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Abstract Defects in the bearings greatly affect

vibrations and performances of rotating transmission

systems. Moreover, most previous works estimated

the defect shape as a regular shape. However, the

actual defect shape is not actually regular. To obtain

more accurate vibration characteristics of a defective

double row cylindrical roller bearing, an irregular-

shaped defect modeling method and a dynamic model

of double row cylindrical roller bearing with irregular-

shaped defects are proposed in this paper. The

dynamic model includes all components and their

interactions. A test verification is proposed to validate

the established model. The effects of the bearing load,

rotating speed, and different independent shape defect

sizes on the double row cylindrical roller bearing

vibrations are investigated. The comparisons of

vibrations between the irregular defect shape and

simplified defect shape are studied. The results show

that the simplified defect shape model will cause the

vibrations to be overestimated. The established

dynamic model with the actual defect is more

reasonable than the simplified defect model. More-

over, this paper can provide a comprehensive analyt-

ical method for double row cylindrical roller bearing

vibrations.
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F1x/y
in and

F2x/y
in

The total contact forces between

roller and inner ring of first and

second rows in the X/Y direction

Fdx1
in and

Fdx2
in

The damping forces of first and

second rows between the inner ring

and roller in the X direction

Fdy1
in and

Fdy2
in

The damping forces of first and

second rows between the inner ring

and roller in the Y direction

Fx
out and Fy

out The forces of bearing

F1x/y
out and

F2x/y
out

The total contact forces between the

first and second rows of roller and

inner ring

Fdx/y1
out and

Fdx/y2
out

The damping forces of the first and

second rows between the outer ring

and roller

Fcx and Fcy The components of impact between

the cage and roller

Fcj and fcj The roller-cage impact and friction

forces

k Time-varying contact stiffness

km The friction coefficient

kh The radial contact stiffness

ks The contact stiffness of radial

kc The roller-cage contact stiffness

L The width of defect

Ls and hs The defect length and depth

L1 The cage guide surface width

min The inner ring mass

mout The outer ring mass

mc and Ic The cage mass and rotational inertia

mr and ur The roller mass and the angular

displacement of roller around the

roller center

Pj
out The contact coefficient between the

roller and outer ring

xin and yin The inner ring displacement

xj
r and yj

r The j-th roller displacements

xout and yout The outer rings displacements

xj
r and yj

r The j-th roller displacements

mL and mh The ratios of the defect length and

depth

Z The roller number of one row of

DCRB

dc The roller-cage contact deformation

hcage The cage angular displacement

hr The angular displacement of roller

around the bearing center

dj
out The deformation between the outer

ring and j-th roller

Abbreviations

TVCS Time-varying contact stiffness

ECL The effective contact length

1 Introduction

Roller bearings are the essential components of

rotating transmission systems. A higher failure rate

of double row cylindrical roller bearings is caused by

rough operation conditions. 30% faults of rotating

machinery are caused by the bearings [1]. The defects

in the double row cylindrical roller bearings will cause

safety problems for the whole system. It is useful to

study the dynamics of defective double row cylindri-

cal roller bearings, especially for the defects with the

actual shapes rather than the simplified shapes

including the rectangles and circles.

Many researchers have conducted different

dynamic models and detection methods of local

defects in the bearings [2–9]. Liu et al. [10, 11]

established dynamic models of bearing with the defect

including the time-varying contact stiffness (TVCS),

edge shapes of the defect, and rotor deformations on

the vibrations. In their works, they modeled the defect

with a rectangle shape. Chen and Kurfess [12]

established a dynamic model to estimate the effects

of rectangle shape defect sizes on bearing vibrations.

Gao et al. [13] modeled the defect with a rectangle

shape and investigated the bearing dynamics of the

bearing including the defect on the rings. Cao et al.

[14] established a defect model with a rectangle shape

and introduced the defect model to the bearing

dynamic model to investigate the effects of deflections

and defects on the bearing vibrations. Niu et al. [15]

presented a dynamic model of roller bearing including

the bearing slipping, size, and defect of roller. They

also modeled the roller defect with a rectangle shape.

Liu and Wang [16] gave a dynamic model including

the defect roughness to analyze the effect of the

roughness on the vibrations. The defect was also

modeled with the rectangle shape [17]. Arslan and

Aktu [18] conducted a dynamic model including the

rectangle shape defect of ball to evaluate the effect of

the defect on the vibrations. Patil et al. [19] gave a

bearing dynamic model including the rectangle shape
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defect to detect the defect vibrations. Patel and

Upadhyay [20] gave a bearing model including the

deflection of roller, clearance, and rectangle shape

defect of roller. Patra et al. [21] introduced the

dynamic model of bearing-rotor system including the

rotor unbalance forces to discuss the vibrations. Ali

et al. [22] presented a combinedmodel using the mass-

lumped and finite element models of roller bearing

with the rectangle shape defect. Jiang et al. [23] gave a

method to describe the roller movement during the

defect area taking into account the ring groove radius.

Francesco et al. [24] conducted experiments on

bearings with different sloped defect edges. They

pointed the defect edge characteristics have a remark-

able effect on the bearing vibrations. Wang et al. [25]

presented an improved defect modeling model by

analyzing the bearing vibration and acoustic signals. It

can be found that all the above studies use the

rectangle shape to model the bearing defect. More-

over, some scholars used hexagons [26], bias rectan-

gles [27], three-dimensional cubic [23, 28], and

circular shapes [26] to establish the bearing defect.

