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Abstract This paper presents an adaptive dynamic
surface control scheme for vertical takeoff and land-
ing reusable launch vehicles (VTLVs) with unknown
disturbances, model uncertainties, and an attitude con-
straint to achieve exact attitude tracking control in the
aerodynamic descent phase. First, the six-degree-of-
freedom dynamic model of the VTLV is established.
Next, the unknown disturbances and model uncertain-
ties in the VTLV model are considered as the total dis-
turbances, which are estimated by employing an uncer-
tainty and disturbance estimator to compensate the con-
troller, thereby enhancing the control accuracy of the
system. Moreover, a symmetric time-varying barrier
Lyapunov function is utilized to cope with the attitude-
constrained problem. Finally, the high tracking perfor-
mance of the proposed adaptive dynamic surface con-
troller is verified by numerical simulation results.
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1 Introduction

Since the concept of reusable launch vehicle (RLV)
was proposed in the 1950s, researches on RLVs have
received extensive attention [1]. Unlike traditional
expendable launch vehicles, RLVs can be partially or
fully recycled after accomplishing the mission and put
back into operation after maintenance and refuelling,
which significantly increases the launch efficiency and
lowers the launch costs [2]. According to the meth-
ods used for takeoff and landing, RLVs can be divided
into several categories, with vertical takeoff and verti-
cal landing reusable launch vehicles (VTLVs) emerg-
ing as a critical field of study in recent years [3]. Cur-
rently, VTLVs mostly use the method of two-stage-to-
orbit, and the sub-stages of completed launch missions
are recovered vertically, such as the “New Glenn” of
Blue Origin and the “Falcon” series of SpaceX, both of
which have accomplished the vertical recovery reuse of
the sub-stages and reduced the cost of a single launch
markedly [4]. However, it is essential to notice that
many launch tests of VTLVs have failed mainly due
to the lack of enough control accuracy and mechani-
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cal failures. Therefore, the key to ensure the safety and
reliable flight of VTLVs lies in improving their attitude
control performance under multiple constraints.

In the vertical recovery phase of VTLVs, particu-
larly during the aerodynamic descent phase, the design
of the attitude control system is critically hampered
by a long non-powered time of the engine, highly
dynamic flight environment, external and internal dis-
turbances, as well as strong coupling. For solving such
a complex nonlinear control problem, the attitude con-
trol system needs to be devised with nonlinear control
methods because linear ones cannot be adequate for
the demand of high control precision and robustness.
The sliding mode control method is used to improve
the stability and dynamic response of attitude control
of RLV in [5–7]. However, owing to the internal jit-
ter and singularity issues, it is a challenging task to
design the parameters of the controller, which limits
its applications. Accordingly, a robust adaptive inverse
control strategy was developed to ensure the accurate
attitude tracking of RLV with unknown boundaries of
disturbances and uncertainties in [8,9]. To avoid the
“differential explosion” problem associated with the
traditional inversion method, dynamic surface control
(DSC) was proposed in [10] to design controllers with
arbitrarily small tracking error for a class of nonlinear
systems. Based on DSC, [11] designed the RLV atti-
tude adaptive control strategy and achieved great con-
trol results. In the field of RLV, while DSC research
on attitude control achieves positive results in a vari-
ety of aircrafts [12,13,33,34], there is a lack of more
in-depth research. Also, despite conventional nonlinear
controllers typically apply robust approaches to reduce
the effects of uncertainties, it is necessary to estimate
and compensate uncertainties to realize a better con-
trol performance of the system. In recent years, many
researchers have made efforts on disturbance observer
(DO) to improve the performance and the adaptability
of the controller, such as adaptive DO [5,14], extended
state observer (ESO) [6,15], and uncertainty and dis-
turbance estimator (UDE) [16]. UDE was proposed
to evaluate external disturbances and uncertainties by
[17]. UDE has the advantage of weakening the adverse
influence of complex disturbances availably while sim-
plifying the structure of the controller [18]. By applying
UDE, [19] achieved effective disturbance rejection and
reference tracking for the servo system. For the control
systemof aircraft, [20] extended theUDE-based distur-
bance observer to design the controller, whose excel-

lent tracking performance and antijamming capability
were demonstrated by simulations. In [21], a control
algorithm based on UDE was applied to industrial pro-
cesses with a time delay. UDE has widespread studies
and applications, but basically no application to RLV.

In consideration of safety and realistic conditions,
certain physical quantities of the RLV must be con-
strained. Ma et al. [22] employed prescribed perfor-
mance control (PPC) for the control systemas a feasible
approach to the issue of state restriction. PPCconstructs
the control lawby converting the existing restricted sys-
tem into an equal unconstrained system to ensure that
the tracking error maintains within the bound speci-
fied by the designer. At present, there exist three types
of PPC schemes, which are barrier Lyapunov function
(BLF)-based PPC, funnel-based control PPC and coor-
dinated transformation-based PPC [23]. As a candidate
for solving the state-constrained problem, the funnel
control (FC) method has been developed to guarantee
the transient performance specified throughout the pro-
cess [24]. In [25], a neural funnel controller was pre-
sented for air-breathing hypersonic vehicles to main-
tain velocity and attitude tracking errors within desired
funnels, realizing the expected transient and steady-
state performance of both tracking errors. Aiming at
solving the issue of attitude tracking for reusable launch
vehicles with overload constraint, funnel-control was
utilized in [26] to design a performance improvement-
oriented control algorithm to keep tracking error within
prescribed performance function throughout the reen-
try phase. Funnel-based PPC, however, requires that
the controlled systems be S-type linear or nonlinear
systems, and that the relative degree should be one or
two with a known high frequency gain sign, which lim-
its its applications. Compared to the other twomethods,
coordinated transformation-based PPC is more widely
used in the attitude control of RLVs. In [27,28], the
attitude constraints of reusable launch vehicles were
considered, and the logarithmic error transformation
method was used to map the constrained attitude track-
ing errors into unconstrained tangent errors.Wang et al.
[29] designed a novel predefined-time prescribed per-
formance function and utilized the tangent error trans-
formation method to maintain the tracking error within
the desired range. On the basis of the PPC method, the
predesigned constraint is equivalently substituted by
the state-constraint dynamics to achieve the required
output tracking performance, while the controller is
constructed using the backstepping algorithm in [30].
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Most of the existing PPC approaches do not take into
account the constraint for the transformed error pro-
vided by the PPC strategy, thereby making it difficult
to guarantee the boundedness of virtual control deriva-
tives. As a result, when coordinated transformation-
based PPC is employed in DSC, the virtual controller
may produce a large output in order to stabilize the
transformed error and cause an excessive steady-state
error overshoot.

