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Abstract In this paper, the stochastic propagation of
the aircraft taxiing under the excitation of uneven run-
way is investigated based on physics-informed neu-
ral networks (PINNs). In particular, we successfully
applied the PINNs with layer-wise locally adaptive
activation functions (L-LAAF) and the learning rate
decay strategy to address the challenging task of param-
eter identification for some aircraft systems. Specifi-
cally, the accuracy and effectiveness of the proposed
method in solving the time-dependent Fokker–Planck
equation for systems were first demonstrated. Subse-
quently, the proposed method is effectively utilized to
identify the damping coefficient of landing gear and the
aircraft body weight. Through numerical experiments
and comparisons, we have demonstrated that incorpo-
rating L-LAAF and learning rate decay strategies can
further enhance the performance of the network. The
numerical simulation based on Monte Carlo fully val-
idates the method. The development of physics-based
deep learning techniques for aircraft system parame-
ter identification research can help researchers better
understand and control the behavior of systems, provid-
ing effective solutions for optimizing system design.
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1 Introduction

As a widely used mode of transportation, ensuring the
safety and comfort of aircraft has become a paramount
concern for designers. Extensive attention is being
given to addressing this issue effectively. It isworth not-
ing that a significant portion of flight accidents occurs
during take-off and landing on the ground. These criti-
cal phases expose the aircraft to various challenges, par-
ticularly when encountering uneven runway surfaces.
The resultant random vibrations not only pose immedi-
ate risks but also contribute to long-term fatigue dam-
age to the structural integrity of the aircraft. Conse-
quently, the lifespan of the aircraft could be signifi-
cantly compromised. Given the aforementioned chal-
lenges, conducting comprehensive research on the air-
craft taxiing model becomes imperative. By analyz-
ing and simulating the complex dynamics involved in
the aircraft’s movement on the ground, designers can
develop more robust and resilient structures for air-
craft, ultimately enhancing their safety and extending
their operational lifespan. This not only ensures the
safety and comfort of passengers but also establishes a
solid foundation for the aviation industry’s continuous
growth and development.

In the field of aircraft engineering, researchers have
made significant contributions to studying the dynamic
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behavior of the landinggear structure.Notably,Michael
and Schlaefke [1–3] simplified the aircraft landing gear
structure as a linear damping spring vibrator for theo-
retical study. This theoretical model has proven to be
effective in analyzing the performance of the landing
gear system. In 1953, Milwitzky and Cook [4] pro-
posed a two-degree-of-freedom spring-mass model to
study the dynamic responses of main landing gear dur-
ing aircraft fall shock. Despite their simplicity, these
models have stood the test of time and continue to be
widely utilized in current research and practical appli-
cations. Their enduring popularity stems from their
ability to accurately capture the essential character-
istics and behavior of the landing gear under various
loading and environmental conditions. By simplifying
the complex dynamics of the landing gear into funda-
mental elements such as springs, masses and dampers,
these models provide valuable insights into the perfor-
mance and response of the landing gear structure during
critical phases of flight.

Based on the two-mass block model, power spectral
density method [5,6], state space method [7] and deter-
ministic numerical analysis [8]were proposed to obtain
the responses of aircraft taxiing on uneven runway sur-
face. The above methods mainly solve stochastic dif-
ferential equations (SDEs) of the system under random
excitation based on Newton’s law of motion. Consider-
ing the aircraft taxiing model derived from Hamilton’s
principle [9], there are normally two ways to analyze
the system responses. Specifically, one approach is to
obtain the probability density of the system responses
by Monte Carlo (MC) simulation from the perspective
of SDEs of the system. However, this method requires
a large number of samples. It will consume a large
amount of computing time and resources if higher accu-
racy is required. Another approach is to analyze the
dynamic behavior of the system by using the Fokker–
Planck (FP) equations who govern the transient prob-
ability density of the system responses. The transient
responses of an aircraft landing gear system play a piv-
otal role in understanding and analyzing the dynamic
characteristics of the aircraft body. These responses
provide valuable insights into how the landing gear
interacts with the ground during taxiing, take-off and
landing phases. As a result, studying and analyzing
these transient responses prove to be of great signif-
icance for subsequent research on taxiing load. In gen-
eral, it is difficult to get the exact solution of the FP
equations. Solving high-dimensional FP equation is

still a question worthy of further investigation. More-
over, traditional numerical methods, such as the finite
difference method and the finite element method, can
be computationally expensive and time-consuming,
especially when considering long-time simulations or
solving FP equations repeatedly in parameter stud-
ies or optimization routines. The computational cost
increases significantly as the grid or mesh resolution is
increased to achieve more accurate results. This lim-
its the efficiency and scalability of traditional methods,
hindering their application to real-world problemswith
practical time constraints.

The landing gear buffer system is crucial for the
safe landing process and passenger comfort in aircraft.
Most modern aircraft use an oil–gas buffer, where the
oil damping force plays a significant role. As the buffer
moves, the oil flows through the damping hole at high
speed, resulting in a damping effect. Therefore, the oil
damping coefficient is a key factor in the design of the
buffer system. In aircraft design, the weight of the air-
craft body is an important factor that affects flight per-
formance and economic feasibility. It ultimately deter-
mines the success or failure of the aircraft design.Addi-
tionally, the aircraft body weight has implications for
subsequent load research. Thus, obtaining the charac-
teristics of the aircraft structure from a limited set of
measured data on aircraft skidding responses can help
predict the oil damping coefficient of the landing gear
buffer and the weight of the aircraft body. These pre-
dictions provide a theoretical basis for further analysis
of data-drivenmodel inversion and landing gear fatigue
load.However, traditional numerical techniques cannot
solve the problem of inversion of the physical driven
differential model of aircraft sliding under the exci-
tation of uneven ground. In addition, the inevitable
noise makes reconstructing objects from available data
a computationally intractable problem.

