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Abstract Weinvestigated the (2+1)DnonlinearRossby
waves with variable coefficients. When the group
velocity is considered as a function of time in the
stretch coordinates of employing multi-scale analy-
sis, and the weak nonlinear perturbation expansions
are used, the variable coefficient (2+1)D Kadomtsev-
Petviashvili equation describing Rossby waves was
derived from the quasi-geostrophic potential vorticity
equation. For studying the effect of variable coeffi-
cients, Rossby soliton wave is obtained via auxiliary
equation method. And from the results in Sect. 3.1, the
variable coefficients cause not only the propagation of
Rossby wave, but also the increase of its amplitude.
For analyzing the rogue wave, we utilize the modi-
fied Hirota bilinear method, which has the advantage
of structuring one test functions and calculating one
time. Interestingly, the variable coefficients are limited
to constants in Sect. 3.2. The physics for the evolu-
tions of Rossby waves are analyzed. Through numeri-
cal simulations, the results show all blocking structures
in this articlemove in longitude, and the blocking struc-
tures caused by soliton, lump and interaction wave, are
depicted in the Rossby wave flow field.
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1 Introduction

In recent years, solitary waves theory has attracted
much more attention on mechanics, applied mathemat-
ics, physics, atmospheric and oceanic science and other
interdisciplinary fields. Many natural phenomena have
relationship with Rossby waves, and many nonlinear
partial differential equations (NLPDEs) are used to ana-
lyze the quasi-geostrophic potential vorticity equation.
Rossby waves play a significant role in the oceans and
the atmospheres, because it is one of themainwave pat-
terns caused by the effect of Earth’s rotation. To con-
sider the dissipative effect, the generalized Boussinesq
equation in the rotating fluid was obtained [1,2]. The
Zakharov-Kuznetsov (ZK) equation, which is also the
higher dimensional generalization of the KdV equa-
tion, was presented by Gottwald et al. [3] to further
study the nonlinear waves in the area of plasma. And
Ono [4] discussed algebraic Rossby solitary waves and
derived the Benjamin-Ono (BO) equation in stratified
fluids. Kadomtsev and Petviashvili [5] first put forward
the KP equation in plasma and studied the evolution of
long ion-acoustic waves. And Groves et al. [6] derived
the KP equation with respect to 2-D shallow water
waves. Hereafter, Cong Wang et al. [7] studied the
coupled KP equations in the two-layer quasi-geotropic
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potential vortex equation of unequal depth with bottom
topography. Kinds of equations, like the mZK equa-
tion, ZK-BO equation, ZK-Burgers equation [8–13]
and so on, were obtained to study the Rossby waves.
Recently, lots of scholars derived NLPDEs from the
quasi-geostrophic vorticity equation and investigated
the Rossby waves by employing multi-scale analysis
and perturbation method. And multiple-scale methods
[14–18] are widely used to analyze water wave in wave
tank, coastal and oceanic applications.

As mentioned above, the stretch coordinates in
employingmulti-scale analysis are difference when the
order of small parameters are not considered. Large
of scholars study the X and Y without the effect of
timescale when the basic stream function is consid-
ered as − ∫ y

0 (u(s) − c)ds [19,20], or just the X with
the effect of timescale when the basic stream function
is considered as − ∫ y

0 u(s)ds, like Gardner-Morikawa
transform [21]. The (1+1)D and (2+1)D version of
the multiple scales method has been researched for
many years, which the group velocity in fluid usu-
ally is considered as an arbitrary constant. Song and
Yang [22] point out that

∫ y
0 (u(s) − c0)ds is a trav-

eling wave transformation made in longitude, and it
consists with the character of Gardner-Morikawa trans-
form. Liu et al. [2] introduces the slow stretch coor-
dinates X = ε

1
2 x,Y = ε(y − c1t), T = εt . The

authors [23] consider the group velocity of Rossby
waves in the stretch coordinates of latitude and lon-
gitude X = ε(x − c0t),Y = ε2(y − c1t), T = ε3t .
The essential difference between them is whether the
group velocity in latitude or longitude is considered.

However, it is pointed out that the group veloc-
ity changes over time in many researches of NLPEDs
with variable coefficients, and several effective meth-
ods have been established, includingG ′/G−expansion
method, auxiliary equation method, the symmetric
transformation, extended mapping method, and so on
[24–32]. Bilinear residual network method [33] and
Bilinear neural network method [34–36] can obtain
100% accurate analytical solution for partial differen-
tial equation,which is farmore accurate than traditional
neural network numerical method.