However, unfortunately, they still use regular shapes

to model the bearing defect.

Through the above analysis, it can be found that

most previous works focused on studying the single-

row bearing dynamic modeling method. The double

row cylindrical roller bearings have a more complex

structure, which will cause different dynamic charac-

teristics. Moreover, most previous works simplified

the defects to a regular shape to estimate the vibrations

of the bearing. In fact, the actual defects are irregularly

shaped. The regular shapes cannot accurately describe

the shape of the bearing defect. Only by getting rid of

the restriction of regular shapes can we accurately

describe faults. In this paper, an irregular shape defect

modeling method and a dynamic model of a double

row cylindrical roller bearing with irregular shape

defects are proposed. The dynamic model considers

the supporting stiffness of the outer ring and the

dynamics of the cage, making it better able to reflect

the dynamics of the bearing. Moreover, the proposed

dynamic model can be used to study the special

dynamics of double row cylindrical roller bearings. In

addition, for obtaining accurate calculation results of a

defective double row cylindrical roller bearing, the

defect shape should be the actual shape rather than the

simplified shape, which was not considered in the

previous studies. The effects of the bearing load,

rotating speed, and different independent defect

shapes on the vibrations are studied. The comparisons

of vibrations between the independent defect shape

and simplified defect shape are discussed.

2 An irregular defect shape model for double row

cylindrical roller bearings

The dynamics of double row cylindrical roller bear-

ings have strong nonlinearities. Firstly, the contact

between the roller and the ring is Hertzian contact

theory, and the relationship between the contact force

and contact deformation is not linear. Secondly, the

revolution of the bearing roller causes changes in the

loaded area, which intensifies the non-linearity of the

bearing. In addition, the bearing clearance is also one

of the sources of bearing nonlinearity. Finally, when

the bearing has a defect, especially in the case of an

irregular shape defect, the contact deformation and

contact stiffness between the roller and ring in the

defect area are both nonlinear, which exacerbates the

nonlinearity of the bearing [29, 30]. In this work, the

nonlinearity sources mentioned above are all consid-

ered, and a dynamic model of a double row cylindrical

roller bearing with an irregular shape defect is

proposed.

2.1 Modeling irregular defect shape

Figure 1 gives independent and simplified defect

profiles. The defect edge will generate elastic defor-

mation when the roller contacts with the defect [31],

which will change the contact characteristics between

the roller and the defective ring. However, the effect of

defect edge elastic deformation on the bearing vibra-

tion is not the study focus of this work. Thus, the

elastic deformation of the material at the defect edge is

not considered in this work. Because of the decrement

of material of the defect zone on the ring surface, the

roller ECL between the roller and ring will decrease. It

can cause the TVCS features. The modeling method of

TVCS caused by the defect is as follows. (1) The

effective contact length (ECL) between the roller and

ring should decrease. (2) The ring cross-section area

and the area moment of inertia are changed [32, 33].

For simulating the time-varying stiffness features

caused by the defect, the main issue is the method for

simulating the changes in ECL and cross-section
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characteristics. The traditional defect modeling sim-

ulated the shape of a defect by simplifying the shape of

defect to be a rectangle and a circle. The simplified

form was used to simulate the ECL and cross-section

characteristics and calculate the TVCS features

between the roller and ring. In fact, the simplified

shape methods are not accurate as discussed in the

above descriptions.

In the model of independent defect shape, the ECL

and cross-section characteristics are represented by

the function rather than the constant values. Therefore,

Le = fL(h), A = fA(h), and I = fI(h); where Le is the

ECL; A and I are the cross-section area and the

moment of inertia; fL(h), fA(h), and fI(h) are the

expressions of ECL, cross-section area, and moment

of inertia; h is the angular displacement given in

Fig. 1b. The values of fL(h), fA(h), and fI(h) are based
on the severity of defect.

Two rectangles BCDE and B’C’DE are given in

Fig. 1c, which are used to explain the changes in the

defect area. Then, fA(h) and fI(h) are

fAðhÞ ¼ SBCDE ¼ LhaðhÞ ð1Þ

fIðhÞ ¼ IB0C0DE ¼ hIðhÞ3L
12

ð2Þ

where SBCDE is the area of rectangle BCDE; ha(h) is
the rectangle BCDE height; IB’C’DE and hI(h) are the

rectangle B’C’DE moment of inertia and height; and

L is the width of the roller.

For the simple rectangular defects, the cross-section

area at h is

Fig. 1 A diagram of a defect profile, b circle cross-section profile of rectangular defect, and c radial cross-section profile of defect
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Ah ¼ 2Lshz � Lshs h 2 ½ hstart; hend� ð3Þ

