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Abstract Extended Kalman filtering with unknown
input (EKF-UI) is often used to estimate the structural
system state, parameters and unknown input in
structural health monitoring. However, the real-time
performance of EKF-UI is bound to whether the
measurement equation has a direct feedthrough of
unknown input, which great limits its application
scope. Based on the zero-order-hold assumption and
random walk assumption of unknown input, a novel
adaptive discrete state equation is derived in this
paper. The new equation establishes a connection
between the current state and the current input and
allows the adjustment of the sensitivity matrix of the
unknown input. Then, based on the adaptive discrete
state equation and minimum variance unbiased esti-
mation principle, an adaptive generalized extended
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Kalman filter with unknown input is derived. The
proposed algorithm eliminates the limitation that the
real-time performance is restricted by whether the
measurement equation has a direct feedthrough of the
input and realizes the optimization of the state and
input estimates in the sense of minimum variance. To
demonstrate the feasibility of the proposed method,
numerical example of a shear frame structure with
Bouc—Wen hysteresis nonlinearity and experimental
test of a five-story shear frame are conducted. The
comparison with existing methods shows the advan-
tages of the proposed method.
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1 Introduction

Originating from the needs of structural assessment
and vibration control, identification of structural
systems, states and excitations based on sparse mea-
surements of structural responses has always been a
challenging and important topic in structural health
monitoring (SHM) [1-5].

In this regard, the classical Kalman filtering (KF)
method has been widely known as an effective
algorithm for system identification [6, 7]. This method
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is suitable for real-time recursive estimation of the
complete states based on sparse measurements. How-
ever, the classical KF method could only be applied to
linear systems with known structural parameters and
input information, which great limited the application
of this method. In the subsequent studies, some
scholars proposed extended Kalman filter (EKF)
methods by regarding the structural parameters as a
part of the augmented state [8—10]. However, Erazo
et al. believe that the augmentation of states and
parameters increases the challenge of identification
and proposes an offline method for output-only
Bayesian identification of stochastic nonlinear sys-
tems [11]. Since the structural parameters were
coupled with traditional states (referring to displace-
ment and velocity), in the augmented state-space
model, both the state equations and the measurement
equations were inevitably nonlinear. Although the
EKF-based methods could perform parameters iden-
tification and nonlinear system identification, these
methods still required that all the inputs information
was available.

With the development of the EKF method, some
system identification methods under unknown input
appeared in the last two decades. In the early stage,
Gillijns and Moor derived a recursive identification of
joint states and inputs using linear minimum-variance
unbiased estimation, which required direct feed-
through of inputs in measurement equations [12].
Yang et al. derived an adaptive extended Kalman filter
under unknown inputs from the global optimal
perspective and applied it to structural damage
identification [13]. This method could identify the
structural augmented states and unknown inputs in
real time, but required that the unknown inputs should
be included in the measurement equation. This
requirement was equivalent to imposing restrictions
on the deployment of acceleration sensors. Hwang
et al. developed a Kalman method to identify unknown
input using generalized inverse of matrix [14, 15],
which was later improved by Niu et al. [16]. Lin
proposed an estimation method based on EKF to
determine the time-dependent excitation force in a
nonlinear system [17]. Pan et al. used a weighted least-
square estimation method to derive a Kalman filtering
method under unknown inputs and proved that the
method is an optimal estimation in the sense of
minimum variance and unbiasedness, but feedthrough
of unknown inputs was still needed in the
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measurement equation, and the derivation was quite
complicated [18]. Lourens et al. proposed an aug-
mented Kalman filter (AKF) for force identification, in
which unknown forces are included in the augmented
state vector, and the state and unknown forces are
solved using a method similar to the extended Kalman
filtering [19]. In order to reduce the dimensionality of
the state, a method based on reduced-order model was
proposed [20]. Wei et al. also proposed an AKF based
on sparse constraint theory. This method introduces
the random walk assumption when modeling unknown
inputs [21]. He et al. proposed a new EKF-based
method for simultaneously identifying structural
parameters and unknown inputs by introducing a
projection matrix into the measurement equation [22].
Nayek et al. proposed a latent force model for joint
input-state estimation by assuming that the unknown
force is a stationary Gaussian process [23]. The
authors also proposed some extended Kalman filter
methods with unknown inputs, which still required
measurement of the accelerations at the excitation
location to identify the augmented states and unknown
inputs in real time [24-26]. All the above EKF-UI
methods could recursively identify the structural
augmented states and unknown inputs in real time,
but they all had strict requirements on the measure-
ment equation. These methods require that the mea-
surement equations should have the direct feedthrough
of unknown inputs, which mean that all the acceler-
ation responses at the positions of the unknown inputs
must be available. In addition, it was worth mention-
ing that the significant impact of sensors deployment
on identification issues had led to many advances in
research on sensors optimization placement [27].
There were also some researches about the EKF-UI
methods, which could identify the states of the current
step and the unknown inputs of the previous step
without requirement of unknown inputs term contain-
ing in the measurement equation [28, 29]. Pan et al.
proposed a general extended Kalman filter for simul-
taneous estimation of system and unknown inputs
[30], which had no restrictions on the deployment of
acceleration sensors, but still needs to be considered
separately in terms of real-time performance. That
was, when the acceleration responses at the locations
of unknown inputs were measured, the unknown
inputs could be identified in real time, otherwise the
identification of unknown inputs had a one-step lag.
When the sampling time interval is short, the impact of
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Table 1 Summary of applicable scenarios and limitations of KF-based methods

Methods Applicable scenarios and limitations
KF [6, 7] Applicable for real-time structural state identification of linear systems with known parameters and inputs. These
methods cannot be applied to nonlinear systems and scenarios with unknown inputs
EKF [8-11] Applicable for real-time augmented state (including structural parameters) identification of nonlinear systems with
known inputs. These methods cannot be applied to scenarios with unknown inputs
EKF-UI Applicable for joint identification of augmented states (including structural parameters) and unknown inputs in
[12-30] nonlinear systems. These methods do not exhibit real-time performance in scenarios where the measurement
equation lacks a direct feedthrough term of the unknown inputs
GEKF-UI The GEKF-UI method is an upgraded version of the EKF-UI method, which further expands the application scope
[31-33] of EKF-UIL However, due to the sampling hypothesis (FOH) adopted by GEKF-UI being not optimal, it is

difficult to converge and the accuracy needs to be improved in application scenarios where the measurement is

less sensitive to input

this one-step lag may not be very significant. How-
ever, when the sampling time interval is long, the
adverse effects of the one-step lag become uncontrol-
lable. In addition, when implementing vibration
control strategies for structural systems subject to
unknown external inputs, it is crucial to provide real-
time structural state and input information for the
control system. If there is a one-step lag in the input
information, it is possible to significantly prolong the
control time or change the stability of the control
system, ultimately leading to control failure. There-
fore, real-time identification algorithms for unknown
inputs have great potential in practical engineering
applications and are worthy of further in-depth
research.