In this article, the auxiliary equation is applied to
Hirota bilinear method. Its key is that the test function
is generalized to the sum of multiple auxiliary equa-
tions, which gives the modified method the advantage
of enriching the forms of solution and setting up of
the test function. And NLPEDs with variable coef-

ficients can be successfully derived from the quasi-
geostrophic vorticity equation, when the group veloc-
ity is considered as a function of time. The variable
coefficients cause the propagation of Rossby wave and
the increase of Rossby wave amplitude. All blocking
structures move in longitude, when the group veloc-
ity of spatial scale y is considered. Hence, this arti-
cle derives variable coefficients KP equation in Sect. 2,
which tries to analyze the influence in Rossby waves
and its flow field. There are a large number of schol-
ars to analyze KP equation [7,37–39], but few to dis-
cuss variable coefficient. Therefore,weutilize auxiliary
equation method and modified Hirota bilinear method
to obtain the soliton wave solution and rogue wave
solution in Sect. 3, respectively. The variable coeffi-
cients are limited to constants, and some explanations
are given in Sect. 3.2. The evolution of Rossbywaves is
studied and the blocking structures of total flow fields
are discussed in Sect. 4. Finally, some conclusions are
given in Sect. 5.

2 Derivation of Kadomtsev-Petviashvili equation

Starting from the quasi-geostrophic vorticity equation,
it can be written as [40]
(

∂

∂t
+ ∂Ψ

∂x

∂

∂y
− ∂Ψ

∂y

∂

∂x

)

(∇2Ψ + β(y)y) = 0,

∂Ψ

∂x

∣
∣
∣
∣
y=0,1

= 0, (1)

where β(y) is a nonlinear function of the latitude vari-
able y, and ∇2 is the 2D Laplace operator.

The total stream function is assumed to be

Ψ (x, y, t) = −
∫ y

0
u(s)ds + ε2ψ(x, y, t), (2)

where− ∫ y
0 u(s)ds is the basic stream function,ψ is the

disturbance stream function and ε is a small parameter
characterizing the nonlinear property. When ε � 1, it
is a weakly nonlinear problem. Substituting Eq.(2) into
Eq.(1) yields
[

∂

∂t
+ u(y)

∂

∂x

]

∇2ψ + p(y)
∂ψ

∂x
+ ε2 J (ψ,∇2ψ) = 0,

∂ψ

∂x

∣
∣
∣
∣
y=0,1

= 0, (3)
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where p(y) = ∂(β(y)y−u(y)′)
∂y , J (a, b) = ∂a

∂x
∂b
∂y − ∂a

∂y
∂b
∂x .

The perturbation expansionmethod is applied to find
the asymptotic solution of the weakly nonlinear prob-
lem. To this purpose, introducing the slow stretch coor-
dinates

X = ε(x −
∫

c0(t)dt),Y = ε2(y −
∫

c1(t)dt),

T = ε3t. (4)

where
∫
c0(t)dt and

∫
c1(t)dt represent the zonal and

meridional group velocity of Rossby waves. Then the
disturbance stream function is introduced as the fol-
lowing perturbation expansions

ψ = ψ0 + εψ1 + ε2ψ2 + O(ε3). (5)

Substituting Eq.(4) and (5) into Eq.(3) yields the
equations about small parameter ε

O (ε) :
{

[p(y) + (u(y) − c0(T )) ∂2

∂y2
] ∂
∂X ψ0 = 0,

∂ψ0
∂X = 0, y = 0, 1

(6)

O
(
ε1

)
:
{

[p(y) + (u(y) − c0(T )) ∂2

∂y2
] ∂
∂X ψ1 = c1(T ) ∂2

∂y2
∂

∂Y ψ0,
∂ψ1
∂X = 0, y = 0, 1

(7)

O
(
ε2

)
:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[p(y) + (u(y) − c0(T )) ∂2

∂y2
] ∂
∂X ψ2 = − ∂

∂T
∂2

∂y2
ψ0 + ∂ψ0

∂y
∂3

∂X∂y2
ψ0

− ∂ψ0
∂X

∂3

∂y3
ψ0 + (−u(y) + c0(T )) ∂3

∂3X
ψ0 + c1(T ) ∂2

∂y2
∂

∂Y ψ1

+2(−u(y) + c0(T )) ∂3

∂y∂X∂Y ψ0 ≡ F,
∂ψ2
∂X = 0, y = 0, 1

(8)

We suppose that ψ0 have the following separable
variables form in Eq.(6)

ψ0 = A(X,Y, T )ϕ0(y), (9)

and substituting it into Eq.(6) yields
{

ϕ′′
0 (y) + p(y)

u(y)−c0(T )
ϕ0(y) = 0,

ϕ0(0) = ϕ0(1) = 0,
(10)

In the next order, we set out

ψ1 = B(X,Y, T )ϕ1(y), (11)

and substituting it into Eq.(7) yields
{

[ϕ′′
1 (y) + p(y)

u(y)−c0(T )
ϕ1(y)]BX = c1(T )

u(y)−c0(T )
ϕ′′
0 (y)AY ,

ϕ1(0) = ϕ1(1) = 0,

(12)

In hence, B(X,Y, T ) can be taken into the forms as
follows

B(X,Y, T ) = ∂−1
X A(X,Y, T )Y . (13)