where Ls and hs are the defect length and depth. The

change (dx) of neutral axis of inertia moment is

dx ¼
ðhz � 1=2hSÞLShS

Ah
ð4Þ

Then, the inertia moment of neutral axis A’F’ for

the defect condition is

Ih ¼
2Lh3z
3

þ 2Lhzdx � ðLsh
3
s

12
þ Lshsðhz � 0:5hz þ dxÞ2Þ h 2 ½hstart; hend�

ð5Þ

Therefore, the corresponding thickness of rectangle

ha(h) and corresponding inertia moment of rectangle

hI(h) are

haðhÞ ¼
Ah

L
ð6Þ

hIðhÞ ¼ ð12Ih
L

Þ
1
3 ð7Þ

Equations (1) and (2) can be also written as

fAðhÞ¼ 2Lshz � Lshs h 2 ½ hstart; hend� ð8Þ

fIðhÞ ¼ 2Lh3z
3

þ 2Lhzdx � ðLsh
3
s

12
þ Lshs

ðhz � 0:5hz þ dxÞ2Þh 2 ½hstart; hend�
ð9Þ

The defect coefficients are

mL ¼ Ls
L

ð10Þ

mh ¼
hs
2hz

ð11Þ

where mL and mh are the ratios of the defect length and

depth at h. Based on Eqs. (3) to (9), the effective

section area is

Ah ¼ 2Lhzð1� mLmhÞ ð12Þ

Based on Eqs. (6) to (7), the equivalent inner ring

thickness ha(h) is

haðhÞ ¼ 2ð1� mLmhÞhz ð13Þ

Based on Eqs. (5) to (9), the inertia moment of the

rectangle hI(h) is

hIðhÞ ¼ 2hzðKIÞ
1
3 ð14Þ

KI¼
1�m5hm

3
Lþð4m2h�6m3h�5m4hÞm2L�ð5mhþ4m3hþ�6m2hÞmL

ð1�mLmLÞ2

ð15Þ

Therefore, the relation between ha(h) and hI(h) is

haðhÞ ¼ KrhcðhÞ ð16Þ

Kr ¼
K

1
3

I

1� mLmL
ð17Þ

Based on the defect coefficient mL and mh, the ECL,
cross-section area, and moment of inertia are

LeðhÞ ¼ Lð1� mLÞ ð18Þ

Ah ¼ LhcðhÞ ¼ 2Lð1� mLmLÞhx ð19Þ

Ih ¼
hIðhÞ3L

12
¼ ðhIðhÞÞ3KIL

12
ð20Þ

Equations (16) to (18) can be used for the healthy

and defective conditions. When the ring is healthy,

mL = 0 and KI = 1; When the shape of defect is

complex, mL is a function of h; and mh is the function of
defect depth.

2.2 Calculating TVCS of defect with an irregular

shape

The contact relationship of the double row cylindrical

roller bearing is given in Fig. 2. When the ring has a

defect, the roller-ring contact line will be discontin-

uous. The actual ECL is less than the roller length. The

change of ECL will cause the TVCS changes, which

affect the vibrations of the double row cylindrical

roller bearing.

Fig. 2 A diagram of the roller-ring contact relationship
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In previous studies, most researchers defined the

defect shapes as regular, square, or circular ones. In

actual situations, the shape of defect is complex and

irregular. To solve this question, the TVCS calculation

method of the defect with the independent shape of a

double row cylindrical roller bearing is proposed.

Compared with different stiffness calculation meth-

ods, the Palmgren’s stiffness calculation method is

simple and accurate [34–36], which is

k ¼ 8:06� 104L
8
9
e ð21Þ

where Le is the roller effective contact length.
During the processing of roller through the defect

area, there are two cases: (1) the roller-ring deforma-

tion is less than the defect depth. (2) The roller-ring

deformation is bigger than or equal to the defect depth.

There will be a displacement jump for the roller at this

moment.

When the roller-ring deformation is less than the

defect depth, as shown in Fig. 3a, there are three cases:

(1) when the roller is coming into the defect, the ECL

changes to be smaller than the roller length (because of

the existence of defect); (2) when the roller is located

into the defect, because the defect depth is large and

the time-varying contact deformation is small, the

surface of roller doesn’t contact with the defect

bottom; thus, the part of roller cannot be supported

by the ring; (3) when the roller is coming out the

defect, the ECL changes to be equal to the one of

health condition.

In case 1, the ECL changes to be equal to the one of

health condition. The TVCS is

k ¼ 8:06� 104L
8
9 ð22Þ

In case 2, the defect depth is large; and the time-

varying contact deformation is small, the surface of

roller does not touch the bottom of defect. The TVCS

is

k ¼ 8:06� 104ðL� LsÞ
8
9 ð23Þ

The TVCS of case 3 is the same as that case 2.

In Fig. 3b, the roller-ring deformation is bigger

than or equal to the defect depth. For cases 1 and 3, the

deformation of roller and defect is less than the defect

depth. For case 2, the roller-ring deformation is bigger

than the defect depth. The roller will contact with the

bottom of defect. Therefore, the ECL is approximately

equal to the ECL of health conditions. However, the

roller has a displacement at this defect. The deforma-

tions of inner/outer ring of jth roller are

dinj ¼ xin�xrj

h i
coshjþ yin�yrj

h i
sinhj�Cr

doutj ¼ xrj�xout�hxs

h i
coshjþ yrj�yout�hxy

h i
sinhj�Cr

8<
:

ð24Þ

Fig. 3 a Roller-ring

deformation is less than the

defect depth and b roller-

ring deformation is bigger

than or equal to defect depth
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where, xin and yin are the inner ring displacements in

x and y directions; xout and yout are the outer ring

displacements in x and y directions; xj
r and yj

r are the

jth roller displacements in x and y directions; hj and Cr

are the jth roller position angle and bearing clearance;

hxs and hys are the defect depth. Those two situations in

this paper can be simulated by the above methods.