As a particular type of Lyapunov function that tends
to infinity when its variables approach the intended
limit, BLF is widely used in situations requiring state
restriction [31]. At present, the state constraint prob-
lem can be effectively solved by using several novel
forms of BLFs even when the constraint border goes to
infinity, such as tangent BLFs and exponential BLFs.
Flight control issues for controlled objects with atti-
tude constraints, such as airplanes, spacecraft, andmis-
siles, have been thoroughly investigated based on BLF
and the inversion approach. Tee et al. [32] developed
the inverse controller to guarantee the output bound
according to the symmetric BLF, solving the control
problem in the output-constrained case of strict feed-
back systems and lessening the restriction of the ini-
tial conditions successfully. Based on the tangent BLF,
[33] used DSC to construct the velocity and attitude
controllers for hypersonic vehicles, ensuring the total
state constraints. In order to handle the output con-
straint problem for the variant aircraft, [34] suggested
a composite adaptive control strategy based on the
inverse approach and the exponential BLF, in combina-
tionwith theminimal parameter learning technique and
the first order sliding mode differentiator. The (BLF)-
based PPC method has been successfully applied into
hypersonic vehicles and can be further extended into
theRLV. Inspired by the previouswork, this paper plans
to address the attitude-constrained problem of VTLV
under the influence of unknown external disturbances
andmodel uncertainties. Themain contributions of this
study are summarised as follows.

1. A UDE is employed to approximate the unknown
disturbances and model uncertainties of a VTLV.
Compared to the existing DO results applied in
RLVs [5,6,36], UDE provides a more straightfor-
ward structure, fewer parameter settings and excel-
lent estimation accuracy. Moreover, its stability is
more accessible to verify.

2. The improved exponential BLF adopted in this
paper enables the proposed attitude controller to
deal with time-varying attitude constraints of each
attitude angle. Compared with the PPC methods
in [26–28], the BLF-based PPC method eliminates
the need for complex error conversions, thus reduc-
ing the complexity of the control laws and getting
higher reliability.

3. The proposed UDE-based adaptive DSC controller
considers attitude constraints and complex distur-
bances simultaneously. In contrast to the existing
studies on VTLVs [5,28,36], the proposed control
system is chattering-free and needs fewer restric-
tions on control parameters to satisfy the stability
and, thus, has higher practical application values.

The rest of this paper is organized as follows. Section2
presents the control model of the VTLV with unknown
disturbances and model uncertainties. In Sect. 3, based
on UDE and an exponential BLF, an adaptive dynamic
surface controller is designed to achieve high-precision
attitude tracking for the VTLV, and the uniform bound-
edness of the attitude angle of the VTLV is demon-
strated. The usefulness and superiority of the con-
trol method are verified by contrasting the simulation
results of two cases in Sect. 4. The work of this paper
is summarized in Sect. 5.

2 Problem formulation and preliminaries

2.1 Mathematical model of VTLV

In this section, the mathematical model of a VTLV is
studied in detail. Themission profile of the whole flight
stage for a VTLV is shown in Fig. 1 [35]. In general,
the whole flight phase of a VTLV consists of seven sec-
tions: the ascent phase, the attitude adjustment phase,
the boost back phase, the unpowered descent phase,
the powered descent phase, the aerodynamic descent
phase and the vertical landing phase. One of the most
critical phases in the vertical recovery of the VTLV is
the aerodynamic descent phase, characterized by sub-
stantial nonlinearity, strong coupling, and parameter
uncertainties. As a result, it is the main emphasis of
this study to design the appropriate attitude control law
for the VTLV in the aerodynamic descent phase.

During the aerodynamic descent phase, the engines
of the VTLV are turned off, which means that the con-
trol torque cannot be obtained from them. Thus the
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Fig. 1 Mission profile of the VTLV

aerodynamic force and aerodynamic moment are the
major factors that change the speed and attitude of the
VTLV. The dynamic equations of rotational motion of
the VTLV are given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α̇ = − p cosα tan β + q − r sin α tan β + sin σ

cosβ
×

[ψ̇ cos γ − φ̇ sinψ sin γ + (θ̇ + ωe)(cosφ cosψ×
sin γ − sin φ cos γ )] − cos σ

cosβ
[γ̇ − φ̇ cosψ−

(θ̇ + ωe) cosφ sinψ]
β̇ = sin σ [γ̇ − φ̇ cosψ + (θ̇ + ωe) cosφ sinψ]+

cos σ [ψ̇ cos γ − φ̇ sinψ sin γ − (θ̇ + ωe)(cosφ×
cosψ sin γ − sin φ cos γ )] + p sin α − r cosα

σ̇ = − p cosα cosβ − q sin β − r sin α cosβ+
α̇ sin β − ψ̇ sin γ − φ̇ sinψ cos γ + (θ̇ + ωe)×
(cosφ cosψ cos γ + sin φ sin γ )

(1)

and the kinematic equations of the VTLV are listed as
follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṗ = 1

J ′
xx J

′
zz − J ′

xz
2 [J ′

zzMx + J ′
xzMz + (J ′

xx − J ′
yy+

J ′
zz)J

′
xz pq + ((J ′

yy − J ′
zz)J

′
zz − J ′

xz
2
)qr ]

q̇ = 1

J ′
yy

[My + J ′
xz(r

2 − p2) + (J ′
zz − J ′

xx )pr ]

ṙ = 1

J ′
xx J

′
zz − J ′

xz
2 [J ′

xzMx + J ′
xx Mz + ((J ′

xx − J ′
yy)×

J ′
xx + J ′

xz
2
)pq + J ′

xz(J
′
yy − J ′

xx − J ′
zz)qr ]

(2)

where α, β, σ are the attack angle, sideslip angle, and
bank angle, respectively. p, q, r denote the angular
velocity of the roll, pitch, and yaw, respectively. γ is the
flight path angle andψ is the heading angle. θ, φ denote

the latitude and longitude, respectively. ωe is the earth
angular velocity. J ′

i j = Ji j + 
Ji j (i = x, y, z, j =
x, y, z) denotes the moment of inertia, wherein Ji j
and 
Ji j represent the nominal moment and uncertain
moment of inertia, respectively. Mi (i = x, y, z) indi-
cates the rotational moments of the roll, pitch, and yaw,
respectively. The aerodynamic moments are described
as
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Mx = [m
p
x Lr

v
+ mβ

x β + (
mδa
x + mδa

x )δa]q0Sr Lr

My = [m
q
y Lr

v
+ mα

yα + (
mδa
x + mδe

y )δe]q0Sr Lr

Mz = [m
r
z Lr

v
+ mβ

z β + (
mδr
z + mδr

z )δr ]q0Sr Lr

where v is the velocity. Sr , Lr are the cross-sectional
area and reference length of the VTLV, respectively.
mp

x , m
q
y , mr

z denote the damping moment coefficients

of the roll, pitch, and yaw channels, respectively. mβ
x ,

mα
y , m

β
z are the static stability moment coefficients.

mδa
x ,mδe

y ,mδr
z denote the nominal control moment

coefficients, and 
mδa
x ,
mδe

y ,
mδr
z are the uncertain

control moment coefficients. q0 is the dynamic pres-
sure. δa, δe, δr denote the equivalent three-channel grid
fins angles that are used to control roll channel, pitch
channel, and yaw channel, respectively.