So that Eq.(12) can be written as

ϕ′′
1 (y) = −c1(T )

p(y)

(u(y) − c0(T ))2
ϕ0(y)

− p(y)

u(y) − c0(T )
ϕ1(y). (14)

Lastly, substituting Eq.(9), Eq.(11), Eq.(13) into

Eq.(8) and using
∫ 1
0 [ ϕ0(y)

u(y)−c0(T )
F]dy = 0 yields

AT + a1(T )AAX + a2(T )AXXX

+a3(T )∂−1
X AYY = 0 (15)

where

a1(T ) = 1

I

∫ 1

0

[(
p(y)

u(y) − c0(T )

)

y
ϕ0(y)

2

]

dy,

a2(T ) = −1

I

∫ 1

0
ϕ0(y)

2dy,

a3(T ) = −1

I

∫ 1

0
[c1(T )2

p(y)

(u(y) − c0(T ))3
ϕ0(y)

2

+c1(T )
p(y)

(u(y) − c0(T ))2
ϕ0(y)ϕ1(y)]dy,

a4(T ) = −2
1

I

∫ 1

0
ϕ′
0(y)ϕ0(y)dy = 0,

I =
∫ 1

0

[
p(y)

(u(y) − c0(T ))2
ϕ0(y)

2
]

dy �= 0 (16)

Obviously, Eq.(15) is variable coefficient KP equa-
tion. And we will analyze its solutions hereinafter.
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3 Analysis for variable coefficient KP equation

3.1 Soliton wave solutions

Here, the auxiliary equation method is used to study
the KP equation. First, a transformation is assumed to
be A = A(ξ), ξ = kX + lY + ω(T ). Substituting it
into Eq.(15) yields

(kω′(T )+a3(T )l2)A′+a1(T )k2AA′+a2(T )k4A′′′=0.

(17)

Expand A as the following series for the function

A(ξ) = b0(T ) + b1(T ) f (ξ) + b2(T ) f 2(ξ), (18)

where f (ξ) is Riccati equation f ′(ξ) = c0+c1 f (ξ)+
c2 f 2(ξ), and its solutions are provided in much
researches. Substituting above into Eq.(17), and then
equating all the coefficients of the f i (ξ) term to zero.
Lastly, soliton wave solution is obtained as follows

A1 = b0(T ) − 12k2c1c2a2(T )

a1(T )
f (ξ)

−12k2c22a2(T )

a1(T )
f 2(ξ), (19)

where ξ = kX + lY −∫
(k3c21a2(T )+8k3c0c2a2(T )+

l2
k a3(T ) + ka1(T )b0(T ))dT .

Case 1When Δ = c21 − 4c0c2 > 0, f (ξ) = − (
c1
2c2 −√

Δ
2c2

tanh (
√

Δ
2 ξ).

Case 2When Δ = 0, f (ξ) = − c1
2c2

− 1
c2ξ

.

Case 3WhenΔ < 0, f (ξ) = − c1
2c2

+
√−Δ
2c2

tan(
√−Δ
2 ξ).

According to the real situation of the ocean and
atmosphere and the previous experience, it is neces-
sary to consider the total stream function as a peri-
odic function in the background flow. Thus, we assume
that the basic stream function is u(s) = s cos(s) to
research the evolution of Rossby waves. To analyze
the effect of variable coefficient caused by the zonal
and meridional group velocity, we take the velocity
as c0(t) = c1(t) = t2 + 1, and other parameters

take β(y) = y, ϕ0(y) = ϕ1(y) = y, c1 = 1, c2 =
2, c3 = −3, k = l = 1, b0(T ) = 1. Via mean
value theorems for definite integrals, there is y′ ∈
[0, 1] such that I = 1

(u(y′)−c0(T ))2

∫ 1
0 [p(y)ϕ0(y)2]dy.

a1(T ), a2(T ) and a3(T ) also are considered as such.
As a result, u(y′) is considered as a constant, and
u(y′) ∈ [0, uMAX ], uMAX ≈ 0.56110.

Since the soliton wave solution of KP equation had
been studied by many scholars, this paper only shows
the solution of Case 1. FromFig. 1a, the solution is bell-
shaped solution. Interestingly, as time progresses, not
only Rossby wave propagates to the right, but also its
amplitude A1 increases from Fig. 1b, c. This is because
that the velocity is not a constant but is growing. Fig-
ure1d shows u(y′) also affects the displacement and
the amplitude A1 of Rossby wave, but does not affect
the whole change trend.

3.2 Rogue wave solutions

For facilitating calculation, via inserting A(X,Y, T ) =
wX (X,Y, T ) into Eq. (15) and integrating it with
respect to X yields, Eq. (15) can be transformed into
an equivalent form

wXT+a1(T )wXwXX +a2(T )wXXXX+a3(T )wYY=0.

