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Abstract Multisegment continuum manipulators

exhibit broad application prospects for complex tasks

in confined spaces due to their inherent compliance

and dexterity. However, the dynamic behaviors of

these manipulators are highly nonlinear, bringing

great challenges to their obstacle-avoidance motion

planning. In this paper, a combined kinodynamic

motion planning method is proposed for cable-driven

multisegment continuum manipulators in confined

spaces. The kinodynamic motion planning problem

for these manipulators is first transformed into a

nonlinear optimization problem (NOP) with both

obstacle-avoidance constraints and input limitation

constraints. The workspace of the continuum manip-

ulator is then divided into a safe subspace and a

warning subspace. By introducing parameters, the

transformed NOP for motion planning in the safe

subspace is further reformulated as a mixed comple-

mentarity problem to solve, which can rapidly gener-

ate paths while strictly satisfying system constraints.

In addition, based on normal distribution and adaptive

parameters, an improved particle swarm optimization

algorithm with great search performance is developed

to address the motion planning problem in the warning

subspace. The proposed path optimization framework

can effectively address the highly nonlinear kinody-

namic motion planning problem for multisegment

continuum manipulators. Numerical simulations for

obstacle-avoidance motion planning of multisegment

continuummanipulators are conducted to illustrate the

effectiveness and advantages of the proposed method.

Keywords Continuum manipulators � Kinodynamic

motion planning � Obstacle avoidance � Dynamic

model � Nonlinear optimization

List of Symbols

B Augmented system input matrix

ck Obstacle-avoidance constraints at time tk
d Vector of actual distances between potential

collision points and obstacles

ds Critical safety distance

dw Warning distance

di;j Distance between the ith potential collision

point on the manipulator and the jth obstacle

E Elastic potential energy of the system
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G System input matrix

Jk Cost function of motion planning

m Number of system constraints

M System mass matrix

n Number of generalized coordinates

pj Position of the jth particle

P Position set of the particle swarm

q Generalized coordinate

_q Generalized velocity

€q Generalized acceleration

s Number of actuation forces

uk Cable actuation force at time tk
umax Upper bound of the actuation force

umin Lower bound of the actuation force

V Coupling matrix including the centrifugal-

Coriolis and damping matrices

w Number of the system output variables

xk Vector of the generalized coordinates and the

Lagrange multiplier

yk Actual output variable of the system at time tk
~yk Desired output variable of the system at

time tk
u Number of particles updated by a chaotic map

g Time-step length

k Vector of Lagrange multipliers

r Standard deviation of normal distribution

t Penalty factor

w System constraints

U Penalty function

Abbreviations

MiCP Mixed complementarity problem

NOP Nonlinear optimization problem

PSO Particle swarm optimization

1 Introduction

Multisegment continuum manipulators, which consist

of a series of flexible modules, possess theoretically

infinite degrees of freedom and are capable of large

structural deformations with high curvatures [1, 2].

Due to their inherent compliance and dexterity,

multisegment continuum manipulators have the abil-

ity to bend and twist in multiple directions and can

deform their bodies in a continuous manner to adapt to

unstructured environments [3, 4]. These attractive

characteristics make them exhibit broad application

prospects for complex tasks in confined spaces where

traditional rigid-link manipulators cannot access

[5, 6], such as minimally invasive surgeries [7], on-

orbit maintenance [8], and rescue operations [9].

Inspired by biological appendages, various cable-

driven continuum manipulators [10–12] have been

developed to perform compliant operations.

Although the great progress has been made in the

design and manufacture of cable-driven continuum

manipulators, there remains a lack of exploration on

motion planning and control methods of these manip-

ulators [13, 14], which hinders continuum manipula-

tors from achieving their full potential in confined

spaces. To further develop motion planning and

control methods of continuum manipulators, it is

necessary to first derive their dynamic models [1, 15].

Cable-driven continuum manipulators are primarily

subject to bending and torsional deformations. By

dividing them into a series of large deformation beam

elements, a discrete dynamic modeling approach was

proposed for continuum manipulators based on the

Lagrangian formulation [11, 16]. The resulting

dynamic models had the ability to accurately calculate

elastic deformations and dynamic responses. How-

ever, the inherent compliance and dexterity of contin-

uum manipulators lead to dynamic models

characterized by strong nonlinearity and high dimen-

sionality in both state and control spaces, significantly

complicating the process of motion planning for these

manipulators [14, 17].

Several effective motion planning methods have

been developed for continuum manipulators in open

spaces without obstacles [18, 19]. However, to gen-

erate collision-free paths for continuum manipulators

in confined spaces, obstacle-avoidance constraints

need to be introduced, which makes the motion

planning problem more complex [20, 21]. Ouyang

et al. [22] proposed a shape correspondence algorithm

to regulate the manipulator configuration while suc-

cessfully avoiding the collisions with obstacles. Sub-

sequently, constrained motion planning methods

[23, 24] were developed to generate a collision-free

path for tip trajectory tracking. Despite achieving

obstacle-avoidance motion planning for continuum

manipulators, these studies solely focused on static

obstacle avoidance. To enable continuum manipula-

tors to perform tasks in dynamic environments, it is

crucial to implement motion planning for dynamic

obstacle avoidance. However, dynamic obstacles may

collide multiple times with the continuum
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manipulator. The motion path of the manipulator

needs to be adjusted in response to the movement of

dynamic obstacles, which is more challenging than

static obstacle avoidance. Hence, further research is

still required on obstacle-avoidance motion planning

for continuum manipulators in dynamic environments

[14, 24].

Kinodynamic motion planning [25] aims to find an

optimal path for a system subject to both kinematic

and dynamic constraints, such as obstacle-avoidance

conditions, dynamic equations, and input limitations.

Based on this planning method, Allen and Pavone [26]

developed an obstacle-avoidance framework utilizing

an offline-online computation paradigm, and success-

fully applied it to a quadrotor unmanned aerial vehicle

navigating in an indoor space with dynamic obstacles.

Sharma et al. [27] proposed a solution to the motion

planning and control problem for a team of carlike

mobile robots traversing in dynamic environments

with swarm avoidance. As can be seen from these

application cases, the kinodynamic planning method

exhibits a great performance in searching for optimal

paths under complex constraints, and is a potential

solution to motion planning for continuum manipula-

tors in dynamic environments.

Based on the kinodynamicmotion planningmethod,

Li et al. [28] developed an improved algorithm for a

tensegrity manipulator to generate a collision-free

optimal path. However, for large overall motion

planning, additional virtual targets had to be intro-

duced to prevent this algorithm from diverging, which

complicated the process of motion planning. It is still a

challenge to achieve large overall motion planning for

continuum manipulators without introducing addi-

tional virtual targets. Additionally, the obstacle-avoid-

ance motion planning problem is essentially a

nonlinear optimization problem (NOP), which can be

addressed by intelligent optimization algorithms [29].