Neural networks (NNs) have been widely used in
engineering fields, such as structural damage detection
[10–13], fast tracking [14], structural parameter identi-
fication [15,16] and so on. Physical information neural
networks (PINNs) method is a general-purpose frame-
work developed by Karniadakis for solving forward
and inverse problems of partial differential equations
(PDEs) [17]. This method is based on the PDEs formed
by physical modeling and the solution is obtained
by using neural networks as function approximation.
Compared with traditional numerical methods, using
deep learning technology to solve PDEs does not need
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generate grids, and fewer points are required to train the
network to approximate the solution, which can save
a lot of time and avoid the dimension disaster prob-
lem when solving the high-dimensional PDEs. Xu et
al. [18] introduced normalization conditions as super-
vision conditions and put forward a numerical method
for solving FP equations using deep learning. Zhai et al.
[19] introduced the differential operators of FP equa-
tions into the loss function, which significantly reduces
the need for a large amount of data in the learning pro-
cess.Wanget al. [20] proposed a learning rate annealing
algorithm to balance different terms of the loss func-
tion so as to achieve higher accuracy of training results.
Nowadays, the PINNs algorithm is widely applied to
solve forward and inverse problems of PDEs in many
fields, such as fluid mechanics [21–23], materials [24–
26], power systems [27,28], biomedicine [29–31] and
so on. The wide application of the PINNs algorithm
across diverse domains underscores its potential for
solving complex high-dimensional physical problems
that are challenging for traditional numerical methods.

In this study, it is expected to obtain higher preci-
sion training results with fewer iterations. We try to
make special processing of the activation function of
the network to obtain more efficient training strategies.
Typically, the activation function of hidden units in
networks operates on affine transformations, and the
introduction of activation functions introduces nonlin-
earity to neurons since most activation functions are
nonlinear. This ensures that neural networks can han-
dle more complex nonlinear models. Some researchers
introduced adaptive activation function in neural net-
works, which greatly improved the training accuracy
and accelerated the convergence speed [32–34]. Jagtap
et al. [35,36] applied globally adaptive activation func-
tions and locally adaptive activation functions based
on the basic framework of PINNs, which proved the
locally adaptive activation is superior to fixed and glob-
ally adaptive activation in training speed and accuracy.
The learning rate plays a crucial role in searching for
the global minimum [37]. A large learning rate may
exceed the global minimum,while a small learning rate
increases the computational cost. Usually, the learn-
ing rate decay strategy is adopted to achieve a bet-
ter performance of the neural network. In this work,
we employ layer-wise locally adaptive activation func-
tions (L-LAAF) [36] to optimize the network struc-
ture. Given the varying learning abilities of each hid-
den layer, using locally defined activation slopes for

L-LAAF further improves the network’s performance.
Additionally, we adopt a piecewise constant learning
rate decay strategy to accelerate the convergence of the
model.

The rest of this paper is arranged as follows. In
Sect. 2, the dissipative quasi-Hamiltonian system for
aircraft ground sliding under Gaussian white noise
excitation is derived. The main idea of solving FP
equations using neural networks is briefly discussed
in Sect. 3. The flow and steps of the proposed method
are also introduced in detail. Section4 provides results
and detailed discussions for forward problems using
the improved PINNs and learning rate decay strategy.
In Sect. 5, the inverse problem is solved, that is, the
experimental results of system parameter identification
are given. Finally, Sect. 6 summarizes the work of this
paper.

2 Model of aircraft landing gear

Most landing and skidding dynamic models are based
on the two-mass system, i.e., the system is divided
into elastic support mass and inelastic support mass,
which can not only reflect the actual movement of the
landing gear, but also greatly simplify the mathemat-
ical model. This part introduces the two-mass aircraft
taxiing model under the excitation of uneven surface,
which is derived from Hamilton’s principle. Then, the
FP equation governing the transient probability den-
sity is used to analyze the system responses and solve
the inversion problem of the physical driven differen-
tial aircraft model under the excitation of uneven sur-
face. Solving these problems is of great significance
for understanding the dynamic characteristics of air-
craft and predicting the design of aircraft structure.

The linearized model of the aircraft during taxing
is shown in Fig. 1, which consists of two concentrated
masses M and m [5]. M is the sprung mass involving
the mass of airframe, wing and buffer outer cylinder
which is supported by the gear air. m is the unsprung
mass including the mass of buffer piston rod, brake
device andwheelwhich reacts the air spring force to the
ground. The basic assumptions in the model is: the air
spring force and oil damping force are linear; the wheel
below the non-spring supported mass is simplified as a
tire with linear damping and linear stiffness.

123



3166 Y. Zhang et al.

Fig. 1 Linearized model of the landing gear

Let theO–Oplane be a zero potential surface, select-
ing the displacement of sprung mass q2, the displace-
ment of unsprung mass q1 as generalized coordinates.