(20)

Then substituting the rational transformation [32]

w(X,Y, T ) = F(X,Y, T )

G(X,Y, T )
(21)

intoEq.(20), and then the relationship between F andG
is obtained F(X,Y, T ) = 12a2(T )

a1(T )
GX (X,Y, T ). Next

we choose text function as follows

G = b1 f
2
1 (ξ1) + b2 f

2
2 (ξ2) + b3 f3(ξ3) + b4,

f ′
1(ξ1) = 1, f ′

2(ξ2) = 1,

f ′2
3 (ξ3) = c0 + c1 f3(ξ3) + c2 f

2
3 (ξ3). (22)

where ξi = bi1X + bi2Y + bi3(T ), bi and bi j (i, j =
1, 2, 3, 4) are the complex constants. From it, we
can determine the functional representation of fi , and
results are calculated
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Fig. 1 Soliton wave
solution: (a) with T = 0
and u(y′) = 0; (b) with
u(y′) = 0, and Y = 0; (c)
with u(y′) = 0.5, and
Y = 0; (d) with Y = 0, and
T = 0.3

b1 = b2 = 1,

b13(T ) = −2b12b21b22 + b11(b222 − b212)

b211 + b221

∫
a3(T )dT,

b23(T ) = −2b11b12b22 + b21(b212 − b222)

b211 + b221

∫
a3(T )dT,

b33(T ) = −b31
8b11b12b21b22 − b221(b

2
12 − 3b222) + b211(3b

2
12 − b222)

3(b211 + b221)
2

∫
a3(T )dT,

b32 = b31
b11b12 + b21b22

b211 + b221
,

a2(T ) = (b12b21 − b11b22)2

3c2(b211 + b221)
2b231

a3(T ),

b4 = 16b411 + 16b421 + 8c1b221b3b
2
31 + (c21 − 4c0c2)b23b

4
31 + 8b211(4b

2
21 + c1b3b31)

16c2(b211 + b221)b
2
31

,

12a2(T )

a1(T )
= b5. (23)

Then, we can obtain the interaction solution of the
KP equations as

A2 = b5

[
2b1b211 + 2b2b221 + b3b231 f

′′
3 (ξ3)

b1ξ21 + b2ξ22 + b3 f3(ξ3) + b4

−
(
2b1b11ξ1 + 2b2b21ξ2 + b3b31 f ′

3(ξ3)

b1ξ21 + b2ξ22 + b3 f3(ξ3) + b4

)2
⎤

⎦

(24)

Because f3 is one of elliptic equation [41], and its
functional form is affected by c0, c1, c2, the solution
are classified as follows.

Case 1
When b3 = 0, the solution of KP is lump solution

and b4 = − 3(b211+b221)
3a2(T )

(b12b21−b11b22)2a3(T )
. We take b11 = b12 =
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Fig. 2 Lump solution: (a) and (b) at T = 0; (c) with Y = 0

Fig. 3 Lump with one soliton solution: (a) and (b) at T = 2; (c) with Y = −2

1, b21 = −1, b22 = 2, b5 = 1, a3(T ) = 1, the solution
is shown in Fig. 2.

Case 2
When b3 �= 0,Δ′ = c22 − 4c0c1 = 0, the solution
is lump and one soliton solution. If parameter b11 =
b12 = 1, b21 = −1, b22 = 2, b3 = −1, b31 = 1, b5 =
1, c2 = 1, c1 = 2, c0 = 1, a3(T ) = 1 is selected, the
solution is shown in Fig. 3.

Case 3
When b3 �= 0, c2 > 0,Δ′ > 0, the solution is lump and
one hyperbolic cosine function solution. If parameter
b11 = b12 = 1, b21 = −1, b22 = 2, b3 = 1, b31 =
−1, b5 = c2 = c1 = c0 = 1, a3(T ) = 1 is selected,
the solution is shown in Fig. 4.

Case 4
When b3 �= 0, c2 < 0,Δ′ > 0, the solution is lump and
one sine function solution. If parameter b11 = 1, b12 =
−1, b21 = 1, b22 = 1, b3 = −1, b31 = 1, b5 =

1, c2 = −2, c1 = 0, c0 = 1, a3(T ) = 1 is selected,
the solution is shown in Fig. 5.

Interestingly, all the variable coefficients in the cal-
culation result become constant coefficients. Through
12a2(T )

a1(T )
= b5

in Eq.(23), a1(T ) and a2(T ) are linear dependence. Via
Eq.(16), we know

b5 = 12a2(T )

a1(T )

= −12 1
I

∫ 1
0 ϕ0(y)2dy

1
I

∫ 1
0 [( p(y)

u(y)−c0(T )
)yϕ0(y)2]dy

= −12
∫ 1
0 ϕ0(y)2dy

∫ 1
0 [( p(y)

u(y)−c0(T )
)yϕ0(y)2]dy

,

where b5 and
∫ 1
0 ϕ0(y)2dy are constants. It is necessary

that c0(T ) is a constant. According to

a2(T ) = (b12b21 − b11b22)2

3c2(b211 + b221)
2b231

a3(T )
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Fig. 4 Lump with one hyperbolic cosine function solution: (a) and (b) at T = 0; (c) with Y = 0

Fig. 5 Lump with one sine function solution: (a) and (b) at T = 0; (c) with Y = 0

in Eq.(23), c1(T ) is also a constant. The presence of
both c0(T ) and c1(T ) serves as the primary catalyst
for the emergence of variable coefficient. Therefore,
the variable coefficients are reduced to constant coeffi-
cients.