The particle swarm optimization (PSO) algorithm is

frequently employed to solve this NOP because of its

excellent cooperative search capability [30]. Using the

PSO algorithm, Ekrem and Aksoy [31] effectively

planned a collision-free trajectory for a six-degree-of-

freedom robotic manipulator. However, the dynamic

model of the continuum manipulator exhibits stronger

nonlinearity and higher dimensionality in both state

and control spaces. To achieve motion planning for

continuum manipulators, a substantial number of

particles need to be randomly initialized within the

search space, which leads to a significant increase in

computational complexity. Therefore, based on the

above analyses, two critical issuesmust be addressed to

effectively achieve obstacle-avoidance motion plan-

ning for continuum manipulators. The first issue is to

develop an obstacle-avoidance planning algorithm that

has excellent stability for large overall motion. The

second issue is to enhance the search ability of the

optimization algorithm, enabling it to solve high-

dimensional NOPs with lower computational costs.

The objective of this paper is to develop a

kinodynamic motion planning method for cable-

driven multisegment continuum manipulators in con-

fined spaces. Based on the instantaneous optimal

control theory and the dynamic model, the kinody-

namic motion planning problem for the continuum

manipulator is first transformed into a NOP that

minimizes the cost function in the presence of the

obstacle-avoidance constraints and input limitation

constraints. The workspace of the continuum manip-

ulator is then divided into a safe subspace and a

warning subspace. In the safe subspace, where the

continuum manipulator stays far away from the

obstacles, obstacle-avoidance constraints are automat-

ically satisfied and do not need to consider. By

introducing nonlinear complementarity function [32],

the transformed NOP for the motion planning problem

in the safe subspace is further reformulated as a mixed

complementarity problem (MiCP), expressed as a set

of nonlinear algebraic equations. This approach can

significantly reduce computational costs in compar-

ison with directly solving a NOP. On the other hand,

the kinodynamic motion planning problem in the

warning subspace must consider obstacle-avoidance

constraints, and it exhibits strong nonlinearity and

high dimensionality in both state and control spaces,

resulting in a significant increase in computational

complexity. To overcome this problem, an improved

PSO algorithm with great search performance is

developed by introducing normal distribution and

adaptive parameters. This algorithm has the ability

solve the strongly nonlinear kinodynamic motion

planning problem in the warning subspace, while

maintaining lower computational costs compared to

the traditional PSO algorithm [31]. Finally, a com-

bined kinodynamic motion planning method is pro-

posed for continuum manipulators in both the safe and

warning subspaces. The main contributions of this

paper are summarized as follows:
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(1) A unified path optimization framework is pro-

posed for the kinodynamic motion planning

problem of multisegment continuum manipula-

tors in confined space. This proposed frame-

work has great stability for large overall motion

planning, effectively addressing the highly

nonlinear motion planning problem of contin-

uummanipulators with both obstacle-avoidance

constraints and input limitation constraints.

(2) The motion planning problem in the safe sub-

space is transformed into a MiCP to solve,

enabling it to rapidly generate paths while strictly

satisfying system constraints. Additionally, an

improved PSO algorithm with great search per-

formance is developed by introducing normal

distribution. This algorithm has the ability to

solve the strongly nonlinear kinodynamic motion

planning problem in the warning subspace, while

maintaining lower computational costs.

The rest of this paper is organized as follows.

Section 2 formulates the dynamic model of cable-

driven multisegment continuum manipulators and

derives obstacle-avoidance kinematic constraints. In

Sect. 3, a combined kinodynamic motion planning

method is developed for continuum manipulators in

confined spaces in detail. Section 4 presents the

numerical simulations for obstacle-avoidance motion

planning of cable-driven multisegment continuum

manipulators to illustrate the effectiveness and advan-

tages of the proposed method. Finally, conclusions

drawn from this investigation are provided in Sect. 5.

2 Dynamic model and kinematic constraints

of multisegment continuum manipulators

As shown in Fig. 1, a cable-driven multisegment

continuummanipulator consists of flexible backbones,

disks with routing holes, driving cables, and connec-

tors between two adjacent segments [11]. Each

segment of the continuum manipulator can be inde-

pendently actuated by cables. To accurately achieve

kinodynamic motion planning for a continuummanip-

ulator in confined space with obstacles, the dynamic

model of a continuummanipulator needs to be derived

first. The multisegment continuum manipulator is a

multibody dynamic system. The disks and connectors

on the manipulator segments are equivalent to rigid

bodies. The dynamics of flexible backbones are

derived based on the Euler–Bernoulli beam theory.

To avoid the singularity problem in the large overall

motion, the quaternion representation is adopted to

describe the orientation of continuum manipulators.

Based on the above modeling techniques and the

Lagrangian formulation, the dynamic model of a

cable-driven multisegment continuum manipulator

has been derived in detail in our previous work [11]

and could be formulated as a set of differential–

algebraic equations:

M qð Þ€qþ V q; _qð Þ _qþ oE qð Þ
oq

þ ow qð Þ
oq

� �T
k ¼ Gu

w qð Þ ¼ 0

8><
>:

ð1Þ

where q 2 Rn, _q 2 Rn and €q 2 Rn denote the gener-

alized coordinate, velocity and acceleration of the

continuummanipulator, respectively.M 2 Rn�n is the

system mass matrix; V 2 Rn�n includes the centrifu-

gal-Coriolis and damping matrices of the system; E 2

Fig. 1 A multisegment continuum manipulator and obstacles
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R is the elastic potential energy of the system;w 2 Rm

is the vector of the system constraints; k 2 Rm is the

vector of Lagrange multipliers; G 2 Rn�s is the input

matrix for the cable actuation force u 2 Rs. Here, n,m,

and s are the number of generalized coordinates,

system constraints, and actuation forces, respectively.

The proposed dynamic model provides a sound basis

for kinodynamic motion planning of continuum manip-

ulators. In addition, to avoid the collision with obstacles,

themotion of the continuummanipulator needs to satisfy

the obstacle-avoidance constraint. As shown in Fig. 1,

the large three-dimensional deformation results in mul-

tiple potential collision points between the manipulator

and the obstacles, which increases the difficulty of

collision detection. In the kinodynamic motion planning

process, the obstacle-avoidance condition between the ith

potential collision point on the manipulator and the jth

obstacle needs to be satisfied as follows:

di;j � ds; i ¼ 1; 2; . . .; a; j ¼ 1; 2; . . .; bð Þ ð2Þ

where a represents the number of the potential collision

points on themanipulator for an obstacle, and b represents

the number of obstacles. Here, ds 2 R is the critical

safety distance. di;j 2 R denotes the distance between

the ith potential collision point on the manipulator and

the jth obstacle, and can be calculated by

di;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ri � rj
� �T

ri � rj
� �q

ð3Þ

where ri 2 R3 and rj 2 R3 are the position coordinates

of the ith potential collision point and the jth obstacle,

respectively. For a dynamic obstacle, the position

coordinate rj tð Þ is time-varying. To successfully

achieve obstacle avoidance, the kinematic constraint

between the continuum manipulator and the obstacles

needs to be satisfied as follows:

c qð Þ ¼ ds � d� 0 ð4Þ

where c 2 Rab denotes the obstacle-avoidance con-

straint of the continuum manipulator and can be

expressed in terms of the generalized coordinates q.

ds 2 Rab is vector of the critical safety distances. d 2
Rab is vector of the actual distances between all

potential collision points and obstacles, and can be

expressed as

d ¼ d1;1 d1;2 . . . d1;b . . . da;1 da;2 . . . da;b
� �T

ð5Þ

3 Combined kinodynamic motion planning

method for multisegment continuum

manipulators

In this section, based on the derived dynamic model

and kinematic constraints, a combined kinodynamic

motion planning method for a cable-driven multiseg-

ment continuum manipulator is proposed to achieve

obstacle avoidance in confined spaces. The detailed

derivation is as follows.

