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Abstract This work explores the dynamics of an
epidemic considering an SIVIS (susceptible-infected-
vaccinated-infected-susceptible) epidemiological mod
el, accounting for heterogeneous susceptibility, govern-
mental interventions, social behavioral dynamics and
public reactions in both of autonomous and nonau-
tonomous aspects. The study frames the system as an
optimal control problem, considering time-dependent
control strategies for strength of social behavior of pub-
lic and pharmaceutical treatments. The emergence of a
coexistence steady state is analyzed based on the basic
reproduction number. The impact of model parameters
on disease propagation is assessed through sensitiv-
ity analysis. Transcritical bifurcation-induced stability
alteration is explored, and numerical simulations illus-
trate theoretical findings. The proposed system investi-
gates the dynamical behavior in case of periodic trans-
mission rate. It vividly highlights the profound impact
of factors such as vaccination rates, frequency and
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amplitude of transmission on the enduring and evolving
dynamic patterns exhibited by the disease.
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1 Introduction

An epidemic disease model is a mathematical frame-
work employed to analyze the transmission anddynam-
ics of infectious diseases among a population. The pri-
mary purpose of these models is to aid researchers
and public health officials in comprehending the pat-
terns of disease propagation, predicting their potential
impact and formulating effective strategies to manage
and reduce their spread. Understanding the behavior
of infectious diseases is essential for devising effec-
tive prevention and control measures. By applying the
knowledge gained from epidemic disease models, pub-
lic health officials can assess the potential impact of
interventions such as vaccination campaigns, social
distancing measures and quarantine protocols. Math-
ematical modeling of epidemiological phenomena has
a considerably long history, dating back to the eigh-
teenth century when Bernoulli conducted early stud-
ies [1,2]. These models aim to provide a mathemat-
ical framework for understanding the significance of
historical observations and the dynamics of infectious
diseases. The foundations of many current studies are
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rooted in the work of Kermack and McKendrick [3,4]
from the 1930s. These compartment models form the
basis for most contemporary investigations in epidemi-
ology. These models comprise a set of nonlinear ordi-
nary differential equations, where state variables rep-
resent the size of the population in various stages of the
infectious disease spread. These mathematical models
serve as valuable tools for explaining real-world dis-
ease dynamics within a quantitative framework. They
facilitate the explorationof different scenarios, the eval-
uation of potential interventions and prediction of dis-
ease outcomes. By integrating historical data and scien-
tific knowledge, these models contribute significantly
to our understanding of epidemiological processes and
guide public health strategies for disease control. Sig-
nificant progress has been made in the examination
of models for infectious diseases [5,6]. According to
Zhan et al. [5] an epidemic with high prevalence will
result in a slow information decay which will prevent
the epidemic from spreading. Finally, additional the-
oretical study shows that the coupling dynamics have
an impact on the emergence of multi-outbreak event.
This research may help in better understanding how
the dynamics of disease propagation and information
diffusion interact. In [6], the study focuses on network-
based epidemicmodels designed to simulate the spread
of influenza-like diseases. These models specifically
account for the potential infectiousness of individu-
als during their incubation or asymptomatic stages.
Numerous renowned contemporary textbooks cover
basic concepts in the mathematics of epidemiology [7–
9].

The government plays a crucial role in safeguard-
ing public health and well-being by preventing epi-
demics. Implementing proactive measures and strate-
gies to curb the spread of infectious diseases are essen-
tial. To achieve this, governments must establish robust
disease surveillance systems to monitor the occurrence
and transmission of contagious diseases [10,11]. Early
detection enables timely responses, containment and
prevention of outbreaks. Clear, accurate and timely
information should be provided to the public during an
epidemic, highlighting potential risks, preventive mea-
sures and necessary actions. Effective communication
fosters awareness and encourages a sense of collec-
tive responsibility [12]. Vaccination programs are cru-
cial, and governments play a pivotal role in facilitat-
ing access to vaccines and promoting vaccination cam-
paigns to protect populations from vaccine-preventable

diseases. In times of epidemics, governments may need
to implement quarantine and isolation protocols to con-
tain disease spread and prevent further transmission.
Travel restrictions and border control measures can
limit the importation and exportation of infectious dis-
eases. Overall, the government’s active involvement in
epidemic prevention is most important, as it ensures
the health and safety of its citizens and contributes
to global public health efforts. As a result, the con-
ventional SIRS model can be enhanced by integrat-
ing two crucial aspects: the impact of governmental
intervention and public response [11,13,14]. Govern-
mental intervention involves quarantine, travel restric-
tions and mass vaccination campaigns implemented by
authorities to control disease spread. On the other hand,
public response refers to how individuals and com-
munities react to the outbreak, such as adopting pre-
ventive behaviors, seeking medical attention or com-
plying with government directives [12]. By incorpo-
rating these factors into the model, researchers can
gain a better understanding of how social dynamics
and human behavior impact disease transmission. This
enhanced model can lead to more accurate predictions
and insights into the effectiveness of various interven-
tion strategies. Recently, Saha et al. [13] have studied
the dynamical behavior of SIRS model incorporating
government action and public response in presence of
deterministic and fluctuating environments. They have
shown that governmental action plays a crucial role to
control an epidemic situation, and the system turns out
to be disease-free sooner if the government takes action
at an early stage during a disease outbreak. Consider-
ing a system of fractional-order differential equations,
Das et al. [14] have also studied an epidemic model on
COVID-19 using governmental measures and public
responsewhere they have observed that the government
measures are more helpful than only public responses
to the eradication of the COVID-19 pandemic.

Several authors have studied epidemic models tak-
ing heterogeneity; it may be in the form of immunity
of the susceptible or the information about the disease
to the susceptible. In this context Zhang et al. [15] have
reviewed as well as discussed a recent model on epi-
demic that considered heterogeneity in the suscepti-
ble and infected class about information of disease.
However, there are very few research works related
to the heterogeneity about immunity of the suscep-
tible class. Heterogeneous susceptibility refers to the
variation in immune responses among individuals in
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a population due to differences in their immune sys-
tems, previous exposures to pathogens or vaccination
histories. This heterogeneity can significantly influ-
ence the dynamics of infectious diseases within a pop-
ulation. Some individuals may have strong immune
responses to certain pathogens, making them less sus-
ceptible to infection or experiencing milder symp-
toms when exposed to the pathogen. Genetic fac-
tors and previous exposure to related pathogens can
influence this natural immunity. Immunity can also
be acquired through previous infections or vaccina-
tions. Some individuals may have received vaccines
or encountered the pathogen before, resulting in a
higher level of immunity against the disease. In a
study conducted by Pagliara et al. [16], researchers
have identified a bistable phenomenon within a SIRI
(susceptible-infected-recovered-infected) system. This
phenomenon indicates that once an individual has been
infected with an ailment for the first time, it becomes
challenging for them to become susceptible to the same
disease again.With age, immune responses can change.
For instance, the immune systems of young infants and
the elderly are frequently weakened, causing them to
be more susceptible to certain infections. There are a
few referrals concerning heterogeneous susceptibility
[17–20], to the best of our knowledge. Miller [17] has
investigated how heterogeneity influences the likeli-
hood that an epidemicwould arise byusing a generating
function technique. He has demonstrated that an epi-
demic is most likely when infectivity is homogeneous
and least likely when infectivity variance is extensive.
Similar to this, the attack rate is highest when suscep-
tibility is homogeneous and lowest when the variance
is maximal. There is currently no analysis investigat-
ing the affect of heterogeneous susceptibility including
partial immunity, government action, social interaction
and public response.

Vaccination is very important in preventing epi-
demics and controlling the spread of infectious dis-
eases. It is produced to provide immunity against spe-
cific diseases. By administering vaccines, individuals
develop immunity without experiencing the actual ill-
ness. This immunity helps to prevent the occurrence
and transmission of the disease, thereby curbing epi-
demics [21,22]. For instance, vaccines have led to the
near-elimination of diseases like smallpox and have
significantly reduced the prevalence of diseases like
polio and measles. Vaccination benefits people of all
age groups, from infants to older people. Vaccination

offers a high level of immunity against infectious dis-
eases, but it does not guarantee ultimate or lifelong
immunity for every individual [23,24]. The efficacy
of vaccines can vary based on factors like the vaccine
type, the specific disease being targeted and an indi-
vidual’s immune response. Most vaccines are designed
to trigger a robust immune response that provides sig-
nificant protection against the targeted disease. As a
result, vaccinated individuals are less likely to become
infected with the disease or experience severe symp-
toms when exposed to the pathogen. In many cases,
vaccines can provide long-lasting immunity, offering
protection for several years or even a lifetime [24–26].
For example, vaccines against diseases like measles,
mumps and rubella (MMR) are known to confer endur-
ing immunity for the majority of vaccinated individu-
als. However, there are instances where immunity from
vaccination may diminish over time. Some diseases
may require booster shots or additional vaccine doses
to sustain protective immunity. An example of this is
the tetanus vaccine,which necessitates periodic booster
shots to maintain protection. Turkyilmazoglu [27] has
studied an extended epidemic model with vaccination
and shown that when the vaccination rate is substantial,
countries are not expected to be significantly affected
by low levels of weak immunity. Conversely, a lack
of immunity leads to the prolonged persistence of the
contagious disease, characterized by the emergence of
multiple secondary peakswithin the epidemic compart-
ments, particularly in situations with relatively small
vaccination rates. Zaman et al. [28] have studied an SIR
epidemic model assuming that a portion of the suscep-
tible population is vaccinated. It is demonstrated that an
optimal control solution exists for the control problem.
There are numerous works on epidemic emphasizing
the importance on vaccination [21–26,29].

Nonautonomous epidemic models are essential for
understanding and predicting the dynamics of infec-
tious diseases in real-world scenarios where factors
such as seasonal variations, interventions and changes
in population behavior play a significant role. The
period of survival of the virus in bird secretions, feces
and aerosols depends on a number of factors, includ-
ing ambient temperature and humidity which fluctuate
with seasons [30]. The role of wild migratory birds
in the global spread of H5N1 has been controversial
and is still being investigated [31]. It appears that some
wild migratory birds can be asymptomatic to HPH5N1
and can carry the virus over long distances [32]. These
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models differ from autonomous models, which assume
constant parameters and do not account for external
influences. Nonautonomous models can better capture
the complexity and variability of real-world epidemic
dynamics. They allow for time-varying parameters,
reflecting changes in disease transmission rates, con-
tact patterns or intervention strategies over time. This
flexibility enhances the model’s accuracy in predicting
the spread of diseases under different conditions.Many
infectious diseases exhibit seasonal patterns due to var-
ious factors, such as weather conditions, human behav-
ior and immunity variations. Nonautonomous mod-
els can incorporate seasonal effects, which are crucial
for understanding disease transmission and designing
targeted intervention strategies. During an epidemic,
humanbehavior can change in response to public health
messages or fear of infection. Nonautonomous models
can incorporate these changes, providing insights into
the impact of behavioral adaptations on disease spread.
Researcher focuses on the mathematical abstraction
of seasonality by considering time-dependent model
parameters. A compartmental model with time-varying
birth and death rates is one of the recent examples in this
regard [33]. For further exploration, we suggest [34],
which is a recent review that surveys the literature on
seasonal dynamics. Recently, Kambali et al. [35] have
discussed a nonlinear epidemic model incorporating
the effects of vaccination and dynamic transmission
on COVID-19. There are various compartmental mod-
els with different transmission formulations studied in
[36,37].