With the continuous deepening of research, the new
algorithms proposed in recent years have made some
progress in breaking through the real-time perfor-
mance constraints. The generalized extended Kalman
filter with unknown input (GEKF-UI) algorithm
proposed by the authors eliminates the limitation of
real-time performance affected by sensor deployment
by introducing first-order-hold (FOH) hypothesis into
the discretization process of state equation [31-33].
This method can be applied to most scenarios, but it is
still inadequate for some extreme cases, because the
sensitivity matrix of excitation is very close to zero in
these cases (Table 1).

The traditional Kalman-based methods always
require linearization when dealing with nonlinear
problems. This approximation may generate errors
when encountering strong nonlinearity. In order to
reduce the adverse impact of linearization on

identification, Al Hussein et al. integrated unscented
Kalman filtering (UKF) with iterative least squares
(ILS) technology and proposed an unscented Kalman
filter with unknown input (UKF-UI) [34]. This method
is offline and requires measurement of the acceleration
responses on all degrees of freedom. In subsequent
studies, Lei et al. proposed a novel unscented Kalman
filter for recursive state-input-system identification of
nonlinear systems. The method is real time and only
requires partial measurement of the responses [35].
Kirchner et al. proposed a new time-domain method
for joint state/input estimation of mechanical systems
using compressed sensing (CS) in a moving horizon
estimator (MHE). Due to the use of a sliding window
of time, the real-time performance of this method is
flawed [36]. KF-based and UFK-based methods can
only be applied to Gaussian noise, and particle
filtering (PF) can be used for non-Gaussian noise.
Liu et al. combined extended Kalman particle filter
(EKPF) with least squares (LS) to propose a new
method (EKPF-UI) for joint identification of structural
parameters and unknown excitations [37]. Lei et al.
further extended the applicability of EKPF-UI to
systems without direct feedthrough of unknown
excitation [38]. However, the curse of dimensionality
is an inherent challenge of particle filtering, which
limits the application of such methods.

In practice, identification under unknown inputs
usually generates another tricky problem, such as the
so-called drifts in the estimated structural displace-
ments and inputs since the previous EKF-UI
approaches based on sparse acceleration measure-
ments are inherently unstable [39]. To solve this

@ Springer



5456

J. Huang et al.

problem, Liu et al. have proposed an improved
Kalman filter with unknown inputs based on data
fusion of sparse acceleration and displacement
responses [26]. Ma et al. also conducted research on
data fusion-based Kalman filter and proposed an
adaptive multi-rate Kalman filter to fuse asynchronous
acceleration and vision measurements, which can
realize better estimation of structural displacement
[40, 41]. These data fusion-based Kalman filter
technologies show great potential in practical
applications.

In order to improve the performance of existing
algorithms, an adaptive generalized extended Kalman
filter with unknown inputs (AGEKF-UI) algorithm is
proposed in this paper. It can simultaneously identify
structural complete states, structural parameters and
unknown inputs in real time based on sparse mea-
surements of structural response. The real-time per-
formance of this algorithm is not limited by the
deployment of acceleration sensors and whether the
system has direct feedthrough of unknown inputs. The
proposed algorithm can automatically optimize the
sensitivity matrix of unknown input and improve the
identification accuracy of unknown input to the
maximum extent. In order to eliminate the low-
frequency drift in displacement and input estimation,
data fusion technology is embedded into the proposed
AGEKF-UI algorithm. Finally, a numerical example
and an experimental test are used to demonstrate the
effectiveness of the proposed method.

This paper is organized as follows: Section 1
introduces the research advance and the limitations
of existing methods. Section 2 presents a general
description of the dynamic system and derives the
analytical recursive solutions of the AGEKEF-UI
method. In Sects. 3 and 4, a numerical example and
an experimental test are conducted, respectively, to
validate the performances of the proposed method. In
Sect. 5, some conclusions are drawn. In addition, the
appendixes provide some details of the derivation of
the proposed algorithm.

2 Methodology

In this section, the discrete motion equations and
measurement equations of general nonlinear dynamic
systems are derived firstly, and then, a novel adaptive
generalized extended Kalman filter with unknown
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input algorithm is derived in detail based on the
principle of minimum-variance unbiased estimation.

2.1 Problem formulation

The equation of motion of an n-degrees of freedom (n-
DOFs) structure under external input can be generally
expressed as:

Mx + F(x,%,0) = n*f" (1)

where M is the mass matrix; x, X and x are the
displacement, velocity and acceleration of the struc-
ture, respectively; 0 is the unknown structural para-
metric vector; F(x, ¥, 0) is the force vector related to
the displacement, velocity and structural parameters;
f" is unmeasured external input; #" is influence matrix
associated with the unknown input f*. The superscript
‘0> denotes unknown. For linear structures,
F(x,%,0) = C(0)x + K(0)x, where C and K are the
damping and stiffness matrixes, respectively.

In this paper, structures are considered as time-
invariant systems (i.e., assuming 0 = 0). Therefore, by
introducing an augmented state vector
7= [x",%7,07)", the equation of motion (1) can be
transformed into continuous state equation in the state-
space model, and the measurement equation can also
be expressed by the augmented state vector.

Z =g(Z) + Ef"
o =
x
gZ)= | -M'F(x,%.0) |, E=M"y" (3)
0

y is the measurement of the structural system. The
specific form of h(Z) and D will be discussed in detail
in Sect. 2.4 later.

Note that, whether the structure itself is linear or
not, the state equation and the measurement equation
are nonlinear, which is attributed to the structural
parameter @ is unknown. In order to derive the closed-
form solution of the identification problem, Eq. (2)
needs to be linearized at Z ke and Z k+1x by the first-
order Taylor series.

7~ GuwZ + Ef* + 8 (4)

Yy~ Hi 1 Z + Df* + by (5)
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in which Vi1 = HiiwZior +Dfy + i (14)
G 0g(Z) ©) Substituting Eq. (12) into Eq. (14) gives:
klk = T —~
aZ = 0, U U
Z=Zup Y1 = Hypi (Akzk + B} hfk +gk\k> +Dfy
" oh(Z) 7 + Rk
Uk = 27| ~
oz’ Z=Z 11k (15)
R R This equation means that in order to estimate
8k = g(zklk) = G Z (8) unknown input in real time, it is necessary to ensure
that D in the measurement equation is a column full-
By = h<zk+1|k> _ Hk+l|kzk+l\k (9) rank matrix. In other words, the real-time identifica-

in which Z x|« represent the estimate value of Zy; Z 1]k
represent the approximate predictive value of Z; ;. In
order to calculate Hy (| in Eq. (7), the value of Z;

should be calculated in advance. Generally, Z k- 1]k €an
be calculated by the following integration:

(k+1)At

Zk+1\k = Zk\k + / g(Z)dt + (EAf)f:|k (10)

kAt
in which fZ\k represent the estimate value of f}, At
denotes the sampling interval.