2.2 Control-oriented model of VTLV

Let Ω = [α, β, σ ]T and ω = [p, q, r ]T . Consider the
merging of unknown disturbance terms in the model,
(1) and (2) can be further simplified as
{

Ω̇ = Rω + d1

ω̇ = −J ′−1ω× J ′ω + J ′−1(B + 
B)δ + d2d
(3)

where d1 represents the unknown mismatched distur-
bance caused by uncertain parameters and external dis-
turbances, and d2d is caused by the external distur-
bance moment and the hard-to-measure aerodynamic
moment. δ = [δa, δe, δr ]T denotes the control input.
J ′ = J + 
J is the inertia matrix of the RLV, wherein
J and 
J denote the nominal and uncertain inertia
matrix, respectively. ω× is the skew-symmetric matrix
operator on vector. R is the coordinate transformation
matrix.B and
B are the nominal and uncertain control
moment matrix, respectively. The following control-
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oriented model can be gained easily through derivation
{

Ω̇ = Rω + d1

ω̇ = −J−1ω× Jω + J−1Bδ + d2
(4)

where d2 = J−1 J ′d2d + d2m is the unknown matched
disturbance, wherein d2m = J−1(−ω×
Jω−
J ω̇+

Bδ) results from the uncertainties of the inertia
matrix and the control moment coefficients. The repre-
sentations of J , ω×, R, and B are respectively written
as

J =
⎡

⎣
Jxx 0 −Jxz
0 Jyy 0

−Jxz 0 Jzz

⎤

⎦ , ω× =
⎡

⎣
0 −r q
r 0 −p

−q p 0

⎤

⎦ ,

R =
⎡

⎣
− cosα tan β 1 − sin α tan β

sin α 0 − cosα

− cosα cosβ − sin β − sin α cosβ

⎤

⎦ ,

B =
⎡

⎢
⎣

mδx
x q0Sr Lr 0 0

0 m
δy
y q0Sr Lr 0

0 0 mδz
z q0Sr Lr

⎤

⎥
⎦ .

For the VTLV attitude control model (4), a UDE-
and-BLF-based adaptive dynamic surface controller
is proposed in this paper to permit the VTLV atti-
tude vector Ω to track the control command Ωd =
[αd , βd , σd ]T in the presence of unknown disturbances
and model uncertainties, and it also satisfies the given
constraint condition regarding the attitude error, that is,
|Ωi − Ωdi | < kbi , i = 1, 2, 3, kbi > 0.

Remark 1 The upper bounds of the VTLV attitude
angle and desired attitude angle, respectively denoted
as kc and kr , are usually given in practical applications.
Without loss of generality, consider kci > kri > 0.
Correspondingly, the upper bound of the attitude error
can be gained by kbi = kci − kri , i = 1, 2, 3.

3 Adaptive dynamic surface controller design
based on UDE and BLF

3.1 Notations, lemmas and assumptions

In this section, for the construction of the adaptive
dynamic surface attitude controller used for the VTLV
controlmodel described by (4), the following notations,
lemmas and assumptions are necessary:

Notiation 1 For the vector x = [x1, . . . , xn]T , there
are some definitions as follows:

||x || =
√
xT x

tanh x = [tanh x1, tanh x2, . . . , tanh xn]T

Notiation 2 [36]Assume that D is an open region con-
taining the origin and tha the BLF function V (x) is a
scalar function defined on D concerning the system
states x, then there exist some properties of V (x) as
below:

(i) V (x) is smooth and positive definite.
(ii)There exists one-order continuouspartial deriva-

tive of V (x) at each point on D.
(iii) When x approaches the boundary of D, V (x)

tends to be infinite.
(iv) For any t > 0, when x(0) ∈ D, we have

V (x(t)) ≤ b, where b ∈ R+.

By Notation 2, the form of general exponential BLF
is selected as follows [37]:

F(z) = 1

2
log

(
k2b

k2b − z2

)

(5)

and the time derivative of F(z) is written as

F ′(z) = z

k2b − z2
(ż − k̇b

kb
z) (6)

where log(�) denotes the natural logarithm of �, and kb
is a time-varying positive parameter satisfying |z| <

kb. It can be shown that F(z) is positive definite and
continuous when |z| < kb.

Lemma 1 [38] For any kb > 0 and |z| < kb, the fol-
lowing inequality holds:

log

(
k2b

k2b − z2

)

≤ z2

k2b − z2

Lemma 2 [39] For any ω0 > 0 and x ∈ R, the fol-
lowing inequality holds:

0 ≤ |x | − x tanh
x

ω0
≤ κ0ω0

where κ0 is a constant satisfying κ0 = e−(κ0+1), i.e.,
κ0 = 0.2785.

Lemma 3 [40] For a system with bounded initial con-
dition, if there exists a continuous and positive definite
Lyapunov function that satisfies V̇ (x) ≤ −kV (x) + c,
where both of k and c are positive constants, the sys-
tem is uniformly bounded, and the following inequality
holds:

V (x) ≤ (V (0) − c

k
)e−kt + c

k
(7)
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Assumption 1 [41]Thederivative of the unknowndis-
turbance di is bounded, that is, there exists a positive
constant d̄i such that ||ḋi || ≤ d̄i < ∞, i = 1, 2.

Assumption 2 The desired attitude Ωd and the upper
bound of the attitude error kb are smooth, and for any
t ≥ 0, there exist positive constants W̄1 and W̄2 such
that ||Ωd ||2 + ||Ω̇d ||2 + ||Ω̈d ||2 ≤ W̄1 and ||kb||2 +
||k̇b||2 + ||k̈b||2 ≤ W̄2.

Assumption 3 For all t > 0, the sideslip angle satis-
fies |β| < β̄ < π/2, where β̄ is a positive constant,
which ensures the continuous smooth function matrix
R is nonsingular. Thus, there are positive constants R̄1

and R̄2 (R̄1 < R̄2), such that R̄1 < max{||Ṙ||, ||R||} ≤
R̄2.

Remark 2 The external disturbance moment as well as
the aerodynamic moment in the flight environment are
constantly changing and difficult to predict, but their
total energy is limited. Simultaneously, note that d1
and d2m vary with the motion state and grid fins angles
of the RLV,which have a limited range and change rate.
Therefore, di and its derivative can be considered to be
unknown but bounded, which explains the rationality
of Assumption 2.

Remark 3 In practice, it is possible to obtain the states
(Euler angle and attitude angular velocity) of RLV by
means of the inertia navigation system. To prevent the
heating rate, the sideslip angle should also be zero dur-
ing the reentry phase [42]. Hence, Assumption 1 is rea-
sonable.