Thismanuscript investigates an SIVIS epidemiolog-
ical system with heterogeneous susceptibility, examin-
ing the impact of governmental interventions, social
behavioral dynamics and public responses on dis-
ease progression. The study transforms this system
into an optimal control problem by considering time-
dependent controls for social behavior dynamics as
(D) and pharmaceutical treatment denoted as (γ ). In
Sect. 2, an SIVIS epidemiological model is formulated,
incorporating biological and sociological factors that
govern ailment spread. Section3 delves into the inves-
tigation of positivity, boundedness to underscore the
biological validity of the system. The emergence of
a coexistence steady state based on the basic repro-
duction number is explored in Sect. 4. Analyzing the
influence of model parameters on disease propagation
is followed in Sect. 5. Section6 examines the alteration
of the stability of the infection-free steady state through

transcritical bifurcation. In Sect. 7, the proposed sys-
tem is studied taking periodic disease transmission rate.
Optimal control problem is formulated in Sect. 8 to
mitigate disease burden. Also, the impact of optimal
control measures on the model’s behavior is visually
depicted in numerical figures. Finally, the discussion
of this work in Sect. 9 offers a concise summary and
outlines the potential avenues for future research.

2 Model formulation

The article is dealt with a compartmental SIVISmodel,
where two different susceptible states are considered
based on the immunity power. The total population
N (t) is divided into four sub-classes, named as, suscep-
tible populationwith lower immunity (S1(t)), suscepti-
ble population with higher immunity (S2(t)), infected
population (I (t)) and vaccinated population (V (t)).
The mode of transmission follows mass action law in
this model. Now, when people recover from a disease,
either they achieve permanent recovery, or the recov-
ery is temporary leaving a chance of reinfection and so
moving to susceptible class due to the waning effect
of medicines or vaccines. The immunity power is not
same for all people. Some get infected very soon due
to lower immunity power, whereas for others the virus
takes some time to affect the immune system. Here,
we have presumed that rate of propagation of infec-
tion for S1 class (θ1) is higher than S2 class (θ2). It
means the people in S2 class have the higher resistance
power against a disease, and people in S1 class can eas-
ily become infected while coming in contact with an
infected person (θ2 < θ1). We have considered that the
infection here does not confer any long-lasting immu-
nity. So, the disease does not give permanent immunity
upon recovery from infection, and individuals become
infected again. Indeed, individuals are more suscepti-
ble to infection if the efficiency of vaccination declines.
In such circumstances, if an individual from the infec-
tious compartment encounters these individuals, there
exists a possibility of reinfection and they move to I
class direct from vaccinated class with rate ε. So, it is
considered that εwill not be as high as the disease trans-
mission rate among people with weak immune sys-
tem (ε < θ1). During an epidemic, there are different
social platforms that disseminate important informa-
tions about disease symptoms, appropriate precautions
and medications via various media, such as TV, radio,
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Table 1 Descriptions of
system parameters from a
biological perspective

Parameters Descriptions of parameters

� Constant recruitment rate

q, (1 − q) Respective portions of recruitment go in S1 and S2

α Intensity of governmental intervention

D Effectiveness of sociological behavioral dynamics

k Strength of public reaction

θ1 Rate of propagation of infection for S1 class

θ2 Rate of propagation of infection for S2 class

μ Natural death rate

m Disease-related mortality rate of infected class

γ Recovery rate

β1 Portion of individuals who recover to S1 class due to immunity other than
vaccination

β2 Portion of individuals who recover to S2 class due to immunity other than
vaccination

(1 − β1 − β2) Portion of individuals who recover to vaccinated class due to vaccination

ε Reinfection rate due to the reduction of efficacy of vaccination

v1 Vaccination rate in S1 class

v2 Vaccination rate in S2 class

or even via educational campaigns. People are encour-
aged to keep adequate protection for safety, and the
government imposes various limitations based on the
severity. Therefore, successfully executed governmen-
tal regulations and social behavior of individuals are
crucial in preventing the spread of infection. The soci-
etal component α here indicates the effectiveness of
governmental intervention; meanwhile, D and k stand
for, respectively, the effectiveness of social behavioral
dynamics and public reaction. It is considered that
0 ≤ α < 1, 0 ≤ D < 1. So, people from both sus-
ceptible classes move to infected class after coming in
contact with an infected person with the disease trans-
mission rate (1− α)(1− D)k(θ1S1(t) + θ2S2(t))I (t).
After taking into account all the details, the following
model has been suggested:

dS1(t)

dt
= q� − (1 − α)(1 − D)kθ1S1(t)I (t)

−v1S1(t) + β1γ I (t) − μS1(t), S1(0) > 0
dS2(t)

dt
= (1 − q)� − (1 − α)(1 − D)kθ2S2(t)I (t)

−v2S2(t) + β2γ I (t) − μS2(t), S2(0) > 0
d I (t)

dt
= (1 − α)(1 − D)k(θ1S1(t) + θ2S2(t))I (t)

−γ I (t) + ε I (t)V (t) − (μ + m)I (t), I (0) ≥ 0

dV (t)

dt
= (v1S1(t) + v2S2(t)) + (1 − β1 − β2)γ I (t)

−ε I (t)V (t) − μV (t), V (0) ≥ 0. (2.1)

The description of the model parameters and vari-
ables are presented in Table 1, and the schematic dia-
gram associated to system (2.1) is depicted in Fig. 1.
Note (Description of incidence rate (1 − α)(1 −
D)k(θ1S1(t) + θ2S2(t))I (t)): Here, in this expression
θ1 and θ2 are the rates at which an infected person
can transmit infection to the individuals of susceptible
classes S1 and S2, respectively.Therefore, the incidence
rate between susceptible classes and infected class
appeared as (θ1S1(t)+θ2S2(t))I (t). Now, ifwe assume
that government implements some regulations to pre-
vent disease propagation, then this transmission rate
will depend on strength of governmental intervention
(α), effectiveness of sociological behavioral dynamics
(D) and strength of public reaction (k). Now, growing
intensity of governmental action (α) will diminish dis-
ease transmission and this effect can be incorporated
by multiplying a factor (1−α) to disease transmission
rate. Thus, the individuals will now leave the suscep-
tible class S1 and S2 at rate (1 − α)θ1S1(t)I (t) and
(1−α)θ2S2(t)I (t), respectively. If the people aremoti-
vated by the measures of government action to prevent
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Fig. 1 Schematic representation of system (2.1)

transmission of disease, effectiveness of sociological
behavioral dynamics (D) and strength of public reac-
tion (k) will increase and ultimately reduce the spread-
ing of ailment.

In the proposed system, it is assumed that 0 ≤
α ≤ 1, 0 ≤ D ≤ 1. Now, the scenario α = 0
and D = 0 signifies that there is an absence of gov-
ernmental intervention and a lack of social behavioral
dynamics, respectively. As these sociological parame-
ters approach to the value 1, the factor (1− α)(1− D)

reduces. The dynamics of social behavior and the reac-
tions of the public are intricately linked to each other.
Now, taking the parameter public reaction (k) as an
exponent applied to (1 − D), it accelerates the reduc-
tion of the term (1 − D)k . Consequently, the overall
factor (1 − α)(1 − D)k becomes a notably smaller
quantity. Thus, when we multiply this factor with the
transmission rate (θ1S1(t) + θ2S2(t))I (t), the rate at
which individuals (from the susceptible classes) move
to the infected class can be expressed as (1 − α)(1 −
D)k(θ1S1(t)+θ2S2(t))I (t). Considering the transmis-
sion rate as (1 − α)(1 − D)k(θ1S1(t) + θ2S2(t))I (t)
signifies that as the amplitude of α, D and k raises,
the infection rate from susceptible to infected class
reduces, which is more realistic.

3 Preliminary findings

To establish the existence and uniqueness of the solu-
tion for model (2.1), following lemma is required.

Lemma 3.1 [38] Consider the system:

y′(t) = f (t, y), t0 > 0 (3.1)

with initial condition y(t0) = yt0 , f : [t0,∞)×T −→
R
n, T ∈ R

n, if f (t, y) satisfies the local Lipschitz
condition with respect to y, then there exists a unique
solution of (2.1) on [t0,∞) × T .

Each of the right-hand side (RHS) functions of system
(2.1) is polynomial function of (S1, S2, I, V ). Thus, the
RHS functions are continuous as there is no disconti-
nuity.

To study the existence and uniqueness of the solution
of system (2.1), consider the region T × [0, T ] where

T =
{

(S1(t), S2(t), I (t), V (t)) ∈ R
4

: max {|S1(t)|, |S2(t)|, |I (t)|, |V (t)|} ≤ M
}

andT < ∞. Let us denote X = (S1(t),S2(t),I (t),V (t))
and X = (

S1(t), S2(t), I (t), V (t)
)
. Consider a map-

ping

L(X) = (L1(X), L2(X), L3(X), L4(X))

where

L1(X) = q� − (1 − α)(1 − D)kθ1S1(t)I (t)

− v1S1(t) + β1γ I (t) − μS1(t)

L2(X) = (1 − q)� − (1 − α)(1 − D)kθ2S2(t)I (t)

− v2S2(t) + β2γ I (t) − μS2(t)

L3(X) = (1 − α)(1 − D)k(θ1S1(t) + θ2S2(t))I (t)

− γ I (t) + ε I (t)V (t) − (μ + m)I (t)

L4(X) = (v1S1(t) + v2S2(t)) + (1 − β1 − β2)

γ I (t) − ε I (t)V (t) − μV (t).

Now,

‖L(X) − L(X)‖ = |L1(X) − L1(X)| + |L2(X)

− L2(X)| + |L3(X) − L3(X)| + |L4(X) − L4(X)|
≤ | − θ1(1 − α)(1 − D)k (S1 I − S1 I ) − v1(S1 − S1)

+ β1γ (I − I ) − μ(S1 − S1)|
+ | − θ2(1 − α)(1 − D)k (S2 I − S2 I )

− v2(S2 − S2) + β2γ (I − I ) − μ(S2 − S2)|
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+ |(1 − α)(1 − D)k {θ1(S1 I − S1 I ) + θ2(S2 I − S2 I )}
− γ (I − I ) + ε(I V − I V )

− (μ + m)(I − I )| + |v1(S1 − S1) + v2(S2 − S2)

+ (1 − β1 − β2)γ (I − I )

− ε(I V − I V ) − μ(V − V )|
≤ [2Mθ1(1 − α)(1 − D)k + 2v1 + μ]|S1 − S1|
+ [2Mθ2(1 − α)(1 − D)k + 2v2

+ μ]|S2 − S2|
+ [2Mθ1(1 − α)(1 − D)k + 2Mθ2(1 − α)(1 − D)k

+ 2Mε + μ + m + 2γ ]|I − I |
+ [2Mε + μ]|V − V |.

Let

E = max

{ [
2Mθ1(1 − α)(1 − D)k + 2v1 + μ

]
,

[
2Mθ2(1 − α)(1 − D)k + 2v2 + μ

]
,

[
2Mθ1(1 − α)(1 − D)k

+2Mθ2(1 − α)(1 − D)k

+2Mε + μ + m + 2γ

]
,

[2Mε + μ]

}

∴ ‖L(X) − L(X)‖ ≤ E‖X − X‖.
Thus, L(X) satisfies the Lipschitz’s condition with
respect to X ; it follows from Lemma 3.1 that there
exists a unique solution X (t) of system (2.1) with ini-
tial condition X (0) = (S1(0), S2(0), I (0), V (0)).
Proposed system (2.1) is biologically relevant since the
system variables are positive and bounded, and this is
shown in the following two theorems.

Theorem 3.2 All solutions of model (2.1) in R
4+ are

positive for all t > 0.