For the system shown in Fig. 1, the potential energy
of the system is given by

V = Va(q1, q2) + Vt (q1, q2)

−mg(L + q1) − Mgq2, (1)

where Va(q1, q2) is the elastic potential energy of the
air spring, and Vt (q1, q2) is the elastic potential energy
of the tire. L represents the distance between two mass
blocks. The potential energy in the linearized model
can be expressed as follows:

{
Vt = 1

2ktq1
2

Va = 1
2ks(q2 − q1)2

, (2)

where ks and kt represent linear stiffness of the buffer
and linear stiffness of the tire, respectively. The kinetic
energy of system can be defined as

T = 1

2
mq̇21 + 1

2
Mq̇22 . (3)

The Hamiltonian function of the system can be
obtained from the Lagrange function as shown in the
following [38]

H =
(

p21
2m

+ p22
2M

)

+[Va(q1, q2) + Vt (q1) − mg(L + q1) − Mgq2]

=
(

p21
2m

+ p22
2M

)
+ 1

2
ks(q2 − q1)

2

+1

2
ktq1

2 − mg(l + q1) − Mgq2, (4)

where p1, p2 is the generalized momentum.
The stochastically excited and dissipated Hamilto-

nian system is given by Zhu et al. [39]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q̇1 = ∂H
∂ p1

= p1
m

q̇2 = ∂H
∂ p2

= p2
M

ṗ1 = −(ktq1 − ks(q2 − q1) − mg) − c11(
⇀
q ,

⇀
p) ∂H

∂ p1

−c12(
⇀
q ,

⇀
p) ∂H

∂ p2
+ f1k(

⇀
q ,

⇀
p)ξk(t)

ṗ2 = −(ks(q2 − q1) − Mg) − c21(
⇀
q ,

⇀
p) ∂H

∂ p1

−c22(
⇀
q ,

⇀
p) ∂H

∂ p2

. (5)

where ξi (t)(i = 1, 2, ..., k) is the description function
of the runway pavement, which can be Gaussian white
noise, broad band process or narrow band process.

However, the magnitude difference between the
original system variables is huge, and variables related
to the system momentum fluctuate in a large range,
which bring the difficulty on solving the PDE numeri-
cally. To deal with this, the technique of transforma-
tion of variable is applied. We transform to rescale
the variables as x1 = q1 + 1

kt
(M − m)g, x2 =

q2 + 1
kt

(M − m)g − M
ks
g, x3 = s1 p1, x4 = s2 p2, here

s1 and s2 are constants. Considering the linear damping
c11 = ct + cs , c12 = −cs , c21 = −cs , c22 = cs , the
system is excited by the Gaussian white noise. So the
Eq. (5) can be written as

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋ1 = x3
s1m

ẋ2 = x4
s2M

ẋ3 = −[kt s1x1 − kss1(x2 − x1)] − (ct + cs)
x3
m+cs

x4
M

s1
s2

+ f1kξk(t)s1
ẋ4 = −kss2(x2 − x1) + cs

x3
m

s1
s2

− cs x4

,

(6)

3 Methodology

Consider a vector randomprocess x(t) = [x1(t), x2(t),
..., xn(t)]T governed by the following stochastic differ-
ential equation

d

dt
x j (t) = m j (x, t) +

m∑
l=1

σ jlWl(t), j = 1, 2, ..., n,

(7)
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where m j is linear or nonlinear functions, σ jl stands
for constant, andWl (t) is Gaussian white noise whose
correlation function is

E[Wl(t)Ws(t + τ)] = 2πKlsδ(τ ), (8)

here Kls is the spectral density.
The FP equation associated with Eq. (7) is shown as

follows:

∂p

∂t
+

n∑
j=1

∂

∂x j
(m j p) − 1

2

n∑
j,k=1

∂2

∂x j∂xk
(σ jk p) = 0,

(9)

where p = p(x, t) denotes the probability density
function (PDF) of the x(t) at time t .

For convenience of analysis, rewrite Eq. (9) as

pt + N [p, λ] = 0, x ∈ 
, t ∈ [0, T ], (10)

p(x, 0) = I (x), x ∈ 
, (11)

p(x, t) = 0, x ∈ ∂
, t ∈ [0, T ], (12)

where p(x, t) is defined on a domain 
 × [0, T ];
N [p, λ] is a differential operator with a parameter λ

of the aircraft; and I (x) denotes the initial condition of
the equation. ∂
 denotes the boundary of 
.

PINNs method is efficient for solving the forward
and inverse problems involving nonlinear differential
and integral equations with sparse, noisy and multi-
fidelity data [5]. It can be used as a new class of
numerical solvers for PDEs and to solve new data-
driven model inversion and system identification prob-
lems. Consider a fully connected neural network with
an input layer, K − 1 hidden layers and an output
layer. And the dth hidden layer contains Nd neurons.
Each hidden layer accepts the output Zd−1 ∈ R

Nd−1

from the previous layer, affine transformation can be
obtained from the following form

Ld(Z
d−1)

�= wd Zd−1 + bd , (13)

where the network weights term wd ∈ R
Nd × R

Nd−1

and bias term bd ∈ R
Nd are related to the dth layer.