3.2 Disturbance estimation based on UDE

In this section, UDE is utilized to estimate the compos-
ite disturbances in (4), due to its simplicity and great
estimation performance. Then the disturbance estima-
tion is compensated to the subsequent control law to
improve the control accuracy. Moreover, we also ana-
lyze the uniform boundness of the estimation error of
UDE.

According to (4), the unknown disturbances in the
VTLV dynamics model can be expressed as
{
d1 = Ω̇ − Rω

d2 = ω̇ + J−1ω× Jω − J−1Bδ
(8)

UDE estimates unknown interference via filters
[18], and the design method is expressed as the fol-
lowing transfer function:

D̂i (s) = G f (s)Di (s), i = 1, 2 (9)

where D̂i (s), Di (s) respectively denote the Laplace
transformation of d̂i , di , and d̂i is the estimation of di .
G f (s) = (τi s + I )−1 represents thematrix form of the
one-order filter, in which τi is the coefficient matrix of
the filter to be designed.

Adopting the inverse Laplace transformation, (9) is
transferred as
˙̂di = τi

−1(di − d̂i ) (10)

By calculating the integrals of the expressions on
both sides of the equal sign simultaneously, the expres-
sion for disturbance estimation can be given by

d̂i =
∫ t

0
τi

−1(di − d̂i )dt + d̂i (0) (11)

Define the disturbance estimation error d̃i as

d̃ = di − d̂i . (12)

Through (10) and (13), it is obtained that

˙̃di = ḋi − τ−1
i d̃i (13)

To demonstrate the uniform boundedness of the esti-
mation error of UDE, we give the Lyapunov function
form of the UDE as follows:

VUd =
2∑

i=1

1

2
d̃Ti d̃i (14)

Then the derivative of VUd with respect to time reads

V̇Ud =
2∑

i=1

d̃Ti
˙̃di (15)

Applying Assumption 1 and the Young inequality,
we get

V̇Ud =
2∑

i=1

(
−d̃Ti τ−1

i d̃i + d̃Ti ḋi
)

≤
2∑

i=1

(

−d̃Ti τ−1
i d̃i + μi

∥
∥
∥d̃i

∥
∥
∥
2 +

∥
∥ḋi

∥
∥2

4μi

)

≤ −
2∑

i=1

d̃Ti

(
τ−1
i − μi I

)
d̃i +

2∑

i=1

d̄2i
4μi

= −a0VUd + b0 (16)
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where μi ∈ R+, a0 = min
i=1,2

{2λmin(τ
−1
i ) − 2μi } > 0,

and b0 =
2∑

i=1
(d̄2i /4μi ). Furthermore, the coefficient

matrix of the filter satisfies λmin(τ
−1
i ) > μi .

According to Lemma 3, for i = 1, 2, we obtain

VUd ≤
(

VUd (0) − b0
a0

)

e−a0t + b0
a0

(17)

lim
t→∞

∥
∥
∥d̃i

∥
∥
∥ ≤

√
2b0
a0

(18)

Therefore, it is possible to adjust the filter coeffi-
cients so that the estimation error of interference can
converge to an arbitrarily small range around 0, that is,
the UDE can estimate the unknown interference terms
in (4) accurately.

3.3 Design of adaptive dynamic surface controller
based on BLF

In this section, the dynamic surface control method is
adopted to decompose theVTLVattitude controlmodel
(4) with model uncertainties and complex disturbances
into the outer attitude loop and the inner angular rate
loop, for which the control laws are designed sepa-
rately to achieve accurate attitude control. Moreover,
the exponential BLF and the adaptive control law are
integrated to cope with the attitude-constrained prob-
lem. The detailed block diagram of the attitude control
system is shown in Fig. 2.

According to (6), the exponential BLF form is
selected as follows:

V1 = 1

2

3∑

i=1

log

(
k2bi

k2bi − S21i

)

(19)

It is clear that V1 is positive definite and continuously
differentiable in the set |S1i | < kbi .

Remark 4 During the early stage, kbi provides atti-
tude constraints for the attitude control transient pro-
cess, while during the later stage, it ensures atti-
tude constraints for the steady state process, which
means k̇bi needs to converge to zero. Then we should
ensure that kbi satisfies the differentiability condi-
tions in Assumption 1 and the initial constrained
condition|Ω1i (0) − Ωdi (0)| < kbi (0). Besides, an
appropriate kbi (∞) should be designed to improve the
effectiveness of attitude constraint and avoid the chat-
tering problem of the control input.

Taking the derivative of V1 yields

V̇1 =
3∑

i=1

(
S1i Ṡ1i

k2bi − S21i
− S21i k̇bi

kbi (k2bi − S21i )

)

= δTS1(Ṡ1 − KbS1) (20)

where δTS1 = [δS11, δS12 , δS13 ]T , δS1i = S1i/(k2bi − S21i ),
kbi denotes the time-varying upper boundof the attitude
error, and Kb= diag (k̇b1/kb1, k̇b2/kb2, k̇b3/kb3), i =
1, 2, 3.

Fig. 2 Block diagram of anti-interference adaptive dynamic surface control system based on BLF
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In order to track the desired attitude accurately, it is
necessary to design a virtual control law for the outer
attitude loop.
Step 1. Define the attitude error of the VTLV as

S1 = Ω − Ωd (21)

The time derivative of Ṡ1 is given by

Ṡ1 = Ω̇ − Ω̇d = Rω + d1 − Ω̇d (22)

It is straightforward to show from (18) that both of d̃1
and d̃2 have the upper bounds, that is,

∥
∥
∥d j − d̂ j

∥
∥
∥ ≤ b j ,

j = 1, 2. Then the virtual controller ω̄ is designed as

ω̄ =R−1[−(K1 + K̄1)S1 − d̂1 + Ω̇d − 1

2
RRT δS1−

b̂1 tanh(ε
−1
1 δS1)] (23)

where K1 ∈ R3×3 is the gainmatrix, K̄1 = diag(k̄1, k̄2,

k̄3), k̄i =
√

(k̇bi/kbi )
2 + β0, and β0 is a positive con-

stant, which ensures that the time derivative of ω̄ is
bounded even when k̇bi are zero. ε1 is the definite sym-
metric matrix to be designed. b̂1 represents the estima-
tion of b1, which satisfies the below adaptive control
law:

˙̂b1 = γ1[δTS1 tanh(ε−1
1 δS1) − σ1b̂1] (24)

where σ1 and γ1 are both positive constants.
Substituting (23) into (22), this yields