Proof Let φ(S1, S2, I, V ) = (1− α)(1− D)k(θ1S1 +
θ2S2) − (μ + m + γ ) + εV . From the third equation
of (2.1) we have,

I (t) = I (0) exp

[∫ t

0
φ(S1(u), S2(u), I (u), V (u)) du

]

≥ 0, as I (0) ≥ 0.

Now, we want to show, S1(t) > 0, S2(t) > 0 ∀ t ∈
[0, η), 0 < η ≤ +∞. If the assumptions are not true,
then ∃ t1, t2 ∈ (0, η) so that S1(t1) = 0, Ṡ1(t1) ≤
0, S1(t) > 0, ∀ t ∈ [0, t1) and S2(t2) = 0, Ṡ2(t2) ≤

0, S2(t) > 0, ∀ t ∈ [0, t2). From the first equation we
get

dS1
dt

∣∣∣∣
t=t1

= q� + β1γ I (t1) > 0

which is a contradiction to Ṡ1(t1) ≤ 0.And, the second
equation gives

dS2
dt

∣∣∣∣
t=t2

= (1 − q)� + β2γ I (t2) > 0

which contradicts Ṡ2(t2) ≤ 0. Sowe get, S1(t) > 0 and
S2(t) > 0, ∀ t ∈ [0, η), where 0 < η ≤ +∞. Next,
our claim is V (t) ≥ 0, ∀ t ∈ [0, η). If it does not hold,
then ∃ t3 ∈ (0, η) such that V (t3) = 0, V̇ (t3) ≤ 0 and
V (t) > 0, ∀ t ∈ [0, t3). From the last equation we get

dV

dt

∣∣∣∣
t=t3

= (v1S1(t3) + v2S2(t3))

+(1 − β1 − β2)γ I (t3) > 0

which contradicts the assumption V̇ (t3) ≤ 0. So,
V (t) ≥ 0, ∀ t ∈ [0, η) for 0 < η ≤ +∞. ��
Theorem 3.3 All solutions of model (2.1), starting
from R

4+, are bounded for all t > 0.

Proof We have considered the total population as
N (t) = S1(t) + S2(t) + I (t) + V (t). Then,

dN

dt
= � − μS1 − μS2 − (μ + m)I − μV ≤ � − μN

⇒ 0 < N (t) ≤ �

μ
+
(
N (0) − �

μ

)
e−μt

where N (0) = S1(0) + S2(0) + I (0) + V (0). Then,

0 < lim
t→∞ N (t) ≤ �

μ
+ ε, for any ε > 0. Hence, the

solutions ofmodel (2.1) are confined in the region: �̄ ={
(S1, S2, I, V ) ∈ R

4+ : 0 < N (t) ≤ �
μ

+ ε , for any ε

> 0}. ��

4 Equilibrium state analysis of model (2.1)

System (2.1) possesses a disease-free equilibrium

(DFE) point E0(S10, S20, 0, V0) with S10 = q�

v1 + μ
,

S20 = (1 − q)�

v2 + μ
and V0 = v1S10 + v2S20

μ
. Basic

reproduction number (R0) indicates the size of newly
contaminated persons from a single infected person in a

123



2388 P. Dutta et al.

susceptible community, and it is determined by the pro-
cedure recommended by van den Driessche and Wat-
mough [39]. Now, R0 is the reproduction number and
is denoted by:

R0 = (1 − α)(1 − D)kθ1S10
(μ + m + γ − εV0)

+ (1 − α)(1 − D)kθ2S20
(μ + m + γ − εV0)

(4.1)

provided μ + m + γ > εV0. The first part is due to
weak susceptible compartment, and second part is due
to strong susceptible compartment. The detailed cal-
culation process of basic reproduction number (4.1) is
provided in Appendix A.

4.1 Endemic equilibrium point

The endemic equilibrium point E∗(S∗
1 , S

∗
2 , I

∗, V ∗) of
system (2.1) can be obtained by solving the following
equations:

q� − (1 − α)(1 − D)kθ1S1 I

− v1S1 + β1γ I − μS1 = 0

(1 − q)� − (1 − α)(1 − D)kθ2S2 I

− v2S2 + β2γ I − μS2 = 0

(1 − α)(1 − D)k(θ1S1 + θ2S2)I

− γ I + ε I V − (μ + m)I = 0

(v1S1 + v2S2) + (1 − β1 − β2)

γ I − ε I V − μV = 0

where p1 = μ + m + γ . Solving, we get V ∗ =
v1S∗

1+v2S∗
2+(1−β1−β2)γ I ∗
ε I ∗+μ

, S∗
1 = q�+β1γ I ∗

μ+v1+(1−α)(1−D)kθ1 I ∗ ,

S∗
2 = (1−q)�+β2γ I ∗

μ+v2+(1−α)(1−D)kθ2 I ∗ , and I ∗ is the positive root
of the following equation:

f (I ) ≡ A11 I
3 + A12 I

2 + A13 I + A14 = 0

here k1 = (1−α)(1− D)kθ1, k2 = (1−α)(1− D)kθ2

A11 = −εk1k2(μ + m) < 0

A12 = εk1k2�q + μεγ k1β1 + μγ k1k2β1

+ εγ k2v1β1 + εγ k1v2β1 + εk1k2� − εk1k2�q

+ μεγ k2β2 + μγ k1k2β2

+ εγ k2v1β2 + εγ k1v2β2

− μεk1 p1 − μεk2 p1 − μk1k2 p1 − εk2v1 p1

− εk1v2 p1 + μεγ k1 + μεγ k2 + εγ k2v1

+ εγ k1v2 − μεγ k1β1 − μεγ k2β1

− εγ k2v1β1 − εγ k1v2β1 − μεγ k1β2

− μεγ k2β2 − εγ k2v1β2 − εγ k1v2β2

A13 = μ2εγ + μεγ v1 + μεγ v2 + εγ v1v2

− μ2εγβ1 − μεγ v1β1 − μεγ v2β1

− εγ v1v2β1 − μ2εγβ2 − μεγ v1β2

− μεγ v2β2 − εγ v1v2β2 − μ2εp1

− μ2k1 p1 − μ2k2 p1 − μεv1 p1

− μk2v1 p1 − μεv2 p1 − μk1v2 p1

− εv1v2 p1 + μεk2� + μk1k2�

+ εk2�v1 + εk1�v2

− μεk2�q − μk1k2�q − εk2�v1q − εk1�v2q

+ μ2γ k2β2 + μγ k2v1β2 + μεγ v2β2

+ εγ v1v2β2 + μεk1�q + μk1k2�q

+ εk2�v1q + εk1�v2q + μ2γ k1β1

+ μεγ v1β1 + μγ k1v2β1 + εγ v1v2β1

A14 = μ(p1 − εV0)(v1 + μ)(v2 + μ)[R0 − 1].

Now, f (0) = A14 > 0 when R0 > 1, and
f (∞) = −∞. So, there will be at least one posi-
tive root of the equation for R0 > 1. It means system
(2.1) contains at least one endemic equilibrium point
E∗(S∗

1 , S
∗
2 , I

∗, V ∗) when basic reproduction number
exceeds unity.

5 Sensitivity analysis

The formulation of basic reproduction number (R0)
reveals that R0 is influenced by governmental actions
(α), sociological behavioral dynamics (D) and public
reaction (k), rate of transmission of disease (θ1, θ2),
vaccination rate (v1, v2), recovery rate (γ ) and rein-
fection rate due to reduction of efficacy of vaccina-
tion (ε). This section examines the implications of the
aforementioned parameters on spread of ailment. The
basic reproduction number ofmodel (2.1) is obtained as

R0 = (1−α)(1−D)k(θ1S10+θ2S20)
(p1−εV0)

, where p1 = μ+m+γ ,

S10 = q�
v1+μ

, S20 = (1−q)�
v2+μ

and V0 = v1S10+v2S20
μ

.
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Then, we get:

∂R0

∂α
= − (1 − D)k

(p1 − εV0)
(θ1S10 + θ2S20) < 0,

∂R0

∂D
= −k(1 − α)(1 − D)k−1

(p1 − εV0)

(θ1S10 + θ2S20) < 0

∂R0

∂k
= (1 − α)(1 − D)k ln(1 − D)

(p1 − εV0)

(θ1S10 + θ2S20) < 0,

(as 0 < D < 1 ⇒ ln(1 − D) < 0)

∂R0

∂θ1
= (1 − α)(1 − D)k S10

(p1 − εV0)
> 0,

∂R0

∂θ2
= (1 − α)(1 − D)k S20

(p1 − εV0)
> 0

∂R0

∂γ
= − (1 − α)(1 − D)k

(p1 − εV0)2

(θ1S10 + θ2S20) < 0,

∂R0

∂ε
= V0(1 − α)(1 − D)k

(p1 − εV0)2

(θ1S10 + θ2S20) > 0.

Considering each of those parameters, the associated
normalized forward sensitivity index is provided as
[40]:

α =
[

∂R0
R0
∂α
α

]
=
[

α

R0

∂R0

∂α

]
= −

(
α

1 − α

)
,

D =
[

∂R0
R0
∂D
D

]
=
[
D

R0

∂R0

∂D

]
= −k

(
D

1 − D

)

k =
[

∂R0
R0
∂k
k

]
=
[
k

R0

∂R0

∂k

]
= k ln(1 − D),

θ1 =
[

∂R0
R0
∂θ1
θ1

]
=
[

θ1

R0

∂R0

∂θ1

]
= θ1S10

(θ1S10 + θ2S20)

θ2 =
[

∂R0
R0
∂θ2
θ2

]
=
[

θ2

R0

∂R0

∂θ2

]
= θ2S20

(θ1S10 + θ2S20)

γ =
[

∂R0
R0
∂γ
γ

]
=
[

γ

R0

∂R0

∂γ

]
= − γ

(p1 − εV0)
,

ε =
[

∂R0
R0
∂ε
ε

]
=
[

ε

R0

∂R0

∂ε

]
= εV0

(p1 − εV0)
.