3.1 Discretization of the dynamic model

The dynamic model of the continuum manipulator,

which is given by Eq. (1), can be rewritten as

g q; _q; €q; kð Þ ¼ f q; _q; €q; kð Þ � B qð Þu ¼ 0 ð6Þ

where

f q; _q; €q; kð Þ ¼ M qð Þ€qþ V q; _qð Þ _qþ oE qð Þ
oq

þ ow qð Þ
oq

� �T
k

w qð Þ

2
4

3
5

ð7Þ

and

B ¼ GT 0
� �T2 R nþmð Þ�s ð8Þ

is the augmented input matrix of the system.

To implement numerical integrations, the time

domain T is equally discretized into S time intervals

with the time-step length g ¼ T=S. At time

tk k ¼ 1; 2; . . . ; Sð Þ, the dynamic Eq. (6) can be

expressed as

g qk; _qk; €qk; kkð Þ ¼ f qk; _qk; €qk; kkð Þ � B qkð Þuk ¼ 0

ð9Þ

where the subscript k denotes the variable at time tk.

To solve Eq. (9), the discretization scheme of the

generalized-a method [33] is introduced as follows:

qk ¼ qk�1 þ g _qk�1 þg2 0:5� /ð Þak�1 þ g2/ak
_qk ¼ _qk�1 þg 1� cð Þak�1 þ gcak

	

ð10Þ

where /, c and ak are the parameters of the general-

ized-a method. _q0 is the generalized velocity of the

system at initial time. Substituting the discretization

scheme (10) into Eq. (9), then Eq. (9) is transformed

into a set of nonlinear algebraic equations, which can

be solved by the Newton–Raphson iteration algorithm

as follows:
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x
jþ1ð Þ
k ¼ f jð Þ

k;1 þ f jð Þ
k;2u

jð Þ
k ð11Þ

where

xk ¼ qTk kTk
� �T2 Rnþm ð12Þ

is a vector composed of the generalized coordinates

and the Lagrange multipliers. The superscript j

denotes the jth Newton–Raphson iteration. f jð Þ
k;1 and

f jð Þ
k;2 can be expressed as

f
jð Þ

k;1 ¼ x
jð Þ

k � g
jð Þ0

k

h i�1

f
jð Þ

k

f
jð Þ

k;2 ¼ g
jð Þ0

k

h i�1

B
jð Þ

k

8><
>: ð13Þ

where

g
jð Þ

k ¼ g x
jð Þ

k ; _x
jð Þ

k ; €x
jð Þ

k


 �

f
jð Þ

k ¼ f x
jð Þ

k ; _x
jð Þ

k ; €x
jð Þ

k


 �

B
jð Þ

k ¼ B x
jð Þ

k


 �

g
jð Þ0

k ¼ og
jð Þ

k

ox
jð Þ

k

þ og
jð Þ

k

o _x
jð Þ

k

o _x
jð Þ

k

ox
jð Þ

k

þ og
jð Þ

k

o€x
jð Þ

k

o€x
jð Þ

k

ox
jð Þ

k

8>>>>>>>>>><
>>>>>>>>>>:

ð14Þ

Thus far, the variable xk is expressed in terms of the

actuation force uk according to Eq. (11), which

establishes a mapping between generalized coordi-

nates and actuation forces. This mapping provides an

important foundation for kinodynamic motion plan-

ning of continuum manipulators.

3.2 Basic formulation for kinodynamic motion

planning

To accurately accomplish complex tasks in confined

spaces, the motion planning of continuum manipula-

tors aims to find a path that minimizes the cost of the

manipulators moving to the desired configuration.

Furthermore, the motion planning also needs to

simultaneously satisfy the dynamical Eqs. (1) and

the obstacle-avoidance kinematic constraint (4). In

addition, due to the tension-only cables and the

actuators with limited output power, the actuation

force is subject to a box constraint. Therefore, this is a

typical kinodynamic motion planning problem. Based

on the instantaneous optimal control theory, the cost

function of such a planning problem is minimized at

each time step. Consequently, at time tk, the

kinodynamic motion planning problem for continuum

manipulators in confined spaces can be formulated as

minimize
uk

: Jk ¼ yk � eykð ÞTQk yk � eykð Þ

þuTkRkuk þ DuTkWkDuk 15að Þ
subjectto : ck � 0 15bð Þ

: umin � uk � umax 15cð Þ

8>>>>><
>>>>>:

whereQk 2 Rw�w is a positive semidefinite symmetric

weighting matrix at time tk.Rk 2 Rs�s andWk 2 Rs�s

are positive definite symmetric weighting matrices at

time tk. Duk ¼ uk � uk�1 is the increment in the

actuation force in the kth time interval. ck denotes the

obstacle-avoidance constraint of continuum manipu-

lators at time tk and can be calculated by Eq. (4). umin

and umax are the lower and upper bounds of the

actuation force, respectively. ~yk 2 Rw denotes the

vector of the desired output variable at time tk. w is the

number of the system output variables. yk 2 Rw is the

vector of the actual output variable at time tk.

There are mainly two operational modes for the

continuum manipulator. The first mode is to control

the tip of the manipulator to the desired pose, and the

second mode is to control the manipulator shape to the

desired configuration. For the first operational mode,

the actual output variable yk consists of the general-

ized coordinates and velocities of the manipulator tip.

For the second operational mode, the actual output

variable yk consists of the manipulator curvature and

its first derivative with respect to time, which are also

nonlinear functions of the generalized coordinates and

velocities. Consequently, the actual output variable yk
can be actually expressed in terms of the generalized

coordinates and velocities of continuum manipulators

for both operational modes as follows [11]:

yk ¼ C x
jþ1ð Þ
k ; _x

jþ1ð Þ
k


 �
ð16Þ

From Eqs. (10) and (11), it can be found that x
jþ1ð Þ
k

and _x
jþ1ð Þ
k are both related to the actuation force uk.

Consequently, yk is essentially a function of the

actuation force uk. Furthermore, Jk 2 R expressed in

Eq. (15a) is the cost function of motion planning only

with respect to the actuation force uk. The cost

function given in this paper consists of three terms.

The first item evaluates the errors between the actual

and desired system output variables, and the second

item is related to the energy consumed in the control
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process. Additionally, the continuum manipulator is

usually required to move to the target configuration

within a short time, which may cause the oscillation of

the actuation forces, which is harmful to the contin-

uummanipulator. The third term is used to weaken the

oscillation of the actuation forces, making the manip-

ulators move to the target configuration while main-

taining stability. The constructed cost function

comprehensively considers the motion planning error

and the system actuation, which is beneficial for

improving the performance of the kinodynamic

motion planning.

Equation set (15) describes the kinodynamic

motion planning problem for cable-driven multiseg-

ment continuum manipulators in confined spaces.