The solution of the first-order differential Eq. (4)
requires an assumption for the unknown input f*. In
the existing literatures related to EKF-UI algorithm
[13, 22, 26, 30], almost all the assumptions of
unknown input are zero-order-hold (ZOH), that is,

SO 1 € [t tierr) (11)

Note: It is not necessary to provide f;,, when
solving Eq. (4). With this assumption [i.e., Eq. (11)],
the linearized continuous state Eq. (4) can be trans-
formed into a linearized discrete state equation as
follows [32]:

Zii1 = AZi+ B+ g (12)

Ak = e(Gk‘kAt)
B¥" = 1,(EAY) (13)

& =" (Ek\kAf)

in which I, = (4; — I)(GyxAr) . Note that 1, ~ T
can be easily proved.

Due to the fact that actual measurements are always
discrete, the measurement equation should also be
discretized, i.e.,

tion performance of unknown input is directly subject
to whether there is a direct feedthrough of unknown
input in the measurement equation.

However, in practice, sometimes it is impractical to
deploy accelerometer at the position of unknown input
(e.g., the case of substructure identification with
unknown interaction force at the boundary), which
results in D becoming a column deficient-rank matrix,
even a zero matrix. Another application scenario is the
earthquake condition. If the absolute acceleration of
the structure is used as the measurement, it will
naturally lead to D being equal to zero.

According to Eq. (15), when D = 0 is hold, the
unknown input of the previous instant (i.e. f) instead
of the current instant (i.e. f;, ;) can be estimated by the
current measurement (i.e. y;,;), which means that
there is a one-step lag in the identification of the
unknown input. When D is a column deficient-rank
matrix, only some unknown inputs can be identified in
real time, while others can be identified with one-step
lag [30].

2.2 Adaptive discrete equation of state
for structural dynamical system.

In some existing input identification methods, it is an
effective way to introduce a virtual model into the
input evolution, such as the famous random walk
(RW) model [19, 21], that is:

Sen i+ & (16)

in which ¢/ is a random walk error that satisfies the
Gaussian distribution assumption and has a mean of
zero and a covariance of Q.

The most important step in the novel scheme is to
fuse Eqgs. (12) and (16) to derive a general discrete

@ Springer



5458

J. Huang et al.

Table 2 Comparison of coefficients of f and £}, in the state equation of different schemes

Scheme Discrete state equations corresponding to schemes Coefficients of the input
ZOH [13, 22, 26, 30] Zir = AZi + BY'fL + g B =1, (EAr)
Biihl =0
FOH [31-33] Ziyr = AZi + BFL+ B+ g B = 1,(EAr)
Bf"hl = 0,(EA1) ~ 0
ZOH + RW Zi = A + B+ Bl + 8 s

BC‘Pt BJ}h B°™
{B:g_t] = Optimum

Table 3 Comparison of Scheme

Discrete measurement equations corresponding to schemes

coefficient of f},, in the
measurement equation of
different schemes

ZOH [13, 22, 26, 30]
FOH [31-33]

ZOH + RW

Yirt = Hipie <Aka + B+ gk\k) +Dfi +higap
oh ol
Yirr = Hiy 1k (Aka +Bfy +gk\k> + (D + Hk+1\kBJZ::1>fIL:+1 + Rk

Vi1 = Hip1p <Aka +Bfi +gk\k) + (D + Hi i B )f iy + B

state equation with an undetermined sensitivity
matrix.

Ziy = AZi+ BYf + g
=AZi+ (BY" = B )L+ BE (i — &) + g
=AZi+ (BY" = BE)fE+ B + & — Bl e

= AZi+ B+ BES )+ g+ Wi

(17)
. . t . . .
in which B}Y, is an undetermined matrix,
opt __ pzoh opt opt P
B =BY" —BY,, wi = —B," & It is worth men-

tioning that the determination of B}” and B},

matrices need not be based on a known assumption
about unknown input.

In order to clearly show the differences between
different algorithms, Tables 2 and 3 summarize the
coefficients of the unknown input of the discrete state
equation and measurement equation in different
algorithms, respectively. It can be concluded that:
(1) the “ZOH scheme” cannot realize real-time
identification when D =0, (2) the “FOH scheme”
can realize real-time identification but performs

poorly when (D +Hk+1|kB],:‘f1) is ill-posed, and (3)

the “ZOH 4+ RW scheme” can realize real-time
identification and automatically improve

(D + Hy, 3 BY)) as needed.

@ Springer

Remark The symbols [, and O, in Table 2 are
defined as I, = (A4, — 1)) (GyeAr) ' ~T  and

O,=0 -1 (Gk‘kAty1 ~ 0, respectively.
2.3 The proposed AGEKF-UI algorithm

The standard forms of state equation and measurement
equation are summarized as follows:

Zii1 = AlZi + B+ B fr + &g +wi (18)
Yir1 = HiwZiy + D+ i + Vi (19)
in which wy = w} +w} = *BZTl + wy, is the total

system error c0n51der1ng RW error and modeling
error; wj is the modeling error that satisfies the
Gaussian distribution assumption and has a mean of
zero and a covariance of Qj. Then, the mean of the

total system error wy, is zero and the variance is Q) =

B". 0/ (B Eﬂfl)r + 0@} (Note that for the existing
GEKF-UI algorithms [31-33], let @y =0). vi4y is
the measurement error that satisfies the Gaussian
distribution assumption and has a mean of zero and a
covariance of Ry .

The recursive process of the AGEKF-UI algorithm
is designed as follows.

2k+1|k = Akzk\k + szth|k + 8k (20)
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§k+1\k = Hk+l|k2k+1\k +hiap (21)
r;,chl =Ykt _S’k-Hlk (22)
f:+1\k+1 = Sk+1r1yc+1 (23)
2k+l\k+l = 2k+1|k + Ly, (24)
where Bzf’:l, Siti1 and Ly, are undetermined coeffi-

cient matrices, which will be determined later by the
principle of minimum-variance unbiased estimation.

2.3.1 Solving the unknown input

. . ~Z
Define the state residual 77, and its error e, as

follows:

Fo A2 —Zeon =B e 25
i1 =2t = Zirie = B i + € (25)
z N "

ek+1\kéAkef|k + Bl(c)p[e{\k + Wi (26)

_Zz
Then, define the covariance matrix P, of the

state residual error as follows:

77 N A Z T
P =E| € (ek+1 \k)

pZZ  pif

= [ac BP]| K Pf}" Al vo
Mk o
L Pl (")

(27)

where E[-] represents the operation of calculating the

mathematical expectation of a random variable. ()T

represents the operation of calculating the transposed

. SZZ oSff  =If ki
matrix. Py, P, Py and Py, represent the state

covariance matrix, the unknown input covariance
matrix and the cross-term covariance matrix,
respectively.