The effective implementation of governmental actions,
coupled with strict adherence to regulations, can play
a pivotal role in controlling an epidemic situation over
time. Additionally, the public’s willingness to adopt
necessary behavioral changes during a disease outbreak
is crucial in interrupting continuous transmission. Con-
versely, if the disease spreads rapidly among the popu-
lation, the infection can escalate at a faster rate, posing a
greater challenge to the control measures in place. Pub-
lic response is another significant factor in managing
the epidemic situation. Increased public awareness and
education have been observed to impede the transmis-
sion of the disease, as people become more informed
about preventive measures and take necessary precau-
tions. Furthermore, the recovery of individuals from the
disease, whether through natural immunity or clinical
treatment, can contribute in reducing the overall dis-
ease prevalence. Recovered individuals are less likely
to contribute to further transmission, thereby lowering
the overall burden on the healthcare system. Increasing
the vaccination rate against the infection can lead to
a reduction in the reproduction number, which signi-
fies a decrease in the transmission of the disease due
to a less quantity of infected individuals. The effec-
tiveness of the vaccine, particularly when it provides a
high level of protection for humans, plays a crucial role
in effectively controlling the spread of the infection. In
Fig. 2, amultifaceted approach involving governmental
actions, public cooperation and awareness, combined
with efforts to improve recovery rates and vaccination
efficiency, is essential for effectively controlling and
mitigating the impact of an epidemic. The sensitivity
indices of system parameters are displayed by the tor-
nado plot in Fig. 3, with their values as: α = −0.25,
D = −0.8571, k = −0.7133, θ1 = 0.5882,
θ2 = 0.4118,γ = −0.3218 and ε = 0.4483.
Therefore, the sensitivity indices provide a justification
for the depicted scenario inFig. 2. This illustration visu-
ally represents the manner in which these parameters
exert an influence on the propagation of disease.
Figure4 depicts how the reproduction number varies
with the change of any of the parameters v1 and v2. The
reproduction number is a critical indicator of disease
transmission, and its behavior is investigated concern-
ing vaccination rates for different population groups. It
is observed that the reproduction number reduces with
the increase of the vaccination rate for weaker commu-
nity. This implies that higher vaccination coverage in
the vulnerable population leads to a reduced potential
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Fig. 2 Changes of R0 when the model parameters α, D, k, θ1, θ2, γ and ε are varied. Parameter values are taken as q = 0.4,� =
10, α = 0.2, D = 0.3, k = 2, θ1 = 0.2, v1 = 0.3, β1 = 0.3, γ = 0.2, μ = 0.4, θ2 = 0.08, v2 = 0.2, β2 = 0.4,m = 0.3, ε = 0.03
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Fig. 3 The visual representation of sensitivity index for
α, D, k, θ1, θ2, γ and ε of model (2.1)

for disease transmission. In contrary to this, if the vac-
cination rate for weaker class remains constant with a
increase rate of vaccination for higher immunity pop-
ulation, then the reproduction number increases. The
cause behind this is less immunity class (S1) can gen-
erally be infected due to ailment propagation; however,
S2 susceptible individuals have the higher immunity
from becoming infected. To effectively control the dis-
ease prevalence, it is necessary to increase the vacci-

nation rate (v1) for the weaker section (S1) over time
while keeping the vaccination rate (v2) for the higher
immunity population (S2) constant. Moreover, Fig. 4c
highlights how the simultaneous interaction of v1 and
v2 influences the propagation of the disease in the
dynamical system. Understanding these interactions is
essential for devising effective vaccination strategies
that take into account the varying susceptibility lev-
els within the population and ultimately contribute to
disease control and prevention.

5.1 Dynamics of model (2.1)

According to Routh–Hurwitz criterion, a particular
steady-state point of a system is considered to be locally
asymptotically stable (LAS) whether all the eigenval-
ues of the variational matrix that corresponds to it con-
tain negative real parts. Let p1 = μ + m + γ . The
variational matrix of model (2.1) is:

J =

⎛
⎜⎜⎝

a11 0 a13 0
0 a22 a23 0
a31 a32 a33 a34
a41 a42 a43 a44

⎞
⎟⎟⎠ (5.1)

where a11 = −μ − v1 − (1 − α)(1 − D)kθ1 I, a12 =
0, a13 = −(1−α)(1−D)kθ1S1+β1γ, a14 = 0, a21 =
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Fig. 4 Changes of R0 with the parameters v1 and v2. Parameter values are taken as in Fig. 2

0, a22 = −μ − v2 − (1 − α)(1 − D)kθ2 I, a23 =
−(1 − α)(1 − D)kθ2S2 + β2γ, a24 = 0, a31 = (1 −
α)(1−D)kθ1 I, a32 = (1−α)(1−D)kθ2 I, a33 = (1−
α)(1−D)k(θ1S1+θ2S2)− p1+εV, a34 = ε I, a41 =
v1, a42 = v2, a43 = (1 − β1 − β2)γ − εV, a44 =
−(ε I + μ).

Theorem 5.1 The disease-free steady state (E0) is
LAS if R0 < 1.

Proof At DFE E0 ≡ (S10, S20, 0, V0) with

S10 = q�

v1 + μ
, S20 = (1 − q)�

v2 + μ
and V0 =

v1S10 + v2S20
μ

, the Jacobian matrix is:

J
∣∣
E0

=

⎛
⎜⎜⎝

−μ − v1 0 −(1 − α)(1 − D)kθ1S10 + β1γ 0
0 −μ − v2 −(1 − α)(1 − D)kθ2S20 + β2γ 0
0 0 (1 − α)(1 − D)k(θ1S10 + θ2S20) − p1 + εV0 0
v1 v2 (1 − β1 − β2)γ − εV0 −μ

⎞
⎟⎟⎠ .

The eigenvalues of J
∣∣
E0

are λ1 = −μ, λ2 = −μ −
v1, λ3 = −μ − v2 and λ4 = (p1 − εV0)(R0 − 1). So,
λi < 0, for i = 1, 2, 3, and λ4 < 0 when R0 < 1. ��
It is therefore possible to verify that the condition speci-
fied in Theorem5.1 is fulfilled, having taken the param-
eter values as stated in Fig. 2 with α = 0.3, D = 0.4
and we have established that basic reproduction num-
ber R0 = 0.7879 < 1. The corresponding eigenvalues
of J

∣∣
E0

are obtained as −0.4,−0.7,−0.6,−0.1318.
From Fig. 5a, it can be noticed that the trajec-
tory converges to disease-free steady state, E0 =
(S10, S20, 0, V0) = (5.71, 10, 0, 9.29) when α =
0.3, D = 0.4. Hence, infection-free system might be
achieved.

Theorem 5.2 The interior equilibrium (E∗) is locally
asymptotically stable under the conditions stated in the
proof.

Proof At E∗, the variational matrix is represented as
follows:

J
∣∣
E∗ =

⎛
⎜⎜⎜⎝

a
′
11 0 a

′
13 0

0 a
′
22 a

′
23 0

a
′
31 a

′
32 a

′
33 a

′
34

a
′
41 a

′
42 a

′
43 a

′
44

⎞
⎟⎟⎟⎠

where a
′
11 = −μ − v1 − (1− α)(1− D)kθ1 I

∗, a
′
13 =

−(1−α)(1− D)kθ1S
∗
1 +β1γ, a

′
22 = −μ− v2 − (1−

α)(1 − D)kθ2 I
∗, a

′
23 = −(1 − α)(1 − D)kθ2S

∗
2 +

β2γ, a
′
31 = (1− α)(1− D)kθ1 I

∗, a
′
32 = (1− α)(1−

D)kθ2 I
∗, a′

33 = (1−α)(1−D)k(θ1S
∗
1 +θ2S

∗
2 )− p1+

εV ∗, a
′
34 = ε I ∗, a

′
41 = v1, a

′
42 = v2, a

′
43 = (1 −

β1 − β2)γ − εV ∗, a
′
44 = −(ε I ∗ + μ).

Characteristic equation corresponding to J
∣∣
E∗ is λ4 +

A1λ
3 + A2λ

2 + A3λ + A4 = 0, where

A1 = −(a′
11 + a′

22 + a′
33 + a′

44) > 0

A2 = a′
11a

′
22 − a′

13a
′
31 − a′

23a
′
32 + a′

11a
′
33

+ a′
22a

′
33 − a′

34a
′
43 + a′

11a
′
44 + a′

22a
′
44 + a′

33a
′
44
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A3 = a′
13a

′
22a

′
31 + a′

11a
′
23a

′
32 − a′

11a
′
22a

′
33 − a′

13a
′
34a

′
41

− a′
23a

′
34a

′
42 + a′

11a
′
34a

′
43 + a′

22a
′
34a

′
43 − a′

11a
′
22a

′
44

+ a′
13a

′
31a

′
44 + a′

23a
′
32a

′
44 − a′

11a
′
33a

′
44 − a′

22a
′
33a

′
44

A4 = a′
13a

′
22a

′
34a

′
41 + a′

11a
′
23a

′
34a

′
42 − a′

11a
′
22a

′
34a

′
43

− a′
13a

′
22a

′
31a

′
44 − a′

13a
′
23a

′
32a

′
44 + a′

11a
′
22a

′
33a

′
44.

The equation has roots with negative real parts only
when Routh–Hurwitz criterion is satisfied. Hence, the
endemic state E∗ is LAS if A1 > 0, A4 > 0, A1A2 >

A3 and A3(A1A2 − A3) > A2
1A4. ��

Furthermore, when selecting smaller values for both
α and D, a noteworthy observation emerges. In the
context of the values of parameter depicted in Fig. 2,
the eigenvalues associated to J

∣∣
E∗ are obtained as

−0.1747,−0.3186,−0.8099,−0.6574.Thus, a trajec-

tory starting from (18, 20, 12, 8) ultimately leads to the
coexistence state E∗(S∗

1 , S
∗
2 , I

∗, V ∗) = (4.86, 9.34,
1.86, 7.54) and R0 becomes 1.2256 (see Fig. 5b ).
Hence, the occurrence of an infection takes place when
value of the basic reproduction number R0 surpasses
the threshold of unity.

6 Bifurcation analysis

This section illustrates the occurrence of transcritical
bifurcation around DFE (E0), using the framework of
centralmanifold theory, as elucidated by [41]. Suppose,
S1 = x1, S2 = x2, I = x3 and V = x4, then system
(2.1) is written as:

dx1
dt

= q� − (1 − α)(1 − D)kθ1x1x3

− v1x1 + β1γ x3 − μx1 ≡ f1
dx2
dt

= (1 − q)� − (1 − α)(1 − D)kθ2x2x3

− v2x2 + β2γ x3 − μx2 ≡ f2

dx3
dt

= (1 − α)(1 − D)k(θ1x1 + θ2x2)x3

− γ x3 + εx3x4 − (μ + m)x3 ≡ f3
dx4
dt

= (v1x1 + v2x2)

+ (1 − β1 − β2)γ x3 − εx3x4 − μx4 ≡ f4.
(6.1)

Theorem 6.1 A transcritical (forward or backward)
bifurcation occurs around E0 of system (2.1) at R0 = 1
in which θ1 functions as a bifurcating parameter.

Proof Choosing, θ1 as bifurcating parameter and at

R0= 1, θ1= θ1[T B]= 1

S10

[
(p1 − εV0)

(1 − α)(1 − D)k
− θ2S20

]
,

where S10 = q�

v1 + μ
, S20 = (1 − q)�

v2 + μ
and V0 =

v1S10 + v2S20
μ

. The linearized matrix of system (2.1)

in accordance with E0 (S10, S20, 0, V0) is calculated as

J
∣∣
E0

=

⎛
⎜⎜⎝

−μ − v1 0 −(1 − α)(1 − D)kθ1S10 + β1γ 0
0 −μ − v2 −(1 − α)(1 − D)kθ2S20 + β2γ 0
0 0 (1 − α)(1 − D)k(θ1S10 + θ2S20) − p1 + εV0 0
v1 v2 (1 − β1 − β2)γ − εV0 −μ

⎞
⎟⎟⎠ .

The eigenvalues are λ1 = −μ, λ2 = −μ − v1, λ3 =
−μ−v2 and λ4 = (p1−εV0)(R0−1)which show that
an eigenvalue J |E0(θ1[T B])will be zero if R0 = 1. The
zero eigenvalue has right eigenvector, which is denoted
by w = (w1, w2, w3, w4)

T where

w1 = μ(μ + v2)
[
β1γ − (1 − α)(1 − D)kθ1S10

]
,

w2 = μ(μ + v1)
[
β2γ − (1 − α)(1 − D)kθ2S20

]
,

w3 = μ(μ + v1)(μ + v2),

w4 = (μ + v1)(μ + v2) {(1 − β1 − β2)γ − εV0}
+ v1(μ + v2)

[
β1γ − (1 − α)(1 − D)kθ1S10

]

+ v2(μ + v1)
[
β2γ − (1 − α)(1 − D)kθ2S20

]
.