Based on the distance between the manipulator and the

obstacles, the workspace of the continuum manipula-

tor is subdivided into a safe subspace and a warning

subspace, as shown in Fig. 1. In the safe subspace,

where the continuum manipulator stays far away from

the obstacles, the obstacle-avoidance kinematic con-

straints are automatically satisfied. This is a significant

difference from the motion planning problem in the

warning subspace. In the following subsections, the

kinodynamic motion planning problems for cable-

driven multisegment continuum manipulators in the

safe and warning subspaces are transformed into a

MiCP and a NOP to solve, respectively.

3.3 Motion planning in the safe subspace

In this subsection, the motion planning problem for the

continuum manipulator in the safe subspace is

analyzed. The safe subspace is defined as a region in

which the minimum distance between the manipulator

and the obstacles is greater than the warning distance

as follows:

min
i;j

di;j [ dw ð17Þ

where di;j can be calculated by Eq. (3). dw 2 R is the

warning distance and is set to be greater than the

critical safety distance ds. When Eq. (17) holds, the

kinematic constraints (15b) for obstacle avoidance

will be automatically satisfied.

In addition, the actuation force of the continuum

manipulator is subject to a box constraint (15c).

However, the inequality constraints are difficult to be

addressed in the motion planning. By introducing

additional parameters, the inequality constraints for

the actuation forces at time tk can be equivalently

transformed into a set of equality constraints as

follows:

uk � umax þ ak ¼ 0

umin � uk þ ak ¼ 0

(
ð18Þ

where ak � 0 2 Rs and ak � 0 2 Rs are parameters at

time tk, which can ensure that the actuation force

satisfies the box constraint (15c). Substituting Eq. (18)

into the cost function (15a) can yield an expanded cost

function considering the actuation force limits. In the

safe subspace, since Eq. (15b) is satisfied, the motion

planning problem (15) for continuum manipulators

can be transformed into a NOP without the obstacle-

avoidance kinematic constraints as follows:

minimize
uk

: Ĵk ¼ yk � eykð ÞTQk yk � eykð Þ þ uTkRkuk þ DuTkWkDuk

þb
T

k uk � umax þ akð Þ þ bT
k
umin � uk þ akð Þ : 19að Þ

subject to: uk � umax þ ak ¼ 0; umin � uk þ ak ¼ 0 19bð Þ

8><
>:

where Ĵk 2 R is the expanded cost function consider-

ing the actuation force limits at time tk. bk 2 Rs and

b
k
2 Rs are the parameters at time tk, and satisfy a

complementarity relationship with the parameters ak
and ak [34] as follows:

ak � 0; bk � 0; aTk bk ¼ 0

ak � 0; b
k
� 0; aTk bk ¼ 0

(
ð20Þ

To obtain the minimum value of the expanded cost

function Ĵk expressed in Eq. (19a), its variation with

respect to uk can be calculated by

oĴk
�
ouk ¼ 0 ð21Þ

Substituting Eqs. (19a) into (21) yields

oyk=oukð ÞTQk yk � ~ykð Þ þ Rkuk þWkDuk

þ bk � b
k


 �.
2

¼ 0 ð22Þ

where based on Eqs. (11) and (16), oyk=ouk can be

expressed by

oyk
ouk

¼ oyk

ox
jþ1ð Þ
k

ox
jþ1ð Þ
k

ouk
þ oyk

o _x
jþ1ð Þ
k

o _x
jþ1ð Þ
k

ox
jþ1ð Þ
k

ox
jþ1ð Þ
k

ouk
ð23Þ

Thus far, the NOP (19) for the motion planning of

the continuum manipulator in the safe subspace is
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transformed into a MiCP [35] consisting of the

actuation constraint Eq. (18), the complementarity

relationship (20), and the governing Eq. (22).

The Fischer–Burmeister complementarity function

[32]

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ v2

p
� sþ vð Þ ð24Þ

is introduced to describe the complementarity rela-

tionship (20) between parameters, then Eq. (20) is

equivalently transformed into

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2k þ b

2

k

q
� ak þ bk
� �

¼ 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2k þ b2

k

q
� ak þ b

k


 �
¼ 0

8><
>: ð25Þ

By combining the actuation constraint Eq. (18), the

governing Eq. (22), and the complementarity

Eq. (25), the NOP (19) for the motion planning of

the continuum manipulator in the safe subspace is

finally transformed into a set of nonlinear algebraic

equations expressed in terms of the actuation force and

parameters as follows:

oyk =oukð ÞTQk yk � eykð Þ þ Rkuk þWkDuk

þ bk � b
k


 �
=2 ¼ 0

uk � umax þ ak ¼ 0
umin � uk þ ak ¼ 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2k þ b
2

k

q
� ak þ bk
� �

¼ 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2k þ b2

k

q
� ak þ b

k


 �
¼ 0

8>>>>>>>>>><
>>>>>>>>>>:

ð26Þ

The motion planning problem in the safe subspace

is transformed into a MiCP with actuation constraints

to solve. The adoption of a nonlinear complementarity

function enables the MiCP to be finally reformulated

as a set of nonlinear algebraic Eqs. (26), which

provides a new solution to the calculation of the

actuation forces. Equation (26) can be solved by the

Newton–Raphson iteration algorithm. Then, the actu-

ation force uk is obtained. Based on Eqs. (11), (16),

and the discretization scheme of the generalized-a
method [33], the optimal path for the motion planning

of the continuummanipulator is also constructed. This

approach, which transforms a planning problem into a

MiCP, can rapidly achieve motion planning while

strictly satisfying the system constraints.

3.4 Motion planning in the warning subspace

In this subsection, the motion planning problem for the

continuum manipulator in the warning subspace is

analyzed. The warning subspace, as shown in Fig. 1, is

defined as a region in which the minimum distances

between the manipulator and the obstacles do not

satisfy Eq. (17). Since the continuum manipulator in

this subspace is close to the obstacles, the obstacle-

avoidance constraints must be considered during

motion planning. Consequently, to achieve kinody-

namic motion planning in the warning subspace, the

NOP (15) with the obstacle-avoidance constraints

needs to be solved. However, it is usually difficult to

find the optimal solution to the constrained NOP. To

avoid such a problem, the penalty function method

[36] is used here to transform the constrained NOP

(15) into a NOP without kinematic constraints. A

penalty function

U di;j
� �

¼ 1� di;j
�
ds

� �6h i3
; di;j\ds

0 ; di;j � ds

8<
: ð27Þ

is introduced in this subsection. U 2 R is expressed in

terms of the distance di;j between the manipulator and

the obstacles, which can be calculated by Eq. (3).

