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Abstract Extended Kalman filtering with unknown

input (EKF-UI) is often used to estimate the structural

system state, parameters and unknown input in

structural health monitoring. However, the real-time

performance of EKF-UI is bound to whether the

measurement equation has a direct feedthrough of

unknown input, which great limits its application

scope. Based on the zero-order-hold assumption and

random walk assumption of unknown input, a novel

adaptive discrete state equation is derived in this

paper. The new equation establishes a connection

between the current state and the current input and

allows the adjustment of the sensitivity matrix of the

unknown input. Then, based on the adaptive discrete

state equation and minimum variance unbiased esti-

mation principle, an adaptive generalized extended

Kalman filter with unknown input is derived. The

proposed algorithm eliminates the limitation that the

real-time performance is restricted by whether the

measurement equation has a direct feedthrough of the

input and realizes the optimization of the state and

input estimates in the sense of minimum variance. To

demonstrate the feasibility of the proposed method,

numerical example of a shear frame structure with

Bouc–Wen hysteresis nonlinearity and experimental

test of a five-story shear frame are conducted. The

comparison with existing methods shows the advan-

tages of the proposed method.

Keywords Extended Kalman filter � Structural
system identification � Unknown input � Real-time �
Sparse measurement

1 Introduction

Originating from the needs of structural assessment

and vibration control, identification of structural

systems, states and excitations based on sparse mea-

surements of structural responses has always been a

challenging and important topic in structural health

monitoring (SHM) [1–5].

In this regard, the classical Kalman filtering (KF)

method has been widely known as an effective

algorithm for system identification [6, 7]. This method
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is suitable for real-time recursive estimation of the

complete states based on sparse measurements. How-

ever, the classical KF method could only be applied to

linear systems with known structural parameters and

input information, which great limited the application

of this method. In the subsequent studies, some

scholars proposed extended Kalman filter (EKF)

methods by regarding the structural parameters as a

part of the augmented state [8–10]. However, Erazo

et al. believe that the augmentation of states and

parameters increases the challenge of identification

and proposes an offline method for output-only

Bayesian identification of stochastic nonlinear sys-

tems [11]. Since the structural parameters were

coupled with traditional states (referring to displace-

ment and velocity), in the augmented state-space

model, both the state equations and the measurement

equations were inevitably nonlinear. Although the

EKF-based methods could perform parameters iden-

tification and nonlinear system identification, these

methods still required that all the inputs information

was available.

With the development of the EKF method, some

system identification methods under unknown input

appeared in the last two decades. In the early stage,

Gillijns and Moor derived a recursive identification of

joint states and inputs using linear minimum-variance

unbiased estimation, which required direct feed-

through of inputs in measurement equations [12].

Yang et al. derived an adaptive extended Kalman filter

under unknown inputs from the global optimal

perspective and applied it to structural damage

identification [13]. This method could identify the

structural augmented states and unknown inputs in

real time, but required that the unknown inputs should

be included in the measurement equation. This

requirement was equivalent to imposing restrictions

on the deployment of acceleration sensors. Hwang

et al. developed a Kalman method to identify unknown

input using generalized inverse of matrix [14, 15],

which was later improved by Niu et al. [16]. Lin

proposed an estimation method based on EKF to

determine the time-dependent excitation force in a

nonlinear system [17]. Pan et al. used a weighted least-

square estimation method to derive a Kalman filtering

method under unknown inputs and proved that the

method is an optimal estimation in the sense of

minimum variance and unbiasedness, but feedthrough

of unknown inputs was still needed in the

measurement equation, and the derivation was quite

complicated [18]. Lourens et al. proposed an aug-

mented Kalman filter (AKF) for force identification, in

which unknown forces are included in the augmented

state vector, and the state and unknown forces are

solved using a method similar to the extended Kalman

filtering [19]. In order to reduce the dimensionality of

the state, a method based on reduced-order model was

proposed [20]. Wei et al. also proposed an AKF based

on sparse constraint theory. This method introduces

the randomwalk assumption whenmodeling unknown

inputs [21]. He et al. proposed a new EKF-based

method for simultaneously identifying structural

parameters and unknown inputs by introducing a

projection matrix into the measurement equation [22].

Nayek et al. proposed a latent force model for joint

input-state estimation by assuming that the unknown

force is a stationary Gaussian process [23]. The

authors also proposed some extended Kalman filter

methods with unknown inputs, which still required

measurement of the accelerations at the excitation

location to identify the augmented states and unknown

inputs in real time [24–26]. All the above EKF-UI

methods could recursively identify the structural

augmented states and unknown inputs in real time,

but they all had strict requirements on the measure-

ment equation. These methods require that the mea-

surement equations should have the direct feedthrough

of unknown inputs, which mean that all the acceler-

ation responses at the positions of the unknown inputs

must be available. In addition, it was worth mention-

ing that the significant impact of sensors deployment

on identification issues had led to many advances in

research on sensors optimization placement [27].

There were also some researches about the EKF-UI

methods, which could identify the states of the current

step and the unknown inputs of the previous step

without requirement of unknown inputs term contain-

ing in the measurement equation [28, 29]. Pan et al.

proposed a general extended Kalman filter for simul-

taneous estimation of system and unknown inputs

[30], which had no restrictions on the deployment of

acceleration sensors, but still needs to be considered

separately in terms of real-time performance. That

was, when the acceleration responses at the locations

of unknown inputs were measured, the unknown

inputs could be identified in real time, otherwise the

identification of unknown inputs had a one-step lag.

When the sampling time interval is short, the impact of
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this one-step lag may not be very significant. How-

ever, when the sampling time interval is long, the

adverse effects of the one-step lag become uncontrol-

lable. In addition, when implementing vibration

control strategies for structural systems subject to

unknown external inputs, it is crucial to provide real-

time structural state and input information for the

control system. If there is a one-step lag in the input

information, it is possible to significantly prolong the

control time or change the stability of the control

system, ultimately leading to control failure. There-

fore, real-time identification algorithms for unknown

inputs have great potential in practical engineering

applications and are worthy of further in-depth

research.

With the continuous deepening of research, the new

algorithms proposed in recent years have made some

progress in breaking through the real-time perfor-

mance constraints. The generalized extended Kalman

filter with unknown input (GEKF-UI) algorithm

proposed by the authors eliminates the limitation of

real-time performance affected by sensor deployment

by introducing first-order-hold (FOH) hypothesis into

the discretization process of state equation [31–33].

This method can be applied to most scenarios, but it is

still inadequate for some extreme cases, because the

sensitivity matrix of excitation is very close to zero in

these cases (Table 1).

The traditional Kalman-based methods always

require linearization when dealing with nonlinear

problems. This approximation may generate errors

when encountering strong nonlinearity. In order to

reduce the adverse impact of linearization on

identification, Al Hussein et al. integrated unscented

Kalman filtering (UKF) with iterative least squares

(ILS) technology and proposed an unscented Kalman

filter with unknown input (UKF-UI) [34]. This method

is offline and requires measurement of the acceleration

responses on all degrees of freedom. In subsequent

studies, Lei et al. proposed a novel unscented Kalman

filter for recursive state-input-system identification of

nonlinear systems. The method is real time and only

requires partial measurement of the responses [35].

Kirchner et al. proposed a new time-domain method

for joint state/input estimation of mechanical systems

using compressed sensing (CS) in a moving horizon

estimator (MHE). Due to the use of a sliding window

of time, the real-time performance of this method is

flawed [36]. KF-based and UFK-based methods can

only be applied to Gaussian noise, and particle

filtering (PF) can be used for non-Gaussian noise.

Liu et al. combined extended Kalman particle filter

(EKPF) with least squares (LS) to propose a new

method (EKPF-UI) for joint identification of structural

parameters and unknown excitations [37]. Lei et al.

further extended the applicability of EKPF-UI to

systems without direct feedthrough of unknown

excitation [38]. However, the curse of dimensionality

is an inherent challenge of particle filtering, which

limits the application of such methods.