The left eigenvector is u = (u1, u2, u3, u4)T =
(0, 0, 1, 0)T . Henceforth,

a =
n∑

k,i, j=1

ukwiw j
∂2 fk

∂xi∂x j
(E0)
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Fig. 5 Nature of model (2.1) around a infection-free state (E0) and b coexistence state (E∗)

= 2w3

[
(1 − α)(1 − D)k(w1θ1 + w2θ2) + w4ε

]

(6.2)

b =
n∑

k,i=1

ukwi
∂2 fk

∂xi∂θ1
(E0)

= w3(1 − α)(1 − D)k S10 > 0 (6.3)

The central manifold theory [41] states that the local
dynamical behavior of a system around DFE can be
obtained with the help of signs of a and b, and from
the theory there will be an occurrence of forward bifur-
cation around DFE for a < 0, b > 0, and backward
bifurcation for a > 0, b > 0. We have already got
that b > 0. So, from the result it can be stated that the
DFE (E0) changes its stability from stable to unstable
through forward or backward bifurcation according to
a < 0 or a > 0. And, there could be a chance of
a negative unstable coexistence steady state turns into
positive and locally asymptotic stable endemic state for
R0 > 1. ��

Several additional parameterswithin the system, namely
θ2, α, D, k, γ and ε, play the key roles in controlling
the behavior of system.

Theorem 6.2 A transcritical (forward or backward)
bifurcation occurs around E0 of system (2.1) at R0 = 1

for θ2 = θ2[T B] = 1

S20

[
(p1 − εV0)

(1 − α)(1 − D)k
− θ1S10

]

in which θ2 functions as a bifurcating parameter.

Theorem 6.3 A transcritical bifurcationoccurs around
E0 of system (2.1) at R0 = 1 for α = α[T B] =

1− p1 − εV0
(1 − D)k(θ1S10 + θ2S20)

in which α functions as

a bifurcating parameter.

Theorem 6.4 A transcritical bifurcationoccurs around
E0 of system (2.1) at R0 = 1 for D = D[T B] =
1 −

[
p1 − εV0

(1 − α)(θ1S10 + θ2S20)

]1/k
in which D func-

tions as a bifurcating parameter.

Theorem 6.5 A transcritical bifurcationoccurs around
E0 of system (2.1) at R0 = 1 for k = k[T B] =
ln(p1 − εV0) − ln((1 − α)(θ1S10 + θ2S20))

ln(1 − D)
in which

k functions as a bifurcating parameter.

Theorem 6.6 A transcritical bifurcationoccurs around
E0 of system (2.1) at R0 = 1 for γ = γ[T B] =
(1 − α)(1 − D)k(θ1S10 + θ2S20) − (μ + m − εV0)
in which γ functions as a bifurcating parameter.

Theorem 6.7 A transcritical bifurcationoccurs around
E0 of system (2.1) at R0 = 1 for ε = ε[T B] =
1

V0

[
(μ + m + γ )−(1 − α)(1 − D)k(θ1S10 + θ2S20)

]

in which ε functions as a bifurcating parameter.

The disease propagation rates or infection propaga-
tion rates for weak and strong susceptible individu-
als (θ1, θ2) act as a controlling parameters as a sta-
ble endemic situation has been occurred when θ1, θ2
exceeded their threshold values via transcritical bifur-
cations and DFE alters its stable configuration to unsta-
ble. Figure6a and b depict that model (2.1) under-
goes transcritical bifurcations at θ1[T B] = 0.137 and
θ2[T B] = 0.044. Similarly, the sociological parame-
ters (α, D), public reaction (k), recovery rate (γ ) and
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reinfection rate due to the reduction of efficacy of
vaccination (ε) may additionally serve as bifurcating
parameters to regulate the dynamics of the system. The
system generates transcritical bifurcations about E0

which can be observed in Fig. 6c–f at α[T B] = 0.347,
D[T B] = 0.3677, k[T B] = 2.57, γ[T B] = 0.34 and
ε[T B] = 0.015, respectively. Within each of the graphs
in Fig. 6c–e, it is revealed that DFE attains stability
when the parameters are crossed their respective tran-
scritical thresholds. Conversely, a stable branch of an
endemic state emerges whenever parameter values fall
below the critical value. Moreover, an opposite phe-
nomenon can be achieved in Fig. 6f, in which ε is con-
sidered as bifurcating parameter.
Figure7 portrays the feasible regions of the endemic
equilibrium of model (2.1) across multiple parameter
planes. Specifically, αk-plane is illustrated in Fig. 7a,
αD-plane in Fig. 7b and γ ε-plane in Fig. 7c. This visu-
alization offers a profound insight into the intricate
interplay between these sociological parameters and
their consequential effects on the transmission dynam-
ics of infection. Figure7a includes transcritical bifurca-
tion curve (dot–dot) of black-colored which partitions
the whole αk-parametric plane into two sub-regions
which are labeled as R1 (light-red-colored) and R2

(light-green-colored). The analysis reveals that as both
α and k are elevated to higher values, a discernible out-
come becomes evident, namely, the progression toward
a disease-free state. Even if the government is imple-
menting interventions at an accelerated pace, the con-
tinuation of the infection within the system is depen-
dent on the moderation of public response strength.
Conversely, when governmental actions are intensified
and societal dynamics to such behaviors increase, there
is going to be no infectiousness within the system (see
Fig. 7b). In Fig. 7c, we have plotted the stability regions
of two different steady states emerging from system
(2.1) in γ ε-parametric plane. We summarize the char-
acteristics of the regions related to the steady states in
Table 2. The graph clearly illustrates that the speed at
which people recover from the contagious ailment has
a direct impact on how quickly the infection will be
eradicated. However, the overall outcome also relies on
the effectiveness of vaccination. Whether individuals
recover from the disease through vaccination or natural
means, if the efficacy of the vaccination is insufficient
to adequately protect human health, there is a risk of
the infection persisting within the population. There-
fore, a successful containment of the ailment requires

a combination of rapid recovery rates and highly effec-
tive vaccination strategies to ensure the infection does
not spread through the system.

7 Impacts of periodic transmission rates

While theprecise factors governing the intricate dynam-
ics of an endemic disease may not be fully elucidated,
some rational speculations can be indulged. Several
plausible factors contribute to this complex dynamic
such as the presence of imperfect vaccines, influence of
environmental variables, emergenceof novel virus vari-
ants characterized by distinct infection rates, as well as
the interplay of societal and biological elements, like,
population density, implementation of social distanc-
ing policies and efficacy of governmental interventions.
A study of Martcheva [42] suggests that autonomous
models inherently manifest intricate dynamic behavior
characterized by oscillations with a constant value of
infection propagation rate. In real-world scenarios, the
nuanced dynamics of a disease using a static transmis-
sion rate proves to be a challenging endeavor. Current
research programs indicate that the behavior of dis-
ease can be more effectively interpreted by consider-
ing a periodic transmission rate [43]. Hence, in order
to encompass and integrate the evolving dynamics of
the disease, transmission rates θ1, θ2 are defined as

θ1(t) = a + b cos

(
2π

T
t + c

)
;

θ2(t) = a1 + b1 cos

(
2π

T
t + c

)
(7.1)

This forms assume T -day periodicity and have ampli-
tudes b (for transmission rate θ1) and b1 (for trans-
mission rate θ2), vertical shifts a (for transmission rate
θ1) and a1 (for transmission rate θ2) with phase differ-
ence c. The selection of this simple sinusoidal function
is motivated by two primary factors: (1) its inherent
simplicity and computational convenience offer dis-
tinct advantages; (2) in certain instances, this sinu-
soidal function can effectively depict a linear trans-
formation of a weather covariate. Let us suppose that
a ≥ b, a1 ≥ b1 so that θ1, θ2 ≥ 0 for all time.

Within this study, our focus is primarily directed
toward establishing the criteria that facilitate the even-
tual eradication of ailment. The widely acknowledged
pivotal threshold for disease extinction in epidemic
models is commonly referred to as basic reproduc-
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Fig. 6 Change of the level of state variable assuming a θ1, b θ2, c α, d D, e k, f γ and g ε as bifurcating parameters. Remaining
parameters are considered as in Fig. 2

tion number. For autonomous scenarios, this num-
ber can be quantified through approaches like the
next-generation matrix method or through lineariza-
tion around a disease-free equilibrium. However, when
dealing with nonautonomous models, a uniform pro-
cedure for determining the basic reproduction num-
ber is not universally established. Specifically, we
demonstrate that basic reproduction number associated
with these models can be derived from the equiva-
lent autonomous model through the utilization of time
average of coefficients. Ma and Ma [44] and Green-
halgh and Moneim [45] have contributed significant
insights in nonautonomous SIR-type epidemic models
characterized by periodic transmission rates and con-
stant population size. These researchers have demon-
strated that the basic reproduction number associated
with nonautonomous epidemic model aligns with that
of the autonomousSIRepidemicmodel,where the peri-

odic coefficients are substituted with their correspond-
ing averages. As a consequence, the basic reproduction
number can be defined as

RN = (1 − α)(1 − D)k

(μ + m + γ − εV0)(
S10
T

∫ T

0
θ1(t)dt + S20

T

∫ T

0
θ2(t)dt

)
. (7.2)

If ε = 0, i.e., vaccination is very capable of preventing
disease, then

RN (ε=0) = (1 − α)(1 − D)k

(μ + m + γ )(
S10
T

∫ T

0
θ1(t)dt + S20

T

∫ T

0
θ2(t)dt

)

≤ RN (7.3)

Figure8a and b illustrate three different situations
for ε �= 0; (i): ε = 0.03, (ii): ε = 0.04, (iii):

Table 2 Nature of the regions formed in two parametric bifurcation

Region R1 R2 R3 R4 R5 R6

Dynamic nature
of the system

E0: unstable E∗:
stable

E0: stable E∗: not
exists

E0: unstable E∗:
stable

E0: stable E∗: not
exists

E0: unstable E∗:
stable

E0: stable E∗: not
exists

Figure Figure 7a Figure 7a Figure 7b Figure 7b Figure 7c Figure 7c
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Fig. 7 Stability region of coexistence steady state of model (2.1) in a αk-plane, b αD-plane, and c γ ε-plane. All of the parameters are
considered as in Fig. 2