Here, Figs. 2–5 are explained and analyzed. Figure2,
which has been studied by many scholars, is the com-
mon lump solution, so this paper dose not describe it.
From Fig. 3a, b, the lump wave and the soliton wave
are independent of each other and move in the same
direction in time from∞ to−∞; they collide at T = 0
because of velocity of lump wave than soliton wave;
after the collision, the two waves merge into one wave.
With the passage of time, the waves move from east to
west from Fig. 3c. In Fig. 4, it can be clearly seen that
two parallel waves appears phenomenon about swal-
lowed and spited lumpwave at T → ±0.6. Lumpwave
is separated from one wave, then moves and merges in
another wave. Interestingly, Fig. 4 has some similari-
ties with Fig. 3. On the one hand, the expression for

Case 2 has one more exponential function than Case
3 because of the parameter values of f3. On the other
hand, Fig. 4b has one more wave than Fig. 3b. Apart
from the differences above, the dynamic properties and
forms of solution do not change. Lastly, the image of
solution for Case 4 is shown in Fig. 5. And fromFig. 5c,
the wave changes periodically overtime.

4 Evolution of Rossby waves flow field

In the previous article, the soliton wave solutions and
rogue wave solutions are obtained and then the total
stream function can be written as

Ψ (x, y, t) = −
∫ y

0
s cos(s)ds

+ε2ϕ0(y)A(ε(x −
∫

c0(t)dt), ε2

(

y −
∫

c1(t)dt
)

, ε3t), (25)

123



3732 T. Yin, J. Pang

Fig. 6 Evolution of Rossby
wave flow field for A1, and
the parameter takes ε = 0.2

It is well known that climate changes periodically on a
large or small areas. According to the real situations of
the ocean and atmosphere and the previous experience,
it is necessary to consider the total stream function in
the background flow as a periodic function. Thus, the
basic stream function is u(s) = s cos(s) to study the
evolution of Rossby waves flow field. In addition, this
section uses the preceding parameter values.

In Fig. 6, the dipole blocking structure appears in
Rossby wave flow field. The distribution of blocking
structure is not symmetry at any time, the blocking
structure in the north tilts to the west, and it in the south
tilts to the east, because c0(t) and c1(t) are the quadratic
functions about time, not constants. And the northern
air pressure is higher than southern air pressure in the
whole flow field. With the passage of time, the entire
blocking structure propagates eastward. It can also be
found that the change u(y′) affects the altitude of dipole
blocking structure, but does not affect the evolution of
Rossby waves flow field.

In Fig. 7, Rossby wave flow field constituted by
lump wave is shown. The distribution of the blocking
structure is symmetry and the northern pressure is also
higher than the southern. The entire blocking structure
propagates eastward overtime, and rapidly propagates
eastward with the increase of c0. Interestingly, as c1
changes, it seems that the entire blocking structure has
changed. This is because the entire blocking structure
shifts in meridian.

In Fig. 8, Rossby wave flow field constituted by the
solution for Case 2 and 3 is shown. The blocking struc-
tures caused by lump and soliton wave appear together
in the Rossby wave flow field. To the left side of (a) and
in the middle of (b), we find that the blocking structure
is the same as Fig. 8. But elsewhere in (a) and (b), the
blocking structures are caused by exp function and sine
function, respectively. The southern pressure is also
higher than the northern in these blocking structures.
The dynamic properties of Fig. 8 are the same as Fig. 7.

In Fig. 9, Rossby wave flow field constituted by the
solution for Case 4 is shown. It also has the same
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Variable coefficient (2+1)D KP equation 3733

Fig. 7 Evolution of Rossby
wave flow field for A2 of
Case 1, and the parameter
takes ε = 0.1

Fig. 8 Evolution of Rossby
wave flow field, and the
parameter takes ε = 0.1

dynamic properties as above. When c1 increases, the
blocking structure moves toward the north.