Ṡ1 =R(ω − ω̄) + Rω̄ + d1 − Ω̇d

=R(ω − ω̄) − (K1 + K̄1)S1 − d̂1+
d1 − b̂1 tanh(ε

−1
1 δS1) − 1

2
RRT δS1 (25)

Substituting (25) into (11), the expression for d̂1 is
written as follows:

d̂1=τ−1
1 {S1−S1(0)−

∫ t

0
[R(ω − ω̄) − (K1+K̄1)S1−

b̂1 tanh(ε
−1
1 δS1) − 1

2
RRT δS1]dt} + d̂1(0) (26)

In addition, in order to avoid the “differential explo-
sion” problem caused by direct derivation of ω̄, the
tracking signal of the inner loop is given by passing the
virtual control law through the one-order filter as

τ3ω̇d + ωd = ω̄, ωd(0) = ω̄(0) (27)

Let ω̃ = ω̄ − ωd , there is

ω̇d = τ−1
3 (ω̄ − ωd) = τ−1

3 ω̃ (28)

The time derivative of ω̃ is written as

˙̃ω = −τ−1
3 ω̃ + ˙̄ω (29)

where τ3 ∈ R3×3 is the definite symmetric matrix to
be designed, and ωd ∈ R3 denotes the desired signal
of ω.

To demonstrate the stability of the closed-loop con-
trol system, define b̃1 = b1 − b̂1, and the following
candidate Lyapunov function is considered:

V2 = V1 + 1

2γ1
b̃21 (30)

The time derivative of V2 is given by

V̇2 = V̇1 + 1

γ1
b̃1

˙̃b1 (31)

According to (24), we have

1

γ1
b̃1

˙̃b1 = b̃1[−δTS1 tanh(ε
−1
1 δS1) + σ1b̂1] (32)

Note that

b̃1b̂1 = (b̂1 + b̃1)
2

2
− b̂21

2
− b̃21

2
≤ b21

2
− b̃21

2
(33)

andω−ω̄ = ω−ωd +ωd −ω̄ = S2−ω̃ . Furthermore,
it is obvious that

−k̇bi/kbi −
√

(k̇bi/kbi )
2 + β0 < 0, i = 1, 2, 3.

Thus, we obtain

−δTS1(Kb + K̄1)S1 < 0

The final expression for V̇2 is written as

V̇2 ≤ − δTS1K1S1 − σ1b̃21
2

+ σ1b21
2

+ δTS1 d̃1 − b1δ
T
S1×

tanh(ε−1
1 δS1) + δTS1RS2 − δTS1Rω̃ − 1

2
δTS1RR

T δS1

(34)

Step 2. Define the angular rate error of the VTLV as

S2 = ω − ωd (35)

The derivative of S2 is obtained as follows:

Ṡ2 = ω̇ − ω̇d = −J−1ω× Jω + J−1Bδ + d2 − τ−1
3 ω̃

(36)
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Based on UDE and adaptive control, the actual con-
trol law is designed as

δc =B−1[J (−K2S2 + τ−1
3 ω̃ − b̂2 tanh(ε

−1
2 S2)−

RT δS1 − d̂2) + ω× Jω] (37)

where K2 ∈ R3×3 is the gain matrix, ε2 ∈ R3×3

denotes the definite symmetric matrix to be designed,
and b̂2 is the estimation of b2, which satisfies

˙̂b2 = γ2[ST2 tanh(ε−1
2 S2) − σ2b̂2] (38)

where σ1 and γ1 are both positive constants.
Substituting (37) into (36), this yields

Ṡ2 = − K2S2 − b̂2 tanh(ε
−1
2 S2) − RT δS1 + d2 − d̂2

(39)

Substituting (39) into (11), the expression for d̂2 is
written as follows:

d̂2 =τ−1
2 {S2 − S2(0) +

∫ t

0
(K2S2 + b̂2 tanh(ε

−1
2 S2)

RT δS1)dt} + d̂2(0) (40)

Next, define the total Lyapunov function as

V = V2 + 1

2
ST2 S2 + 1

2γ2
b̃22 + 1

2
ω̃T ω̃ (41)

Then we present the main conclusion of this paper
and demonstrate the stability of the designed closed-
loop control system as follows:

Theorem 1 Consider the VTLV control model (4)
under Assumptions 1–3. Given initial condition satis-
fies |S1i (0)| < kbi , i = 1, 2, 3, and V (0) < p, where p
is a positive constant. Based on the disturbance estima-
tion from UDE, DSC laws (23), (37) and the adaptive
control laws (24), (38) are employed to design the atti-
tude controller for the VTLV, then the attitude angle Ω

is within the given constraint kc, and the track error S1
can converge to an arbitrarily small range.

Proof Taking the derivative of V yields

V̇ = V̇2 + ST2 Ṡ2 + 1

γ2
b̃2

˙̃b2 + ω̃T ˙̃ω (42)

Like (32) and (33), we derive

1

γ2
b̃2

˙̃b2 ≤ −b̃2S
T
2 tanh(ε−1

2 S2) − σ2

2
b̃22 + σ2

2
b22 (43)

Invoking (39) and (43), we have

ST2 Ṡ2 + 1

γ2
b̃2

˙̃b2 ≤ ST2 d̃2 − ST2 K2S2 − ST2 RT δS1

− b2S
T
2 tanh(ε−1

2 S2) − σ2

2
b̃22 + σ2

2
b22

(44)

According to Lemma 2 and the Young inequality,
the following inequalities are given by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δTS1 d̃1 − b1δ
T
S1 tanh(ε

−1
1 δS1) ≤ b1

3∑

i=1

(|δS1i |−

δS1i tanh
δS1i

ε1i
) ≤ b1

3∑

i=1

|ε1i |κ0 = ε̄1

ST2 d̃2 − b2S
T
2 tanh(ε−1

2 S2) ≤ b2

3∑

i=1

|ε2i |κ0 = ε̄2

(45)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

− δTS1Rω̃ − 1

2
δTS1RR

T δS1 = −(RT δS1)
T ω̃−

1

2
(RT δS1)

T (RT δS1) ≤ 1

2
ω̃T ω̃

ω̃T ˙̃ω = −ω̃T (τ−1
3 − μ3 I )ω̃ +

∥
∥ ˙̄ω∥

∥2

4μ3

(46)

where μ3 ∈ R+.
Finally, the expression for V is simplified as

V̇ =V̇2 + δTS2 Ṡ2 + 1

γ2
b̃2

˙̃b2 + ω̃T ˙̃ω

≤−δTS1K1S1−σ1b̃21
2

−ST2 K2S2−σ2

2
b̃22−ω̃T (τ−1

3 −

μ3 I − 1

2
I )ω̃ + σ1b21

2
+ σ2b22

2
+ ε̄1 + ε̄2 +

∥
∥ ˙̄ω∥

∥2

4μ3
(47)

By Assumption 2, the set

Π1 =
{

(ΩT
d , Ω̇T

d , Ω̈T
d , d̃1, kb, k̇b, k̈b) :