ε = 0.05 and remaining parameters are considered as
q = 0.4,� = 10, α = 0.2, D = 0.3, k = 2, θ1 =
0.2, v1 = 0.3, β1 = 0.3, γ = 0.2, μ = 0.4, θ2 =
0.08, v2 = 0.2, β2 = 0.4,m = 0.3, a = 0.2, b =
0.036, a1 = 0.08, b1 = 0.006, c = 0.8, T = 180.
Consequently, the reproduction numbers are obtained
in each case as, (i): RN = 1.2256, (ii): RN = 1.4409,
(iii): RN = 1.7479. It can be noticed from Fig. 8a
and b that growing values of the reinfection rate due to
reduction of vaccination efficiency (ε) that means the
reduction in vaccination effectiveness allow the dis-
ease to persist within the ecosystem. Through observa-
tion, a notable trend has been identified as we increase
the parameter ε from 0.03 to 0.04 and further to 0.05.
Specifically, during this progression, there is a signifi-
cant rise in the population of infected class, indicating
an increase in the number of individuals affected by dis-
ease. In contrast, simultaneously, the size of vaccinated
compartment experiences a decline. This suggests that
as the value of ε increases, the effectiveness of vaccina-
tion appears to decrease, leading to a reduced propor-
tion of individuals receiving protection from ailment.
Consequently, a larger portion of population remains
susceptible to infection, resulting in a notable surge in
the number of infected individuals. When the effec-
tiveness of vaccination is insufficient, the process of
eradicating a disease becomes considerably challeng-
ing, as the endemic state of the infection will persist
for an extended period. In particular, when ε = 0.03,
it is found that the size of both infected and vacci-
nated community tends to stabilize and converge to
1.86 and 7.54, respectively (see Fig. 5b) in context of
nonperiodic transmission rate. In contrast, considering

a scenario with periodic transmission rate, a different
phenomenon is noticed. Here, the level of both infected
and vaccinated individuals exhibit oscillations around
1.86 and 7.54, respectively (see light green curves in
Fig. 8a and b). It is evident that a population cannot
remain constant in a real-world scenario; it will fluctu-
ate; sometime, it may increase and sometime diminish.
A similar trend is reflected in Fig. 8a and b due to
consideration of periodic transmission rate. Equivalent
to this, an oscillation behavior can also be seen if we
would draw the population profiles of S1 and S2 taking
periodic transmission rate. Thus, this brings the con-
sidered model to a quite realistic situation when peri-
odic transmission rate is taken into account. Figure8c
portrays that how the extent of diseased population is
influenced by the pace of vaccination among those who
are susceptible to the contagious ailment. In this con-
text, it becomes evident that administering vaccinations
within less resilient communities yields a higher degree
of effectiveness in diminishing infections.
In Fig. 9a and b, we are presented with a visual repre-
sentation that offers valuable insights into the intricate
connection between disease transmission frequency
and the duration for which the disease remains preva-
lent. The graph presents us with two distinct scenarios,
each associatedwith a different time period (T ) for dis-
ease persistence. The first scenario involves T = 180,
corresponding to a calculated value of � = 2π

T =
0.0349. Subsequently, the second scenario is charac-
terized by T = 90, resulting in � = 2π

T = 0.0698.
These temporal variations serve as key variables in our
analysis. In scenario one (T = 180), where the disease
transmission frequency is relatively higher, a distinctive
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Fig. 8 a, b Nature of vaccinated class (V ) and infected class (I ) when reinfection rate due to the reduction of efficacy of vaccination
decreased. c Change of the size of infected compartment due to various rate of vaccination in both susceptible community

pattern becomes apparent: the bandwidth of the infec-
tion peaks noticeably expands. Conversely, as we tran-
sition to scenario two (T = 90),where the transmission
frequency is reduced, an intriguing shift occurs: the
bandwidth of the infection peaks narrows. The width
of the bandwidth serves as a valuable indicator of the
disease’s ability to persist over a specific time frame;
a broader bandwidth corresponds to an extended dura-
tion of disease presence. In conclusion, the comprehen-
sive analysis describes the intricate interrelationship
between disease transmission frequency, disease per-
sistence and the resulting patterns of infection preva-
lence. Furthermore, an interesting observation emerges
as the time period of infection transmission rises: the
peak of infected class demonstrates a noticeable incre-
ment (see Fig. 9c, d). This phenomenon occurs because
when a population is exposed to a contagious disease
on multiple times, the human body naturally develops

immunity that enables it to resist the spread of infection.
Thus, by taking into account the periodic transmission
rate, we gain a new understanding that if disease trans-
mission occursmore frequently or occurs over a shorter
period of time, the population’s oscillatory nature that
is, its size will fluctuate quickly as well as level of
infected population will decrease.
The amplitude of the transmission rate plays a very
important role in the spread of the pandemic. Figure10a
shows three situations for (a): b = 0.036, b1 = 0.006,
(b): b = 0.03, b1 = 0.00576, (c): b = 0.04, b1 =
0.0064. Figure10b exhibits multiple curves, each illus-
trating distinct scenarios in the context of infection
transmission. The solid green curve portrays a spe-
cific scenario characterized by parameter values: a =
0.2, b = 0.036, a1 = 0.08, b1 = 0.006, yielding a
calculated reproduction number RN = 1.2256. Mov-
ing on, the dot–dot violet curve captures a different

123



2398 P. Dutta et al.

(a) T = 180 (b) T = 90

0 500 1000 1500
t

0.5

1.5

2.5

3.5

Inf
ec

ted
 cl

as
s (

I)

T=90 T=180 T=360

(c)

0 500 1000 1500
t

2.5

3

Inf
ec

ted
 cl

as
s (

I)

T=90 T=180 T=360

(d)

Fig. 9 Change of population biomass for different values of time period

setting, where the parameters are adjusted as follows:
a = 0.22, b = 0.044, a1 = 0.1, b1 = 0.009, leading
to an increased reproduction number RN = 1.4238.
This alteration in parameter values leads to a notable
shift in the curve, indicating a higher peak in the
infected population. This observation is crucial as it
demonstrates the direct correlation between the ampli-
tude of the transmission rate and the magnitude of
the infection peak. Moreover, a subsequent exploration
involves a slight reduction in the values of parameters b
and b1, specifically to b = 0.0396, b1 = 0.0075. This
modification results in a distinct curve, depicted in solid
yellow. Notably, the peak of the infected class is miti-
gated, as visually depicted in the graph.This adjustment
in parameters contributes to a nuanced understanding
of the infection dynamics and how they respond to
changes in transmission rates. By analyzing Fig. 10
in its entirety, we can deduce a significant trend: as the
amplitude of the transmission rate increases, the peak
of the infected population also experiences a corre-

sponding rise. Furthermore, it is important to highlight
the parallel increase in the reproduction number as the
transmission rate amplifies. The reproduction number
serves as a critical indicator of the disease’s potential to
spread within a population. Thus, this observation rein-
forces the interconnectedness between the transmission
rate, infection peaks and the overall transmissibility of
the disease.

8 Optimal control modeling in accordance with
system (2.1)

There introduces an SIVIS model in Eq. (2.1), where
system parameters remain constant. In this section, an
associated optimal control problem is presented incor-
porating impactful measures to curtail disease trans-
mission. The dynamics of social behavior are influ-
enced by prevailing disease conditions. Consequently,
modifications in individual behavioral patterns within
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Fig. 10 Response of the nonautonomous system when amplitude of the both transmission rates varies

the population emerge as a potent strategy for mitigat-
ing heightened disease transmission rates. Addition-
ally, the clinical treatment has been addressed as a phar-
maceutical intervention capable of reducing the disease
burden. In this context, our analysis explores how these
time-dependent control strategies affect disease trans-
mission patterns. Our primary objective is to optimize
the expenses associated with executing the strategies.

8.1 Strengthening susceptible individuals through
social behavioral Enhancement

Alterations in the nature of susceptible individuals are
primarily triggered by an understanding of the serious-
ness of a disease outbreak. This alteration in behavior
develops gradually as a response to changes in dis-
ease prevalence over time, offering a potential means
to disrupt ongoing disease transmission. In the sys-
tem defined by Eq. (2.1), we denote the potency of
this social behavior as D, constrained within the range
0 ≤ D < 1. In this context, 0 signifies no behavioral
changes,while 1 indicates a complete shift towardmod-
ified behavior. In this context, the socialized behavior
D(t) is treated as a control parameter to reinforce indi-
vidual responsiveness to disease symptoms and precau-
tions. Our objective is to assessed the optimal level of
social behavioral strength within the susceptible com-
munity, aiming to diminish the overall impact of ail-
ment. Since changes in behavior correspond to the
severity of the circumstances, D(t) is regarded as a
single control measure.

8.2 Enhancement of clinical treatment for
contaminated individuals

Administering medical treatment to those who are
infectious plays a vital role in diminishing disease
prevalence and impeding its progression. This strat-
egy involves providing clinical treatment to diagnosed
individuals, involving steps like symptomdetection and
medical care. Importantly, these aspects undergo mod-
ifications and improvements over time. To account for
this dynamic, the treatment rate is introduced as time-
dependent function indicated as γ (t) in the model.
In this scenario, costs associated with medication,
diagnosis, hospitalization and other related factors are
taken into account. The treatment intensity, represented
by γ (t), functions as an additional control parameter
within certain boundaries, where 0 ≤ γ < 1.Here, val-
ues of 0 and 1 correspond, respectively, to no response
and full adherence to the prescribed treatment.

Our objective involves finding the most effective
social behavior strength and treatment strategy, while
keeping costs to a minimum. To do this, wemust estab-
lish a valid range of choices for the control actions D(t)
and γ (t). This permissible range for these interventions
can be defined as:

� = {(D(t), γ (t)) | (D(t), γ (t))

∈ [0, 1] × [0, 1], t ∈ [0, T f ]
}
,

in which T f denotes concluding time until the control
strategies remain in effect. Additionally, the functions
D(t) and γ (t), representing social behavior and treat-
ment intensity respectively, are assumed to be measur-
able and constrained within certain limits.
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8.3 Evaluating of total expenses

8.3.1 Cost incurred in preserving sociological
behavioral dynamics

The overall expenditure related to enhancing societal

behavior is calculated as
∫ T f
0

[
g2Dk(t)

]
dt . This cost

encompasses the essential actions required to promote
early precautionary measures among the people. Some
existing research [46] employs a second-order nonlin-
ear term to represent costs linked to mitigation strate-
gies like self-protective measures, etc. It is important
to note that costs associated with spreading awareness
tend to be higher, especially when targeting individu-
als already exhibiting a heightened level of response.
This leads to a rapid cost escalation with increased
response intensity. Consequently, we account for this
phenomenon by incorporating a nonlinear termof order
k.

8.3.2 Cost due to infectiousness and pharmaceutical
therapy

The overall expense stemming fromailment impact and

medical policies is expressed as
∫ T f
0

[
g1 I (t)+g3γ 2(t)

]
dt . Here, g1 I (t) accounts for the expenses incurred
due to a reduced workforce resulting from infectivity,
which could also encompass the productivity decline
due to illness. On the other hand, the term g3γ 2(t)
corresponds to the expenses linked to treatment poli-
cies, covering elements like diagnostic fees,medication
costs and hospitalization expenditures. Incorporating a
nonlinear component in the treatment strategy, γ (t), up
to the second order is justifiable based on its applica-
bility as documented in prior research [46,47].
In light of the preceding facts, the ensuing control is
framed alongside the cost function denoted as Z .

Z [D(t), γ (t)]
=
∫ T f

0

[
g1 I (t) + g2D

k(t) + g3γ
2(t)
]
dt (8.1)

subject to the model system:

dS1(t)

dt
= q� − (1 − α)(1 − D(t))kθ1S1(t)I (t)

− v1S1(t) + β1γ (t)I (t)

− μS1(t), S1(0) > 0

dS2(t)

dt
= (1 − q)� − (1 − α)(1 − D(t))kθ2S2(t)I (t)

− v2S2(t) + β2γ (t)I (t)

− μS2(t), S2(0) > 0

d I (t)

dt
= (1 − α)(1 − D(t))k(θ1S1(t) + θ2S2(t))I (t)

− γ (t)I (t) + ε I (t)V (t) − (μ + m)I (t),

I (0) ≥ 0

dV (t)

dt
= (v1S1(t) + v2S2(t))

+ (1 − β1 − β2)γ (t)I (t) − ε I (t)V (t)

− μV (t),

V (0) ≥ 0. (8.2)

the functional Z denotes the overall cost as well as the
integrand is as follows:

L1(S1, S2, I, V, D(t), γ (t))

= g1 I (t) + g2D
k(t) + g3γ

2(t)

which represents the cost at time t . g1, g2 and g3 are
weight constants which have chosen to ensure appro-
priate unit balance within the integrand, as discussed in
existing references [46,47]. Our aim is to identify opti-
mal control strategies, denoted as D∗ and γ ∗, within
the set�, which collectively optimize the cost function
Z .