5 Conclusions

Starting with the quasi-geostrophic potential vorticity
equation, this article derives variable coefficient KP
equation and solves its soliton wave, lump wave, and

interaction solution. For evaluating the results, we take
the table as follows:

Interestingly, soliton wave could be effected by var-
ied zonal and meridional group velocity, but the lump
and interaction are not. In calculation of modified
Hirota bilinearmethod, the variable coefficientmeet the
need of certain conditions. And according to Eq.(16),
the zonal andmeridional group velocity are not effected
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Fig. 9 Evolution of Rossby
wave flow field for A2 of
Case 4, and the parameter
takes ε = 0.1

The solution The parameter The type of
solution

A1 Δ in anywhere The soliton wave
A2 b3 = 0 Lump wave

b3 �= 0,Δ′ = 0 The lump and
one soliton
wave

b3 �= 0, c2 > 0,Δ′ > 0 The lump and
one hyperbolic
cosine function
wave

b3 �= 0, c2 < 0,Δ′ > 0 The lump and
one sine
function wave

by time. It is pointed that the auxiliary equationmethod
could analyze the variation coefficient, but not solve the
rogue wave; Hirota bilinear method is opposite. From
3D, contour and 2D figures, the amplitude of soliton
wave is increase overtimewhen c0(t) = c1(t) = t2+1,
and the dynamic characteristic of all solution is shown.

Finally, the blocking structures caused by soliton,
lump and interaction wave, are clearly depicted in the
Rossbywave flowfield. FromFigs. 7 and 8, we find that
the blocking structures caused by lump wave and oth-
ers work together, and they keep independent of each
other within a certain time frame or a sufficiently small
margin of error. In addition, precisely know that the
slow stretch coordinates (4) possess the properties of
traveling waves transform because of the characteris-
tic of Fig. 9. In essence, all blocking structures in this
article move in longitude, but only Fig. 9 is more obvi-
ous. Take Fig. 5b for example, the varied range of Y
is (−2, 2) in the range of X ∈ (−2, 2), when the time
goes in (0, 6). According to the slow stretch coordi-

nates, the spatial scale x and y of Rossby waves flow
field are transformed, i.e. y is (−200, 200) in the range
of x ∈ (−20, 20) if ε = 0.1. From the mathematical
point of view, the effect for the spatial scale of Rossby
wavesflowfield is briefly analyzed.There results canbe
further studied in mechanics, atmospheric and oceanic
science and other fields. In addition, there is no general
method to solve the Analytical solution of the nonlin-
ear partial differential equation in the field of integrable
systems. The symbol calculationmethod based on neu-
ral networks proposed by Zhang et al. [42–45] open
up a general symbolic computing path for the analytic
solution of NLPDEs, and lays the foundation for the
universal method of symbolic calculation of Analyti-
cal expression. The problems studied in this paper can
be solved by using this method in the future work.

Funding This work was supported by the National Natural Sci-
ence Foundation of China (Grant No.10561151); the Basic Sci-
ence Research Fund in the Universities Directly under the Inner
Mongolia Autonomous Region (Grant No. JY20220003); and
the Basic Research Funds in the Universities directly under the
Inner Mongolia Autonomous Region (Grant No. ZTY2023008).

Data Availability The datasets generated analyzed during the
current study are not publicly available, but are available from
the corresponding author on reasonable request.

Declarations

Competing Interests The authors have no relevant financial or
non-financial interests to disclose.

References

1. Yao-Deng,Chen,Hong-Wei,Yang,Yu-Fang,Gao,Bao-Shu,
Yin, Xing-Ru, Feng: A new model for algebraic Rossby
solitary waves in rotation fluid and its solution. Chin. Phys.
B 24(9), 090205 (2015)

123



Variable coefficient (2+1)D KP equation 3735

2. Liu, Q.S., Zhang, Z.Y., Zhang, R.G., Huang, C.X.: Dynam-
ical Analysis and Exact Solutions of a New (2+1)-
Dimensional Generalized Boussinesq Model Equation for
Nonlinear Rossby Waves. Commun. Theor. Phys. 71(9),
1054 (2019)

3. Gottwald, G.A., R.H. J.: Grimshaw, The formation of coher-
ent structures in the context of blocking. J. Atmos. Sci.
56(21), 3640–3662 (1975)

4. Ono, H.: Algebraic Solitary Waves in Stratified Fluids, J.
Phys. Soc. Japan, 39(4), 1082-1091

5. Kadomtsev, B.B., Petviashvili, V.I.: On the stability of soli-
tary waves in weakly dispersive media. Sov. Phys. Dokl. 15,
539–541 (1970)

6. Groves,M.D., Sun, S.M.: Fully localised solitary wave solu-
tions of the three-dimensional gravity-capillary water-wave
problem. Arch. Ration. Mech. Anal. 188, 1–91 (2008)

7. Wang, Cong, Zhang, Zongguo, Li, Bo., Yang, Hongwei:
Rossby waves and dipole blocking of barotropic-baroclinic
coherent structures in unequal depth two-layer fluids. Phys.
Lett. A 457, 128580 (2023)

8. Liu, Quansheng, Zhang, Ruigang, Yang, Liangui, Song,
Jian: A new model equation for nonlinear Rossby waves
and some of its solutions. Phys. Lett. A 383(6), 514–525
(2019)