Substituting Eq. (27) into the cost function Jk
expressed in Eq. (15a) can yield an expanded cost

function with the penalty terms for the obstacle-

avoidance constraints. Then, the NOP (15) for the

kinodynamic motion planning is transformed into a

NOP without obstacle-avoidance constraints as

follows:

minimize
uk

: Jk
^

¼ yk � eykð ÞTQk yk � eykð Þ þ uTkRkuk

þDuTkWkDuk þ
X
i

X
j

tUk di;j
� �

28að Þ

subjectto : umin �uk �umax 28bð Þ

8>>>><
>>>>:

where J
^

k 2 R is an expanded cost function with the

penalty terms for the obstacle-avoidance constraint

(15b). t 2 R is a penalty factor, which plays an

important role in adjusting the strength of a penalty

assigned to solutions that violate the constraints. By

adjusting the penalty factor, the penalty function

method can balance the trade-off between achieving

an optimal solution for the expanded cost function and

satisfying the obstacle-avoidance constraints [28].
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Intelligent optimization algorithms can be used to

deal with the NOP [29]. Due to its cooperative search

capability utilizing both the local and global informa-

tion, the PSO algorithm [37] is suitable for the motion

planning problem of continuum manipulators and is

adopted in this paper to solve Eq. (28). In the

implementation of the standard PSO algorithm, each

candidate solution to the NOP (28) is regarded as a

particle. The positions and velocities of particles are

randomly initialized within the search space. Then,

these particles move through the search space based on

the attractions to the best solutions separately found by

each individual particle and the entire particle swarm.

That is, the velocity and position of each particle are

updated by the following rules [37]:

v
iþ1ð Þ
j;e ¼ x ið Þv

ið Þ
j;e þ 11h1;e l

ið Þ
j;e � p

ið Þ
j;e


 �

þ12h2;e p ið Þ
g;e � p

ið Þ
j;e


 � 29að Þ

p
iþ1ð Þ
j;e ¼ p

ið Þ
j;e þ v

iþ1ð Þ
j;e 29bð Þ

8>>><
>>>:
wherex is an inertia weight. 11 and 12 are acceleration
coefficients. h1;e and h2;e are random numbers uni-

formly distributed between 0 and 1. lj;e 2 R is the best

position found by the jth particle at the eth dimension.

pg;e 2 R is the best position found by the entire particle

swarm at the eth dimension. vj ¼ vj;1 vj;2 . . . vj;e
�

. . . vj;s�T 2 Rs and pj ¼ pj;1 pj;2 . . . pj;e . . . pj;s
� �T2

Rs denote the velocity and position of the jth particle,

respectively. The particle position P ¼
p1 p2 . . . pj . . . pd
� �

2 Rs�d is a set of candidate

solutions to the NOP (28) and d is the number of

particles. The subscript j denotes the jth particle. The

subscript e e ¼ 1; 2; . . . ; sð Þ denotes the eth dimen-

sion of each individual particle. The superscript

i denotes the ith update.

Each particle position can be regarded as a candi-

date solution. Substituting the generated particle

positions into Eq. (28a), the cost function value for

each particle can be calculated. By iteratively updating

the particle positions and searching for the minimum

cost function value, the optimal solution can be

obtained until the convergence criteria is satisfied.

However, in the standard PSO algorithm [37], the set

P of particle positions is initialized in a uniform

random manner throughout the search space and the

search performance of the PSO algorithm is obviously

dependent on parameters. These characteristics reduce

the convergence rate of the standard PSO algorithm to

find the optimal solution to the kinodynamic motion

planning problem. To solve the NOP (28) more stably,

the PSO algorithm is improved in this paper from the

following two aspects.

3.4.1 Introducing normal distribution

in the initialization process

Since the control forces of the continuum manipulator

vary continuously over time, the control force uk is

usually in the neighborhood of the actuation force

uk�1, as shown in Fig. 2. Therefore, in the initializa-

tion process of the particle swarm at time tk, particles

should be densely distributed in a random manner

within the neighborhood of the actuation force uk�1,

rather than distributed in a uniform random manner

throughout the search space.

To have a stronger search capability within the

neighborhood of the control force uk�1 while also

considering the global search capability of the PSO

algorithm, a combination of the normal and uniform

distributions is used in the position initialization

process of the particle swarm at time tk as follows:

Pd1 �N uk�1; r
2

� �
Pd2 �U umin; umaxð Þ

(
ð30Þ

where Pd1 2 Rs�d1 consisting of d1 particles obeys

normal distribution N with the mean value of the

actuation force uk�1 and the standard deviation of r.

Pd2 2 Rs�d2 consisting of d2 particles obeys the

uniform distribution U between umin and umax. Here,

d1 þ d2 ¼ d. In addition, the actuation force uk�1 and

the actuation force u
jð Þ

k in the jth Newton–Raphson

iteration are also candidate solutions to the NOP (28).

Fig. 2 uk located in the neighborhood of uk�1
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Therefore, in the implementation of the improved PSO

algorithm, the set of the particle positions is finally

initialized as

P̂ ¼ Pd1 Pd2 uk�1 u
jð Þ

k

h i
2 Rs� dþ2ð Þ ð31Þ

The introduction of uk�1 and u
jð Þ

k is the key to

ensure the stability of the motion planning algorithm.

Initializing the particle position according to Eq. (31)

can improve the search efficiency of the algorithm.

Furthermore, since the actuation force is subject to a

box constraint (28b), each individual particle pj in the

position set P̂ must satisfy the following equation:

pj ¼
umin; if pj � umin

umax; else if pj � umax

pj; otherwise

8><
>: ; j

¼ 1; 2; . . . ; dþ 2 ð32Þ

The kinodynamic motion planning problem for

multisegment continuum manipulators has highly

nonlinear characteristics, which increases the diffi-

culty of searching for the optimal solution. Since the

optimal solution at time tk is in the neighborhood of the

actuation force uk�1, introducing uk�1 into the initial-

ization position set P̂ can accelerate the convergence

rate of the algorithm.

3.4.2 Using a chaotic map with an adaptive

parameter in the search process

To avoid the PSO algorithm falling into a local optimal

solution, a chaotic map is introduced into the search

process [38]. After the initialization of the particle

swarm, the cost function value for each particle can be

calculated by Eq. (28a). Then, the particle swarm P̂

consisting of dþ 2 particles is divided into two

populations. The first population contains the particles

with dþ 2� u smallest cost function values, and the

second population contains the remaining u particles.

The velocity and position of the particle in the first

population are still updated by Eq. (29). On the other

hand, to further improve the search performance of the

PSO algorithm, the position of the particle in the

second population is updated based on a chaotic map.

To implement a chaotic map, the position p
hð Þ
j of the

jth particle in the second population is first normalized

by

p
hð Þ
j ¼

p
hð Þ
j � umin

umax � umin

ð33Þ

Then, the normalized position pj is substituted into

a logistic map [38] as follows:

p
hþ1ð Þ
j ¼ 4p

hð Þ
j 1� p

hð Þ
j


 �
ð34Þ

where h denotes the hth iteration of the logistic map.

The obtained variable p
hþ1ð Þ
j is further mapped to the

search space by following equation:

p
hþ1ð Þ
j ¼ umin þ p

hþ1ð Þ
j umax � uminð Þ ð35Þ

These two populations separately updated by

Eqs. (29) and (35) are finally merged into a new

combined population. This combined population is

used to search for the optimal solution to the NOP (28),

which can improve the global search performance of

the PSO algorithm. However, an excessive numberu of

particles updated by a chaotic map will reduce the

convergence rate of the algorithm. Choosing an

appropriate number u for the kinodynamic motion

planning is a thorny problem. To adjust algorithm

parameters adaptively, the number u of particles is set

to linearly vary based on the proportion of feasible

solutions in this paper. A feasible solution is defined as

an actuation force that satisfies the obstacle-avoidance

constraint (15b) of continuum manipulators. If the

number of feasible solutions is small, it means that the

obtained solution falls into a local subspace far from

the feasible domain. In such a situation, to further

improve the performance of the global search, more

particles need to be updated by a chaotic map.