Theorem 8.1 The optimal control interventions
(D∗, γ ∗)of system (8.1)–(8.2) exist in� s.t. Z(D∗, γ ∗)
= min[Z(D, γ )].
Proof The proof is found in Appendix B. ��
Theorem 8.2 For optimal controls D∗, γ ∗ and asso-
ciating optimal states (S∗

1 , S
∗
2 , I

∗, V ∗), ∃ adjoint vari-
ables l = (l1, l2, l3, l4) ∈ R

4 satisfying the canonical
equations:

dl1
dt

= l1
[
(1 − α)(1 − D)kθ1 I + v1 + μ

]

− l3
[
(1 − α)(1 − D)kθ1 I

]
− l4

[
v1

]

dl2
dt

= l2
[
(1 − α)(1 − D)kθ2 I + v2 + μ

]

− l3
[
(1 − α)(1 − D)kθ2 I

]
− l4

[
v2

]

dl3
dt

= −g1 + l1
[
(1 − α)(1 − D)kθ1S1 − β1γ

]

+ l2
[
(1 − α)(1 − D)kθ2S2 − β2γ

]

− l3
[
(1 − α)(1 − D)k(θ1S1 + θ2S2)
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Table 3 Value of parameters utilized for numerical validation of model(8.2)

q � α D k θ1 v1 β1 μ θ2 v2 β2 m γ ε w1 w2 w3 w4

0.65 30 0.2 0.05 6 0.00002 0.002 0.0008 0.004 0.000005 0.003 0.0008 0.005 0.0001 0.00001 0.25 50 20 25

−(μ + m + γ ) + εV
]

− l4
[
(1 − β1 − β2)γ − εV

]

dl4
dt

= −l3
[
ε I
]

− l4
[

− ε I − μ
]

(8.3)

with the transversality conditions li (T f ) = 0, i =
1, 2, 3, 4. The optimal controls D∗ and γ ∗ that min-
imize Z(D, γ ) within � are provided as:

D∗

= min

⎧
⎪⎪⎨
⎪⎪⎩
max

⎧
⎪⎪⎨
⎪⎪⎩
0,

⎛
⎜⎜⎝

[
(1−α)I ∗

g2

{
(l3 − l1)θ1S∗

1 + (l3 − l2)θ2S∗
2

}] 1
k−1

1 +
[

(1−α)I ∗
g2

{
(l3 − l1)θ1S∗

1 + (l3 − l2)θ2S∗
2

}] 1
k−1

⎞
⎟⎟⎠

⎫
⎪⎪⎬
⎪⎪⎭

, 1

⎫
⎪⎪⎬
⎪⎪⎭

,

(8.4)

γ ∗ = min

{
max

{
0,

(
I ∗

2g3
{(l4 − l1) β1 + (l4 − l2) β2 − (l4 − l3)}

)}
, 1

}
.

Proof The proof is contained in Appendix B. ��

In the optimal control problem, we explore how the
socialized behavioral strength of susceptible individu-
als (D) and the pharmaceutical therapy level for dis-
eased individuals (γ ) evolves with time based on dis-
ease prevalence. These factors have been used as con-
trols to lessen contaminated ailment impact. Using the
forward–backward sweepmethod [48], numerical sim-
ulations are employed to demonstrate how controlmea-
sures influence system dynamics. We analyze various
scenarios of applying these controls individually or
together to minimize costs. The parameter values are
slightly varied as outlined in Table 3, including positive
weight constants. Additionally, it can be presumed that
continuous implementation of these control strategies
is applied over a span of 100 days.
Figure11 portrays the model dynamics of (8.2) in
absence of time-dependent control strategies. The pop-
ulation level becomes (1467.5454, 756.1982, 1.2927,
252.931) at T f = 100 in this case.
Now, let us explore a scenario where social behavior of
the susceptible group varies over time, while a consis-
tent rate of clinical treatment is maintained for infec-
tious individuals. Figure12 illustrates the profiles of
populationwhen D = D∗ and γ = 0.0001.By the time

T f reaches 100, the population distribution becomes
(1468.1511, 756.2750, 0.6346, 253.0044). In this case,
both the counts of susceptible and vaccinated individu-
als increase asmore people adjust their behavior to limit
disease spread. Additionally, the count of the infected
population decreases. The graph of the optimal control
intervention (D∗) is represented by the violet curve
in Fig. 12. This curve demonstrates that the control
measure becomesmore intense immediately after being
applied and gradually decreases its intensity during the
final days of implementation.
Moving forward, we explore a scenario where only the
treatment given to infected individuals varies based on
the severity of their condition. In Fig. 13, we present the
population profiles for γ = γ ∗ and D = 0.05. By the
time T f = 100, the population distribution becomes
(1468.2648, 756.2897, 0.0747, 253.6767). The effec-
tiveness of optimal treatment, especially through vac-
cination, substantially increases the count of vaccinated
individuals compared to situations without control
measures. Additionally, due to the temporary impact
of vaccination, the count of susceptible individuals also
rises. The graph illustrating the optimal control strategy
γ ∗ is presented as the brown curve in Fig. 13.
A more effective control of disease burden is achiev-
able when both control measures are employed simul-
taneously. Hence, a scenario has been investigated
where the sociological behavioral dynamics of individ-
uals and the medical treatment for diseased individuals
are adjusted based on disease severity, aiming to curb
higher disease transmission. The population trajecto-
ries are depicted in Fig. 14 at T f = 100 and the popula-
tion distribution becomes (1404.1673, 790.846, 0.056
63, 283.235). Notably, the infected population experi-
ences the greatest reduction in this scenario. Moreover,
a higher level of susceptible classes is observed for the
combined effect of control strategies. The count of vac-
cinated individuals is also higher compared to previous
cases. The final two curves in Fig. 14 illustrate the opti-
mal profiles for both control measures. The intensity of
D∗ rises initially and subsequently decreases during the
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Fig. 11 Graphs depicting
population dynamics in
absence of control policies
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Fig. 12 Graphs depicting
population dynamics under
the influence of optimal
control D∗ alone
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Fig. 13 Graphs depicting
population dynamics under
the influence of optimal
control γ ∗ alone
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Fig. 14 Graphs depicting
population dynamics under
the implementation of both
optimal control strategies
D∗ as well as γ ∗
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final days, whereas the strength of γ ∗ begins to decline
after execution.
The effectiveness of the implemented control measures
is determined by their cost-effectiveness. In Fig. 15, we
observe the impact of implemented control interven-
tions (D∗, γ ∗) over the cost function (Z) and the num-
ber of the infectious individuals (I ). When no control
strategies are employed, the cost stems from the pro-
ductivity loss caused by the diseased class. Since the
number of contaminated community is highest without
control measures, it leads to greater opportunity loss,
resulting in a heavier economic burden. The optimal
cost notably decreases when both control strategies are
enforced, as the number of infected individuals is lower
in this case. Moreover, the cost levels are consistently
higher when only one control strategy is implemented
compared to the scenario where both strategies are exe-
cuted. Thus, it is concluded that utilizing both policies
simultaneously is economically advantageous.

9 Discussion

Epidemiological studies offer insight into the com-
plex dynamics of disease outbreaks and identify factors
influencing these dynamics. While researchers have
long focused on SIRS-type epidemic models, recent
attention has shifted toward exploring ways to con-
trol these outbreaks. As part of these efforts, a non-
linear SIVIS epidemiological model is proposed and
examined in this study. This model delves into dis-
ease dynamics considering government actions, public
response and social reactions. Certain diseases exhibit
partial recovery upon infection and the possibility of
reinfection after a period. Examples like Influenza,
Hepatitis B, Hepatitis Delta, dengue, malaria, tubercu-
losis, encephalitis and COVID-19 fit the SIVIS model
due to their reinfection characteristics. During out-
breaks, governments play a pivotal role in implement-
ing regulations to manage panic. Various National
Health Programs have been established over the years
for disease prevention and control [49]. Nonperiodic
behaviors of compartmental models that trend toward
an endemic equilibrium point have been analyzed,
often reflecting actions such as the opening and clos-
ing of public places, seasonal changes, social behavior
shifts and new variants. These are often modeled using
forced oscillation concepts. Seasonality in epidemic
models mirrors natural population and disease dynam-

ics, offering biological realism for understanding dis-
ease outbreaks in human and wildlife systems. Con-
tact rate periodicity, influenced by social and weather
factors, is a rich area of mathematical and computa-
tional epidemiology. In this work, we adapt and expand
a SIVIS model that incorporates vaccination and har-
monic transmission rates.

The incorporation of sociological factors leads to
a decrease in the disease transmission rate. Proposed
model (2.1) maintains biological validity as each pop-
ulation category remains positive and bounded over
time. The derived reproduction number (R0) deter-
mines disease infectiousness; R0 greater than one indi-
cates ongoing infection in the deterministic system.
Numerical illustrations reveal that parameters such as
government actions (α), infection propagation rates
(θ1, θ2), social behavior (D), public response (k),
recovery rate (γ ) and reinfection rate due to the reduc-
tion of efficacy of vaccination (ε) possess the capacity
to influence and manage the system dynamics.

The sensitivity study also indicates that the system’s
ability to manage infection level is most sensitive to the
rate at which the disease spreads from the people with
lower immunity power. Figure4 reveals that in order
to efficiently manage the occurrence of the disease, it
is imperative to progressively enhance the vaccination
rate (v1) within weaker susceptible population (S1),
while simultaneously maintaining a constant vaccina-
tion rate (v2) among individuals in the higher immunity
category (S2). Throughout this work, rate of transmis-
sion of disease (θ1, θ2), sociological parameters (α, D),
public response (k), recovery rate (γ ) and reinfection
rate due to the reduction of efficacy of vaccination (ε)
have performed a significant role. As a result, we have
examined the fundamental changes in the behavior of
the system by exploring variations in the parameters
θ1, θ2, α, D, k, γ and ε. We have also established the
conditions for transcritical bifurcation in model (2.1),
using θ1, θ2, α, D, k, γ and ε as the parameters causing
the bifurcation.

The study also highlights how the frequency and
amplitudeof the transmission rate play a significant role
in shaping the disease’s dynamics. Themodel indicates
that, even with varying transmission rates over time,
rapid vaccination of the susceptible population with
weaker immunity leads to a faster decline in the peak
of infected individuals. The frequency of the transmis-
sion rate measures the disease’s persistence, whereas
the amplitude of the transmission rate measures the

123



Periodic transmission and vaccination effects 2405

0 20 40 60 80 100t
0

0.1

0.2

0.3

0.4

0.5

0.6
Co

st 
fu

nc
tio

n (
J)

D = D*,  = 0.0001
D = 0.05,  = *

D = D*,  = *

D = 0.05,  = 0.0001
20 40 60 80 100
0

0.02

0.04

(a)

0 20 40 60 80 100t
0

0.5

1

1.5

2

Inf
ec

ted
 cl

as
s (

I)

D = D*,  = 0.0001
D = 0.05,  = *

D = D*,  = *

D = 0.05,  = 0.0001
20 40 60 80 100
0

0.1

0.2

(b)

Fig. 15 aVariation in costs associated with different time-dependent control strategies. bGraphs of infected population under different
time-dependent control strategies

peak of the infected population. These insights under-
line that the dynamic nature of endemic diseases like
COVID-19 is influenced by factors such as vaccination
effectiveness, environmental conditions and virus vari-
ants. Additionally, social and biological factors such
as population density, social distancing measures and
governmental actions contribute to the intricate dynam-
ics of the disease.