We denote Z0 = (x, t) as an input and ZK = p(x, t)
as the output value of final layer. Each of the trans-
formed components is subjected to the nonlinear acti-
vation function σ(·), which serves as an input to the
next layer. The utilization of L-LAAF makes each hid-

den layer have its own activation slope, the dth adaptive
activation function is defined as follows:

σ(ad(Ld(Z
d−1)))(d = 1, 2, ..., K − 1), (14)

where σ is the activation function and ad(d =
1, 2, ..., K − 1) are additional K − 1 parameters to
be optimized. The improved neural network based on
the L-LAAF can be expressed as [35,36]

p�̄(Z) = (LK ◦ σ ◦ aK−1LK−1 ◦ σ

◦aK−2LK−2 ◦ · · · ◦ σ ◦ a1L1)(Z). (15)

here, the trainable parameter �̄ consists of
{wd , bd}Kd=1 and {ad}K−1

d=1 .
Compared with the original network, improved

PINNs, i.e., PINNs with L-LAAF, are trained with a
hyper-parameter ad to each hidden layer for training. In
the training process, we employed a segmented decay
strategy for the learning rate to facilitate faster conver-
gence of the network. The loss function is given by

Loss = Loss f + LossB + LossI , (16)

where Loss f , LossB and LossI are defined as follows:

Loss f = 1

N f

N f∑
i=1

∣∣∣γ ( p̂(x f
i , t

∣∣�̄ ))

∣∣∣2, (17)

LossB = 1

NB

NB∑
i=1

∣∣∣ p̂(x Bi , t
∣∣�̄ )

∣∣∣2, (18)

LossI = 1

NI

NI∑
i=1

∣∣∣ p̂(x Ii , t
∣∣�̄ ) − I (xi )

∣∣∣2. (19)

Here,γ ( p̂)= p̂t+N ( p̂, x), Loss f , LossB and LossI
guarantee the approximate solution to satisfy Eqs. (10),
(11) and (12), respectively. N f , NI and NB denote the
number of collation points, initial points and boundary
points in training set, respectively. Algorithm 1 sum-
marizes PINNs with L-LAAF.

4 PDF Solving based on deep neural networks

In the follows,we use the above-mentionedPINNswith
L-LAAF algorithm to investigate the solitons of the
FP equation corresponding to Eq. (6) as shown in the
following
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Algorithm 1 PINNs with L-LAAF.

Input: The collocations training set
{
x f
i , t

}
, the initial training set

{
x Ii , 0

}
, the boundary training set

{
x Bi , t

}
.

Output: p(x, t
∣∣�̄∗ )

1: Initialize the weights and biases of the neural network.
2: Construct neural network and get the output p̂(x, t

∣∣�̄ ).
3: Get the output’s first and second derivatives p̂x (x, t

∣∣�̄ ), p̂t (x, t
∣∣�̄ ), p̂xx (x, t

∣∣�̄ ).
4: Update the neural network by minimizing the loss function

Loss = 1
N f

N f∑
i=1

∣∣∣γ ( p̂(x f
i , t

∣∣�̄ ))

∣∣∣2+ 1
NB

NB∑
i=1

∣∣ p̂(x Bi , t
∣∣�̄ )

∣∣2+ 1
NI

NI∑
i=1

∣∣ p̂(x Ii , t
∣∣�̄ ) − I (x Ii )

∣∣2.
5: The optimal parameters �̄∗ are obtained by appropriate optimization method to minimize the loss function.
6: Return results.

∂p

∂t
+ N (p, λ) = ∂p

∂t
+

[
∂

∂x1

(
x3
s1m

· p
)

+ ∂

∂x2

(
x4
s2M

· p
)

− ∂

∂x3
[kt s1x1 · p − kss1(x2 − x1) · p]

− ∂

∂x3
[(ct + cs)

x3
m

· p]

+ ∂

∂x3

(
cs

x4
M

s1
s2

· p
)

− ∂

∂x4
[ks(x2

−x1)s2 · p] + ∂

∂x4

(
cs
x3
m

s2
s1

· p
)

− ∂

∂x4
(cs x4 · p)

−1

2
(
√
2D)2( f1k)

2 ∂2 p

∂x23

]
= 0, (20)

For the convenience of expression, the parameters of
the aircraft systemare denotedbyλ,which are known in
solving the forward problem and the parameter values
of the aircraft system used in this section are shown in
Table 1.

The space interval is [−2, 2] × [−2, 2] × [−2, 2] ×
[−1.5, 1.5], and the time interval is [0, 0.5]. The cor-
responding initial value conditions are as follows:

I (x, t) = 1

(2π)2
∣∣∑∣∣ 1

2

exp

{
−1

2
(xT − μ)

T
∣∣∣∑

∣∣∣−1
(xT − μ)

}
, (21)

where

xT =

⎛
⎜⎜⎝
x1
x2
x3
x4

⎞
⎟⎟⎠ , μ =

⎛
⎜⎜⎝
0
0
0
0

⎞
⎟⎟⎠ , � =

⎛
⎜⎜⎝

σ1 0 0 0
0 σ2 0 0
0 0 σ3 0
0 0 0 σ4

⎞
⎟⎟⎠ ,

(22)

x = (x1, x2, x3, x4) ∈ [−2.0, 2.0]
×[−2.0, 2.0] × [−2.0, 2.0] × [−1.5, 1.5], (23)

and the left and right boundary conditions of Eq. (20)
are shown as

Bl(x, t) = Bl(x1, x2, x3, x4, t) = 0, t ∈ [0, 0.5],
(24)

if x1 = −2.0 or x2 = −2.0 or x3 = −2.0 or x4 =
−1.5.