In practice, identification under unknown inputs

usually generates another tricky problem, such as the

so-called drifts in the estimated structural displace-

ments and inputs since the previous EKF-UI

approaches based on sparse acceleration measure-

ments are inherently unstable [39]. To solve this

Table 1 Summary of applicable scenarios and limitations of KF-based methods

Methods Applicable scenarios and limitations

KF [6, 7] Applicable for real-time structural state identification of linear systems with known parameters and inputs. These

methods cannot be applied to nonlinear systems and scenarios with unknown inputs

EKF [8–11] Applicable for real-time augmented state (including structural parameters) identification of nonlinear systems with

known inputs. These methods cannot be applied to scenarios with unknown inputs

EKF-UI

[12–30]

Applicable for joint identification of augmented states (including structural parameters) and unknown inputs in

nonlinear systems. These methods do not exhibit real-time performance in scenarios where the measurement

equation lacks a direct feedthrough term of the unknown inputs

GEKF-UI

[31–33]

The GEKF-UI method is an upgraded version of the EKF-UI method, which further expands the application scope

of EKF-UI. However, due to the sampling hypothesis (FOH) adopted by GEKF-UI being not optimal, it is

difficult to converge and the accuracy needs to be improved in application scenarios where the measurement is

less sensitive to input
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problem, Liu et al. have proposed an improved

Kalman filter with unknown inputs based on data

fusion of sparse acceleration and displacement

responses [26]. Ma et al. also conducted research on

data fusion-based Kalman filter and proposed an

adaptive multi-rate Kalman filter to fuse asynchronous

acceleration and vision measurements, which can

realize better estimation of structural displacement

[40, 41]. These data fusion-based Kalman filter

technologies show great potential in practical

applications.

In order to improve the performance of existing

algorithms, an adaptive generalized extended Kalman

filter with unknown inputs (AGEKF-UI) algorithm is

proposed in this paper. It can simultaneously identify

structural complete states, structural parameters and

unknown inputs in real time based on sparse mea-

surements of structural response. The real-time per-

formance of this algorithm is not limited by the

deployment of acceleration sensors and whether the

system has direct feedthrough of unknown inputs. The

proposed algorithm can automatically optimize the

sensitivity matrix of unknown input and improve the

identification accuracy of unknown input to the

maximum extent. In order to eliminate the low-

frequency drift in displacement and input estimation,

data fusion technology is embedded into the proposed

AGEKF-UI algorithm. Finally, a numerical example

and an experimental test are used to demonstrate the

effectiveness of the proposed method.

This paper is organized as follows: Section 1

introduces the research advance and the limitations

of existing methods. Section 2 presents a general

description of the dynamic system and derives the

analytical recursive solutions of the AGEKF-UI

method. In Sects. 3 and 4, a numerical example and

an experimental test are conducted, respectively, to

validate the performances of the proposed method. In

Sect. 5, some conclusions are drawn. In addition, the

appendixes provide some details of the derivation of

the proposed algorithm.

2 Methodology

In this section, the discrete motion equations and

measurement equations of general nonlinear dynamic

systems are derived firstly, and then, a novel adaptive

generalized extended Kalman filter with unknown

input algorithm is derived in detail based on the

principle of minimum-variance unbiased estimation.

2.1 Problem formulation

The equation of motion of an n-degrees of freedom (n-

DOFs) structure under external input can be generally

expressed as:

M€xþ F x; _x; hð Þ ¼ guf u ð1Þ

where M is the mass matrix; x, _x and €x are the

displacement, velocity and acceleration of the struc-

ture, respectively; h is the unknown structural para-

metric vector; F x; _x; hð Þ is the force vector related to

the displacement, velocity and structural parameters;

f u is unmeasured external input; gu is influence matrix

associated with the unknown input f u. The superscript

‘u’ denotes unknown. For linear structures,

F x; _x; hð Þ ¼ C hð Þ _xþ K hð Þx, where C and K are the

damping and stiffness matrixes, respectively.

In this paper, structures are considered as time-

invariant systems (i.e., assuming _h � 0). Therefore, by

introducing an augmented state vector

ZM

=½xT ; _xT ; hT �
T
, the equation of motion (1) can be

transformed into continuous state equation in the state-

space model, and the measurement equation can also

be expressed by the augmented state vector.

_Z ¼ g Zð Þ þ Efu

y ¼ h Zð Þ þ Dfu

�
ð2Þ

g Zð Þ ¼
_x

�M�1F x; _x; hð Þ
0

2
4

3
5;E ¼ M�1gu ð3Þ

y is the measurement of the structural system. The

specific form of h Zð Þ and D will be discussed in detail

in Sect. 2.4 later.

Note that, whether the structure itself is linear or

not, the state equation and the measurement equation

are nonlinear, which is attributed to the structural

parameter h is unknown. In order to derive the closed-

form solution of the identification problem, Eq. (2)

needs to be linearized at bZkjk and eZkþ1jk by the first-

order Taylor series.

_Z � GkjkZþ Ef u þ gkjk ð4Þ

y � Hkþ1jkZþ Df u þ hkþ1jk ð5Þ
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in which

Gkjk ¼
og Zð Þ
oZT

����
Z¼bZkjk

ð6Þ

Hkþ1jk ¼
oh Zð Þ
oZT

����
Z¼eZkþ1jk

ð7Þ

gkjk ¼ g bZkjk

� �
� GkjkbZkjk ð8Þ

hkþ1jk ¼ h eZkþ1jk

� �
�Hkþ1jkeZkþ1jk ð9Þ

in which bZkjk represent the estimate value of Zk; eZkþ1jk
represent the approximate predictive value of Zkþ1. In

order to calculateHkþ1jk in Eq. (7), the value of eZkþ1jk

should be calculated in advance. Generally, eZkþ1jk can

be calculated by the following integration:

eZkþ1jk ¼ bZkjk þ
Z kþ1ð ÞDt

kDt
g Zð Þdt þ EDtð Þbf ukjk ð10Þ

in which bf ukjk represent the estimate value of f uk , Dt
denotes the sampling interval.

The solution of the first-order differential Eq. (4)

requires an assumption for the unknown input f u. In

the existing literatures related to EKF-UI algorithm

[13, 22, 26, 30], almost all the assumptions of

unknown input are zero-order-hold (ZOH), that is,

f u tð ÞM

=
f uk ; t 2 ½tk; tkþ1Þ ð11Þ

Note: It is not necessary to provide f ukþ1 when

solving Eq. (4). With this assumption [i.e., Eq. (11)],

the linearized continuous state Eq. (4) can be trans-

formed into a linearized discrete state equation as

follows [32]:

Zkþ1 ¼ AkZk þ Bzoh
k f uk þ gkjk ð12Þ

Ak ¼ e GkjkDtð Þ
Bzoh
k ¼ I1 EDtð Þ

gkjk ¼ I1 gkjkDt
� �

8><
>: ð13Þ

in which I1 ¼ Ak � Ið Þ GkjkDt
� ��1

. Note that I1 � I

can be easily proved.

Due to the fact that actual measurements are always

discrete, the measurement equation should also be

discretized, i.e.,

ykþ1 ¼ Hkþ1jkZkþ1 þ Df ukþ1 þ hkþ1jk ð14Þ

Substituting Eq. (12) into Eq. (14) gives:

ykþ1 ¼ Hkþ1jk AkZk þ Bzoh
k f uk þ gkjk

� �
þ Df ukþ1

þ hkþ1jk

ð15Þ

This equation means that in order to estimate

unknown input in real time, it is necessary to ensure

that D in the measurement equation is a column full-

rank matrix. In other words, the real-time identifica-

tion performance of unknown input is directly subject

to whether there is a direct feedthrough of unknown

input in the measurement equation.

However, in practice, sometimes it is impractical to

deploy accelerometer at the position of unknown input

(e.g., the case of substructure identification with

unknown interaction force at the boundary), which

results in D becoming a column deficient-rank matrix,

even a zero matrix. Another application scenario is the

earthquake condition. If the absolute acceleration of

the structure is used as the measurement, it will

naturally lead to D being equal to zero.

According to Eq. (15), when D ¼ 0 is hold, the

unknown input of the previous instant (i.e. f uk) instead

of the current instant (i.e. f ukþ1) can be estimated by the

current measurement (i.e. ykþ1), which means that

there is a one-step lag in the identification of the

unknown input. When D is a column deficient-rank

matrix, only some unknown inputs can be identified in

real time, while others can be identified with one-step

lag [30].

2.2 Adaptive discrete equation of state

for structural dynamical system.