Moreover, as regulations and recovery rates (via
clinical treatment or natural recovery) for infected indi-
viduals evolve over time, an associated optimal con-
trol modeling is suggested to measure their influence
on the dynamics of the system. Numerical simula-
tions consistently demonstrate that implementing both
control interventions significantly reduce the size of
infected individuals. This reduction not only curbs dis-
ease prevalence but also lessens the economical burden.
Thus, these time-dependent control measures prove
effective in reducing infection rates during epidemic
outbreaks.

This studyhas illuminatedvarious potential dynamic
behaviors that an epidemiological system could exhibit
within a deterministic setting and under periodic trans-
mission rates. Based on these insights, a range of pos-
sibilities awaits exploration in the upcoming years. It is
important to note that the strategies employed here can
be applied to investigate other intriguing models, such
as the SEIRmodel, SIQRmodel, and thesemodelsmay
be useful for future and unexpected epidemics. Future
research could also explore the impact of white noise
and color noise on these models. A follow-up study is
required to comprehend the more intricate dynamics of

realistic yet complex systems, whichmight incorporate
several response functions and time delays in different
communities.
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Appendix A

A.1 Reproduction number

Suppose that, x ≡ (I, V ). Then we have:
dx

dt
= F(x) − ν(x), where
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F(x) =
(

(1 − α)(1 − D)k(θ1S1(t) + θ2S2(t))I (t)
0

)

and ν(x) =
(

(μ + m + γ ) I − ε I V
−(v1S1 + v2S2) − (1 − β1 − β2)γ I + ε I V + μV

)
.

Here, F(x) consists of the compartment in which infec-
tion is introduced first and ν(x) contains rest of the
terms. Then, at E0(S10, S20, 0, V0), we have

F = (DF(x))E0

=
(

(1 − α)(1 − D)k(θ1S10(t) + θ2S20(t)) 0
0 0

)

and V = (Dν(x))E0 =
(

(μ + m + γ ) − εV0 0
(1 − β1 − β2)γ + εV0 μ

)
.

Reproduction number is the spectral radius of next-
generation matrix. Now, FV−1 is the next-generation
matrix whose spectral radius is denoted as:

R0 = (1 − α)(1 − D)k(θ1S10 + θ2S20)

(μ + m + γ − εV0)
.

Appendix B

B.1 Existence of optimal control functions

Here, we describe the existence of optimal controlmea-
sures with a minimized cost function in a finite time
interval.

Proof of Theorem 8.1 Model (8.2) assumes N = S1 +
S2 + I + V be the total population. So,

dN

dt
= � − μS1 − μS2 − (μ + m)I − μV

≤ � − μN ⇒ 0 < N (t)

≤ �

μ
+
(
N (0) − �

μ

)
e−μt

where N (0) represents the overall population at initial

state. As t → ∞, 0 < N (t) ≤ �

μ
+ ε, for any ε > 0.

Thus, when control factors are present, the solution
of model (8.2) remains bounded, and the functions on
the right side of system (8.2) are Lipschitz continu-
ous within �. Thus, according to the Picard–Lindelöf
theorem, optimal control model system (8.2) exhibits
nontrivial solutions within � [50]. Moreover, the con-
trol elements are confined within a closed and convex
set �. Each equation system (8.2) can be expressed
linearly using D and γ , with coefficients dependent on

time and state variables. Moreover, the control vari-
ables are of second order, leading to the integrand
L(S1, S2, I, V, D, γ ) being a convex function on the
solution set �.

Again, L1(S1, S2, I, V, D, γ ) = g1 I (t) + g2D
k(t)

+g3γ
2(t) ≥ g2D

k + g3γ
2.

Let us take, g = min(g2, g3) > 0 and h(D, γ ) =
g(Dk + γ 2). Hence, h(D, γ ) is a continuous func-
tion, and L(S1, S2, I, V, D, γ ) ≥ h(D, γ ). Further-
more, ||(D, γ )||−1h(D, γ ) → ∞ for ||(D, γ )|| → ∞.

Therefore, using the outcomes of [47,51], it can be
stated that optimal control interventions D∗ and γ ∗
exist such that Z(D∗, γ ∗) = min[Z(D, γ )]. ��

B.2 Characterization of control interventions

The optimal control strategies are derived through the
utilization of Pontryagin’s principle [51,52]. Now, the
Hamiltonian function is given by:

H (S1, S2, I, V, D, γ, l) = L1(S1, S2, I, V, D, γ )

+ l1
dS1
dt

+ l2
dS2
dt

+ l3
d I

dt
+ l4

dV

dt
.

H = g1 I (t) + g2D
k(t) + g3γ

2(t)

+ l1
[
q� − (1 − α)(1 − D(t))kθ1S1 I

−v1S1 + β1γ I − μS1
]

+ l2
[
(1 − q)� − (1 − α)(1 − D(t))kθ2S2 I

−v2S2 + β2γ I − μS2
]

+ l3
[
(1 − α)(1 − D(t))k(θ1S1 + θ2S2)I

− (μ + m)I − γ I + ε I V
]

+ l4
[
(v1S1 + v2S2) + (1 − β1 − β2)γ I − ε I V − μV

]

(B.1)

Here l = (l1, l2, l3, l4) indicates adjoint variables. Our
primary concern is to minimize Hamiltonian H by uti-
lizing Pontryagin’s principle so that a minimal cost
function is obtained.

Proof of Theorem 8.2 Consider D∗ and γ ∗ be the
applied optimal control along with the correspond-
ing optimal state variables are S∗

1 , S
∗
2 , I

∗ and V ∗ of
(8.2) which minimize the cost functional Z defined
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in (8.1). Therefore, we have adjoint variables li for
i = 1, 2, 3, 4, satisfying the canonical equations:

dl1
dt

= − ∂H

∂S1
,

dl2
dt

= − ∂H

∂S2
,

dl3
dt

= −∂H

∂ I
,

dl4
dt

= −∂H

∂V
.

So, we have

dl1
dt

= l1
[
(1 − α)(1 − D)kθ1 I + v1 + μ

]

− l3
[
(1 − α)(1 − D)kθ1 I

]
− l4

[
v1

]

dl2
dt

= l2
[
(1 − α)(1 − D)kθ2 I + v2 + μ

]

− l3
[
(1 − α)(1 − D)kθ2 I

]
− l4

[
v2

]

dl3
dt

= −g1 + l1
[
(1 − α)(1 − D)kθ1S1 − β1γ

]

+ l2
[
(1 − α)(1 − D)kθ2S2 − β2γ

]

− l3
[
(1 − α)(1 − D)k(θ1S1 + θ2S2)

−(μ + m + γ ) + εV
]

− l4
[
(1 − β1 − β2)γ − εV

]

dl4
dt

= −l3
[
ε I
]

− l4
[

− ε I − μ
]

with the transversality conditions li (T f ) = 0, for i =
1, 2, 3, 4.

From optimality conditions : ∂H

∂D

∣∣∣∣
D=D∗

= 0,

and
∂H

∂γ

∣∣∣∣
γ=γ ∗

= 0.

So,D∗=
[

(1−α)I ∗
g2

{
(l3−l1)θ1S∗

1+(l3−l2)θ2S∗
2

}] 1
k−1

1+
[

(1−α)I ∗
g2

{
(l3−l1)θ1S∗

1+(l3−l2)θ2S∗
2

}] 1
k−1

and γ ∗= I ∗

2g3
{(l4 − l1) β1 + (l4 − l2) β2 − (l4 − l3)}.

In �, we have

D∗ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if

[
(1−α)I∗

g2
{(l3−l1)θ1S∗

1+(l3−l2)θ2S∗
2}
] 1
k−1

1+
[

(1−α)I∗
g2

{(l3−l1)θ1S∗
1+(l3−l2)θ2S∗

2}
] 1
k−1

< 0

[
(1−α)I∗

g2
{(l3−l1)θ1S∗

1+(l3−l2)θ2S∗
2}
] 1
k−1

1+
[

(1−α)I∗
g2

{(l3−l1)θ1S∗
1+(l3−l2)θ2S∗

2}
] 1
k−1

, if 0 ≤
[

(1−α)I∗
g2

{(l3−l1)θ1S∗
1+(l3−l2)θ2S∗

2}
] 1
k−1

1+
[

(1−α)I∗
g2

{(l3−l1)θ1S∗
1+(l3−l2)θ2S∗

2}
] 1
k−1

≤ 1

1, if

[
(1−α)I∗

g2
{(l3−l1)θ1S∗

1+(l3−l2)θ2S∗
2}
] 1
k−1

1+
[

(1−α)I∗
g2

{(l3−l1)θ1S∗
1+(l3−l2)θ2S∗

2}
] 1
k−1

> 1

γ ∗ =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if I ∗
2g3

{(l4 − l1)β1 + (l4 − l2)β2 − (l4 − l3)} < 0
I ∗
2g3

{(l4 − l1)β1

+(l4 − l2)β2 − (l4 − l3)}, if 0 ≤ I ∗
2g3

{(l4 − l1) β1 + (l4 − l2) β2 − (l4 − l3)} ≤ 1

1, if I ∗
2g3

{(l4 − l1) β1 + (l4 − l2) β2 − (l4 − l3)} > 1

which is equivalent as (8.4). ��

B.3 Optimal system

The optimal systemwhich includes the optimal control
measures D∗ and γ ∗ and minimizing the Hamiltonian
H∗ at (S∗

1 , S
∗
2 , I

∗, V ∗, l1, l2, l3, l4) is

dS∗
1

dt
= q� − (1 − α)(1 − D∗)kθ1S∗

1 I
∗

− v1S
∗
1 + β1γ

∗ I ∗ − μS∗
1
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dS∗
2

dt
= (1 − q)� − (1 − α)(1 − D∗)kθ2S∗

2 I
∗

− v2S
∗
2 + β2γ

∗ I ∗ − μS∗
2

d I ∗

dt
= (1 − α)(1 − D∗)k(θ1S∗

1

+ θ2S
∗
2 )I

∗ − γ ∗ I ∗ + ε I ∗V ∗ − (μ + m)I ∗

dV ∗

dt
= (v1S

∗
1 + v2S

∗
2 )

+ (1 − β1 − β2)γ
∗ I ∗ − ε I ∗V ∗ − μV ∗ ≥ 0.

(B.2)

with non-negative initial conditions S∗
1 (0) > 0, S∗

2 (0) >

0, I ∗(0) ≥ 0, V ∗(0) ≥ 0, and the corresponding
adjoint system is:

dl1
dt

= l1
[
(1 − α)(1 − D∗)kθ1 I ∗ + v1 + μ

]

− l3
[
(1 − α)(1 − D∗)kθ1 I ∗]− l4

[
v1

]

dl2
dt

= l2
[
(1 − α)(1 − D∗)kθ2 I ∗ + v2 + μ

]

− l3
[
(1 − α)(1 − D∗)kθ2 I ∗]− l4

[
v2

]

dl3
dt

= −g1 + l1
[
(1 − α)(1 − D∗)kθ1S∗

1 − β1γ
∗]

+ l2
[
(1 − α)(1 − D∗)kθ2S∗

2 − β2γ
∗]

− l3
[
(1 − α)(1 − D∗)k(θ1S∗

1 + θ2S
∗
2 )

−(μ + m + γ ∗) + εV ∗]

− l4
[
(1 − β1 − β2)γ

∗ − εV ∗]

dl4
dt

= −l3
[
ε I ∗]− l4

[
− ε I ∗ − μ

]
(B.3)

with transversality conditions li (T f ) = 0, for i =
1, 2, 3, 4 and the control interventions D∗, γ ∗ are the
same as in (8.4).
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