2∑

i=0

(

∥
∥
∥Ω

(i)
d

∥
∥
∥
2
)+

2∑

i=0

(

∥
∥
∥k

(i)
b

∥
∥
∥
2
) +

∥
∥
∥d̃1

∥
∥
∥
2 ≤ W̄

}
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is compact in R21, where W̄ = W̄1+W̄2+b21. Consider
the set

Π2 =
{
(ST1 , ST2 , ω̃T , b̃1, b̃2) : V ≤ p

}

is compact in R11. For all variables belonging to Π1 ×
Π2, ˙̄ω = D(S1, S2, ω̃, b̃1, b̃2, d̃1,Ωd , Ω̇d , Ω̈d , kb, k̇b,
k̈b) is a continuous vector function fromAssumption 3.
Therefore,

∥
∥ ˙̄ω∥

∥ have an upper bound D0 on Π1 × Π2.
Let

k1 = min{2λmin(K1), σ1γ1, 2λmin(K2), σ2γ2,

2λmin(τ
−1
3 − μ3 I − 1

2
I )}, (48)

c1 = σ1b21
2

+ σ2b22
2

+ ε̄1 + ε̄2 + D2
0

4μ3
. (49)

From Lemma 1, we obtain

−δTS1K1S1 ≤ −
3∑

i=1

k1
2

S21i
k2b1i − S21i

≤ −k1
2

3∑

i=1

(

log
k2b1i

k2b1i − S21i

)

Consequently, V̇ ≤ −k1V +c1. Then, according to the
first lemma in [38], we have |S1i | < kbi .

Let k1 > c1/p, which can be achieved by setting
the controller parameters large enough, then V̇ ≤ 0
on V = p, which means that for any t > 0, V ≤ p
provided that V (0) ≤ p. The controller parameters
should ensure λmin(τ

−1
3 ) − μ3 > 0.5 simultaneously.

From Lemma 3, the inequality is gained as follows:

V ≤ (V (0) − c1
k1

)e−k1t + c1
k1

Therefore, for any i = 1, 2, 3, we derive

1

2
log

(
k2b1i

k2b1i − S21i

)

≤ V (0) + c1
k1

|S1i | ≤ kbi
√

(1 − e−2(V (0)+c1/k1)) < kbi (50)

lim
t→∞

1

2
log

(
k2b1i

k2b1i − S21i

)

≤ c1
k1

lim
t→∞ |S1i | ≤ kbi

√
(1 − e−2c1/k1)) (51)

By (50), |Ωi | − |Ωdi | ≤ |S1i | < kbi , we have

|Ωi | < kbi + |Ωdi | < kbi + kri = kci , i = 1, 2, 3.

To sum up, the attitude angle of the VTLV is within
the desired constraint and can converge to an arbitrar-
ily small region around 0 by adjusting the controller
parameters. This completes the proof of Theorem 1. �	
Remark 5 The following controller parameters should
be selected when designing the developed controller.
A larger K ji > 0 and a smaller τ3i > 0 meeting
λmin(τ

−1
3 ) − μ3 > 0.5 (i = 1, 2, 3, j = 1, 2) will be

capable of decreasing the convergence time and steady-
state error of the attitude tracking error. Then, select
γ j > 0 to determine the estimation performance of b j .
In the event that the RLV system encounters undesired
uncertainties, a larger γ j will improve the estimation
procedure within a shorter period of time. According
to (49), a smaller σ j > 0 and ε j i > 0 will contribute to
smaller steady-state error. Note that b̂ j can be maintain
within a small range around b j by setting a properly
large σ j .

4 Simulation and results

In this section, simulation tests are designed usingMat-
lab to verify the effectiveness of the proposed control
scheme. The VTLV dynamics model parameters and
aerodynamic coefficients in this study are the same as
those in [35]. The uncertainties are set in consideration
of 20% bias for aerodynamic coefficients and 20% bias
for the moment of inertia of VTLV.

In the simulation, the initial states are set to be
Ω0 = [174.5,−4, 0.8]T (◦), v = 1180m/s, φ = −47◦,
θ = −47.15◦, γ = − 41◦ and ψ = 0◦. The
desired attitude is selected to be [180, 0, 0]T (◦), and
the control command is generated through the first-
order filter, where the time constant is set to be 1 s.
Meanwhile, the simulation sampling step is set as
5ms, and the simulation time is 40 s. The parame-
ters of the dynamic surface controller are set to be
K1 = diag (40, 40, 40), K2 = diag(20, 20, 20), and
τ3 = diag (0.05, 0.05, 0.05). The parameters of adap-
tive control laws are set to be γ1 = γ2 = 20, ε1 = ε2 =
diag (0.01, 0.01, 0.01), σ1 = σ2 = 0.1, and β0 = 0.1.
The parameters of theUDE-based disturbance observer
are set to be τ1 = τ2 = diag (0.05, 0.05, 0.05).

Furthermore, in order to verify the robustness of the
simulation, and its expression is written as
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Fig. 3 Comparison of simulation results in two cases
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Table 1 The simulation results of three control methods

Control scheme Convergence time at |Ω(i)| ≤ 0.005 deg Max(|
α|, |
β|, |
σ |)/deg
t ∈ (1 s, 20 s] t ∈ (20 s, 30 s] t ∈ (30 s, 40 s]

ADSC 2.164s, 1.008s, 1.174s 0.017, 0.005, 0.009 0.116, 0.101, 0.139 0.068, 0.065, 0.203

PFADSC 0.995s, 0.710s, 0.950s 0.005, 0.003, 0.003 0.029, 0.030, 0.037 0.017, 0.025, 0.051

Proposed 0.816s, 0.702s, 0.930s 0.003, 0.004, 0.003 0.015, 0.022, 0.026 0.008, 0.016, 0.034

Md =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[4 + 2 sin(0.2t)20 + 20 sin(0.2t)

10 + 5 cos(0.4t)]T (N · m),

20 s < t < 30 s

0, others

Furthermore, to verify the superiority of the pro-
posed controller, we select the robust adaptive dynamic
surface control (ADSC) method in [11] to design
ADSC scheme. In addition, based on the framework of
UDE-based adaptive dynamic surface controller, the
fix-time performance function and error transforma-
tion function from [33] are chose to design PFADSC
scheme. The selected representation of kbi (t)(i =
1, 2, 3) is the same as the following fixed-time pre-
scribed performance function in [27].

ρi (t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(ρi0 − ρi∞)

[
sin(2π t/T )

2π
− t

T f

]

+ ρi 0, 0 ≤ t ≤ T

ρi∞, t > T

It can be easily known that the choice of meets require-
ments in Remark 7. Also, the parameters of kbi (t) and
ρ(t) are selected as ρ0i = 1.5◦, ρ∞i = 1.5◦, and
T = 2 s. For the purpose of ensuring fairness in simu-
lation comparisons, the controller parameters of ADSC
scheme and PFADSC scheme are identical to the pro-
posed scheme. The simulation results of three groups
are shown in Fig. 3a–d and Table 1. Also, the compar-
ison between the interference estimations gained by
UDE and the actual value of the total interferences is
shown in Fig. 3e, f.