Therefore, the number u of particles is set to

u ¼ u1 þ 1� #ð Þ u2 � u1ð Þ ð36Þ

where u1 and u2 are the minimum and maximum

numbers of particles updated by a chaotic map,

respectively. # is the proportion of feasible solutions

to the total number of particles.

By introducing normal distribution and a chaotic

map with an adaptive parameter, the improved PSO

algorithm proposed in this subsection has great local

and global search capabilities, which accelerates the

convergence rate of the algorithm and provides a

sound basis for solving NOPs. In this paper, this

improved PSO algorithm, as presented in Algorithm 1,

is used to solve the kinodynamic motion planning
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problem (28) for the cable-driven multisegment con-

tinuummanipulator in the warning subspace. After the

actuation force uk is calculated by Eq. (28), the

optimal path for the continuum manipulator can be

further obtained by Eqs. (11), (16) and the discretiza-

tion scheme of the generalized-a method [33].

Algorithm 1 The improved PSO algorithm
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3.5 Flowchart for the combined kinodynamic

motion planning

In this section, a combined kinodynamic motion

planning method is proposed to achieve the obstacle

avoidance of cable-driven multisegment continuum

manipulators in confined spaces, as presented in Fig. 3.

The workspace of the continuum manipulator is first

divided into a safe subspace and a warning subspace

based on the distances between themanipulator and the

obstacles, namely Eqs. (5) and (17). In the safe

subspace, the motion planning problem for continuum

manipulators is transformed into a MiCP without the

obstacle-avoidance kinematic constraints. By

Fig. 3 Flowchart for the

proposed combined

kinodynamic motion

planning method
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introducing a nonlinear complementarity function, the

MiCP is further reformulated as a set of nonlinear

algebraic Eqs. (26), which is solved by the Newton–

Raphson iteration algorithm. This processing approach

can rapidly generate paths while strictly satisfying the

system constraints. In the warning subspace, the

motion planning problem for continuum manipulators

is transformed into a NOP (28) with the penalty terms

for the obstacle-avoidance kinematic constraints. An

improved PSO algorithm with a great search perfor-

mance is proposed to solve the NOP (28), which

significantly accelerates the convergence rate of the

iterative process. After the MiCP (26) and the NOP

(28) are solved, the actuation force and the optimal path

for the obstacle avoidance of cable-driven multiseg-

ment continuum manipulators can be finally obtained.

The proposed combined kinodynamic motion plan-

ning method provides a unified path optimization

framework for obstacle-avoidance motion planning of

continuummanipulators, which enables them to safely

perform dexterous operations in confined spaces.

4 Numerical simulation

In this section, numerical simulations are conducted to

analyze the performance of the combined kinodynamic

motionplanningmethodproposed in this paper.The aim

is to plan a collision-free motion path for a cable-driven

multisegment continuum manipulator from its initial to

terminal configurations in the confined space with static

and dynamic obstacles. To demonstrate the conver-

gence and stability of the proposed method for the large

overall motion, the desired configuration of the contin-

uum manipulator is set to a configuration with large

structural deformations. Simulation results for obstacle-

avoidance motion planning of multisegment continuum

manipulators, including dynamic responses and

actuation forces, are presented to illustrate the effec-

tiveness and advantages of the proposed method.

The continuum manipulator under consideration

consists of four flexible segments. The geometric and

material parameters of each manipulator segment are

presented in Table 1. Moreover, each segment is

driven by six equally spaced cables, as shown in

Fig. 1. Consequently, the dimension of the cable

actuation force u is 24. The weighting matrix for the

motion planning problem defined by Eq. (15a) is set as

R ¼ I24, where Ik denotes a k-dimension identity

matrix. The warning distance dw is set to 0.01 m. The

dynamic model of the continuum manipulator is

solved by the generalized-a method. The time-step

length is 0.1 s, and the total simulation time is 100 s.

The lower bound umin and the upper bound umax of

the actuation forces are set as

umin ¼ 024�1

umax ¼ 220N24

(
ð37Þ

where Nk denotes the vector 1 1 . . . 1½ �T2 Rk.

4.1 Motion planning for the manipulator tip

To perform detection tasks, the tip of continuum

manipulators needs to be regulated to the desired pose.

Therefore, the motion planning problem for the

manipulator tip is studied in this subsection. The

manipulator tip is required to track the given pose

while avoiding the collisions between the manipulator

and the obstacles. The desired tip trajectory is set to the

lemniscate of Bernoulli as follows:

x ¼ q cos h

y ¼ q sin h

z ¼ �2:4

8><
>: ð38Þ

where q ¼ 0:6 cos 2h and

Table 1 Manipulator

segment parameters
Parts Parameter Value, unit Parts Parameter Value, unit

Backbone Length 0.65 m Disk Radius 0.06 m

Radius 0.025 m Mass 0.03 kg

Density 1600 kg/m3 Connector Length 0.1 m

Poisson’s ratio 0.3 Radius 0.025 m

Young’s modulus 25 MPa Mass 0.5 kg
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h ¼

p
100

t; 0� t� 25

� p
100

t � 25ð Þ þ 5p
4
; 25\t� 50

� p
100

t � 50ð Þ þ p; 50\t� 75

p
100

t � 75ð Þ þ 7p
4
; 75\t� 100

8>>>>>>>>><
>>>>>>>>>:

ð39Þ

The direction of the manipulator tip during motion

is required to be always consistent with the negative z

direction. Consequently, the quaternion of the manip-

ulator tip is set as

1 ¼ cos p=4ð Þ 0 sin p=4ð Þ 0½ �T ð40Þ

The output variable of the system at time tk is given

by

yk ¼ qTe;k _qTe;k _qTm;k

h iT
ð41Þ

where qe 2 R7 denotes the vector of the coordinates

and the quaternion of the manipulator tip. qm denotes

the vector of the coordinates and the quaternion of the

nodes except the manipulator tip. The introduction of

_qm is to increase the damping term, which can avoid

the manipulator oscillation.

To minimize tracking errors of the manipulator tip

at every moment and make its movement more stable,

the weighting matrices Q and W for the motion

planning problem defined by Eq. (15a) are set as

Q ¼ diag 5� 1012I7; 5� 1010I7; 10
8Ið Þ

W ¼ 104diag I6; 2I6; 3I6; 4I6ð Þ

	
ð42Þ

Two spherical obstacles with a radius of 0.1 m are

considered, and their centroid coordinates are set as

O1 ¼ 0:45 0:15 �1:20½ �T
O2 ¼ 0:40þ 0:32 cos xtð Þ � 0:15þ 0:32 sin xtð Þ �1:68½ �T

	

ð43Þ

where x ¼ pt=6000þ 7p=600.
The dynamic responses of the continuum manipu-

lator for different penalty factors are calculated to

analyze the effect of this factor on obstacle-avoidance

motion planning. The Euclidean distances between the

manipulator and the obstacles are presented in Fig. 4.