In some existing input identification methods, it is an

effective way to introduce a virtual model into the

input evolution, such as the famous random walk

(RW) model [19, 21], that is:

f ukþ1
M

=
f uk þ euk ð16Þ

in which euk is a random walk error that satisfies the

Gaussian distribution assumption and has a mean of

zero and a covariance of Qu
k .

The most important step in the novel scheme is to

fuse Eqs. (12) and (16) to derive a general discrete
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state equation with an undetermined sensitivity

matrix.

Zkþ1 ¼ AkZk þ Bzoh
k f uk þ gkjk

¼ AkZk þ Bzoh
k � Bopt

kþ1

� �
f uk þ Bopt

kþ1 f ukþ1 � euk
� �

þ gkjk

¼ AkZk þ Bzoh
k � Bopt

kþ1

� �
f uk þ Bopt

kþ1f
u
kþ1 þ gkjk � Bopt

kþ1e
u
k

¼ AkZk þ Bopt
k f uk þ Bopt

kþ1f
u
kþ1 þ gkjk þ wu

k

ð17Þ

in which B
opt
kþ1 is an undetermined matrix,

Bopt
k ¼ Bzoh

k � Bopt
kþ1, w

u
k ¼ �Bopt

kþ1e
u
k . It is worth men-

tioning that the determination of B
opt
k and B

opt
kþ1

matrices need not be based on a known assumption

about unknown input.

In order to clearly show the differences between

different algorithms, Tables 2 and 3 summarize the

coefficients of the unknown input of the discrete state

equation and measurement equation in different

algorithms, respectively. It can be concluded that:

(1) the ‘‘ZOH scheme’’ cannot realize real-time

identification when D ¼ 0, (2) the ‘‘FOH scheme’’

can realize real-time identification but performs

poorly when DþHkþ1jkB
foh
kþ1

� �
is ill-posed, and (3)

the ‘‘ZOH ? RW scheme’’ can realize real-time

identification and automatically improve

DþHkþ1jkB
opt
kþ1

� �
as needed.

Remark The symbols I2 and O2 in Table 2 are

defined as I2 ¼ Ak � I1ð Þ GkjkDt
� ��1 � I and

O2 ¼ I1 � Ið Þ GkjkDt
� ��1 � 0, respectively.

2.3 The proposed AGEKF-UI algorithm

The standard forms of state equation and measurement

equation are summarized as follows:

Zkþ1 ¼ AkZk þ Bopt
k f uk þ Bopt

kþ1f
u
kþ1 þ gkjk þ wk ð18Þ

ykþ1 ¼ Hkþ1jkZkþ1 þ Df ukþ1 þ hkþ1jk þ vkþ1 ð19Þ

in which wk ¼ wu
k þ ws

k ¼ �Bopt
kþ1e

u
k þ ws

k is the total

system error considering RW error and modeling

error; ws
k is the modeling error that satisfies the

Gaussian distribution assumption and has a mean of

zero and a covariance of Qs
k. Then, the mean of the

total system error wk is zero and the variance is Qk ¼
B
opt
kþ1Q

u
k B

opt
kþ1

� �T þ Qs
k (Note that for the existing

GEKF-UI algorithms [31–33], let Qu
k � 0). vkþ1 is

the measurement error that satisfies the Gaussian

distribution assumption and has a mean of zero and a

covariance of Rkþ1.

The recursive process of the AGEKF-UI algorithm

is designed as follows.

Z
_

kþ1jk ¼ Ak
bZkjk þ B

opt
k f̂ ukjk þ gkjk ð20Þ

Table 2 Comparison of coefficients of f uk and f ukþ1 in the state equation of different schemes

Scheme Discrete state equations corresponding to schemes Coefficients of the input

ZOH [13, 22, 26, 30] Zkþ1 ¼ AkZk þ Bzoh
k f uk þ gkjk Bzoh

k ¼ I1 EDtð Þ
Bzoh
kþ1 ¼ 0

�

FOH [31–33] Zkþ1 ¼ AkZk þ Bfoh
k f uk þ Bfoh

kþ1f
u
kþ1 þ gkjk Bfoh

k ¼ I2 EDtð Þ
Bfoh
kþ1 ¼ O2 EDtð Þ � 0

(

ZOH ? RW Zkþ1 ¼ AkZk þ Bopt
k f uk þ Bopt

kþ1f
u
kþ1 þ gkjk Bopt

k ¼ Bzoh
k � Bopt

kþ1

B
opt
kþ1 ¼ Optimum

�

Table 3 Comparison of

coefficient of f ukþ1 in the

measurement equation of

different schemes

Scheme Discrete measurement equations corresponding to schemes

ZOH [13, 22, 26, 30] ykþ1 ¼ Hkþ1jk AkZk þ Bzoh
k f uk þ gkjk

� �
þ Df ukþ1 þ hkþ1jk

FOH [31–33] ykþ1 ¼ Hkþ1jk AkZk þ Bfoh
k f uk þ gkjk

� �
þ DþHkþ1jkB

foh
kþ1

� �
f ukþ1 þ hkþ1jk

ZOH ? RW ykþ1 ¼ Hkþ1jk AkZk þ Bopt
k f uk þ gkjk

� �
þ DþHkþ1jkB

opt
kþ1

� �
f ukþ1 þ hkþ1jk
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y
_

kþ1jk ¼ Hkþ1jkZ
_

kþ1jk þ hkþ1jk ð21Þ

rykþ1 ¼ ykþ1 � y
_

kþ1jk ð22Þ

bf ukþ1jkþ1 ¼ Skþ1r
y
kþ1 ð23Þ

bZkþ1jkþ1 ¼ Z
_

kþ1jk þ Lkþ1r
y
kþ1 ð24Þ

where Bopt
kþ1, Skþ1 and Lkþ1 are undetermined coeffi-

cient matrices, which will be determined later by the

principle of minimum-variance unbiased estimation.

2.3.1 Solving the unknown input

Define the state residual rzkþ1 and its error e
_Z

kþ1jk as

follows:

rzkþ1,Zkþ1 � Z
_

kþ1jk ¼ Bopt
kþ1f

u
kþ1 þ e

_Z

kþ1jk ð25Þ

e
_Z

kþ1jk,Akê
Z
kjk þ Bopt

k êfkjk þ wk ð26Þ

Then, define the covariance matrix P
_ZZ

kþ1jk of the

state residual error as follows:

P
_ZZ

kþ1jk,E e
_Z

kþ1jk e
_Z

kþ1jk

� �T
� 	

¼ Ak Bopt
k


 � P̂ZZ
kjk P̂Zf

kjk
P̂fZ
kjk P̂ff

kjk

" #
AT
k

B
opt
k

� �T
" #

þ Qk

ð27Þ

where E �½ � represents the operation of calculating the

mathematical expectation of a random variable. �ð ÞT
represents the operation of calculating the transposed

matrix. bPZZ

kjk ,
bPff

kjk,
bPZf

kjk and bPfZ

kjk represent the state

covariance matrix, the unknown input covariance

matrix and the cross-term covariance matrix,

respectively.

Define the measurement residual rykþ1 and its error

eykþ1 as follows:

rykþ1,ykþ1 � y
_

kþ1jk ¼ Tkþ1f
u
kþ1 þ eykþ1 ð28Þ

eykþ1,Hkþ1jke
_Z

kþ1jk þ vkþ1 ð29Þ

In which Tkþ1 ¼ DþHkþ1jkB
opt
kþ1. Then, define the

covariance matrix eRkþ1 of the measurement residual

error as follows:

~Rkþ1,E eykþ1 eykþ1

� �Th i
¼ Hkþ1jkP

_ZZ

kþ1jkH
T
kþ1jk þ Rkþ1

ð30Þ

Note that the reversibility of eRkþ1 can generally be

guaranteed, partly because Rkþ1 is reversible. In order

to ensure that the estimate of the unknown input is

unbiased, the following equation must hold.

E bf ukþ1jkþ1

h i
� f ukþ1 ) Skþ1Tkþ1f

u
kþ1 � f ukþ1 ð31Þ

Simplify the above equation to get the following

equation:

Skþ1Tkþ1 ¼ I ð32Þ

Equation (32) is the first constraint that the unde-

termined coefficients matrix Skþ1 must satisfy. In

addition, Skþ1 should also meet the requirement of

minimizing the estimation error of the unknown input.