Br (x, t) = Br (x1, x2, x3, x4, t) = 0, t ∈ [0, 0.5],
(25)

if x1 = 2.0 or x2 = 2.0 or x3 = 2.0 or x4 = 1.5.
The structure of PINNs with L-LAAF is composed

of four hidden layers with 20 neurons and the Adam
optimizer is used to train the model. The activation
function of the hidden layer adopts L-LAAF, and set
the exponential function as the activation function for
the output layer. The initial points training set NI =
20000 consists of two parts: 11000 points and 9000
points are selected in 
 = [−2.0, 2.0]× [−2.0, 2.0]×
[−2.0, 2.0] × [−1.5, 1.5] and 
1 = [−0.45, 0.45] ×
[−0.45, 0.45] × [−0.45, 0.45] × [−0.3, 0.3], respec-
tively.Given a set of boundary pointswith NB = 10000
and a set of collation points with N f = 90000, both of
them are obtained by the Latin hypercube sampling
(LHS) strategy. Setting the learning rate of the first
30,000 iterations as 6 × 10−3, and the learning rate
of the rest 170,000 iterations as 6 × 10−4.

As a consequence, we can discover that the predict
solutions approximate the MC solutions pretty well
from Fig. 2, which exhibits the comparisons between
MC solutions and predict solutions for t = 0.1 (top

123



Stochastic dynamics of aircraft ground 3169

Table 1 Aircraft system
parameters

Parameter M (kg) m (kg) ks (N m−1) kt (N m−1)

Value 25345 7388 225000 2 × 105

Parameter cs (N m−1 s) ct (N m−1 s) s1 s2

Value 13940 400 2.5 × 10−5 10−5

Fig. 2 The comparison results between the solutions obtained from MC method and PINNs with L-LAAF algorithm at t = 0.1 (top
row), t = 0.3 (middle row) and t = 0.5 (bottom row)

row), t = 0.3 (middle row) and t = 0.5 (bottom row).
And the mean absolute error between MC solutions

and predict solutions defined by MAE =
N∑
i=1

| p̂i−pi |
N is

drawn in Fig. 3 when t = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5.
It shows that the error of each variable is extremely
close to zero,which verifies the accuracy of our training
results. To our pleasant surprise, the utilization of MC
(Monte Carlo) method using approximately 10 million
trajectories, which takes approximately 8h, whereas
the proposed approach presented in this paper required
only about 2h.

Fig. 3 The mean absolute error of each variable between the
solutions obtained from MC method and PINNs with L-LAAF
algorithm
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Fig. 4 a Loss function; b
L2 error with respect to
p(q1, q2) for different
training settings (standard
tanh activation function and
fix learning rate; L-LAAF
and fixed learning rate;
standard tanh activation
function; L-LAAF and
learning rate decay)

In what follows, we adopt the same training data
set and basic network structure as the previous part to
discuss the influence of the L-LAAF and the learning
rate decay on network learning ability. In order to verify
the effectiveness of PINNs enhanced by the L-LAAF
and the learning rate decay more directly, we show the
training results of four different settings (standard tanh
activation and fixed learning rate (lr = 6 × 10−3), L-
LAAF using the tanh activation and fixed learning rate
(lr = 6× 10−3), standard tanh activation and learning
rate decay (lr = 6× 10−3 in the first 30000 iterations,
lr = 6 × 10−4 in the rest iterations), L-LAAF using
the tanh activation and learning rate decay (the learning
rate is consistent with the third case)) in Fig. 4.

Figure4a illustrates the variation of the loss func-
tion with 20,000 Adam iterations. It shows that the loss
function converges faster with the L-LAAF compared
to the fixed tanh activation function under the same
learning rate. Furthermore, the learning rate decay can
make the value of the loss function converge less than
the fixed learning rate when the activation function is
consistent. The L2 error of the above four settings as
indicated in Fig. 4b. We observe that the L-LAAF pro-
duces a lower prediction error than the fixed activation
function under the same learning rate. It can also be
seen from Fig. 4b that the learning rate decay can make
L2 error reach a smaller value than fixed learning rate.

Figure5 displays the comparison between MC
results and PINNs results of four settings at t = 0.3
with 200,000 Adam iterations. It is obvious that the
results are consistent with those mentioned above. In
a word, the PINNs with L-LAAF and the learning rate
decay can effectively accelerate the convergence of
the network, and achieve higher accuracy of training
results.

We further consider the influence of the selection of
initial points on network. The boundary points set and
collation points set used for computation are consistent
with those discussed above, and we use the PINNswith
L-LAAF algorithm and the learning rate decay to train
the network. Figures6 and 7 display the training results
with different initial points selection settings (Case a.
select 11,000 in 
, 9000 in 
1 by using LHS strat-
egy Case b. select 20,000 in 
 by using LHS strategy),
and the total number of iterations is 150000. It can
be clearly seen from the corresponding loss function
converges faster and the fluctuation range is larger in
Case a. From the L2 errors of joint PDF p(q1, q2) of
each transient corresponding to different initial points
selection settings in Fig. 6b. It manifests that L2 error
of Case b is much larger than Case a. Figure7a and b
shows the comparison of PDF and corresponding abso-
lute error of prediction with two different initial point
selection methods at t = 0.4. Obviously, Fig. 7 reveals
that the prediction accuracy is lower near the boundary,
but getting higher accuracy where the gradient of PDF
is larger under the Case a. And appropriately selecting
more initial points near the middle part of the variable
interval can make better prediction accuracy than uni-
formly selecting points.