Define the measurement residual r,vc 41 and its error

€}, as follows:

M1 Vet — Y = Teefiy) + €y (28)
z

elyc+1éHk+l\kek+l\k + Vi1 (29)

In which Ty = D + Hyy 1 B;",. Then, define the

covariance matrix Ry, of the measurement residual
error as follows:

N r 7z
R 2E {eyﬁ-l (€ls1) ] = Hy 1P Hi i+ Re
(30)

Note that the reversibility of R x+1 can generally be
guaranteed, partly because R, is reversible. In order
to ensure that the estimate of the unknown input is
unbiased, the following equation must hold.

E{fkﬂ\kﬂ} =fia = S Tenfin =Fia (31)

Simplify the above equation to get the following
equation:

Sip1Tir =1 (32)

Equation (32) is the first constraint that the unde-
termined coefficients matrix Sii; must satisfy. In
addition, Sy, ; should also meet the requirement of
minimizing the estimation error of the unknown input.
Define the error of the unknown input and the
corresponding covariance matrix as follows:

~] A ~u
"}1:+1\k+1:f/':+1 _fk+1\k+1 =fi1— Sk+lrz+1
= —Sk1€441 (33)

~ff R . = T
k+1k+lE|:(elfc+lk+l> (e£+l|k+l) }
= Sis1Ri1SL, (34)

Using the Lagrange multiplier method (LMM),
define the objective function that minimizes the
unknown input error as follows:

Pf (Sk_H 3 F]H_] |BZT1)étr(Sk+1ﬁk+lsz+])
— 2tr [(Sk+1Tk+1 — I)FZ+1] (35)

in which tr(-) represents the operation of computing
the trace of a square matrix. I';;; is the Lagrange
multiplier coefficient matrix to be determined. In order
to obtain the minimum value of the objective function
Py, the derivative of the objective function with
respect to S should be set to zero, whereby the
second constraint on the unknown coefficient matrix
Si1+1 can be obtained.

0Py
08+

=0= Si Ry — Dot TE,, =0 (36)
The two constraints on Sy [i.e., Eq. (32) and

Eq. (36)] can be combined to constitute a simultane-
ous equation system as follows:
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ser Tl Byt Tl oo @)
_Tk+1 0

According to the matrix theory (refer to “Appendix
2”), when §k+1 is invertible, the above equation
system has a unique solution. Thus, the undetermined
coefficient matrix Sy, can be obtained.

~_1 -1
Ly = (TZ+IRk+lTk+1) (38)

~—1
Sir1 =L T Ry (39)

Substituting Eq. (39) into Eq. (34) gives the min-

. S .. .
imum of Pi +1jk+1 under the condition that Bzﬂtl is

known a priori as follows:
=
K1+l = it (40)

In addition, it can be seen from Eq. (38) that the
implicit premise of the existence of solutions for I';
. =1 .. . L .
is that (T[+1Rk+lTk+1) is invertible, which is equiv-
alent to the number of measurements must be greater
than or equal to the number of unknown inputs. This
conclusion will be proved as follows.

Let the number of measurements (including the
sum of acceleration, velocity, displacement, strain,
etc.) be n,, and the number of unknown inputs be 7.
Define Rank(-) as an operation of computing the rank

~—1
of a matrix. Then, inequality Rank (T 1{+ Ry
Tiy1) <min (ns, nf) can be easily obtained according
~_1
to matrix theory. When n, <ny, (T,{HR,(HT;{H) is a

deficient-rank matrix, which will result in no solution
for Eq. (38). Therefore, ng; > ny becomes a necessary
condition for applying the proposed method. That is,
the number of measurements must be greater than or
equal to the number of unknown inputs. So far, we
have obtained the unknown input of the current step
according to the principle of minimum-variance
unbiased estimation. Next, we will use a similar
process to solve the minimum-variance unbiased
estimate of state.

2.3.2 Solving the unknown state

In order to ensure that the estimate of the unknown
state is unbiased, the following equation must hold.

@ Springer

E[zkmkﬂ} =Zi1 = (Zin — B i) Hhin Tieif i =Zicn
(41)

Simplify the above equation to get the following
equation:

Lk+1Tk+1 - BZT] =0 (42)

Equation (42) is the first constraint that the unde-
termined coefficients matrix L;;; must satisfy. In
addition, Ly, should also meet the requirement of
minimizing the estimation error of the unknown state.
Define the error of the unknown state and the
corresponding covariance matrix as follows:

P z
5z N B ~
o =Zin = Zipsr = (1= L Hepae) ey

— Ly Vit
(43)

. . T
PfiIMJrléE[(eerl\kJr])(eerlkAl) }
7z r ,
= (L= LisiHip) Py (1= L Hyea) - +LiciRei Ly
- r 7z o r 7z
= LR Ly — L Hyo Py — PrgyyH gy + Py

(44)

Using the Lagrange multiplier method, define the
objective function that minimizes the unknown state
error as follows:

. 7z 7z
Pz (Lk+17/1k+1\BZTl)é’r(LHJRHILl{H - 2Pk+l\kH1{+l\kLl\T'+l +Pk+l\k>
= 2tr[(Lis1 Trsr — BR2y )AL ]
(45)

in which A, is the Lagrange multiplier coefficient
matrix to be determined. In order to obtain the
minimum value of the objective function Pz, the
derivative of the objective function with respect to
Ly, should be set to zero, whereby the second
constraint on the unknown coefficient matrix L can
be obtained.

0Py . - 2z
T =0= Lk+1Rk+1 - Ak+1Tk+1 = Pk+l\ka+1\k
k+1
(46)

The two constraints on L;.; [i.e., Egs. (42) and
(46)] can be combined to constitute a simultaneous
equation system as follows:
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Riyi  Tip
(L1 Ak+l]|:_TI€+1 0 }

= [i*zz HT B°Pt} (47)
k1K ke 1k Prert

According to the matrix theory (refer to “Appendix
2”), when R x+1 1s invertible, the above equation
system has a unique solution. Thus, the undetermined
coefficient matrix L;, | can be obtained.

77 ~
Lt | _ P HE R (-
Y,

Ti1Ske) + BRY ks }
D t
- k+l|kH17<-+l\kSI€+l + B T
(48)
In order to simplify the above formulas, some new
definitions are introduced as follows:

7 B
K1 =P Hi, iR (49)
O 2B — K1 Tir (50)

Substituting Egs. (39), (49) and Eq. (50) into
Eq. (48) gives the expression of L;.; and Ag4; as
follows:

Api1 = @py1 Dy (51)

Ly = Ky + @y Skp (52)

Substituting Eq. (52) into Eq. (44) and considering
_7Z

Hi i Py = R K],

under the condition that B® +1 is known a priori can be

. ~77
1o the minimum of Pk+1|k+1

expressed as follows:
Isﬁukﬂ = (K1 + Prei 1St )Ricot (Kiet + Pri1Siit)”
7z L 2
= (i1 + LS ) Hio 1Py = Prypc o (Kiern + PraSirn) +P
- . -ZZ - .
= <KA+|Rk—|Kk’+1 — Pl kKZH)
- 7z
+ <¢k~lsk+1Rk+lKk+| = D1 Sp Hy 11 Py A)
BT @ S
+ (KkHRkHSAHq)kH 7PI<—I\I<HI<+I\I<SA—I¢L+I)
2z 2z o
+ (Pum = K1 Hi 1 Py + ¢Avlsk+le+lsl¢+|¢k+|)

77
= (L= KerHi 1) P + ‘DkHP{H‘k \

2.3.3 Solving the unknown matrix B;®' i

Both the objective functions Py and Pz are related to

the undetermined matrix B

10 because both R,

i/
Tiyy and Py, are functions of Bzﬂfl. Define the
objective function that simultaneously minimizes the
unknown input error and unknown state error as

follows:

minszin + pPZ (54)

in which p is a factor used to balance the weight of
unknown input and unknown state.