Define the error of the unknown input and the

corresponding covariance matrix as follows:

befkþ1jkþ1
,f ukþ1 � bf ukþ1jkþ1 ¼ f ukþ1 � Skþ1r

y
kþ1

¼ �Skþ1e
y
kþ1 ð33Þ

bPff

kþ1jkþ1,E befkþ1jkþ1

� � befkþ1jkþ1

� �T
� 	

¼ Skþ1
eRkþ1S

T
kþ1 ð34Þ

Using the Lagrange multiplier method (LMM),

define the objective function that minimizes the

unknown input error as follows:

Pf Skþ1;Ckþ1jBopt
kþ1

� �
,tr Skþ1

eRkþ1S
T
kþ1

� �
� 2tr Skþ1Tkþ1 � Ið ÞCT

kþ1


 �
ð35Þ

in which tr �ð Þ represents the operation of computing

the trace of a square matrix. Ckþ1 is the Lagrange

multiplier coefficient matrix to be determined. In order

to obtain the minimum value of the objective function

Pf , the derivative of the objective function with

respect to Skþ1 should be set to zero, whereby the

second constraint on the unknown coefficient matrix

Skþ1 can be obtained.

oPf

oSkþ1

¼ 0 ) Skþ1
eRkþ1 � Ckþ1T

T
kþ1 ¼ 0 ð36Þ

The two constraints on Skþ1 [i.e., Eq. (32) and

Eq. (36)] can be combined to constitute a simultane-

ous equation system as follows:
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Skþ1 Ckþ1½ �
eRkþ1 Tkþ1

�TT
kþ1 0

� 	
¼ 0 I½ � ð37Þ

According to the matrix theory (refer to ‘‘Appendix

2’’), when eRkþ1 is invertible, the above equation

system has a unique solution. Thus, the undetermined

coefficient matrix Skþ1 can be obtained.

Ckþ1 ¼ TT
kþ1

eR�1

kþ1Tkþ1

� ��1

ð38Þ

Skþ1 ¼ Ckþ1T
T
kþ1

eR�1

kþ1 ð39Þ

Substituting Eq. (39) into Eq. (34) gives the min-

imum of bPff

kþ1jkþ1 under the condition that Bopt
kþ1 is

known a priori as follows:

bPff

kþ1jkþ1 ¼ Ckþ1 ð40Þ

In addition, it can be seen from Eq. (38) that the

implicit premise of the existence of solutions for Ckþ1

is that TT
kþ1

eR�1

kþ1Tkþ1

� �
is invertible, which is equiv-

alent to the number of measurements must be greater

than or equal to the number of unknown inputs. This

conclusion will be proved as follows.

Let the number of measurements (including the

sum of acceleration, velocity, displacement, strain,

etc.) be ns, and the number of unknown inputs be nf .

Define Rank �ð Þ as an operation of computing the rank

of a matrix. Then, inequality Rank TT
kþ1

eR�1

kþ1

�
Tkþ1Þ�min ns; nf

� �
can be easily obtained according

to matrix theory. When ns\nf , TT
kþ1

eR�1

kþ1Tkþ1

� �
is a

deficient-rank matrix, which will result in no solution

for Eq. (38). Therefore, ns � nf becomes a necessary

condition for applying the proposed method. That is,

the number of measurements must be greater than or

equal to the number of unknown inputs. So far, we

have obtained the unknown input of the current step

according to the principle of minimum-variance

unbiased estimation. Next, we will use a similar

process to solve the minimum-variance unbiased

estimate of state.

2.3.2 Solving the unknown state

In order to ensure that the estimate of the unknown

state is unbiased, the following equation must hold.

E bZkþ1jkþ1

h i
�Zkþ1) Zkþ1�Bopt

kþ1f
u
kþ1

� �
þLkþ1Tkþ1f

u
kþ1�Zkþ1

ð41Þ

Simplify the above equation to get the following

equation:

Lkþ1Tkþ1 � Bopt
kþ1 ¼ 0 ð42Þ

Equation (42) is the first constraint that the unde-

termined coefficients matrix Lkþ1 must satisfy. In

addition, Lkþ1 should also meet the requirement of

minimizing the estimation error of the unknown state.

Define the error of the unknown state and the

corresponding covariance matrix as follows:

êZkþ1jkþ1,Zkþ1 � bZkþ1jkþ1 ¼ I� Lkþ1Hkþ1jk
� �

e
_Z

kþ1jk
� Lkþ1vkþ1

ð43Þ

P̂ZZ
kþ1jkþ1,E êZkþ1jkþ1

� �
êZkþ1jkþ1

� �T
� 	

¼ I� Lkþ1Hkþ1jk
� �

P
_ZZ

kþ1jk I� Lkþ1Hkþ1jk
� �TþLkþ1Rkþ1L

T
kþ1

¼ Lkþ1
~Rkþ1L

T
kþ1 � Lkþ1Hkþ1jkP

_ZZ

kþ1jk � P
_ZZ

kþ1jkH
T
kþ1jkL

T
kþ1 þ P

_ZZ

kþ1jk

ð44Þ

Using the Lagrange multiplier method, define the

objective function that minimizes the unknown state

error as follows:

PZ Lkþ1;Kkþ1jBopt
kþ1

� �
,tr Lkþ1

~Rkþ1L
T
kþ1 � 2P

_ZZ

kþ1jkH
T
kþ1jkL

T
kþ1 þ P

_ZZ

kþ1jk

� 

� 2tr Lkþ1Tkþ1 � Bopt
kþ1

� �
KT

kþ1


 �
ð45Þ

in which Kkþ1 is the Lagrange multiplier coefficient

matrix to be determined. In order to obtain the

minimum value of the objective function PZ, the

derivative of the objective function with respect to

Lkþ1 should be set to zero, whereby the second

constraint on the unknown coefficient matrix Lkþ1 can

be obtained.

oPZ

oLkþ1

¼ 0 ) Lkþ1
~Rkþ1 � Kkþ1T

T
kþ1 ¼ P

_ZZ

kþ1jkH
T
kþ1jk

ð46Þ

The two constraints on Lkþ1 [i.e., Eqs. (42) and

(46)] can be combined to constitute a simultaneous

equation system as follows:
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Lkþ1 Kkþ1½ �
~Rkþ1 Tkþ1

�TT
kþ1 0

� 	

¼ P
_ZZ

kþ1jkH
T
kþ1jk Bopt

kþ1

h i
ð47Þ

According to the matrix theory (refer to ‘‘Appendix

2’’), when eRkþ1 is invertible, the above equation

system has a unique solution. Thus, the undetermined

coefficient matrix Lkþ1 can be obtained.

Lkþ1

Kkþ1

� 	
¼

P
_ZZ

kþ1jkH
T
kþ1jk

~R�1
kþ1 I� Tkþ1Skþ1ð Þ þ Bopt

kþ1Skþ1

�P
_ZZ

kþ1jkH
T
kþ1jkS

T
kþ1 þ Bopt

kþ1Ckþ1

2
4

3
5

ð48Þ

In order to simplify the above formulas, some new

definitions are introduced as follows:

Kkþ1,P
_ZZ

kþ1jkH
T
kþ1jk

~R�1
kþ1 ð49Þ

Ukþ1,Bopt
kþ1 � Kkþ1Tkþ1 ð50Þ

Substituting Eqs. (39), (49) and Eq. (50) into

Eq. (48) gives the expression of Lkþ1 and Kkþ1 as

follows:

Kkþ1 ¼ Ukþ1Ckþ1 ð51Þ

Lkþ1 ¼ Kkþ1 þUkþ1Skþ1 ð52Þ

Substituting Eq. (52) into Eq. (44) and considering

Hkþ1jkP
_ZZ

kþ1jk ¼ ~Rkþ1K
T
kþ1, the minimum of bPZZ

kþ1jkþ1

under the condition that Bopt
kþ1 is known a priori can be

expressed as follows:

P̂ZZ
kþ1jkþ1 ¼ Kkþ1 þUkþ1Skþ1ð Þ ~Rkþ1 Kkþ1 þUkþ1Skþ1ð ÞT

� Kkþ1 þUkþ1Skþ1ð ÞHkþ1jkP
_ZZ

kþ1jk � P
_ZZ

kþ1jkH
T
kþ1jk Kkþ1 þUkþ1Skþ1ð ÞTþP

_ZZ

kþ1jk

¼ Kkþ1
~Rkþ1K

T
kþ1 � P

_ZZ

kþ1jkH
T
kþ1jkK

T
kþ1

� 

þ Ukþ1Skþ1
~Rkþ1K

T
kþ1 �Ukþ1Skþ1Hkþ1jkP

_ZZ

kþ1jk

� 

þ Kkþ1
~Rkþ1S

T
kþ1U

T
kþ1 � P

_ZZ

kþ1jkH
T
kþ1jkS

T
kþ1U

T
kþ1

� 

þ P
_ZZ

kþ1jk � Kkþ1Hkþ1jkP
_ZZ

kþ1jk þUkþ1Skþ1
~Rkþ1S

T
kþ1U

T
kþ1

� 

¼ I� Kkþ1Hkþ1jk
� �

P
_ZZ

kþ1jk þUkþ1P̂
ff
kþ1jkþ1

UT
kþ1

ð53Þ

2.3.3 Solving the unknown matrix Bopt
kþ1

Both the objective functions Pf and PZ are related to

the undetermined matrix Bopt
kþ1, because both eRkþ1,

Tkþ1 and P
_ZZ

kþ1jk are functions of Bopt
kþ1. Define the

objective function that simultaneously minimizes the

unknown input error and unknown state error as

follows:

minPfZ
M

=
Pf þ qPZ ð54Þ

in which q is a factor used to balance the weight of

unknown input and unknown state.

In order to obtain the minimum value of the

objective function PfZ, the derivative of the objective

function with respect to Bopt
kþ1 should be set to zero.

oPfZ

oBopt
kþ1

¼ oPf

oBopt
kþ1

þ q
oPZ

oBopt
kþ1

¼ 0 ð55Þ

in which

oPf

oB
opt
kþ1

¼ PT
kþ1 Pkþ1Wkþ1 � Ckþ1ð Þ ð56Þ

oPZ

oBopt
kþ1

¼ XT
kþ1 Xkþ1Wkþ1 � Kkþ1ð Þ ð57Þ

in which

Pkþ1
M

=
Skþ1Hkþ1jk ð58Þ

Xkþ1
M

=
Lkþ1Hkþ1jk � I ð59Þ

Wkþ1
M

=
Bopt
kþ1

bPff

kjk þ Qu
k

� �
� Ak

bPZf

kjk þ Bzoh
k

bPff

kjk

� �h i

ð60Þ

Substituting Eqs. (56) and (57) into (55) yields an

equation for Bopt
kþ1:

L Bopt
kþ1

� �
M

=
PT

kþ1 Pkþ1Wkþ1 � Ckþ1ð Þ
þ qXT

kþ1 Xkþ1Wkþ1 � Kkþ1ð Þ
¼ 0 ð61Þ

‘‘Appendix 1’’ provides a detailed derivation pro-

cess for Eqs. (56) and (57). The unknown matrix Bopt
kþ1

can be solved by Eq. (61), and then, Skþ1 and Lkþ1 can

be further solved. However, Eq. (61) is a nonlinear

equation about B
opt
kþ1 and cannot be solved directly. To

this end, finding a more relaxed sufficient condition to

replace Eq. (61) becomes a way to solve B
opt
kþ1. Along

this line of thought, this paper puts forward a

hypothesis that B
opt
kþ1 ¼ kkþ1B

zoh
k .
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oPfZ

okkþ1

¼ oPf

okkþ1

þ q
oPZ

okkþ1

¼ 0 ð62Þ

in which

oPf

okkþ1

¼ oPf

oBopt
kþ1

:
oBopt

kþ1

okkþ1

¼ tr Bzoh
k

� �T
PT

kþ1 Pkþ1Wkþ1 � Ckþ1ð Þ
n o

¼ 1

kkþ1

tr I� DTSTkþ1

� �
Pkþ1Wkþ1 � Ckþ1ð Þ

� � ð63Þ

oPZ

okkþ1

¼ oPZ

oBopt
kþ1

:
oBopt

kþ1

okkþ1

¼ tr Bzoh
k

� �T
XT

kþ1 Xkþ1Wkþ1 � Kkþ1ð Þ
n o

¼ 1

kkþ1

tr �DTLT
kþ1 Xkþ1Wkþ1 � Kkþ1ð Þ

� � ð64Þ

in which (:) represents the operation of the two-point

product of the tensor. Substituting Eqs. (63) and (64)

into (62) yields an equation for kkþ1:

L kkþ1ð Þ ¼ tr
�DT STkþ1 Pkþ1Wkþ1 � Ckþ1ð Þ þ qLT

kþ1 Xkþ1Wkþ1 � Kkþ1ð Þ

 �

þ Pkþ1Wkþ1 � Ckþ1ð Þ

� �
¼ 0

ð65Þ

It should be noted that Eq. (65) is only a conditional

and feasible solution of Eq. (61). Therefore, subse-

quent research may generate more practical algo-

rithms based on Eq. (61).

2.3.4 Update of error covariance of cross terms

Define the cross-covariance matrix of the state and the

unknown input and substitute Eqs. (29), (33) and

Eq. (43) for simplification as follows:

P̂Zf
kþ1jkþ1

,E êZkþ1jkþ1

� �
êfkþ1jkþ1

� �T
� 	

¼ � I� Lkþ1Hkþ1jk
� �

P
_ZZ

kþ1jkH
T
kþ1jkS

T
kþ1 þ Lkþ1Rkþ1S

T
kþ1

¼ �P
_ZZ

kþ1jkH
T
kþ1jkS

T
kþ1 þ Lkþ1

~Rkþ1S
T
kþ1

¼ Ukþ1Skþ1
~Rkþ1S

T
kþ1 ¼ Ukþ1P̂

ff
kþ1jkþ1

ð66Þ

bPfZ

kþ1jkþ1,E befkþ1jkþ1

� � beZkþ1jkþ1

� �T
� 	

¼ bPZf

kþ1jkþ1

� �T

ð67Þ

2.3.5 Comparison with traditional Kalman paradigm

Substituting Eq. (52) and Eq. (23) into Eq. (24) gives

the expression of bZkþ1jkþ1 as follows:

bZkþ1jkþ1 ¼ Z
_

kþ1jk þ Kkþ1 þUkþ1Skþ1ð Þrykþ1

¼ Z
_

kþ1jk þ Kkþ1r
y
kþ1 þ Bopt

kþ1 � Kkþ1Tkþ1

� �
f̂ ukþ1jkþ1

¼ Z
_

kþ1jk þ Bopt
kþ1 f̂

u
kþ1jkþ1

� �
þ Kkþ1 rykþ1 � Tkþ1f̂

u
kþ1jkþ1

� �

¼ Z
_

kþ1jk þ Kkþ1 ykþ1 � y
_

kþ1jk

� �

ð68Þ

in which

Z
_

kþ1jk ¼ Z
_

kþ1jk þ Bopt
kþ1f̂

u
kþ1jkþ1 ð69Þ

ykþ1jk ¼ Hkþ1jkZkþ1jk þ Df̂
u

kþ1jkþ1 þ hkþ1jk ð70Þ

Note that Z
_

kþ1jk and Zkþ1jk are biased and unbiased

estimate of Zkþ1, respectively. y
_

kþ1jk and ykþ1jk are

biased and unbiased estimate of ykþ1, respectively.

Equation (68) has a similar form to the traditional

extended Kalman filtering method. When AkZk þ
Bopt
k f uk in Eq. (18) is considered as a whole, the

formula for identifying f uk in the existing literatures is

consistent with the formula for identifying f ukþ1 in this

paper [13, 26]. Therefore, the method proposed in this

paper can be degraded to the existing EKF-UI and

GEKF-UI methods under special cases.