The time-varying effective length and depth are

used to describe the defect precisely at some moment.

The irregular defect is depicted in Fig. 4. Because of

the irregular shape of defect, the effective length and

the depth are not a constant rather than a function in

this paper. The discrete sampling and fitting methods

are used to obtain the length and depth of defects. In

Fig. 4, l1 to ln is the discrete length of defect at

different positions; h1 to hn is the discrete depth of

defect at different positions. Therefore, the functions

of length and depth are

LsðhÞ¼anh
nþan�1h

n�1þ���þa2h
2þa1hþa0 h2½hstart;hend� ð25Þ

hsðhÞ¼bnh
nþbn�1h

n�1þ���þb2h
2þb1hþb0 h2½hstart;hend� ð26Þ

where, a0-an and b0-bn are the constant of fitting

function, which can be obtained by using the polyfit

function in MATLAB. In this work, the defect is

divided into six segments for fitting, with 113

sampling points given for each segment, the fitted

defect length function is

LsðhÞ¼

L�16� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:6�10�5�

1:6695�10�3 h�h1ð Þ
h2�h1

þ1:1589�10�3

� �2

vuuuut

0
BBBB@

þ3:8284�10�3
�

h1�h\h2

L�1:6�10�2 h2�h\h3

L�16� 1�10�3þ h�h3
h4�h3

�7:071�10�4

� �2
 !

h3�h\h4

L�16�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�10�6� h�h4

h5�h4
�1:4142�10�3�7:071�10�4Þ2

� �s  

þ1:7071�10�3�7:071�10�4
�

h4�h\h5

L�16� 1:7071�10�3� h�h5
h6�h5

�7:071�10�4

� �� �
h5�h\h6

L�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�10�6� h�h4

h5�h4
�10�3

� �2
s

h6�h\h7

:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð27Þ

where h1 = 4.6148; h2 = 4.6311; h3 = 4.6457;

h4 = 4.7795; h5 = 4.7933; h6 = 4.8002; h7 = 4.8099;

moreover, the defect depth in this work is assumed to

be constant, which is 20 lm.

3 A dynamic model of the double row cylindrical

roller bearing

Figure 5 gives the geometrics of the double row

cylindrical roller bearing. The double row cylindrical

roller bearing has two rows of rollers that share a

common inner ring and outer ring, and two cages.

Moreover, each row roller has its own motion state,

Fig. 4 A diagram for the irregular defect profile
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and the motions are independent of each other. The

bearing rollers contact with the inner ring, outer ring,

and the cage beam. The cage will contact with the

outer ring. Due to the significant changes in the roller’s

rotational speed when entering and exiting the load

zone, there can be a difference in between the roller

rotational speed about the bearing axis and the cage

rotational speed, leading to impacts between them.

Additionally, due to the roller rotation about its own

axis, there will be tangential friction forces generated

during the impact moment. The model of double row

cylindrical roller bearing established in this work

includes roller translation displacements along x and

y axes, rotational displacements about z axis and its’

own axis, inner/outer ring translation displacements

along x and y axes, cage translation displacements

along x and y axis, and cage rotational displacements

along z axis. The dynamic model is comprehensive

and can consider the interaction forces between all

components.

3.1 Inner ring kinetic equations

The kinetic equations of inner ring are

min €xin¼�ksxin�Fin
1x�Fin

2xþf in1xþf in2x�Fin
dx1�Fin

dx2

min €yin¼�ksyin�Fin
1y�Fin

2yþf in1yþf in2y�Fin
dy1�Fin

dy2

�

ð28Þ

where,min is the inner ring mass; xin and yin and are the

inner ring displacement; ks is the contact stiffness of

radial; F1x/y
in and F2x/y

in are the total contact forces

between roller and inner ring of first and second rows

in the X/Y direction; f1x/y
in and f2x/y

in are the total

frictional forces between roller and inner ring of first

and second rows in the X/Y direction; Fdx1
in and Fdx2

in

are the damping forces of first and second rows

between the inner ring and roller in the X direction;

moreover, Fdy1
in and Fdy2

in are the damping forces of

first and second rows between the inner ring and roller

in the Y direction; Moreover,Fix
in andFiy

in are [37, 38]

Fin
ix

Fin
iy

� �
¼
PZ
j¼1

Kiðdinj Þ
nPin

j

h i
cos hj
sin hj

� �
i ¼ 1; 2 ð29Þ

where hj is the jth roller position angle; Ki is the TVCS

between the roller and inner ring; n = 10/9; the inner

ring contact coefficients Pj
in is

Pin
j ¼

0 dinj \0

1 dinj [ 0

(
ð30Þ

where the deformation of inner rings of jth roller dj
in is

dinj ¼ ½xin � xrj � cos hj þ ½yin � yrj � sin hj � Cr ð31Þ

where xj
r and yj

r are the jth roller displacements; Cr is

the bearing radial clearance; and the roller position

angle hj is

hj ¼ hcþ 2pðj� 1Þ
Z

j ¼ 1; 2; . . .; Z ð32Þ

where hc is the cage angular displacements; Z is the

roller number of one row of double row cylindrical

roller bearing; f1x/y
in and f2x/y

in are the friction forces

of first and second rows between the inner ring and

roller, which are

f inix
f iniy

� �
¼
PZ
j¼1

½kmKiðdinj Þ
nPin

j �
cos hj
sin hj

� �
i ¼ 1; 2

ð33Þ

where km is the friction coefficient. moreover, Fdx/y1
in

and Fdx/y2
in are

Fin
dxi

Fin
dyi

� �
¼
PZ
j¼1

½cc _dinj Pin
j �

cos hj
sin hj

� �
i ¼ 1; 2 ð34Þ

Fig. 5 A diagram of the

geometrics of a double row

cylindrical roller bearing
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where cc is the contact damping ratio.