In order to obtain the minimum value of the
objective function Pyz, the derivative of the objective

function with respect to BOpt1 should be set to zero.
0Pyz 0Py oPz
aB()pt = aB()pt + p aB()pt = O (55)
K+l K+l k+1
in which
0Py
—aBopt =0 (T Wit — Digr) (56)
k+1
oPz
B =Q (1 Wit — Acsr) (57)
k+1
in which
ey 1 2Si1Hyy 1k (58)
Qi1 2L Hpqe — 1 (59)

~ff U Z0
‘l’k+1;[32?:1( k‘kJer) (AkPk‘kJrB h k|k)}

(60)
Substituting Egs. (56) and (57) into (55) yields an
equation for By":
L(BY): Hl{+1<nk+l‘Pk+l —Tii1)
+ kaH(QkH‘PkH — Agt1)
=0 (61)

“Appendix 1” provides a detailed derivation pro-

cess for Egs. (56) and (57). The unknown matrix BZE’:I

can be solved by Eq. (61), and then, S;; and L; can
be further solved. However, Eq. (61) is a nonlinear
equation about B}
this end, finding a more relaxed sufficient condition to
replace Eq. (61) becomes a way to solve BETI.
this line of thought this paper puts forward a

hypothesis that B;" 1 =1 kHB‘”h

1 and cannot be solved directly. To

Along

@ Springer
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anZ B an 6PZ B
Vi1 Ot ¥ i

0 (62)

in which

oP; 0Py OB, _

o T
tr{ (B "L, (M Wy — rk+l)}

st OB, Qkipi (63)
1
=—tr{(1=D"S}, ) (i1 W1 — Tis1) }
Ak+1
0Pz _ 0Py .6323‘1 _ zoh\T T
Tt b el (W ST ATEN D) (64)

1
=—u{-D'L{,, (21 Vi1 — A1)}
Ak+1

in which (:) represents the operation of the two-point
product of the tensor. Substituting Egs. (63) and (64)
into (62) yields an equation for Ay :

—DT[ST, (T Wey1 — Tast) + pLT, (1 Wist — As 1)]}
L) =tr et (et P ‘ i1 (824 ‘ =0
(er1) { + (M1 Wi — Tigr)

(65)

It should be noted that Eq. (65) is only a conditional
and feasible solution of Eq. (61). Therefore, subse-
quent research may generate more practical algo-
rithms based on Eq. (61).

2.3.4 Update of error covariance of cross terms

Define the cross-covariance matrix of the state and the
unknown input and substitute Eqs. (29), (33) and
Eq. (43) for simplification as follows:

T
pZf S ~7 N
Pf+l\k+l£E|:(ek+l|k+l> (elf<+l\k+l> }
7z ,
=-(r *Lk+1Hk+1\k)PkH\kaH\kSkH + Ly 1Ry 1S) 44

_zz _
_ T (T T
=Py Hi 1 Sisy + Lii R Sy

= @, 1S R ST, = By PY

k+1]k+1
(66)
~fZ A N 7z T ~Zf T
k+1k+1_E{(e£+lk+l) (ek+1\k+l) } = (Pk+1\k+l)
(67)

2.3.5 Comparison with traditional Kalman paradigm

Substituting Eq. (52) and Eq. (23) into Eq. (24) gives

the expression of Z;_ ;4 as follows:

@ Springer

Ziin = Zip + (K + D1 S )Py
=Zioip + Keirl + (B, — Ko T )f i
= (Zk+l\k +BZT1fZ+1\k+1> + Ky (’Ll - Tk+lff+l\k+l>

= Zk+l\k + Kis1 (yk+l —§k+1\k>

(68)
in which
Ziije = Zyop + BZTlf‘ZJrl\kJrl (69)
Vet = HiorpZi + D.f‘]:+1‘k+1 + Rk (70)

Note that ka+] | and Z. |« are biased and unbiased
estimate of Zy, respectively. y;. and Vi1 are
biased and unbiased estimate of y,;, respectively.
Equation (68) has a similar form to the traditional
extended Kalman filtering method. When A;Z; +
B"f{ in Eq. (18) is considered as a whole, the
formula for identifying f in the existing literatures is
consistent with the formula for identifying £}, in this
paper [13, 26]. Therefore, the method proposed in this
paper can be degraded to the existing EKF-UI and
GEKF-UI methods under special cases.

2.4 Data fusion technology in measurement

Since only taking acceleration as the measurements
sometimes lead to drifts in the identified structural
displacement and unknown input [39], Liu et al. proposed
a Kalman filter method based on data fusion technology of
partial acceleration and displacement measurements to
overcome this problem [26]. Due to the fact that low-
frequency and high-frequency vibration characteristics
are included in displacement and acceleration measure-
ments, respectively, and there is a deterministic derivation
relationship between structural displacement and surface
strain in finite element theory, acceleration and displace-
ment or strain are usually combined to form simultaneous
measurements to suppress drift. This is the application of
data fusion technology. It is worth mentioning that Huang
et al. have further explained the reasons for the so-called
drifts in the estimated unknown inputs and structural
displacement [32, 42] and pointed out that acceleration-
only measurements did not always cause drift, such as in
the earthquake scenarios. Therefore, data fusion is
required in general application scenarios to prevent drift,
while it is not required in earthquake scenarios.
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The strain—displacement relationship is presented
below in the context of finite element model.

e=Cx (71)
c=[BTS) . BT:S) .  B.T.S5,) ]
(72)

where ¢ is the strain vector; S; is the matrix used to
select the displacement related to element i (a total of
m elements), and the number of selected DOFs is
dependent on the element type; T; is the matrix that
transforms the element nodal displacement in global
coordinate to those in local coordinate; B; is the matrix
representing the relationship between the node dis-
placement of an element and the strain in this element,
which can be developed using the shape function of
the element; C is the strain—displacement transforma-
tion matrix.

The acceleration and displacement/strain can be
expressed as follows, respectively.

Yik+1 = —LaM_]F(xk+17xk+17 0k+1) + LaM_l'lusz

+ Vik+1
(73)
{ Yxi+1 = Ldln 0, OuxnyZit1 + Vit (74)
Yekr1 = L“’C[I” 0, 0"><n() ]Zk+1 + Vekt1

in which L,, L, and L, are the deployment matrix of
accelerometer, displacement gauge and strain gauge,
respectively; I, is a n-dimensional identity matrix;
0,xn, 18 a matrix of size n X ny and all elements are 0.