2.4 Data fusion technology in measurement

Since only taking acceleration as the measurements

sometimes lead to drifts in the identified structural

displacement and unknown input [39], Liu et al. proposed

aKalmanfiltermethodbasedondata fusion technologyof

partial acceleration and displacement measurements to

overcome this problem [26]. Due to the fact that low-

frequency and high-frequency vibration characteristics

are included in displacement and acceleration measure-

ments, respectively, and there is a deterministic derivation

relationship between structural displacement and surface

strain in finite element theory, acceleration and displace-

ment or strain are usually combined to form simultaneous

measurements to suppress drift. This is the application of

data fusion technology. It is worthmentioning that Huang

et al. have further explained the reasons for the so-called

drifts in the estimated unknown inputs and structural

displacement [32, 42] and pointed out that acceleration-

only measurements did not always cause drift, such as in

the earthquake scenarios. Therefore, data fusion is

required in general application scenarios to prevent drift,

while it is not required in earthquake scenarios.
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The strain–displacement relationship is presented

below in the context of finite element model.

e ¼ Cx ð71Þ

C ¼ B1T1S1
� �T

; B2T2S2
� �T

; � � � ; BmTmSm
� �Th iT

ð72Þ

where e is the strain vector; Si is the matrix used to

select the displacement related to element i (a total of

m elements), and the number of selected DOFs is

dependent on the element type; Ti is the matrix that

transforms the element nodal displacement in global

coordinate to those in local coordinate;Bi is the matrix

representing the relationship between the node dis-

placement of an element and the strain in this element,

which can be developed using the shape function of

the element; C is the strain–displacement transforma-

tion matrix.

The acceleration and displacement/strain can be

expressed as follows, respectively.

y€x;kþ1 ¼ �LaM
�1F xkþ1; _xkþ1; hkþ1ð Þ þ LaM

�1guf ukþ1

þ v€x;kþ1

ð73Þ

yx;kþ1 ¼ Lu In 0n 0n	nh½ �Zkþ1 þ vx;kþ1

ye;kþ1 ¼ LeC In 0n 0n	nh½ �Zkþ1 þ ve;kþ1

�
ð74Þ

in which La, Lu and Le are the deployment matrix of

accelerometer, displacement gauge and strain gauge,

respectively; In is a n-dimensional identity matrix;

0n	nh is a matrix of size n	 nh and all elements are 0.

In general application scenarios, data fusion tech-

nology is introduced into the measurement equation to

eliminate drift mixed in the identification results.

When data fusion of sparse measurement of acceler-

ation and strain are adopted, the measurement data are

integrated together to constitute the measurement

equation as follows:

ykþ1 ¼
y€x;kþ1

ye;kþ1

� 	
¼ h Zkþ1ð Þ þ Df ukþ1 þ vkþ1 ð75Þ

in which h Zkþ1ð Þ ¼ �LaM
�1F xkþ1; _xkþ1; hkþ1ð Þ

LeCxkþ1

� 	
,

D ¼ LaM
�1gu

0

� 	

When data fusion of sparse measurement of accel-

eration and displacement responses are adopted, the

integrated measurement equation is similar to

Eq. (75).

2.5 Calculation process

The calculation flow of the proposed AGEKF-UI

method is shown in Table 4 and Fig. 1.

3 Numerical validation of the proposed AGEKF-

UI algorithm

In order to verify the performance of the proposed

AGEKF-UI algorithm, a numerical example is used

for demonstration. Since the real-time performance of

existing EKF-UI methods is generally limited by

whether the measurement equation has a direct

feedthrough of unknown input, the application scope

of the proposed AGEKF-UI method is naturally larger

than that of existing EKF-UI methods.

In all application scenarios, the most unfavorable

scenario for identification is D ¼ 0. In order to

demonstrate that the proposed AGEKF-UI algorithm

has the ability to surpass the existing GEKF-UI

methods, all numerical cases only consider the

extremely poor situation which existing EKF-UI

methods are no longer applicable. For the case of D

as a column full-rank matrix, the identification effect

of the proposed AGEKF-UI algorithm will undoubt-

edly be better than the existing EKF-UI methods. To

save space, this type of example will not be given.

3.1 Multi-story nonlinear hysteretic structure

In this example, the type of structural system is a shear

frame with Bouc–Wen hysteretic nonlinearity, which

is used to simulate the motion state of the structure

after yield failure under strong excitation.

The structural parameters of the six-story shear

frame are: mi ¼ 50kg, ki ¼ 1:0	 105N=m and

ci ¼ 500Ns=m, where the value of i traverses from 1

to 6. It is assumed that story nonlinear hysteretic

restoring force in Bouc–Wen model exists in the first

story. The nonlinear force and the inter-story hys-

teretic drift zi can be described by:

f 1 ¼ a1k1x1 þ 1� a1ð Þk1z1 ð76Þ
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_z1 ¼ _x1 b1 _x1j j z1j jn1�1z1 þ c1 _x1 z1j jn1
n o

ð77Þ

in which b1, c1 and n1 are the Bouc–Wen hysteretic

parameters; a1 is the ratio of post-yielding stiffness to

pre-yielding stiffness. These parameters are selected

as: a1 ¼ 0:5, b1 ¼ 1000s2=m2, c1 ¼ 500s2=m2 and

n1 ¼ 1:3. The sketch of the shear frame structure is

shown in Fig. 2. Two mutually independent wide-

band (upper cut-off frequency 99 Hz) white noise

excitations are applied to the 3rd and 5th floors.

In order to identify the structural parameters and

external excitation of the structure, a structural health

Table 4 The equations list

of AGEKF-UI algorithm At tk instant, assign bZkjk , bf ukjk , bPZZ

kjk ,
bPff

kjk ,
bPZf

kjk ,
bPfZ

kjk

At tkþ1 instant:

Z
_

kþ1jk ¼ Ak
bZkjk þ B

opt
k f̂ ukjk þ gkjk

y
_

kþ1jk ¼ Hkþ1jkZ
_

kþ1jk þ hkþ1jk

rykþ1 ¼ ykþ1 � y
_

kþ1jk

f̂ ukþ1jkþ1 ¼ Skþ1r
y
kþ1

bZkþ1jkþ1 ¼ Z
_

kþ1jk þ Lkþ1r
y
kþ1

bPff

kþ1jkþ1 ¼ Ckþ1

P̂ZZ
kþ1jkþ1 ¼ I� Kkþ1Hkþ1jk

� �
P
_ZZ

kþ1jk þUkþ1P̂
ff
kþ1jkþ1

UT
kþ1

bPZf

kþ1jkþ1 ¼ bPfZ

kþ1jkþ1

� �T

¼ Ukþ1
bPff

kþ1jkþ1

in which,

Skþ1 ¼ Ckþ1 TT
kþ1

eR�1

kþ1

� �

Lkþ1 ¼ Kkþ1 þUkþ1Skþ1

in which,

Tkþ1 ¼ DþHkþ1jkB
opt
kþ1

~Rkþ1 ¼ Hkþ1jkP
_ZZ

kþ1jkH
T
kþ1jk þ Rkþ1

Kkþ1 ¼ P
_ZZ

kþ1jkH
T
kþ1jk

~R�1
kþ1

Ukþ1 ¼ Bopt
kþ1 � Kkþ1Tkþ1

Ckþ1 ¼ TT
kþ1

eR�1

kþ1Tkþ1

� ��1

Kkþ1 ¼ Ukþ1Ckþ1

in which,

L Bopt
kþ1

� �
¼ 0 ) Bopt

kþ1

Bopt
k ¼ Bzoh

k � Bopt
kþ1

Qk ¼ B
opt
kþ1Q

u
k B

opt
kþ1

� �T þ Qs
k

P
_ZZ

kþ1jk ¼ Ak Bopt
k


 � P̂ZZ
kjk P̂Zf

kjk
P̂fZ
kjk P̂ff

kjk

" #
AT
k

B
opt
k

� �T
" #

þ Qk

in which

L Bopt
kþ1

� �
¼ PT

kþ1 Pkþ1Wkþ1 � Ckþ1ð Þ þ qXT
kþ1 Xkþ1Wkþ1 � Kkþ1ð Þ

Pkþ1 ¼ Skþ1Hkþ1jk

Xkþ1 ¼ Lkþ1Hkþ1jk � I

Wkþ1 ¼ Bopt
kþ1

bPff

kjk þ Qu
k

� �
� Ak

bPZf

kjk þ Bzoh
k

bPff

kjk

� �h i
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monitoring system is deployed on the structure. Three

acceleration sensors are deployed on the 1st, 4th and

6th floors respectively, and displacement sensors are

deployed on the same floor. Due to the unavoidable

measurement error, noises with 2% noise-to-signal

ratio in root mean square (RMS) is mixed in the data

collected by the sensor. It should be noted that there

are many scholars studying the optimal arrangement

of sensors [43, 44]. Niu et al. summarized the

limitations of existing load identification methods in

Fig. 1 The flowchart of the proposed AGEKF-UI algorithm
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terms of sensor type, number and location and gave

guidance on method selection [16]. However, since

this is not the focus of this paper, optimal deployments

of sensors are not discussed in all examples in this

paper. In addition, note that the accelerations at the

positions where the unknown forces act are not

measured, so D is equal to zero. In this case, the

existing EKF-UI methods are incompetent, but can be

solved by the method proposed in this paper.