3.2 Outer ring kinetic equations

The kinetic equations of outer ring are

mout €xout¼Fout
1x þFout

2x �Ch _xout�khxoutþf out1x þf out2x þFout
dx1þFout

dx2�Fout
x

mout €yout¼Fout
1y þFout

2y �Ch _yout�khyoutþf out1y þf out2y þFout
dy1þFout

dy2�Fout
y

�

ð35Þ

where, mout is the outer ring mass; Fx
out and Fy

out are

the external forces between the roller and bearing

outer ring; xout and yout are the outer rings displace-

ments; Ch is the damping ratio of radial; kh is the radial

contact stiffness; f1x/y
out and f2x/y

out are the total

frictional forces between the first and second rows of

roller and outer ring; F1x/y
out and F2x/y

out are the total

contact forces between the first and second rows of

roller and outer ring, which are

Fout
ix

Fout
iy

� �
¼
PZ
j¼1

Keðdoutj ÞnPout
j

h i
cos hj
sin hj

� �
i ¼ 1; 2

ð36Þ

where Ke is the contact stiffness between the roller and

the outer ring; the contact coefficient between the

roller and outer ring Pj
out is

Pout
j ¼ 0 doutj \0

1 doutj [ 0

(
ð37Þ

where the deformation between the outer ring and j-th

roller dj
out is

doutj ¼ ½xrj � xoutj � cos hj þ ½yrj � youtj � sin hj ð38Þ

where xj
out and yj

out are the outer ring displacements;

xj
r and yj

r are the jth roller displacements; f1x/y
out and

f2x/y
out are the friction forces of the first and second

rows between the inner ring and roller, which are

f outix

f outiy

� �
¼
PZ
j¼1

½kmKeðdoutj ÞnPout
j � cos hj

sin hj

� �
i ¼ 1; 2

ð39Þ

where Fdx/y1
out and Fdx/y2

out are the damping forces of

the first and second rows between the outer ring and

roller, which are

Fout
dxi

Fout
dyi

� �
¼
PZ
j¼1

½cc _doutj Pout
j � cos hj

sin hj

� �
i ¼ 1; 2 ð40Þ

where cc is the contact damping ratio.

3.3 Cage kinetic equations

Figure 6 gives the relative motion between the cage

and roller. The kinetic equations of outer ring are

mc €xic ¼
PZ
j¼1

ð�FicxðjÞ þ ficxðjÞÞ þ Fd
icx i ¼ 1; 2

mc €yic ¼
PZ
j¼1

ð�FicyðjÞ � ficyðjÞÞ þ Fd
icy i ¼ 1; 2

Ic€hic ¼
PZ
j¼1

ð�Fic � 0:5DmÞ þMc i ¼ 1; 2

8>>>>>>><
>>>>>>>:

ð41Þ

where Fcx and Fcy are the components of impact

between the cage and roller; fcx and fcy are the friction

forces between the cage and roller; mc and Ic are the

cage mass and rotational inertia; moreover, Ficx
d,

Ficy
d, and Mc are

Fd0

icx ¼
�g0u1L

3
1e

2

C2
gð1� e2Þ2

i ¼ 1; 2

Fd0

icy ¼
pg0u1L

3
1e

4C2
gð1� e2Þ3=2

i ¼ 1; 2

M0
c ¼

2pg0V1R
2
1L1

Cg

ffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p i ¼ 1; 2

8>>>>>>>><
>>>>>>>>:

ð42Þ

Fig. 6 The relative motion between cage and roller
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where the lubricating oil traction speed is u1 = R1(-

xo ? xc); L1 is the cage guide surface width; Cg is the

cage guide surface clearance; e is the cage eccentric-

ity; the relevant parameters are explained in Refs.

[39–42].

The resultant forces and moment Ficx
d, Ficy

d, and

Mc are

Mc

Fd
icx

Fd
icy

8<
:

9=
; ¼

1 0 0

0 cos/c � sin/c

0 sin/c cos/c

2
4

3
5

M0
c

Fd0
icx

Fd0
icy

8<
:

9=
; ð43Þ

where, uc = arctan(yc/xc). Fcj and fcj are the roller-

cage impact and friction forces. The roller-cage

contact is simplified into the spring, and the roller-

cage impact force is

FicðjÞ ¼ kicðjÞdicðjÞ i ¼ 1; 2 ð44Þ

where kc is the roller-cage contact stiffness; the roller-

cage contact deformation dc is

dcðjÞ ¼
zcðjÞ � Cp zcðjÞ � Cp

		 		[ 0

0 zcðjÞ � Cp

		 		 ¼ 0

�
ð45Þ

where Cp is the cage pocket clearance; the roller-cage

angular displacement difference zj is

zjðjÞ ¼ hcage � hj

 �Dm

2
þ yc cos hj þ zc sin hj ð46Þ

where hcage is the cage angular displacement.