From Fig. 3a, the comparison between the desired
attitude and the actual attitude of VTLV in three
groups simulation results is displayed. Although there
both exist interferences and model uncertainties in the
VTLV model, all of designed control schemes pro-
vide sufficient convergence rate and attitude track-
ing accuracy for the VTLV, and the application of
PPC improves tracking speed and tracking accuracy

markedly. As is shown in Fig. 3b that the VTLV control
input is maintained within a reasonable range in three
schemes. Although both of PFADSC scheme and pro-
posed scheme cause a degree of control input oscilla-
tion when VTLV encounters sudden disturbance, their
control input curves can level off within a relatively
short period of time. However, there is a greater degree
of oscillation in the control input curve of PFADSC
scheme.

As shown in Fig. 3c, d, in the event of existing sud-
den perturbation, the proposed scheme significantly
reduces the overshoot of the attitude angle tracking
error curve and attitude angular rate tracking error one,
improving the robustness of the system and ensuring
that the attitude tracking error is alwayswithin the error
bounds. Table 1 clearly shows that the proposed control
system has a higher transient performance and stronger
robustness against the complex disturbance. In com-
parison with the other scheme, a clear improvement
was evident in control performance when the proposed
scheme was adopted. It is possible to accurately esti-
mate the unknown disturbances in the model with the
UDE in Fig. 3e, f.

In conclusion, the adaptive dynamic surface con-
troller based on UDE and BLF exhibits an excellent
attitude performance and sufficient robustness.

5 Conclusion

In this paper, an adaptive dynamic surface controller is
proposed for the VTLV dynamics model in the aero-
dynamic descent phase using UDE and BLF. For pre-
cise tracking of VTLV attitude to attitude command,
UDE and BLF are applied to handle unknown distur-
bances in the model and the attitude-constrained prob-
lem, respectively. Numerical simulation analysis indi-
cates that the proposed controller achieves better per-
formances and lower steady-state error in comparison
to the case with only disturbance estimation and that
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the presentedUDE-based disturbance observer also has
great estimation performances. Then the effectiveness
and superiority of the control scheme is demonstrated.

Acknowledgements The authors would like to express their
sincere thanks to anonymous reviewers for their helpful sugges-
tions for improving the technique note.

Author contributions All authors contributed to the study con-
ception and design. Overarching research goals and aims were
formulated byWL and SS. Themodeling analysis and the design
of the control methodology were performed by RM and WL.
The theory analysis and simulation verification were completed
by RM and SS. The first draft of the manuscript was written
by RM and all authors commented on previous versions of the
manuscript. All authors read and approved the final manuscript.
SS is responsible for ensuring that the descriptions are accurate
and agreed by all authors.

Funding The authors declare that no funds, grants, or other sup-
port were received during the preparation of this manuscript.

DataAvailability The data that support the findings of this study
are available from the corresponding author upon reasonable
request.

Declarations

Conflict of interest The authors declare that there is no conflict
of interest regarding the publication of this paper.

References

1. Yang,Y.: Studyon roadmapofChinese reusable launchvehi-
cle. Missile Space Veh. 4, 1–4 (2006)

2. Wang, Z.G., Luo, S.B.,Wu, J.J.: Recent progress on reusable
launch vehicle, 1-2. National University of Defense Tech-
nology Press, Changsha (2004)

3. Cui, N.G., Wu, R., Wei, C.Z., et al.: Development and key
technologies of vertical takeoff vertical landing reusable
launch vehicle. Astronaut. Syst. Eng. Technol. 2(2), 27–42
(2018)

4. Song, Z.Y., Cai, Q.Y., Han, P.X., et al.: Review of guidance
and control technologies of reusable launch vehicles. Acta
Aeronautica et Aeronautica Sinica 42(11), 37–65 (2021)

5. Zhang, L., Wei, C., Wu, R., et al.: Fixed-time extended state
observer based non-singular fast terminal sliding mode con-
trol for a VTVL reusable launch vehicle. Aerosp. Sci. Tech-
nol. 82, 70–79 (2018)

6. Wang, Z., Wu, Z., Du, Y.J.: Adaptive sliding mode back-
stepping control for entry reusable launch vehicles based on
nonlinear disturbance observer. Proc. Inst. Mech. Eng. Part
G J. Aerospace Eng. 230(1), 19–29 (2015)

7. Tian, B.L., Lu, H.C., Zuo, Z.Y., et al.: Multivariable uni-
form finite-time output feedback reentry attitude control for
RLV with mismatched disturbance. J. Franklin Inst. 355(8),
3470–3487 (2018)

8. Wang, Z., Wu, Z., Du, Y.J.: Robust adaptive backstepping
control for reentry reusable launch vehicles. Acta Astronaut.
126, 258–264 (2016)

9. Tian, B.L., Lu, H.C., Zuo, Z.Y., et al.: Adaptive prescribed
performance attitude control for RLV with mismatched dis-
turbance. Aerosp. Sci. Technol. 117, 106918 (2021)

10. Swaroop,D., Hedrick, J.K., Yip, P.P., et al.: Dynamic surface
control for a class of nonlinear systems. IEEETrans. Autom.
Control 45(10), 1893–1899 (2000)

11. Hu, C.F., Gao, Z.F., Ren, Y.L., et al.: A robust adap-
tive nonlinear fault-tolerant controller via norm estimation
for reusable launch vehicles. Acta Astronaut. 82, 685–695
(2016)

12. Zhou, L.L., Liu, L., Cheng, Z.T., et al.: Adaptive dynamic
surface control using neural networks for hypersonic flight
vehicle with input nonlinearities. Optimal Control Appl.
Methods 41(6), 1904–1927 (2020)

13. Wang, L., Qi, R.Y., Peng, Z.Y.: Integrated design of adap-
tive fault-tolerant control for non-minimum phase hyper-
sonic flight vehicle system with input saturation and state
constraints. Proc. Inst. Mech. Eng. Part G J. Aerospace Eng.
236(11), 2281–2301 (2022)

14. Zhang,H.G., Han, J., Luo, C.M., et al.: Fault-tolerant control
of a nonlinear system based on generalized fuzzy hyperbolic
model and adaptive disturbance observer. IEEE Trans. Syst.
Man Cybernet. Syst. 47(8), 2289–2300 (2016)

15. Piao, M.N., Wang, Y., Sun, M.W., et al.: Fixed-time-
convergent generalized extended state observer based motor
control subject to multiple disturbances. IEEE Trans. Ind.
Inf. 17(12), 8066–8079 (2021)