3.2 Identification results based on the proposed

AGEKF-UI algorithm

The augmented state and unknown excitation of the

structure are initialized before executing the recursive

algorithm. The initial values of displacement, veloc-

ity, and unknown excitation are all set to zero, and the

initial values of structural parameters are set to 0.7

times of their actual values to simulate unknown

structural parameters (note: since the exponent n in

Bouc–Wen model must be greater than 1, its initial

value is set to 0.8 times of its actual value). The initial

variance and covariance of the augmented state and

unknown excitation are set as:

P̂ZZ
0j0 ¼ diag 10�416	1; 10

�216	1;ð 10�5; 101016	1;

10516	1; 0:1; 10
7; 106; 10Þ,

P̂ff
0j0 ¼ 106I2andP̂

Zf
0j0 ¼ P̂fZ

0j0

� �T

¼ 129	2, in which

1m	n represents a matrix of sizem	 n and all elements

are 1.

The variance matrixes related to system noise and

random walk of unknown excitation are set as: Qs
k ¼

10�11I29 and Qu
k ¼ 2	 107I2 respectively. The mea-

surement noise variance matrix is set as:

Rkþ1 ¼ diag 10�113	1; 2	 10�613	1


 �� �
. The factor

(i.e., q) used to balance the weights of unknown

excitation and unknown state is set to 10. The

identification results based on the proposed AGEKF-

UI algorithm are shown in Figs. 3, 4, 5, 6, 7, 8 and 9.

It can be seen from Fig. 3 that the state identifica-

tion of the structure matches well with its accurate

value. Figure 4 shows the identification effect of the

nonlinear hysteretic model of the first layer. It can be

seen that there are some small errors. Figure 5 shows

the identification effect of structural linear parameters.

It can be seen that the stiffness and damping can

converge to the real value very well and quickly.

Figures 6 and 7 show the convergence process of

Bouc–Wen model parameters. It can be seen that the

convergence errors of a1 and n1 are very small, while

those of b1 and c1 are slightly larger. The reason for

this difference is that each parameter has different

sensitivity with respect to measurement. Figures 8 and

9 show the identification effect of unknown excita-

tions. It can be seen that there is a certain error between

the identification and the true value.

3.3 Discussion and analysis

This example simulates the identification problem in

the worst scenario (D ¼ 0), and the existing EKF-UI

methods cannot realize real-time identification. At

present, the only applicable method is GEKF-UI.

Therefore, the proposed AGEKF-UI method is com-

pared with the existing GEKF-UI method to illustrate

its advancement. Tables 5 and 6 show the identifica-

tion errors of parameters based on AGEKF-UI and

GEKF-UI methods. (The data in parentheses are based

on GEKF-UI method.) It can be seen that except for a

few parameters (marked with underline), the AGEKF-

UI method is slightly better than the GEKF-UI method

in terms of parameters identification accuracy. In fact,

the difference in parameter identification error

between AGEKF-UI and GEKF-UI is not significant.

Once the decimal display accuracy is changed, there is

almost no difference. Table 7 shows that compared to

Fig. 2 Sketch of six-story shear frame structure with Bouc–

Wen hysteresis nonlinearity
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the existing GEKF-UI method, the built-in optimiza-

tion mechanism of the proposed AGEKF-UI method

results in an average reduction of 37% in the root-

mean-square error (RMSE) of inputs estimation [41].

It can be seen that AGEGF-UI method is significantly

superior to the GEKF-UI method in the identification

accuracy of unknown inputs. These conclusions are

basically consistent with the inference of Eqs. (62) to

(65). When D ¼ 0 is hold, Eq. (64) shows oPZ

okkþ1
� 0,

indicating that the optimization factor kkþ1 has no

effect on improving the identification accuracy of

augmented states (including structural parameters),

but is beneficial for improving the identification

accuracy of unknown inputs.

In order to solve Eq. (61), a simplified assumption

is adopted, namely Bopt
kþ1 ¼ kkþ1B

zoh
k . The adaptive

process of kkþ1 is shown in Fig. 10. It can be seen that

kkþ1 converges to 1.0189 after an initial fluctuation. In

addition, the weight balance factor q has little

influence on the identification effect. This conclusion

comes from numerical experiments and will not be

discussed in depth here.

4 Experimental validation of the proposed

AGEKF-UI algorithm

To demonstrate and validate the performance of

AGEKF-UI algorithm in experiment, a five-story

shear frame experiment is conducted.

4.1 Experiment model and equipment

As shown in Fig. 11, the experiment equipment is a

five-story shear frame. The main structure is 350 mm

in length and 250 mm in width. The first story is 240

mm in height and the others are 200 mm. The

connections are double-row bolts, which can be

approximated as a fixed connection. The mass of the

shear frame is assumed lumped at every story level.

The actual stiffness of each layer is calibrated by

statics. Table 8 shows the mechanical parameters of

the experimental equipment. Acceleration sensors are

the small size sensors of type 333B30 produced by

PCB company, which is widely used in structural

vibration and modal analysis experiments with high

Fig. 3 Comparison

between identified and exact

structural states

Fig. 4 Comparison between identified and exact hysteresis

loop
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Fig. 5 The convergence

process of stiffness and

damping coefficient

Fig. 6 The convergence

process of Bouc–Wen

model parameters a1 and n1

Fig. 7 The convergence

process of Bouc–Wen

model parameters b1 and c1
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sensitivity. Strain sensors are piezoelectric strain

gauges of type 740B02, which are suitable for

dynamic strain response measurement. Force sensor

of type 208C03 is installed at the middle of the 3rd

story and connected to the electromagnetic vibrator as

shown in Fig. 12. The excitation can be generated by

signal generator of type RIGOL DG-1022, and signals

(including acceleration, dynamic strain and excitation)

can be collected synchronously by data acquisition

instrument of type PXIe-1082 produced by National

Instruments company. The measured structural

responses are fed to the algorithm for identification,

Fig. 8 Comparison

between identified and exact

excitation f u1

Fig. 9 Comparison

between identified and exact

excitation f u2

Table 5 List of identification errors of structural system parameters

Story no. 1 2 3 4 5 6

Stiffness error (%) - 0.97

(0.67)

0.16

(- 0.76)

- 0.10

(- 0.02)

- 0.19

(- 0.45)

0.13

(- 0.29)

- 0.08

(0.09)

Damping error (%) - 0.25

(- 0.83)

0.09

(1.19)

0.73

(- 1.28)

0.78

(- 0.62)

0.02

(- 0.38)

0.29

(- 1.00)

The underlined data in Table 5 are the AGEKF-UI identification results when the identification error greater than GEKF-UI

identification results
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and the measured excitation is used for comparison

with the one identified by AGEKF-UI.

A hammer force acting as a pulse is conducted on

the structure, so free attenuation response of each story

can be measured. After FFT (fast Fourier transform) of

the measurement, the first two natural frequencies of

the structure can be estimated as 5.6 Hz and 16.3 Hz,

respectively. When damping ratios n\0:2, the first

two damping ratios of the structure can be obtained by

free attenuation method. Assume that the structural

damping is Rayleigh damping, then the damping

coefficient can be obtained by conversion as follows.

a
b

� 	
¼ 2xixj

x2
j � x2

i

xj �xi

�1=xj 1=xi

� 	
ni
nj

� 	
ð78Þ

Based on Eq. (78), the Rayleigh damping coeffi-

cients are: a ¼ 0:524, b ¼ 1:453	 10�4.