The roller-cage frictional force is

fcðjÞ ¼ lcðjÞFcðjÞ ð47Þ

lcðjÞ ¼ ð�0:1þ 22:28SðjÞÞe�181:46SðjÞ þ 0:1 ð48Þ

where S is the slide-roll ratio of j-th roller. The

components of Fc are

FicxðjÞ ¼ FicðjÞ sinðhjÞ i ¼ 1; 2
FicyðjÞ ¼ FicðjÞ cosðhjÞ i ¼ 1; 2

�
ð49Þ

Therefore, the components of fc are

ficxðjÞ ¼ ficðjÞ cosðhjÞ i ¼ 1; 2
ficyðjÞ ¼ ficðjÞ sinðhjÞ i ¼ 1; 2

�
ð50Þ

3.4 Roller kinetic equations

In operation, the roller motion is affected by the

bearing cage and rings. The forces applied on the roller

are given in Fig. 7. Fj
in and Fj

out are the double row

cylindrical roller bearing contact forces; Fdj
in and

Fdj
out are the oil film resistances between the ring and

j-th roller; fj
in and fj

out are the friction forces between

the rings and j-th roller; Fcj and fcj are the roller-cage

impact and friction forces.

The kinetic equations of roller are

mr €x
r
j¼Fin

ix ðjÞ�Fout
ix ðjÞþFin

dxiðjÞ�Fout
dxi ðjÞ�f iniy ðjÞþf outiy ðjÞ�FicxðjÞþficxðjÞ

mr €y
r
j¼Fin

iy ðjÞ�Fout
iy ðjÞþFin

dyiðjÞ�Fout
dyi ðjÞþf inix ðjÞ�f outix ðjÞþFicxðjÞþficxðjÞ

Ir €/ir¼0:5ðf outi ðjÞþf ini ðjÞ�ficðjÞÞd
Ior €hir¼0:5ðDoutf

out
i ðjÞ�Dinf

in
i ðjÞ�DmðFicðjÞþFidðjÞÞÞ

8>>><
>>>:

ð51Þ

where mr and ur are the roller mass and the angular

displacement of roller around the roller center; hr is the
angular displacement of roller around the bearing

center.

4 Results and discussions

4.1 Experimental validation

The dynamic model with the independent defect shape

of double row cylindrical roller bearing can be used to

calculate the vibrations of inner/outer ring, roller, and

cage. A double row cylindrical roller bearing NN3007

of SKF is used to simulate the vibrations. The NN3007

bearing structural parameters are depicted in Table 1.

Fig. 7 Forces applied on the roller
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The stiffness calculation method given by Palm-

gren can calculate the roller-ring contact stiffness. The

contact stiffnesses between the roller and outer/inner

ring are 1.898 9 108 N/mn and 1.828 9 108 N/mn.

The damping ratio between the roller and ring is

200 Ns/m. The initial velocities of roller and ring are

0 m/s. The initial displacements of roller and ring are

10-6m and 10-6m in the X and Y directions.

Figure 8a gives the test instrument named BVT-5.

The double row cylindrical roller bearing is mounted

on the shaft. The shaft is driven by the electric motor

and the rotational speed of the shaft is 1800 r/min. The

external force is applied by two loading arms

symmetrically distributed along the axis. The radial

load is loaded by the force application arm. The

acceleration sensor (PCB-352C04) is installed on the

bearing outer ring in the X direction. The LMS system

and computer are used to acquire the vibration signals

of the double row cylindrical roller bearing. The

sampling frequency is set to 25,600 Hz. The bearing is

NN3007. The radial load is 300 N. To verify the

accuracy of model, the rectangle defect (3 mm 9 4

mm) in Fig. 8b, the circular defect (diameter 4.5 mm)

in Fig. 8c, and the defect with the independent shape

in Fig. 8d are studied. The effective roller lengths

when the roller rolls over the rectangle defect, the

circular defect, and the defect with the independent

shape are given in Fig. 9.

4.1.1 Case study: rectangle defect

The comparisons of outer ring accelerations in the

X direction between the experimental and simulated

are given in Fig. 10. In Fig. 10a and b, the defect

frequencies of outer ring from the simulated and

experimental are 249.60 Hz and 250.97 Hz. Their

difference is 0.55%. In Fig. 10c, the simulated results

are familiar to the experimental ones. Figure 10d gives

the comparisons of the acceleration impacts when the

roller enters and exits the defect area between the

simulated and experimental results. The simulated

results are familiar with the experimental ones, which

can validate the proposed model.

4.1.2 Case study: circular defect

The comparisons of accelerations of outer ring in the

X direction from the experimental and simulated are

plotted in Fig. 11. In Fig. 11a and b, the defect

frequencies of outer ring of simulated and experimen-

tal are 250.39 Hz and 249.23 Hz. Their error is

0.467%. In Fig. 11c, the simulated results are familiar

to the experimental ones. Figure 11d gives the com-

parisons of the acceleration impacts when roller enters

and exits the defect area between the simulated and

experimental accelerations. The simulated results are

familiar with the experimental ones, which can also

validate the proposed model.