It can be found from Fig. 4 that the depth of the

manipulator penetrating the obstacle gradually

decreases with the increase in the penalty factor. The

obstacle-avoidance constraints are well satisfied for a

penalty factor t ¼ 1� 1012. If the penalty factor is too

large, solutions that violate the constraints will be

assigned a very high cost, making it difficult for

numerical solutions to converge [28]. Therefore, the

penalty factor t is set to 1 9 1012 in this simulation

example.

The motion planning for a four-segment continuum

manipulator is conducted by the proposed kinody-

namic motion planning method. Four snapshots are

presented to illustrate the motion of the continuum

manipulator, as shown in Fig. 5. The trajectory of the

manipulator tip forms the lemniscate of Bernoulli, and

Fig. 4 Euclidean distances between the manipulator and the obstacles for different penalty factors t
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the tip direction is always consistent with the negative

z direction during motion. Consequently, the tip of the

continuum manipulator can be accurately regulated to

the desired pose. The continuum manipulator is

capable of large structural deformations, which pro-

vides a sound basis for tracking the complex trajec-

tory. Moreover, the manipulator undergoes large

overall motion and avoids the collisions with the

obstacles. Therefore, the proposed method can effec-

tively achieve large overall motion planning for the

continuum manipulator.

The trajectory of the dynamic obstacle is a circle

centered on (0.4 m, - 0.15 m) and with a radius of

0.32 m, as given by Eq. (43). There is a risk of

multiple collisions between the continuum manipula-

tor and these two obstacles, which significantly

increases the difficulty of obstacle-avoidance motion

planning. The Euclidean distances between the

manipulator and the obstacle centroids are calculated

to demonstrate the obstacle-avoidance effectiveness

of the proposedmotion planning method. As presented

in Fig. 6a, a head-on collision between the manipu-

lator and the second obstacle is imminent at point A.

The proposed obstacle-avoidance motion planning

method actively adjusts the manipulator to move away

from the obstacle. Consequently, the distance between

the manipulator and the second obstacle gradually

increases between point A and point B. It is difficult

for the manipulator to avoid a head-on collision with

the obstacle, but the proposed method still success-

fully achieves obstacle avoidance. As the second

obstacle moves, this distance decreases gradually

Fig. 5 Snapshots of a continuum manipulator for trajectory tracking

Fig. 6 Euclidean distances between the manipulator and the obstacle centroids
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between point B and point C. Additionally, in the

motion process, the distances between the manipulator

and the obstacles are always greater than or equal to

the obstacle radius of 0.1 m, as shown in Fig. 6a.

Therefore, the motion path generated by the proposed

method can strictly satisfy the obstacle-avoidance

constraints.

A motion path without obstacle avoidance is also

generated for comparison. The Euclidean distances

between the manipulator and the obstacle centroids are

calculated during the manipulator moving along this

path, as illustrated Fig. 6b. The distances are less than

the obstacle radius of 0.1 m within the time intervals

[30.9 s, 47.3 s] and [79.7 s, 84.5 s], which indicates

that the manipulator penetrates the obstacles, as

illustrated in the detail view in Fig. 6b. Based on the

comparison between Fig. 6a and b, it can be found that

the proposed motion planning method exhibits a great

obstacle-avoidance performance.

The configurations of the continuummanipulator at

82.6 s are presented in Fig. 7 to further illustrate the

obstacle-avoidance effectiveness of the proposed

motion planning method. The tip of the continuum

manipulator can accurately track the given trajectory

regardless of whether the obstacle-avoidance con-

straints are considered or not. However, the manipu-

lator penetrates the obstacle when obstacle avoidance

is not considered. On the other hand, the manipulator,

which moves along the path generated by the proposed

method, avoids a collision with obstacle when the

obstacle-avoidance constraint is considered. There-

fore, it can be found from Figs. 6 and 7 that the

proposed kinodynamic motion planning method can

achieve trajectory tracking while successfully avoid-

ing the collisions with obstacles.

The desired and actual trajectories of the manipu-

lator tip are shown in Fig. 8a. The tip of the continuum

manipulator strictly moves along the given trajectory.

The tracking error varies between -6.6 9 10–3 m and

5.1 9 10–3 m, as presented in Fig. 8b. This tracking

error is mainly caused by the phase difference and can

be adjusted by the weighting matrixQ. The quaternion

of the manipulator tip and its error are shown in Fig. 9.

The maximum error is only 2.5 9 10–3, which indi-

cates that the tip of the continuum manipulator can

maintain the desired attitude well even for the large

overall motion. Therefore, the proposed method can

make the continuum manipulator accurately track the

desired pose.

Each segment of the continuum manipulator is

driven by six cables, as illustrated in Fig. 1. The

actuation forces of the last two segments are shown in

Fig. 10. ui;j denotes the actuation force of the jth cable

of the ith manipulator segment. A head-on collision

between the manipulator and the second obstacle is

imminent at 77.0 s, as shown in Fig. 6a. The proposed

obstacle-avoidance motion planning method actively

adjusts the actuation forces to keep the manipulator

Fig. 7 Comparison between the configurations with and without obstacle avoidance
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away from the obstacle. Therefore, there are sudden

changes in the actuation forces between 77.0 s and

80.0 s, as shown in Fig. 10. In the motion process of

the manipulator, the actuation force u3;5 reaches the

upper bound of 220 N, as presented in Fig. 10b. In

addition, all actuation forces are always between 0 and

220 N, which indicates that the proposed motion

planning method can strictly satisfy the input limita-

tions (37). The continuum manipulator successfully

achieves trajectory tracking and avoids the collisions

with the obstacles under the action of these actuation

forces constructed by the proposed method.

4.2 Motion planning for the manipulator shape

To achieve complex tasks successfully in confined

spaces, continuum manipulators need to deform to the

desired configuration. Therefore, the motion planning

problem for the manipulator shape is studied in this

subsection. The aim is to plan a collision-free path so

that the multisegment continuum manipulator can

safely deform to the desired shape in confined spaces

with static and dynamic obstacles.

Each segment of the continuum manipulator is

required to bend around ym and zm directions, as shown

Fig. 8 Trajectories and tracking error of the manipulator tip

Fig. 9 Quaternion and its error of the manipulator tip
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in Fig. 1. The initial curvatures of the manipulator are

set to zero. For the continuum manipulator with four

segments, the eight desired average curvatures [11] at

terminal time are set as

je¼ 0:806 0:806 �2:417 0 �1:611 �2:417 �1:611 �2:417½ �T

ð44Þ

The output variable of the system at time tk is given

by

yk ¼ jTk _jTk
� �T2 R16 ð45Þ

where jk is the vector of the average curvatures of

manipulator segments at time tk.

To smoothly deform the continuum manipulator to

the desired configuration, the weighting matrices Q

and W for the motion planning problem defined by

Eq. (15a) are set as

Q ¼ �9:99� 105 t � 100ð Þ2I16 þ 1� 1010I16
W ¼ 2� 106I24

	

ð46Þ

Two spherical obstacles with a radius of 0.1 m are

considered and their centroid coordinates are set as

O1 ¼ 0:20 � 0:10 � 2:40½ �T
O2 ¼ 0:25 0:50 � 0:01t � 1:20½ �T

	
ð47Þ

The penalty factor t is set to 1 9 1016 in this

simulation example.