5 Data-based parameter identification

In practical engineering, there are some parameters that
cannot be directly measured in the aircraft structure.
Thus, it is of great significance to identify them. Iden-
tifying unknown parameters in an aircraft model based
on the observed data is the inverse problem to be stud-
ied here. The inverse problem is considered based on
the trajectories of system variables at several discrete
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Fig. 5 p̂(q1,q2) obtained
by PINNs, pMC (q1,q2)
obtained by MC method and
absolute error between them
at t = 0.5 for different
training settings (first row):
standard tanh activation
function and fix learning
rate; (second row): L-LAAF
and fixed learning rate;
(third row): standard tanh
activation function and
learning rate decay; (fourth
row): L-LAAF and learning
rate decay

Fig. 6 a Loss function; b L2 error with respect to p(q1,q2)
for PINNs with L-LAAF algorithm and learning rate decay
(lr = 6×10−3 in the first 30,000Adam iterations, lr = 6×10−4

in the rest 120,000 Adam iterations) for different selections of

initial points (Case a. select 11,000 points in 
, 9000 points in

1 by using LHS strategy Case b. select 20,000 points in 
 by
using LHS strategy)

moments. For the FP equation with unknown coeffi-
cients, the exact form of the equation can be derived by
modifying the above PINNs with LAAF algorithm and

combining with the observed data, and then the PDF at
any instant of time can be obtained. The specific imple-
mentation steps to solve the inverse problem are as fol-
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Fig. 7 a The comparison results between the solutions obtained
fromMCmethod and PINNswith L-LAAF algorithmwith learn-
ing rate decay at t = 0.4 for different selections of initial points;
b The absolute error of each variable between the solutions
obtained from MC method and PINNs with L-LAAF algorithm

with learning rate decay (lr = 6×10−3 in the first 30,000 Adam
iterations, lr = 6 × 10−4 in the rest 120,000 Adam iterations)
at t = 0.4 for different selections of initial points (Case a. select
11,000 points in 
, 9000 points in 
1 by using LHS strategy
Case b. select 20,000 points in 
 by using LHS strategy)

lows: solutions of thedifferential equationof the system
at these moments are obtained through MC simulation
under the condition that the trajectories of several dis-
crete time points of the system variables are known.
Then the unknown parameters λ = (λ1, λ2, ..., λn) are
setting as trainable variables of the network to be iden-
tified. Namely, the optimization parameter �̄ consists
of {wd , bd}Kd=1, {ad}K−1

d=1 and λ = (λ1, λ2, ..., λn) in
the inverse problem. PDF of Nt points estimated by
MC is selected as label data, and the loss function is
defined as

Loss = LossB + LossI + 1

Nt
Nt∑
i=1

∣∣∣pMC (X, t) − p̂(X, t)
∣∣∣2. (26)

Finally, the constructed network is optimized to obtain
�̄ that minimizes the loss function.

In this section, we turn our attention to the inverse
problem of Eq. (20) to predict the design of land-
ing gear structure parameters, namely, damping coef-
ficient of landing gear cs and aircraft body weight

M . Here, we use the same network structure as the
forward problem, and use the L-LAAF and learn-
ing rate decay strategy to train the network. On the
premise of obtaining trajectories of system variables
at individual time points, the MC method is used to
simulate the PDF of the system, and then a small
part of the PDF is selected as the collation points
set. After the training data set is given, the PINNs
with L-LAAF algorithm successfully predicted the
potential data-driven unknown parameters by adjust-
ing the loss function with 150,000 Adam iterations.
The next part discusses the influence of the number of
moments in the training set on network training under
the total number of fixed 90000 training points remains
unchanged. Figures8, 9 and 10 specifically showcase
the results of unknown parameter cs by inputting train-
ing sets at six moments (t = 0.1, 0.2, 0.3, 0.4, 0.5),
4 moments(t = 0.1, t = 0.2, t = 0.4, t = 0.5), and 2
moments (t = 0.1, t = 0.5), respectively. As can be
seen from Fig. 8a, the loss function declines more
slowly and its convergence value increases with the
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Fig. 8 a Loss function; b
Variation of unknown
coefficients cs for PINNs
with L-LAAF algorithm and
learning rate decay
(lr = 6 × 10−3 in the first
30,000 Adam iterations,
lr = 6 × 10−4 in the rest
120,000 Adam iterations)
for different number of
moments (two moments;
four moments; six
moments)

Fig. 9 p̂(q1,p1) obtained
by PINNs with L-LAAF
and learning rate decay
(lr = 6 × 10−3 in the first
30,000 Adam iterations,
lr = 6 × 10−4 in the rest
120,000 Adam iterations),
pMC (q1,p1) obtained by
MC method and absolute
error between them at
t = 0.3 for (first row): the
number of input moments is
6; (second row): the number
of input moments is 4; (third
row): the number of input
moments is 2

number of moments increases. Figure8b illustrates the
convergence of the estimated parameter to the real
parameter. The relative error of the prediction reaches
0.2483% when the number of input moments is 6
from Table 2, indicating that the unknown parameter
λ = cs can be identified more accurately with more
input moments.