4.1.3 Case study: defect with an irregular shape

The comparisons of accelerations of outer ring in the

X direction between the experimental and simulated

results are given in Fig. 12. In Fig. 12a and b, the

defect frequencies of outer ring of simulated and

experimental are 249.40 Hz and 250.21 Hz, respec-

tively. Their error is 0.32%. In Fig. 12c, the simulated

results of dynamic model are familiar with the

experimental ones. Figure 12d gives the comparisons

of the acceleration impacts when roller enters and exits

the defect area between the simulated and experimen-

tal ones. Similarly, the simulated results are familiar

with the experimental results, which can validate the

proposed model too.

Table 1 NN3007 bearing structural parameters

Parameter Value

Inner ring diameter of/Di 43 mm

Outer ring diameter/Do 55 mm

Pitch diameter/Dm 49 mm

Roller diameter/d 6 mm

ECL of roller/l 6 mm

Number of roller/Z 19 9 2

Radial clearance/Cr 10 lm

Pocket clearance/Cp 0.09 mm

Guide face-cage clearance /Cg 1 mm

Width of guiding land/L1 6 mm

Cage outer diameter 53 mm

Cage inner diameter 45 mm

Cage width/Cw 6 mm

Friction coefficient/l 0.02

Outer ring mass/mout 0.0791 kg

Inner ring mass/min 0.1010 kg

Roller mass/mr 0.0013 kg

Cage mass/mc 0.0148 kg
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4.2 Comparative analysis of vibrations

between irregular and simplified defect shapes

In the following sections, the initial velocities of roller

and ring are their theoretical value under pure rolling

conditions. The initial displacements of roller and ring

are 10-6m and 10-6m in the X and Y directions. The

rotating speed is 1800 r/min. The loads in the X and

Y directions are 300 N and 0 N.

In the previous studies, most researchers defined the

defect shape as the regular shape including the square

or circle, as given in Fig. 13a. This method can

simplify the calculation, but the accuracy is low. The

independent defect is simplified to be a rectangle

(7 mm 9 4 mm) as given in Fig. 13b. The dynamic

models with the simplified and independent defect

models are simulated, respectively.

In Fig. 14a, the acceleration of the simplified defect

is larger than that of the actual defect shape.

Figure 14b gives the comparison of TVCS between

the simplified defect shape and the actual defect shape.

The TVCS of actual defects is more accurate than that

of simplified defects. The comparison of defect impact

between the simplified defect shape and actual defect

shape is given in Fig. 14c. Note that the acceleration

peak value of impact of simplified defect is greater

than that of the actual defect. There are similarities in

the acceleration and impact when the roller enters and

Fig. 8 a A bearing

vibration test instrument

named BVT-5; b a rectangle

defect case, c a circular
defect case; and d the defect

with the independent shape

Fig. 9 Time-varying effective roller length for a the rectangle defect, b the circular defect, and c the defect with the independent shape
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exits the defect. When the roller enters the defect, the

TVCS and ECL of the simplified defect change

greatly, but the TVCS and ECL of the actual defect

change slowly, which makes different impact charac-

teristics. Thus, the model with the actual defect is

more reasonable than that with the simplified defect.

4.3 Effect of irregular defect sizes on double row

cylindrical roller bearing vibrations

To study the effects of independent defect sizes on the

bearing vibrations, the maximum width sizes of

independent defect are 3 mm, 4 mm, and 5 mm, as

shown in Fig. 15. Different maximum width cases

cause different areas and ECLs of the defect. Fig-

ure 16 gives the outer ring accelerations for the

irregular defects with different maximum widths.

Note that the outer ring accelerations increase with the

increment of the maximum width of the defect.

Figure 17 gives the effect of the independent defect

with different maximumwidths on the accelerations of

the inner/ring. Note that the inner/outer ring acceler-

ation RMS values increase with the increment of the

maximum width of the defect. Moreover, the accel-

erations in the X direction are larger than those in the

Y direction.

4.4 Effects of the load and rotating speed

on the double row cylindrical roller bearing

vibrations for irregular-shaped defect

To study the effects of the rotating speed on the DRCB

vibrations, the rotating speeds are 1000 r/min, 2000 r/

min, 3000 r/min, 4000 r/min, and 5000 r/min. The

Fig. 10 Comparisons of the

experimental and simulated

results of outer ring for the

rectangular defect case.

a Simulated spectrum,

b experimental spectrum,

c simulated and

experimental accelerations,

and d simulated and

experimental accelerations

in the defect impact area
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model with the independent defect is used to simulate

the accelerations of DRCB. The maximum width of

the independent defect is 4mm. Figure 18 gives the

effects of the rotating speed on the accelerations of the

inner/outer ring and cage. Note that the rotating speed

can greatly affect the inner/outer ring and cage

vibrations. The inner/outer ring accelerations increase

first and then decrease with the increment of the

rotating speed. The cage accelerations increase with

the increment of the rotating speed.

To illustrate the effect of the load value on the

DRCB vibrations, the load is 500 N, 1000 N, 1500 N,

2000 N, and 2500 N. The model with the independent

defect is used to simulate the accelerations of DRCB.

The maximum width of independent defect is 4 mm.

Figure 19 demonstrates the effect of the load on the

inner/outer ring and cage accelerations. Note that the

load has a remarkable effect on the inner/outer ring

and the cage vibrations. The outer ring acceleration in

the Y direction increases with the increment of the load

value. The outer ring accelerations in the X direction

increase first and then decrease with the increment of

the load value. The inner ring accelerations increase

with the increment of the load value. The cage

accelerations increase first and then decrease with

the increment of the load value.