The collision-free path for a four-segment contin-

uum manipulator is generated by the proposed

Fig. 10 Actuation forces of the last two segments
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kinodynamic motion planning method. To clearly

observe the motion of the continuum manipulator in

confined spaces, four snapshots are presented in

Fig. 11. The continuum manipulator gradually

deforms to the desired terminal configuration given

by Eq. (44), which stays far away from its initial

position. The curvatures of the continuummanipulator

are actively regulated to avoid the collisions with the

obstacles, which obviously results in a sudden change

in the trajectory of the manipulator tip near the green

obstacle, as shown in Fig. 11c. Therefore, the pro-

posed method exhibits great convergence and stability

performances even for large overall obstacle-avoid-

ance motion planning.

The continuum manipulator moves along the path

generated by the proposed kinodynamic motion plan-

ning method. The Euclidean distances between the

manipulator and the obstacle centroids decrease first

and then increase as the manipulator moves, as shown

in Fig. 12a. The distances are always greater than or

equal to the obstacle radius of 0.1 m, which indicates

that the continuum manipulator successfully achieves

obstacle avoidance. To illustrate the effectiveness of

the proposed method, a motion path is planned for the

Fig. 11 Snapshots of a continuum manipulator during large overall motion

Fig. 12 Euclidean distances between the manipulator and the obstacle centroids
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manipulator moving to the desired configuration

without obstacle avoidance. The Euclidean distance

between the manipulator and the obstacle centroids

given by Eq. (47) is also calculated when the manip-

ulator moves along this generated path, as shown in

Fig. 12b. The minimum Euclidean distances are only

0.042 m and 0.066 m at 16.2 s and 41.6 s, respec-

tively, which are less than the obstacle radius of 0.1 m.

This indicates that the manipulator penetrates the

obstacles within the time intervals [13.0 s, 18.4 s] and

[36.7 s, 47.0 s], as presented in the detail view in

Fig. 12b.

The trajectories of the manipulator tip, which are

generated by the motion planning with and without

obstacle avoidance, are consistent in the zone where

the manipulator is far away from the obstacle, as

illustrated in Fig. 13. At point A, these two trajectories

start to separate. The trajectory generated under the

obstacle-avoidance constraint successfully avoids the

collisions. From Figs. 12 and 13, it can be found that

the proposed kinodynamic motion planning method

can effectively make the continuummanipulator avoid

the collisions with static and dynamic obstacles during

the large overall motion.

The actual average curvature is calculated for each

manipulator segment during movement. ji;1 and ji;2
denote the actual average curvature of the ith

manipulator segment about the ym and zm axes,

respectively. The difference between the actual cur-

vature and the desired terminal curvature gradually

decreases to zero, as illustrated in Fig. 14. The

maximum difference is only 0.017 m-1 at terminal

time. In addition, the curvature of the third segment

decreases slowly around 16 s, as shown in Fig. 14b.

The curvature is actively regulated to avoid the

collisions between the manipulator and the obstacle,

as illustrated in Figs. 11, 12 and 13. Therefore, the

proposed motion planning method can make the

continuum manipulator accurately deform to the

desired shape while achieving obstacle avoidance.

Each segment of the continuum manipulator is

driven by six cables. The first three actuation forces of

each segment are illustrated in Fig. 15. The proposed

method actively regulates the actuation forces of the

first three segments to avoid the collisions between the

last two segments and the obstacles around 16 s and

47 s. In addition, all actuation forces are greater than

or equal to zero, which is consistent with the fact that

the cables can only be subject to tension. Moreover,

the actuation forces constructed from the proposed

method strictly satisfy the upper bound of 220 N. It

can be found that the actuation forces u3;2 and u4;2
increase significantly after the actuation forces u3;3
and u4;3 reach the upper bound. This increment can

Fig. 13 Comparison

between the tip trajectories

with and without obstacle

avoidance
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compensate for the lack of actuation caused by input

limitation, so that the continuum manipulator can still

accurately deform to the desired shape. Therefore, the

proposed method can utilize the full potential of

unsaturated actuators to achieve high-precision

control.

To illustrate the advantages of the improved PSO

algorithm presented in this paper, a comparison is

conducted between this algorithm and the traditional

PSO algorithm without normal distribution, as shown

in Fig. 16. The variation of the average number of

Newton–Raphson iterations is calculated under the

different numbers of particles. As illustrated in

Fig. 16, the improved PSO algorithm remains con-

vergent to the optimal solution even with a small

number of particles (for example, 20), whereas the

traditional PSO algorithm exhibits divergence. The

normal distribution is introduced into the improved

PSO algorithm during the position initialization pro-

cess of the particle swarm, resulting in particles being

densely distributed in the domain where the optimal

solution is most probable to be found. Therefore, the

improved PSO algorithm can still find the optimal

solution even for this high-dimensional NOP, using

only 20 particles. Furthermore, when 40 or 60 particles

are involved, the average number of Newton–Raphson

iterations of the improved PSO algorithm is less than

that of the traditional PSO algorithm, indicating a

faster convergence to the optimal solution by the

improved PSO algorithm. Therefore, the improved

PSO algorithm exhibits a greater search performance

and has the ability to solve the NOP with high

dimensionality, while maintaining lower computa-

tional costs compared to the traditional PSO

algorithm.

5 Conclusions

This paper proposes a combined kinodynamic motion

planning method for cable-driven multisegment con-

tinuum manipulators in confined spaces with obsta-

cles. The proposed method provides a unified path

optimization framework for obstacle-avoidance

motion planning of multisegment continuum manip-

ulators. Numerical results indicate that the proposed

method exhibits great stability performances even for

large overall motion planning. Along the optimal path

generated by the proposed kinodynamic motion plan-

ning method, continuum manipulators can accurately

deform to the desired configuration while achieving

obstacle avoidance within the input limitations.

Therefore, the proposed method can effectively

address the highly nonlinear obstacle-avoidance

motion planning problem for multisegment continuum

manipulators in confined spaces.

Multisegment continuum manipulators are typi-

cally equipped with grippers and sensors at their end to

Fig. 14 Difference between the actual and desired curvatures
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perform various operations and detection tasks in

confined spaces, such as structural assembly and

aircraft fuel tank inspections. The proposed method

effectively implements obstacle-avoidance motion

planning for both the configuration and the tip pose

of the continuum manipulator, ensuring that the

manipulator safely passes through confined spaces

and accomplishes these complex tasks. Additionally,

the excellent performance of the proposed method for

large overall motion planning further enhances the

autonomy and adaptability of the continuum manip-

ulator to unstructured environments. Future work will

involve extending motion planning to continuum

manipulators in uncertain environments, including

unpredictable obstacle motion. To achieve this goal, a

Fig. 15 First three actuation forces of each segment

Fig. 16 Average number of the Newton–Raphson iterations
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combination of perception and decision-making is

necessary, which puts forward greater demands on the

algorithm.
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