9. Yang, H.W., Chen, X., Guo, M., Chen, Y.D.: A new ZK-
BO equation for three-dimensional algebraic Rossby soli-
tary waves and its solution as well as fission property. Non-
linear Dyn. 91(3), 2019–2032 (2017)

10. Rui-gang, Zhang, Liangui, Yang, Jian, Song, Hongli, Yang:
(2 + 1) dimensional Rossby waves with complete Coriolis
force and its solution by homotopy perturbation method.
Comput. Math. Appl. 73(9), 1996–2003 (2017)

11. HongWeiYang,ZhenHuaXu,DeZhouYang,XingRuFeng,
BaoShuYin and Huan He Dong. ZK-Burgers equation for
three-dimensional Rossby solitary waves and its solutions
as well as chirp effect. Adv. Differ. Equ., 167 (2016)

12. Yin, X.-J., Yang, L.-G., Liu, Q.-S., Su, J.-M., Wu, G.: Struc-
ture of equatorial envelope Rossby solitary waves with com-
plete Coriolis force and the external source. Chaos, Solitons
Fractals 111, 68–74 (2018)

13. Zun-Tao, F., Zhe,C., Shi-Da,L., Shi-Kuo,L.: PeriodicStruc-
ture of Equatorial Envelope Rossby Wave Under Influence
of Diabatic Heating. Commun. Theor. Phys. 42(1), 43–48
(2004)

14. van Groesen, E., Andonowati: Variational derivation of
KdV-type models for surface water waves. Phys. Lett. A
366(3), 195–201 (2007)

15. van She Liam Lie, E., Groesen,: Variational derivation of
improved KP-type of equations. Phys. Lett. A 374(3), 411–
415 (2010)

16. Ruddy, Kurnia, Van Groesen, E.: Hamiltonian Boussinesq
Simulation of Wave-Body Interaction Above Sloping Bot-
tom. Int. J. Offshore Polar Eng. 32(2), 244–252 (2022)

17. Kurnia, R., Badriana, M.R., van Groesen, E.: Hamiltonian
Boussinesq Simulations for Waves Entering a Harbor with
Access Channel. J. Waterway Port Coastal Ocean Eng. 144,
04017047 (2018)

18. Lawrence, C., Adytia, D., van Groesen, E.: Variational
Boussinesq model for strongly nonlinear dispersive waves.
Wave Motion 76, 78–102 (2018)

19. Liguo, C.H.E.N., Feifei, G.A.O., Linlin, L.I., Liangui,
Y.A.N.G.: fmKdV Equation for Solitary Rossby Waves and
Its Analytical Solution. Mathematica Applicata 34(3), 566–
573 (2021)

20. Wang, J., Zhang, R., Yang, L.: Solitary waves of nonlin-
ear barotropic-baroclinic coherent structures. Phys. Fluids
32(9), 096604 (2020)

21. Su, C., Gardner, C.: Korteweg-de Vries equation and gener-
alization. III. Derivation of the Korteweg-de Vries equation
and Burgers Equation. J. Math. Phys. 10, 536–539 (1969)

22. Jian, S., Lian-Gui, Y.: Modified KdV equation for solitary
Rossby waves with β effect in barotropic fluids. Chin. Phys.
B 18(7), 2873–2877 (2009)

23. Huan-Ping, Z., Biao, L., Yong-, C., Fei, H.: Three types of
generalized Kadomtsev-Petviashvili equations arising from
baroclinic potential vorticity equation. Chin. Phys. B 19(2),
020201 (2010)

24. Wang, M., Li, X., Zhang, J.: The (G ′/G)-expansion method
and travelling wave solutions of nonlinear evolution equa-
tions in mathematical physics. Phys. Lett. 372(4), 417–423
(2008)

25. Abdou, M.A., Zhang, S.: New periodic wave solutions
via extended mapping method. Commun. Nonlinear Sci.
Numer. Simul. 14(1), 2–11 (2009)

26. Dan, Zhao, Zhaqilao,:Weierstrass elliptic function solutions
and their degenerate solutions of (2+1)-dimensional poten-
tial Yu-Toda-Sasa-Fukuyama equation. Nonlinear Dyn.
110(1), 723–740 (2022)

27. Xie, Fuding, Yan, Zhenya: Exactly fractional solutions
of the (2+1)-dimensional modified KP equation via some
fractional transformations. Chaos, Solitons Fractals 36(4),
1108–1112 (2008)

28. Huang, Shilong, Li, Hongmin: Darboux transformations of
the Camassa-Holm type systems. Chaos, Solitons Fractals
157, 111910 (2022)

29. Wazwaz, Abdul-Majid.: Integrable (3+1)-dimensional Ito
equation: variety of lump solutions and multiple-soliton
solutions. Nonlinear Dyn. 109(3), 1929–1934 (2022)