Fig. 11 Comparison of the experimental and simulated results

of outer ring for the circular defect case. a Simulated spectrum,

b experimental spectrum, c simulated and experimental

accelerations, and d simulated and experimental accelerations

in the defect impact area
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4.5 Model comparison

To further demonstrate the advancement of the

dynamic model and the defect modeling method

proposed in this work, the results obtained by the

proposed method and the method in Ref. [43] are

compared. The defect width is 4 mm. Figure 20a

shows the dynamics obtained by the proposed

dynamic model coupled with the proposed defect

model and the dynamic model in Ref. [43] coupled

with the defect model in Ref. [43]. The RMS value of

the results obtained by the proposed dynamic model

coupled with the proposed defect model is 30.414 m/

s2; while the one of the results obtained by the dynamic

model in Ref. [43] coupled with the defect model in

Ref. [43] is 29.01 m/s2. Figure 20b compares the

result obtained by the proposed dynamic model

coupled with the proposed defect model and the

proposed dynamic model coupled with the defect

model in Ref. [43]. The RMS value of the results

obtained by the proposed dynamic model coupled with

the defect model in Ref. [43] is 32.06 m/s2. Compare

the results obtained by the proposed dynamic model

coupled with the proposed defect model and the

proposed dynamic model coupled with the defect

model in Ref. [43], it can be found that the defect

modeling method in Ref. [43] will cause the simula-

tion results that are higher than the actual results.

Moreover, compare the results obtained by the

proposed dynamic model coupled with the proposed

defect model and the dynamic model in Ref. [43]

coupled with the defect model in Ref. [43], it can be

Fig. 12 Experimental and simulated results of outer ring. a Frequency-domain simulated signal, b frequency-domain experimental

signal, c simulated and experimental accelerations, and d simulated and experimental accelerations in the defect impact area
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found that the result obtained by the proposed dynamic

model is larger than the one obtained by the dynamic

model in Ref. [43], which indicates that the necessity

of considering the supporting stiffness of the outer ring

and the dynamics of the bearing cage. These can

provide some evidence for the advancement of the

proposed dynamic model and defect modeling method

in this work.

5 Conclusions

This paper proposes a novel irregular shape defect

modeling method and a dynamic model of double row

cylindrical roller bearings, taking into account actual

shapes of defects instead of simplified shapes. In this

study, the effects of the bearing load, rotating speed,

and different irregular defect shapes on vibrations

were investigated. To validate the proposed model, a

test was carried out, and the simulated vibrations and

acceleration spectra of outer rings with rectangle

defects, circular defects, and defects with irregular

shapes were compared with experimental results. The

results showed that the model results were in agree-

ment with the experimental results, thus validating the

defect modeling method and the proposed model. The

key findings of the study are:

(1) The proposed irregular shape defect modeling

method and dynamic model accurately simulate

vibrations of double row cylindrical roller

bearings with rectangular, circular, and irregu-

lar-shaped defects.

(2) Rotating speed has a significant impact on the

acceleration RMS and PTP values of the inner/

outer ring, rollers, and cage, with the inner ring

having higher values than the outer ring, and the

roller values increasing with increasing rotating

speed.

(3) The TVCS of the actual defect is more accurate

than that of the simplified defect, with differ-

ences observed in acceleration and impact when

the roller enters and exits the defect. The model

with the actual defect is more reasonable than

that with the simplified defect.

(4) Rotating speed has a significant impact on the

inner/outer ring and cage vibrations, with

acceleration increasing and then decreasing

with increasing rotating speed.

Fig. 13 a Traditional defect shape simplification method and b simplification of independent defect shape
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(5) Load has a significant impact on the inner/outer

ring and cage vibrations, with outer ring accel-

erations in the Y direction and inner ring

accelerations increasing with increasing load

value, and outer ring accelerations in the

X direction and cage accelerations increasing

and then decreasing with increasing load value.

(6) The simplified defect model will cause the

bearing vibrations to be overestimated. The

established dynamic model with the actual

defect is more reasonable than the simplified

defect model.

Fig. 14 Comparisons of a accelerations of outer ring, b TVCS, and c defect impact between the simplified defect shape and actual

defect shape

Fig. 15 Effective roller length when the roller rolls over the

different defects

Fig. 16 Comparisons of accelerations of irregular defects with

different maximum widths
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Overall, the study provides valuable insights into

the effects of rotating speed, load, and defect shape on

double row cylindrical roller bearing vibrations and

demonstrates the importance of considering actual

defect shapes in dynamic models for engineering

applications. However, there are also some aspects

that need to be further studied. First, it is assumed that

the defect morphology is ideal. However, the fault

morphology is rough and uneven actually. The

characteristics of the defect morphology have a

significant impact on the contact stiffness between

the roller and the ring. Besides, the defect edge elasticFig. 17 Effect of the independent defect with different

maximum widths on the accelerations of the inner/outer ring

Fig. 18 Effect of the rotating speed on the inner/outer ring and cage accelerations. a RMS values of inner and outer ring accelerations

and b RMS values of cage accelerations

Fig. 19 Effect of the load value on the inner/outer ring and cage accelerations. a RMS values of inner and outer ring accelerations and

b RMS values of cage accelerations
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deformation is ignored. Moreover, the double row

cylindrical roller bearing is typically installed in rotor

systems, and the effect of the irregular shape defect on

the rotor system dynamics needs to be studied in future

work.
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