In general application scenarios, data fusion tech-
nology is introduced into the measurement equation to
eliminate drift mixed in the identification results.
When data fusion of sparse measurement of acceler-
ation and strain are adopted, the measurement data are
integrated together to constitute the measurement
equation as follows:

Yir1 = Bx::} =h(Zi1) +Df gy + Vi (75)

—1 .
in which h(Zy,,) = | “LeM ™ F(ein¥ur, Opr) |
-1 L.Cxy 1

[LC,M n”}
D= o

When data fusion of sparse measurement of accel-
eration and displacement responses are adopted, the

integrated measurement equation is similar to
Eq. (75).

2.5 Calculation process

The calculation flow of the proposed AGEKF-UI
method is shown in Table 4 and Fig. 1.

3 Numerical validation of the proposed AGEKF-
UI algorithm

In order to verify the performance of the proposed
AGEKF-UI algorithm, a numerical example is used
for demonstration. Since the real-time performance of
existing EKF-UI methods is generally limited by
whether the measurement equation has a direct
feedthrough of unknown input, the application scope
of the proposed AGEKF-UI method is naturally larger
than that of existing EKF-UI methods.

In all application scenarios, the most unfavorable
scenario for identification is D =0. In order to
demonstrate that the proposed AGEKF-UI algorithm
has the ability to surpass the existing GEKF-UI
methods, all numerical cases only consider the
extremely poor situation which existing EKF-UI
methods are no longer applicable. For the case of D
as a column full-rank matrix, the identification effect
of the proposed AGEKF-UI algorithm will undoubt-
edly be better than the existing EKF-UI methods. To
save space, this type of example will not be given.

3.1 Multi-story nonlinear hysteretic structure

In this example, the type of structural system is a shear
frame with Bouc—Wen hysteretic nonlinearity, which
is used to simulate the motion state of the structure
after yield failure under strong excitation.

The structural parameters of the six-story shear
frame are: m; = 50kg, k; = 1.0 x lOSN/m and
¢; = 500Ns/m, where the value of i traverses from 1
to 6. It is assumed that story nonlinear hysteretic
restoring force in Bouc—Wen model exists in the first
story. The nonlinear force and the inter-story hys-
teretic drift z; can be described by:

f1 =k + (1 —oq)kizg (76)
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Table 4 The equations list
of AGEKF-UI algorithm
At ;4 instant:

Ziop = AZi + sztfﬁk + 8k

Yirike = HioipnZirap + Brgape

"ZH = YVi+1 — Vir1jk

. B
fk+1\k+| - SleZH

Ziirjent = Zipa + Liary
Sff
k+1k+1 — =Tty

PZZ

in which,

1
Sir1 =i <Tk+1Rk+l)
L1 = Kiy1 + @iy 1Sk
in which,

Ty =D+ Hl\+1|kBk+1

Rt = Hk+l\kPk+1|kH[+l\k + Ryt

7z .
_ T —1

K1 = Pk+1|ka+1\kRk+1

@ =B — K1 Tinr

— —1
i = (TI{HRkJrlTkH)
A1 = O Ty
in which,
L(BY,) =0= B,

opt _ pzoh opt
Bk - Bk - Bk+l

T
0, =B, Q{(BY,) +0;
7z ot
Pk+1|k = [Ak By ’ }

K|k
in which

Pff

k11

e
M

S =Y/ S
At 1 instant, assign Zk‘k, S ki Pk‘k, Pi‘k, P k‘k

7z
ke = (T = Kt Hy ) Py + q)k+1P{+l|k+l k1

~Zf Z
Pk+1\k+1 = <Pfk+1\k+l> =Dy

AT

gy | €
B

LBXR) =1 (M Wit — Tigr) + 0L (1 Wrr1 — Assr)

i1 = Skt Ha e
Q1 = L Hyypqp — 1

~ f "
Wi = [BZill( et Qk) (AAPHk +B k\k)}

a=s{Bibillal" "z + izl | (77)

in which f;, y, and n; are the Bouc—Wen hysteretic
parameters; «; is the ratio of post-yielding stiffness to
pre-yielding stiffness. These parameters are selected
as: a; = 0.5, B; = 1000s>/m?, 7, = 500s*>/m? and

@ Springer

ny = 1.3. The sketch of the shear frame structure is
shown in Fig. 2. Two mutually independent wide-
band (upper cut-off frequency 99 Hz) white noise
excitations are applied to the 3rd and 5th floors.

In order to identify the structural parameters and
external excitation of the structure, a structural health
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Yi+1ik

Pk+1|k+1

Fig. 1 The flowchart of the proposed AGEKF-UI algorithm

monitoring system is deployed on the structure. Three
acceleration sensors are deployed on the 1st, 4th and
6th floors respectively, and displacement sensors are
deployed on the same floor. Due to the unavoidable
measurement error, noises with 2% noise-to-signal

ratio in root mean square (RMS) is mixed in the data
collected by the sensor. It should be noted that there
are many scholars studying the optimal arrangement
of sensors [43, 44]. Niu et al. summarized the
limitations of existing load identification methods in
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Fig. 2 Sketch of six-story shear frame structure with Bouc—
Wen hysteresis nonlinearity

terms of sensor type, number and location and gave
guidance on method selection [16]. However, since
this is not the focus of this paper, optimal deployments
of sensors are not discussed in all examples in this
paper. In addition, note that the accelerations at the
positions where the unknown forces act are not
measured, so D is equal to zero. In this case, the
existing EKF-UI methods are incompetent, but can be
solved by the method proposed in this paper.

3.2 Identification results based on the proposed
AGEKF-UI algorithm

The augmented state and unknown excitation of the
structure are initialized before executing the recursive
algorithm. The initial values of displacement, veloc-
ity, and unknown excitation are all set to zero, and the
initial values of structural parameters are set to 0.7
times of their actual values to simulate unknown
structural parameters (note: since the exponent n in
Bouc—Wen model must be greater than 1, its initial
value is set to 0.8 times of its actual value). The initial
variance and covariance of the augmented state and
unknown excitation are set as:

PiE = diag(10*16,1; 10 2 1gs1; 107751001,y
10716x1;0.1;107; 10%; 10),

Pl = 10LandPf, = (P

T
0/0 0‘0) = ly9x2, in which

1,,x, represents a matrix of size m X n and all elements
are 1.

@ Springer

The variance matrixes related to system noise and
random walk of unknown excitation are set as: Q] =
107" and 0, =2x 10'L, respectively. The mea-
surement noise variance matrix is set as:
Ryy1 = diag([10 134152 x 107°135]). The factor
(i.e., p) used to balance the weights of unknown
excitation and unknown state is set to 10. The
identification results based on the proposed AGEKF-
UI algorithm are shown in Figs. 3,4, 5,6, 7, 8 and 9.