30. Sudhir, Singh,K., Sakkaravarthi, K.,Murugesan,: Lump and
soliton on certain spatially-varying backgrounds for an inte-
grable (3+1) dimensional fifth-order nonlinear oceanicwave
model. Chaos Solitons Fractals 167, 113058 (2023)

31. Hirota, R.: Direct Methods in Soliton Theory, In: Bul-
lough R. K., Caudrey P. J., (eds) Solitons. Topics in Current
Physics, Vol.17. Springer, Berlin, Heidelberg (1980)

32. Yin, T., Xing, Z., Pang, J.: Modified Hirota bilinear method
to (3+1)-D variable coefficients generalized shallow water
wave equation. Nonlinear Dyn. 111, 9741–9752 (2023)

33. Zhang, R.F., Li, M.C.: Bilinear residual network method for
solving the exactly explicit solutions of nonlinear evolution
equations. Nonlinear Dyn. 108, 521–531 (2022)

34. Zhang, R.F., Bilige, S.: Bilinear neural network method to
obtain the exact analytical solutions of nonlinear partial dif-
ferential equations and its application to p-gBKP equation.
Nonlinear Dyn. 95, 3041–3048 (2019)

35. Zhang, R.F., Li, M.C., Yin, H.M.: Rogue wave solutions and
the bright and dark solitons of the (3+1)-dimensional Jimbo-
Miwa equation. Nonlinear Dyn. 103, 1071–1079 (2021)

36. Zhang, R., Bilige, S., Chaolu, T.: Fractal Solitons, Arbitrary
Function Solutions, Exact Periodic Wave and Breathers for
a Nonlinear Partial Differential Equation by Using Bilinear

123



3736 T. Yin, J. Pang

NeuralNetworkMethod. J. Syst. Sci. Complex. 34, 122–139
(2021)

37. Liu, F.Y., Gao, Y.T., Yu, X.: Pfaffian, soliton, breather
and hybrid solutions for a (2+1)-dimensional combined
potential Kadomtsev-Petviashvili-B-type Kadomtsev-
Petviashvili equation in fluid mechanics. Nonlinear Dyn.
111, 5681–5692 (2023)

38. Yokus, A., Isah, M.A.: Stability analysis and solutions
of (2+1)-Kadomtsev-Petviashvili equation by homoclinic
technique based on Hirota bilinear form. Nonlinear Dyn.
109, 3029–3040 (2022)

39. Zhang, Xiaoen, Chen, Yong, Zhang, Yong: Breather, lump
and X soliton solutions to nonlocal KP equation. Comput.
Math. Appl. 74(10), 2341–2347 (2017)

40. Özsoy, E.: Quasigeostrophic Theory. In: Geophysical Fluid
Dynamics I. Springer Textbooks in Earth Sciences, Geogra-
phy and Environment. Springer, Cham (2020)

41. Si, R.D.R.J.: Traveling wave solutions for nonlinear wave
equations: Theory and applications of the auxiliary equation
method, pp. 1–184. Science Press, Beijing (2019)

42. Zhang, Run-Fa, Li, Ming-Chu, Gan, Jian-Yuan, Li, Qing,
Lan, Zhong-Zhou: Novel trial functions and rogue waves
of generalized breaking soliton equation via bilinear neural
network method. Chaos Solitons & Fractals, 154, 111692
(2022)

43. Zhang, Run-Fa., Li, Ming-Chu., Albishari, Mohammed,
Zheng, Fu-Chang., Lan, Zhong-Zhou.: Generalized lump
solutions, classical lump solutions and rogue waves of the
(2+1)-dimensionalCaudrey-Dodd-Gibbon-Kotera-Sawada-
like equation. Appl. Math. Comput. 403, 126201 (2021)

44. Zhang, R.F., Li, M.C., Cherraf, A., et al.: The interfer-
ence wave and the bright and dark soliton for two integro-
differential equation by using BNNM. Nonlinear Dyn. 111,
8637–8646 (2023)

45. Zhang,Run-Fa., Bilige, Sudao, Liu, Jian-Guo., Li,Mingchu:
Bright-dark solitons and interaction phenomenon for p-
gBKP equation by using bilinear neural network method.
Phys. Scr. 96, 025224 (2021)

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.

Springer Nature or its licensor (e.g. a society or other partner)
holds exclusive rights to this article under a publishing agreement
with the author(s) or other rightsholder(s); author self-archiving
of the accepted manuscript version of this article is solely gov-
erned by the terms of such publishing agreement and applicable
law.

123


	Variable coefficient (2+1)D KP equation for Rossby waves and its dynamical analysis
	Abstract
	1 Introduction
	2 Derivation of Kadomtsev-Petviashvili equation
	3 Analysis for variable coefficient KP equation
	3.1 Soliton wave solutions
	3.2 Rogue wave solutions

	4 Evolution of Rossby waves flow field
	5 Conclusions
	References