The comparison between the predicted solution and
MC solution of t = 0.3 is shown in Fig. 9. And
Fig. 10 exhibits L2 error related to p(q1, q2) at dif-
ferent moments. We observe that when the total num-
ber of input data is consistent, the more moments the
input data are distributed, the higher the network train-

ing accuracy will be. To be specific, it is very impor-
tant to integrate the data of multiple temporal moments
in physical information learning. The relatively large
amount of temporal data information can improve the
accuracy of network prediction and parameter identifi-
cation.

Due to the influence of uneven runway, the inevitable
noise may have a certain influence on the test data,
which makes parameter identification a thorny prob-
lem in calculation. Parameter identification of noisy
label data based on PINNs with L-LAAF algorithm
can further analyze the data-driven problem of model
inversion. Then, parameters of FP equation are identi-
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Fig. 10 The comparison results of L2 error with respect to p(q1, q2) for different selections of initial points a The number of input
moments is 6; b The number of input moments is 4; c The number of input moments is 2

Table 2 Identification results of cs for PINNs with L-LAAF
algorithm and learning rate decay (lr = 6 × 10−3 in the first
30,000 Adam iterations, lr = 6×10−4 in the rest 120,000 Adam
iterations) for different number of moments (two moments; four
moments; six moments)

The number
of moments

Identified (Correct
cs = 13940)

Relative
error (%)

6 13905.3 0.2483

4 13455.0 3.4788

2 16514.7 18.4699

fied by clean data, 1% and 10% noise, respectively.
As can be seen from Fig. 11a, the greater the noise
intensity, the slower the loss function decreases and
the larger the overall value of the loss function. Fig-
ure11b and Table 3 indicate the variation curves of
unknown parameter cs in the iterative process and the
identification results of cs under different noise inten-
sity. In the case of clean training data, the relative error
of cs is 0.2483%. In addition, the prediction is robust
even if the training data is corrupted by 10% irrelevant
Gaussian noise, and the relative error of cs is 1.2620%.
Specifically, we observe that the PINNs with L-LAAF
algorithm can accurately identify cs , even when the
training data is corrupted by noise.

In the previous subsections, we have seen the advan-
tages of using PINNs with L-LAAF algorithm and
learning rate decay to solve forward problems. A nat-
ural question is whether this training strategy can play
the same advantage in solving inverse problems. Tover-
ify our conjecture, we still choose a four hidden layers
neural network, each hidden layer has 20 units. The
unknown parameters λ = (cs, M) in Eq. (20) are iden-

tified by using four PINNs training settings (standard
tanh activation and fixed learning rate (lr = 6×10−3),
L-LAAF using the tanh activation and fixed learning
rate (lr = 6×10−3), standard tanh activation and learn-
ing rate decay (lr = 6 × 10−3 in the first 30,000 iter-
ations, lr = 6 × 10−4 in the rest iterations), L-LAAF
using the tanh activation and learning rate decay (the
learning rate is consistent with the third case)), the total
number of iterations is 150,000, and the correspond-
ing inverse problem training results of the system are
shown in Fig. 12.

Figure12a provides the loss function with L-LAAF
using the tanh activation decreases faster and the
convergence value is smaller when the learning rate
remains consistent. In the case of the same activation
function, compared with the fixed learning rate, the
decay of learning rate makes the loss function fluctu-
ate less. Figure12b, c and Table 4 present the varia-
tion curves of unknown parameters λ = (cs, M) in
the iterative process and the recognition results of two
unknown parameters under the four training settings.
Figure12b, c clearly describes that training strategy
of PINNs with L-LAAF and learning rate decay has
the best performance, and the relative errors of cs and
M are 0.0916% and 1.7934%, respectively. And the
PINNs with L-LAAF have higher accuracy in identify-
ing two parameters when the learning rate is consistent.
Furthermore, the learning rate decay can better iden-
tify cs , but the change of learning rate does not have
much effect on the identification of M , indicating that
the relative error of cs is more sensitive to the change
of learning rate than M . In conclusion, it means that
the L-LAAF and the learning rate decay training set-
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Fig. 11 a Loss function; b
Variation of unknown
coefficients cs for PINNs
with L-LAAF algorithm and
learning rate decay
(lr = 6 × 10−3 in the first
30,000 Adam iterations,
lr = 6 × 10−4 in the rest
120,000 Adam iterations)
for training data with
different noise levels

Table 3 Identification results of cs for PINNs with L-LAAF
algorithm and learning rate decay (lr = 6 × 10−3 in the first
30,000 Adam iterations, lr = 6×10−4 in the rest 120,000 Adam
iterations) for training data with different noise levels

Noise intensity Identified (Correct
cs = 13940)

Relative
error (%)

Clean data 13905.3 0.2483

1% noise 13904.2 0.2561

10% noise 13764.0 1.2620

ting contribute to the rapid learning process of PINNs
related to inverse problems.