It can be seen from Fig. 3 that the state identifica-
tion of the structure matches well with its accurate
value. Figure 4 shows the identification effect of the
nonlinear hysteretic model of the first layer. It can be
seen that there are some small errors. Figure 5 shows
the identification effect of structural linear parameters.
It can be seen that the stiffness and damping can
converge to the real value very well and quickly.
Figures 6 and 7 show the convergence process of
Bouc—Wen model parameters. It can be seen that the
convergence errors of o; and n; are very small, while
those of f3; and vy, are slightly larger. The reason for
this difference is that each parameter has different
sensitivity with respect to measurement. Figures 8 and
9 show the identification effect of unknown excita-
tions. It can be seen that there is a certain error between
the identification and the true value.

3.3 Discussion and analysis

This example simulates the identification problem in
the worst scenario (D = 0), and the existing EKF-UI
methods cannot realize real-time identification. At
present, the only applicable method is GEKF-UL
Therefore, the proposed AGEKF-UI method is com-
pared with the existing GEKF-UI method to illustrate
its advancement. Tables 5 and 6 show the identifica-
tion errors of parameters based on AGEKF-UI and
GEKF-UI methods. (The data in parentheses are based
on GEKF-UI method.) It can be seen that except for a
few parameters (marked with underline), the AGEKF-
Ul method is slightly better than the GEKF-UI method
in terms of parameters identification accuracy. In fact,
the difference in parameter identification error
between AGEKF-UI and GEKF-UI is not significant.
Once the decimal display accuracy is changed, there is
almost no difference. Table 7 shows that compared to
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<1073 In order to solve Eq. (61), a simplified assumption
8 - is adopted, namely Bzf’gl = )~k+1Bi"h. The adaptive
— |dentified process of A1 is shown in Fig. 10. It can be seen that

Fig. 4 Comparison between identified and exact hysteresis
loop

the existing GEKF-UI method, the built-in optimiza-
tion mechanism of the proposed AGEKF-UI method
results in an average reduction of 37% in the root-
mean-square error (RMSE) of inputs estimation [41].
It can be seen that AGEGF-UI method is significantly
superior to the GEKF-UI method in the identification
accuracy of unknown inputs. These conclusions are
basically consistent with the inference of Egs. (62) to

(65). When D = 0 is hold, Eq. (64) shows 4 =0,

indicating that the optimization factor J;,; has no
effect on improving the identification accuracy of
augmented states (including structural parameters),
but is beneficial for improving the identification
accuracy of unknown inputs.

Ars1 converges to 1.0189 after an initial fluctuation. In
addition, the weight balance factor p has little
influence on the identification effect. This conclusion
comes from numerical experiments and will not be
discussed in depth here.

4 Experimental validation of the proposed
AGEKF-UI algorithm

To demonstrate and validate the performance of
AGEKF-UI algorithm in experiment, a five-story
shear frame experiment is conducted.

4.1 Experiment model and equipment

As shown in Fig. 11, the experiment equipment is a
five-story shear frame. The main structure is 350 mm
in length and 250 mm in width. The first story is 240
mm in height and the others are 200 mm. The
connections are double-row bolts, which can be
approximated as a fixed connection. The mass of the
shear frame is assumed lumped at every story level.
The actual stiffness of each layer is calibrated by
statics. Table 8 shows the mechanical parameters of
the experimental equipment. Acceleration sensors are
the small size sensors of type 333B30 produced by
PCB company, which is widely used in structural
vibration and modal analysis experiments with high
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Fig. 5 The convergence
process of stiffness and
damping coefficient

Fig. 6 The convergence
process of Bouc—Wen
model parameters «; and n;

Fig. 7 The convergence
process of Bouc—Wen
model parameters f3; and 7y,
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responses are fed to the algorithm for identification,

As

15
(= 0.29)

0.02
(= 0.38)

0.13

company. The measured

—0.19
(= 0.45)

0.78
(= 0.62)
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signal generator of type RIGOL DG-1022, and signals

(including acceleration, dynamic strain and excitation)
instrument of type PXIe-1082 produced by National

can be collected synchronously by data acquisition

— 0.10
(= 0.02)
Instruments

0.73
(= 1.28)

0.5

(= 0.76)

0.09

(1.19)

—0.97

(0.67)
(- 0.83)

—-0.25

The underlined data in Table 5 are the AGEKF-UI identification results when the identification error greater than GEKF-UI

Table 5 List of identification errors of structural system parameters
identification results

dynamic strain response measurement. Force sensor
of type 208CO03 is installed at the middle of the 3rd
story and connected to the electromagnetic vibrator as
shown in Fig. 12. The excitation can be generated by

sensitivity. Strain sensors are piezoelectric strain
gauges of type 740B02, which are suitable for

Stiffness error (%)
Damping error (%)

Story no.
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Table 6 List of identification errors of Bouc—Wen nonlinear model parameters

Bouc—Wen parameters o N 71 ny
Error (%) 091 6.86 — 7.36 0.65
(2.63) (— 11.41) (-7.53) (— 1.81)
Table 7 List of identification errors of the unknown inputs
Unknown excitations Vit 1
RMSE reduction (compared to GEKF-UTI) 44.7% () 29.3% (])
Fig. 10 The adaptive 1.04 !
process of Ay J \
o
\
{4 \
1.03 | .g | SO
Trozl Ml o S
g S S
1.01
1 L 1
0 2 4 6 8 10
Time (s)

Fig. 11 Experimental equipment and sensors

and the measured excitation is used for comparison
with the one identified by AGEKF-UL

A hammer force acting as a pulse is conducted on
the structure, so free attenuation response of each story
can be measured. After FFT (fast Fourier transform) of
the measurement, the first two natural frequencies of

@ Springer

Table 8 List of mechanical parameters of the experimental
model

Story no. 1 2 3 4 5

Mass (kg) 8.77 8.38 8.38 8.38 7.99
Stiffness (kN/m)  122.6 127.0 1309 127.6 129.8

the structure can be estimated as 5.6 Hz and 16.3 Hz,
respectively. When damping ratios &<0.2, the first
two damping ratios of the structure can be obtained by
free attenuation method. Assume that the structural
damping is Rayleigh damping, then the damping
coefficient can be obtained by conversion as follows.

o Zwiwj wj —j; éi

=— 78

Bl = e alls] o

Based on Eq. (78), the Rayleigh damping coeffi-
cients are: oo = 0.524, f = 1.453 x 1074,
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4.2 Experiment and result

Wide-band white noise excitation is exerted on the 3rd
story. Data fusion of sparse measurement of strain and
acceleration responses is adopted in this experimental
test. Four acceleration sensors are deployed on the 1st,
2nd, 4th and 5th floors, respectively, and one strain
gauge is deployed near the 3rd floor. (Such deploy-
ment will result in D = 0.) The sampling frequency is
100 Hz. The strain gauge is installed on the surface of
the steel sheet 20 mm down from the 3rd layer. The
relationship between the strain and displacement of
the 2nd and 3rd story is:

(—6+12x/1) (6 —12x/I) d

lz xX3| X 5 (79)

&= 2 Xy +

Fig. 12 Electromagnetic vibrator and signal collector

Fig. 13 Comparison %<10™
between identified and exact 8t
structural states (x)

where [ is the length of supporting steel sheet between
adjacent story levels, d is the thickness of the
supporting steel sheet, x indicates the position of the
strain gauge.

