and IFTSMC,
because the sliding time of the ANFSMC is inde-
pendent of the initial states and models, which can
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Table 2 The tracking errors and flexible displacement comparison

Controller Eθ1 (rad) Eθ2 (rad) EX (m) EY (m) E√
X2+Y 2 (m) wA(10−4m)

NFTSMC 0.0034 0.0036 0.0025 0.0065 0.0070 6.4960

IFTSMC 0.0039 0.0028 0.0021 0.0075 0.0078 3.2186

ANFSMC 0.0020 0.0023 0.0014 0.0044 0.0046 2.4819

NFSMC 0.0036 0.0025 0.0017 0.0083 0.0085 5.8176

Fig. 20 Tracking trajectory of joint 2

Fig. 21 The first-order mode of flexible manipulator

be calculated in advance. Furthermore, some param-
eters of the NFTSMC and IFTSMC needs to satisfy
the conditions of odd integers, therefore, the ANF-
SMC has more freedom in parameter selection, which
makes it easier to obtain parameters with fast conver-
gence performance. Compared with IFTSMC, joint 1
under NFTSMC converges faster, while joint 2 under
NFTSMCconverges slower. This is because the conver-
gence speed of IFTSMC and NFTSMC is related to the
initial state.NFTSMChas a faster response in the initial

Fig. 22 Input torque of joint 1

Fig. 23 Input torque of joint 2

stage, and joint 1 can quickly converge to the desired
trajectory. Joint 2 is the joint of the flexiblemanipulator.
Under the large input torque, the flexible manipulator
will produce significant deformation, thus delaying the
convergence of joint 2. Compared with the other two
controllers, the ANFSMC has less vibration and track-
ing error, which is due to the chosen continuous non-
linear function. The application of this function makes
the input torque smoother, which effectively reduces
sliding mode chattering and overshoot, and suppresses
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flexible vibration caused by high-frequency excitation
forces.

Simulation inCase study 2 shows thatANFSMCcan
significantly suppress the chattering and flexible vibra-
tion, and has better control accuracy than NFSMC.
This is because adaptive STA hides the discontinuous
switching term in the differential part of the control
input to reduce chattering, and retains the dynamic
characteristics of the first-order sliding modes. The
application of the adaptive law can enhance the con-
vergence speed of the STA and ensure the smoothness
of the control without knowing the upper bound of the
lumped disturbance in advance.

The proposed control method combines the advan-
tages of fast convergence of fixed time SMC and small
chattering of adaptive STA, and used a high-order slid-
ing mode state observer to compensate lumped distur-
bance, which effectively improve the control accuracy
and suppression of vibration.

6 Conclusion and future work

In this paper, the dynamic equation of moving-based
UFM is established for the first time. Based on
the dynamic equation, the trajectory tracking control
and vibration suppression of moving-base UFM are
studied, and an ANFSMC is proposed. Two HOSM
observers are used to estimate the lumped disturbance
of the slow-varying subsystem and the first two mode
derivatives of the fast-varying subsystem respectively.
This control method combines the advantages of fixed
-time sliding mode controller and STA. The simula-
tion results indicate that, ANFSMC can converge to
the stable state faster than NFTSMC and IFTSMC.
In addition, ANFSMC can reduce excessive compen-
sation through adaptive gain adjustment, and at the
same time, STA can effectively avoid the oscillation
caused by unsaturated function, so as to improve the
trajectory tracking performance of moving-base UFM,
which is of great significance for the underwater col-
laborative application of large submersible vehicles
and AUVs. Although this paper presents the deriva-
tion of the hydrodynamic and dynamic model for a
moving-base underwater flexible manipulator, its high
computational complexity limits practical applications
of multi-link underwater flexible manipulators. Future
research may focus on developing simplified computa-
tional methods for the dynamic model. Furthermore,

this paper only addresses hydrodynamic forces and
control algorithms in two-dimensional motion; how-
ever, investigating the more complex dynamic model
and coupling response of flexiblemanipulators in three-
dimensional motion is essential for future studies.

Funding This research is supported by theNational Natural Sci-
ence Foundation of China (No. 51979116); the HUST Interdis-
ciplinary Innovation Team Project (No. 2020JYCXJJ063); and
the Wuhan Science and Technology Project (No. 202001060
2012052). At the same time, we would like to extend our sin-
cere gratitude to Xiaoyan Liu for her assistance in polishing the
language of this article.

Data availability Date will be made available on reasonable
request

Declarations

Conflict of interest The authors declare that they have no con-
flict of interest.

Appendix

M11 = ρ1

∫ l1

0
x1

2dx1 + ρ2

∫ l2

0

(
l1
2 + x2

2
)
dx2

+ρ2

2∑

i=1

∫ l2

0
φi

2qi
2dx2

+2ρ2

∫ l2

0
l1x2 cos θ2dx2 − 2ρ2

2∑

i=1

∫ l2

0
l1φi qi sin θ2dx2

+
⎛

⎝l1
2 + l2

2 + 2l1l2 cos θ2 +
2∑

i=1

φi
2(l2)qi

2

−2l1 sin θ2

2∑

i=1

φi (l2)qi

⎞

⎠m (A1)

M12 = ρ2

∫ l2

0
x2

2dx2+ρ2

2∑

i=1

∫ l2

0
φi

2qi
2dx2

+ρ2

∫ l2

0
l1x2 cos θ2dx2

−ρ2

2∑

i=1

∫ l2

0
l1φi qi sin θ2dx2 +

(
l2
2 + l1l2 cos θ2

+
2∑

i=1

φi
2(l2)qi

2−l1 sin θ2

2∑

i=1

φi (l2)qi

⎞

⎠m (A2)

123



Adaptive non-singular fixed-time sliding mode control 4429

Fig. 24 a The strain of flexible manipulator under NFSMC at t = 0.1s, b the strain of flexible manipulator under ANFSMC at t = 0.1s

Fig. 25 a The strain of flexible manipulator under NFSMC at t = 2.4 s, b the strain of flexible manipulator under ANFSMC at t = 2.4s
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