Finally, we discuss the two-parameter identification
of the system with clean data, 1% and 10% noise,
respectively. The network structure is composed of four
hidden layers with 20 neurons in each layer, and the
training strategy of L-LAAF and learning rate decay is
adopted. The results after 150,000 iterations of train-
ing are shown in Fig. 13. As schematically illustrated
in Fig. 13a, the corresponding loss function decreases
more slowly with the increase in noise intensity. Fig-
ure13b, c and Table 5 summarize the changes of
unknown parameters cs and M along with the itera-
tive process and the identification results of cs and M .
We can clearly understand that although the training
data is destroyed by 1% irrelevant Gaussian noise, the
relative error of cs is 0.4405%, and the relative error
of M is 3.4452%, indicating that the PINNs with L-
LAAF algorithm and the learning rate decay appear to
be very robust with respect to noise levels in the data.
For 10% noise of the data, the identification results of
parameter cs and M have relative errors of 2.1178%
and 2.4859%, respectively, which points out that the
parameter identification method has strong robustness

to data with noise. And the identification of M is less
sensitive to the influence of noise intensity than the
identification of cs . Specifically, we observe that train-
ing strategy of PINNs with L-LAAF and learning rate
decay can also correctly identify unknown parameters
cs and M with high accuracy, even if the training data
is corrupted by noise.

Figure13a illustrates that the corresponding loss
function decreases more slowly with the increase in
noise intensity. Figure13b, c and Table 5 show the
changes of unknown parameters cs and M along with
the iterative process and the identification results of
parameters cs and M . We can clearly understand that
although the training data is destroyed by 1% irrele-
vant Gaussian noise, the relative errors of cs and M are
0.4405% and 3.4452%, respectively, indicating that the
prediction is still robust. For data with 10%, the rela-
tive error of cs is 2.1178% and the relative error of M is
2.4859%, which imply that the PINNs with L-LAAF
algorithm have strong robustness to data with noise,
and the identification of M is less sensitive to the influ-
ence of noise intensity than that of cs . Specifically, we
observe that the PINNswithL-LAAFalgorithmand the
learning rate decay can also correctly identify unknown
parameters cs and M with very high accuracy, even if
the training data is corrupted by noise.

6 Conclusion

In this paper, we demonstrated a successful approach
to solving the parameter identification problem of crit-
ical interest in aircraft systems. Specifically, we intro-
duced and validated a PINNs framework with L-LAAF
and learning rate decay strategy. Compared to the
original PINNs, this improved framework effectively
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Fig. 12 a Loss function; bVariation of unknown coefficients cs ;
(c) Variation of unknown coefficients M for four different train-
ing strategies (standard tanh activation function and fix learn-

ing rate; L-LAAF and fixed learning rate; standard tanh activa-
tion function and learning rate decay; L-LAAF and learning rate
decay)

Table 4 Identification results of cs and M for four different training strategies (standard tanh activation function and fix learning rate;
L-LAAF and fixed learning rate; standard tanh activation function and learning rate decay; L-LAAF and learning rate decay)

Training strategy Identified
(Correct
cs = 13940)

Relative error of
cs (%)

Identified
(Correct
M = 25345)

Relative error of
M (%)

Standard+fixed lr 13633.2 2.2011 26570.2 4.8339

L-LAAF+fixed lr 13696.7 1.7452 25939.0 2.3438

Standard+lr decay 13871.2 0.4934 27031.7 6.6519

L-LAAF+lr decay 13927.2 0.0916 25799.5 1.7934

Fig. 13 a Loss function; bVariation of unknown coefficients cs ;
c Variation of unknown coefficients M for PINNs with L-LAAF
algorithm and learning rate decay (lr = 6 × 10−3 in the first

30000 Adam iterations, lr = 6×10−4 in the rest 120,000 Adam
iterations) for training data with different noise levels

enhanced network convergence and achieved higher
accuracy. Our findings have been fully validated using
MC numerical simulations. Additionally, we devel-
oped an improved PINNs framework for studying the
probability density of the transient response of the air-
craft system under uneven runway. We systematically
investigated the impact of distribution of initial train-

ing points on prediction accuracy. Finally, we utilized
the improved PINNs to solve the identification prob-
lem of damping coefficients and body mass parame-
ters in the system. Notably, our results showed that,
under consistent total input points, the relative error
of the identification results of unknown parameter cs is
smaller when the training points are distributed at more
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Table 5 Identification results of cs and M for PINNs with L-LAAF algorithm and learning rate decay (lr = 6×10−3 in the first 30,000
Adam iterations, lr = 6 × 10−4 in the rest 120,000 Adam iterations) for training data with different noise levels

Noise intensity Identified
(Correct
cs = 13940)

Relative error of
cs (%)

Identified
(Correct
M = 25345) (%)

Relative error of
M (%)

Clean data 13927.2 0.0916 25799.5 1.7934

1 noise 14001.4 0.4405 26218.2 3.4452

10 noise 13644.7 2.1178 25975.1 2.4859

moments. Furthermore, even when the training data
was corrupted by 10% irrelevant Gaussian noise, our
method accurately identified the parameters, demon-
strating strongnoise robustness of the improvedPINNs.
We believe that further development of the improved
PINNs for parameter identification in aircraft systems
can enhance modeling accuracy, accelerate the param-
eter identification process, widen design possibilities
and provide valuable design guidance.
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