Fig. 10 The adaptive

process of kkþ1

Table 6 List of identification errors of Bouc–Wen nonlinear model parameters

Bouc–Wen parameters a1 b1 c1 n1

Error (%) 0.91

(2.63)

6.86

(- 11.41)

- 7.36

(-7.53)

0.65

(- 1.81)

Fig. 11 Experimental equipment and sensors

Table 7 List of identification errors of the unknown inputs

Unknown excitations f u1 f u2

RMSE reduction (compared to GEKF-UI) 44.7% (;) 29.3% (;)

Table 8 List of mechanical parameters of the experimental

model

Story no. 1 2 3 4 5

Mass (kg) 8.77 8.38 8.38 8.38 7.99

Stiffness (kN=m) 122.6 127.0 130.9 127.6 129.8
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4.2 Experiment and result

Wide-band white noise excitation is exerted on the 3rd

story. Data fusion of sparse measurement of strain and

acceleration responses is adopted in this experimental

test. Four acceleration sensors are deployed on the 1st,

2nd, 4th and 5th floors, respectively, and one strain

gauge is deployed near the 3rd floor. (Such deploy-

ment will result in D ¼ 0.) The sampling frequency is

100 Hz. The strain gauge is installed on the surface of

the steel sheet 20 mm down from the 3rd layer. The

relationship between the strain and displacement of

the 2nd and 3rd story is:

e ¼ �6þ 12x=lð Þ
l2

x2 þ
6� 12x=lð Þ

l2
x3

� 	
	 d

2
ð79Þ

where l is the length of supporting steel sheet between

adjacent story levels, d is the thickness of the

supporting steel sheet, x indicates the position of the

strain gauge.

Before starting the identification algorithm, the

structure state and unknown excitation are initialized

to 0, and the structure stiffness are initialized to 0.8

times of its calibration value. The initial variance and

covariance of the augmented state and unknown

excitation are set as:

P̂ZZ
0j0 ¼ diag 10�415	1; 10

�415	1; 10
1015	1

� �
; P̂ff

0j0

¼ 103I2 and P̂Zf
0j0 ¼ P̂fZ

0j0

� �T

¼ 115	1:

The variance matrixes related to system noise and

random walk of unknown excitation are set as Qs
k ¼

10�7I15 andQ
u
k ¼ 107, respectively. The measurement

noise variance matrix is set as

Rkþ1 ¼ diag 10214	1; 10
�8


 �� �
. The factor (i.e., q)

used to balance the weights of unknown excitation

and unknown state is set to 1. The identification results

based on the proposed AGEKF-UI algorithm are

shown in Figs. 13, 14, 15, 16, 17 and 18.

It can be seen from Figs. 13 and 14 that there are

some errors in the identified structure state, but on the

whole, the identification effect is basically satisfac-

tory. Figs. 15, 16 and 17 show the convergence process

of structural stiffness. It can be seen that the proposed

method is effective for identification of structural

parameters. Figure 18 shows the identification effect

of unknown excitation. It can be seen that real-time

Fig. 13 Comparison

between identified and exact

structural states (x1)

Fig. 12 Electromagnetic vibrator and signal collector
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Fig. 16 The convergence process of stiffness (k3 and k4)

Fig. 14 Comparison

between identified and exact

structural states ( _x2)

Fig. 15 The convergence

process of stiffness

(k1 and k2)
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identification of unknown excitation is feasible under

the condition of D ¼ 0, and the identification result is

basically consistent with the real value.

4.3 Discussion and analysis

Tables 9 and 10, respectively, list the identification

errors of structural parameters and unknown excita-

tion. (The data in parentheses are the results based on

GEKF-UI method.) It can be seen that AGEKF-UI and

GEKF-UI have almost the same ability in parameters

identification (the maximum error does not exceed

0.45%), while AGEKF-UI is obviously superior to

GEKF-UI in excitation identification (the RMSE

decreased by 37%). This conclusion does not violate

the inference of the algorithm itself.

The adaptive process of kkþ1 is shown in Fig. 19. It

can be seen that kkþ1 fluctuate in a narrow range close

to 1. According to Tables 2 and 3, the sensitivity

matrix of unknown excitation f ukþ1 in GEKF-UI

algorithm is close to zero, while that in AGEKF-UI

algorithm is close to the maximum, which is the

internal reason why AGEKF-UI algorithm surpasses

GEKF-UI algorithm in excitation identification.

5 Conclusions

In this paper, a novel discrete state equation is

constructed by combining zero-order-hold (ZOH)

and random walk (RW). This innovation connects

Fig. 18 Comparison

between identified and exact

excitation f u1

Fig. 17 The convergence process of stiffness (k5)

Table 9 List of identification errors of structural system

parameters

Story no. 1 2 3 4 5

Stiffness

Error (%)

- 0.15

(- 0.02)

1.75

(1.30)

- 1.16

(- 1.06)

0.42

(0.33)

0.73

(0.60)

Table 10 List of identification errors of the unknown inputs

Unknown excitations f u1

RMSE reduction (compared to GEKF-UI) 9.5% (;)

123

An adaptive generalized extended Kalman filter 5473



the current unknown input with the current state and

further connects it with the current measurement,

which is the key to ensure the real-time performance of

the system without direct feedthrough of unknown

input. The adaptive discrete equation of state for

structural dynamical system regards Bopt
kþ1 as a basic

unknown quantity, thus avoiding the problem of

finding the optimal sampling assumption of unknown

input, and opening a window for optimizing the

identification accuracy of unknown input.

The proposed adaptive generalized extended Kal-

man filter with unknown input (AGEKF-UI) algorithm

completely eliminates the limitation that real-time

performance depends on whether there is a direct

feedthrough of unknown input in the measurement

equation, which improves the applicability of existing

extended Kalman filtering with unknown input (EKF-

UI) algorithms. On the other hand, the proposed

algorithm can automatically adjust the sensitivity

matrix of unknown input in an optimal way, which

improves the identification accuracy of existing

extended Kalman filter method with unknown input

(GEKF-UI) algorithms. In order to verify the effec-

tiveness and advancement of the proposed algorithm, a

numerical case and an experimental test are presented.

In the proposed AGEKF-UI algorithm, the solution

of Bopt
kþ1 still needs further study. The assumption

employed in numerical example and experiment to

simplify the solution is only a suboptimal and feasible

choice. If new solutions are proposed in subsequent

research, more effective and practical new algorithms

may be produced.
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Appendix 1: The detailed derivation process

of Eqs. (56) and (57)

Considering Eq. (35), The partial derivative of Pf with

respect to Bopt
kþ1 is:

oPf

oBopt
kþ1

¼
otr Skþ1

~Rkþ1S
T
kþ1

� �
o ~Rkþ1

:
o ~Rkþ1

oP
_ZZ

kþ1jk

:
o

_
PZZ

kþ1jk

oBopt
kþ1

� 2
otr Skþ1Tkþ1 � Ið ÞCT

kþ1


 �
oTkþ1

:
oTkþ1

oBopt
kþ1

¼ 2HT
kþ1jkS

T
kþ1 Skþ1Hkþ1jk Bopt

kþ1 P̂ff
kjk þ Qu

k

� �hn

� AkP̂
Zf
kjk þ Bzoh

k P̂ff
kjk

� �i
� Ckþ1

o

ð80Þ

Considering Eq. (45), the partial derivative of PZ

with respect to Bopt
kþ1 is:

Fig. 19 Comparison

between identified and exact

structural states
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oPZ

oBopt
kþ1

¼
otr Lkþ1

~Rkþ1L
T
kþ1

� �
o ~Rk

:
o ~Rkþ1

oP
_ZZ

kþ1jk

:
o
_
PZZ

kþ1jk

oBopt
kþ1

þ
otr �2

_
PZZ

kþ1jk
HT

kþ1jkL
T
kþ1 þ _

PZZ

kþ1jk

� �

P
_ZZ

kjk�1

:
o

_
PZZ

kþ1jk

oHT
kþ1jk

� 2
otr Lkþ1Tkþ1 � Bopt

kþ1

� �
KT

kþ1


 �
oTkþ1

:
oTkþ1

oBopt
kþ1

¼ 2 Lkþ1Hkþ1jk � I
� �T

Lkþ1Hkþ1jk � I
� �

Bopt
kþ1 P̂ff

kjk þ Qu
k

� �hn

� AkP̂
Zf
kjk þ Bzoh

k P̂ff
kjk

� �i
� Kkþ1

o

ð81Þ

Appendix 2: Theorem on the inverse of block

matrix

Theorem: Let the square matrix N ¼ A B
C D

� 	
be

invertible, and its sub-block square matrix A is

invertible, then E ¼ D� CA�1B
� ��1

exists and the

inverse matrix of N is [45]:

N�1 ¼ A B
C D

� 	�1

¼ A�1 þ A�1BECA�1 �A�1BE
�ECA�1 E

� 	
ð82Þ
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