16. Zhang, X.Y., Li, H., Zhu, B.: Improved UDE and LSO for
a class of uncertain second-order nonlinear systems without
velocity measurements. IEEE Trans. Instrum. Meas. 69(7),
4076–4092 (2020)

17. Zhong, Q.C., Rees, D.: Control of uncertain LTI systems
based on an uncertainty and disturbance estimator. J. Dyn.
Syst. Meas. Control 126(4), 905–910 (2004)

18. Kodhanda, A., Talole, S.E.: Performance analysis of UDE
based controllers employing various filters 49(1), 83–88
(2016)

19. Ren, B., Zhong, Q.C., Dai, J.: Asymptotic reference track-
ing and disturbance rejection of UDE-based robust control.
IEEE Trans. Ind. Electron. 64(4), 3166–3176 (2017)

20. Su, S., Lin, Y.: Robust output tracking control of a class
of nonminimum phase systems and application to VTOL
aircraft. Int. J. Control 84(11), 1858–1872 (2011)

21. Sun, L., Li, D., Zhong, Q.C.: Control of a class of indus-
trial processes with time delay based on a modified uncer-
tainty and disturbance estimator. IEEE Trans. Ind. Electron.
63(11), 7018–7028 (2016)

22. Ma, J.T., Wen, H., Jin, D.P.: PDE model-based boundary
control of a spacecraft with double flexible appendages
under prescribed performance. Adv. Space Res. 65(1), 586–
597 (2020)

23. Ni, J., Ahn, C.K., Liu, L.: Prescribed performance fixed-
time recurrent neural network control for uncertain nonlinear
systems. Neurocomputing 363, 351–365 (2019)

24. Ilchmann, A., Ryan, E.P., Townsend, P.: Tracking with pre-
scribed transient behavior for nonlinear systems of known
relative degree. SIAM J. Control. Optim. 46(1), 210–230
(2007)

123



5378 R. Mo et al.

25. Bu, X.W.: Air-breathing hypersonic vehicles funnel con-
trol using neural approximation of non-affine dynamics.
IEEE/ASME Trans. Mechatron. 23(5), 2099–2108 (2018)

26. Gu, X.Y., Guo, J.G., Guo, Z.Y., et al.: Performance
improvement-oriented reentry attitude control for reusable
launch vehicles with overload constraint. ISA Trans. 128,
386–396 (2022)

27. Xu, S.H., Guan, Y.Z., Wei, C.Z., et al.: Reinforcement-
learning-based tracking control with fixed-time prescribed
performance for reusable launch vehicle under input con-
straints. Appl. Sci. 12(15), 7436 (2022)

28. Xu, S.H., Guan, Y.Z., Bai, Y.L., et al.: Practical predefined-
time barrier function-based adaptive sliding mode control
for reusable launch vehicle. Acta Astronaut. 204, 376–388
(2023)

29. Wang, M.Z., Wei, C.Z., Pu, J.L., et al.: Predefined-time
nonsingular attitude control for vertical-takeoff horizontal-
landing reusable launch vehicle. Appl. Sci. 12(19), 10153
(2022)

30. Shao, X.D., Hu, Q.L., Shi, Y., et al.: Predefined-time nonsin-
gular attitude control for vertical-takeoff horizontal-landing
reusable launch vehicle. IEEE Trans. Control Syst. Technol.
28(2), 10153 (2018)

31. Wang, Z.W., Liang, B., Sun, Y.C., et al.: Adaptive fault-
tolerant prescribed-time control for teleoperation systems
with position error constraints. IEEE Trans. Ind. Inf. 16(7),
4889–4899 (2019)

32. Tee,K.P.,Ge, S.S., Tay,E.H.:BarrierLyapunov functions for
the control of output-constrained nonlinear systems. Auto-
matica 45(4), 918–927 (2009)

33. Yuan, Y., Wang, Z., Guo, L., et al.: Barrier Lyapunov
functions-based adaptive fault tolerant control for flexible
hypersonic flight vehicles with full state constraints. IEEE
Trans. Syst. Man Cybernet. Syst. 50(9), 3391–3400 (2018)

34. Wu, Z.H., Lu, J.C., Zhou, Q., et al.:Modified adaptive neural
dynamic surface control formorphing aircraft with input and
output constraints. NonlinearDyn. 87(4), 2367–2383 (2017)

35. Cui, N.G., Wu, R., Wei, C.Z., et al.: Double-order power
fixed-time convergence sliding mode control method for
launch vehicle vertical returning. J. Harbin Inst. Technol.
52(4), 15–24 (2020)

36. Liang, X.H.,Wang, Q., Hu, C.H., et al.: Fixed-time observer
based fault tolerant attitude control for reusable launch vehi-
cle with actuator faults. Aerosp. Sci. Technol. 107, 106314
(2020)

37. Zhao, Z., He, W., Ge, S.S.: Adaptive neural network control
of a fully actuatedmarine surface vesselwithmultiple output
constraints. IEEETrans.Control Syst. Technol.22(4), 1536–
1543 (2014)

38. Ren, B., Ge, S.S., Tee, K.P., et al.: Adaptive neural con-
trol for output feedback nonlinear systems using a barrier
Lyapunov function. IEEE Trans. Neural Netw. 21(8), 1339–
1345 (2010)

39. Xu, B.: Robust adaptive neural control of flexible hypersonic
flight vehicle with dead-zone input nonlinearity. Nonlinear
Dyn. 80(3), 1509–1520 (2015)

40. Ge, S.S., Wang, C.: Adaptive neural control of uncertain
MIMO nonlinear systems. IEEE Trans. Neural Netw. 15(3),
674–692 (2004)

41. Tian, B.L., Fan, W.R., Zong, Q.: Integrated guidance and
control for reusable launch vehicle in reentry phase. Non-
linear Dyn. 80(1–2), 397–412 (2015)

42. Tian, B.L., Fan, W.R., Su, R.: Real-time trajectory and atti-
tude coordination control for reusable launch vehicle in
reentry phase. IEEE Trans. Ind. Electron. 62(3), 1639–1650
(2014)

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.

Springer Nature or its licensor (e.g. a society or other partner)
holds exclusive rights to this article under a publishing agreement
with the author(s) or other rightsholder(s); author self-archiving
of the accepted manuscript version of this article is solely gov-
erned by the terms of such publishing agreement and applicable
law.

123


	UDE-based adaptive dynamic surface control for attitude-constrained reusable launch vehicle
	Abstract
	1 Introduction
	2 Problem formulation and preliminaries
	2.1 Mathematical model of VTLV
	2.2 Control-oriented model of VTLV

	3 Adaptive dynamic surface controller design based on UDE and BLF
	3.1 Notations, lemmas and assumptions
	3.2 Disturbance estimation based on UDE
	3.3 Design of adaptive dynamic surface controller based on BLF

	4 Simulation and results
	5 Conclusion
	Acknowledgements
	References