Before starting the identification algorithm, the
structure state and unknown excitation are initialized
to 0, and the structure stiffness are initialized to 0.8
times of its calibration value. The initial variance and
covariance of the augmented state and unknown
excitation are set as:

ng) = diag (10 * 15,1510 * 15,1 10"15,,1), IA‘%
X o\ T
= 10°L, and P¥ = (Pf)z‘o) = Lisx1.

00 —

The variance matrixes related to system noise and
random walk of unknown excitation are set as Q] =
10~I;5 and 0 = 107, respectively. The measurement
noise variance matrix is set as
Ryy1 = diag([10%1451;1078]). The factor (ie., p)
used to balance the weights of unknown excitation
and unknown state is set to 1. The identification results
based on the proposed AGEKF-UI algorithm are
shown in Figs. 13, 14, 15, 16, 17 and 18.

It can be seen from Figs. 13 and 14 that there are
some errors in the identified structure state, but on the
whole, the identification effect is basically satisfac-
tory. Figs. 15, 16 and 17 show the convergence process
of structural stiffness. It can be seen that the proposed
method is effective for identification of structural
parameters. Figure 18 shows the identification effect
of unknown excitation. It can be seen that real-time

==~Exact
—AGEKF-UI

Time (s)

@ Springer
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identification of unknown excitation is feasible under
the condition of D = 0, and the identification result is
basically consistent with the real value.

4.3 Discussion and analysis

Tables 9 and 10, respectively, list the identification
errors of structural parameters and unknown excita-
tion. (The data in parentheses are the results based on
GEKF-UI method.) It can be seen that AGEKF-UI and
GEKF-UI have almost the same ability in parameters
identification (the maximum error does not exceed
0.45%), while AGEKF-UI is obviously superior to
GEKF-UI in excitation identification (the RMSE

%10°

---Exact
14 — AGEKF-UI

1.05

0 5 10 15
Time (s)

Fig. 17 The convergence process of stiffness (ks)
Fig. 18 Comparison

between identified and exact 60
excitation fY

decreased by 37%). This conclusion does not violate
the inference of the algorithm itself.

The adaptive process of A is shown in Fig. 19. It
can be seen that 4, fluctuate in a narrow range close
to 1. According to Tables 2 and 3, the sensitivity
matrix of unknown excitation f},, in GEKF-UI
algorithm is close to zero, while that in AGEKF-UI
algorithm is close to the maximum, which is the
internal reason why AGEKF-UI algorithm surpasses
GEKF-UI algorithm in excitation identification.

5 Conclusions
In this paper, a novel discrete state equation is

constructed by combining zero-order-hold (ZOH)
and random walk (RW). This innovation connects

Table 9 List of identification errors of structural system
parameters

Story no. 1 2 3 4 5

Stiffness
Error (%)

-015 175
(= 0.02) (1.30)

—116 042 073
(= 1.06) (0.33) (0.60)

Table 10 List of identification errors of the unknown inputs

Unknown excitations fi
RMSE reduction (compared to GEKF-UI) 9.5% ()
---Exact
AGEKF-UI
| |
|
[ f ) qu
| ﬂ.‘ [ fl (i | | | It ‘|1 o
’1 fly | i | N;H | \ il ' j W
T 1 O T A O W baf b
/fu"\\,‘l I. H(l l'“”"lv |ﬂ| :"‘I‘l :H '\AM 'ru i mf\\’ ol :'lbl f |1 "J‘f‘ “‘ Jl“ ”’1'
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Fig. 19 Comparison 1.02
between identified and exact
structural states

AT )
1.0022 =N

1.015

the current unknown input with the current state and
further connects it with the current measurement,
which is the key to ensure the real-time performance of
the system without direct feedthrough of unknown

input. The adaptive discrete equation of state for

opt
k+1

unknown quantity, thus avoiding the problem of
finding the optimal sampling assumption of unknown
input, and opening a window for optimizing the
identification accuracy of unknown input.

The proposed adaptive generalized extended Kal-
man filter with unknown input (AGEKF-UI) algorithm
completely eliminates the limitation that real-time
performance depends on whether there is a direct
feedthrough of unknown input in the measurement
equation, which improves the applicability of existing
extended Kalman filtering with unknown input (EKF-
UI) algorithms. On the other hand, the proposed
algorithm can automatically adjust the sensitivity
matrix of unknown input in an optimal way, which
improves the identification accuracy of existing
extended Kalman filter method with unknown input
(GEKF-UI) algorithms. In order to verify the effec-
tiveness and advancement of the proposed algorithm, a
numerical case and an experimental test are presented.

In the proposed AGEKF-UI algorithm, the solution

of B;", still needs further study. The assumption
employed in numerical example and experiment to
simplify the solution is only a suboptimal and feasible
choice. If new solutions are proposed in subsequent
research, more effective and practical new algorithms

may be produced.

structural dynamical system regards B, , as a basic

@ Springer
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Appendix 1: The detailed derivation process
of Egs. (56) and (57)

Considering Eq. (35), The partial derivative of Py with

respect to BYY'| is:

+1
~ T ~ YA/
oPy orr (S 1R 1S ,1) CORiy1 U ke
opt D /A . opt
OB/, ORy+1 P, OBy,
B 26tr[(Sk+1Tk+1 — I)F,er] : 6Tk+1
0Tkt BT
= 2HZ+1|kSIZ+1{Sk+1Hk+1|k {325—11 (PQ\Ck + QZ)
— (Aki)fﬁ +Bi°h13ﬁk>} — Fk+1}

(80)

Considering Eq. (45), the partial derivative of Pz

with respect to By is:
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. N 77
oP,  Omr(LpRiaLi) R Tl
OB, oR BT OB
k+1 k 6Pk+1|k k+1
Z T T z z
6tr(—2ﬁ\Pf+Hka+w‘Lk+, * ~Pf+l\k> . a»«PfH\k
+ /A N aHT
Py K1k
_ zatr[(LkHTkH - B AL 0T
0T 41 "OBY,
T ) u
=2(Lgp1Hyap — 1) {(Lk+1Hk+l\k -1) [Bii‘l (Pf(f‘k + Qk>
(AP + B P - A}

(81)

Appendix 2: Theorem on the inverse of block
matrix

Theorem: Let the square matrix N = {2 g] be

invertible, and its sub-block square matrix A is

invertible, then E = (D — CA_lB)_1 exists and the
inverse matrix of N is [45]:

wofe 3]

C D
_[A"'+A'BECA™' -A"'BE (82)
N —ECA™! E
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