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Abstract The present study deals with the normali-
sation of Hamiltonian for the nonlinear stability anal-
ysis in non-resonance case of the triangular equilib-
rium points in the perturbed restricted three-body prob-
lem with perturbation factors as radiation pressure due
to first oblate-radiating primary, albedo from second
oblate primary, oblateness and a disc. The problem is
formulated with these perturbations and Hamiltonian
of the problem is normalised up to fourth order by
Lie transform technique consequently a Birkhoff’s nor-
mal form of the Hamiltonian is obtained. The Arnold–
Moser theorem is verified for the nonlinear stability test
of the triangular equilibrium points in non-resonance
case with the assumed perturbations. It is found that
in the presence of radiation pressure, stability range
expanded, significantly with respect to the classical
range of stability; however, because of albedo, oblate-
ness and the disc, it contracted gradually. Moreover, it
is observed that alike to the classical problem, in the
perturbed problem under the impact of the assumed
perturbations, there always exist one or more values
of the mass ratio μ within the stability range at which
discriminant D4 = 0, which means the triangular equi-
librium points are unstable in nonlinear sense.
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1 Introduction

The restricted three-body problem (RTBP) has been
playing a significant role in dealing the dynamics
of restricted mass for many space operations. It has
been providing appropriate locations for placing sev-
eral artificial satellites and helping to execute many
space exploration missions beyond the solar system
too. The RTBP consists of motion of infinitesimal mass
under the gravitational influence of two massive bod-
ies, which are orbiting about their centre of masses in
circular path [1]. Several researchers have described
the RTBP and its generalised form with or without
perturbations in the form of radiation pressure, oblate-
ness, P-R drag, disc, etc., in the context of existence of
equilibrium points and their linear stability, basins of
attraction associated to attractors as equilibrium points,
Lyapunov exponents, periodic orbits and their families
in the vicinity of equilibrium points [2–14]. The equi-
librium points in the RTBP are being used for many
space exploration missions from different space agen-
cies. The location of equilibrium points in the planetary
system would be an ideal location in future for space
colonies apart from the favourite places for other space
exploration missions. Therefore, the study of stability
property of the linearly stable equilibrium points, i.e.
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triangular equilibrium points, is a necessary step as it
describes the dynamics of small space objects such as
Trojan asteroids for long-time duration and many other
real-world applications. The stability of the equilibrium
points in the restricted three-body problem over a long
period of evolution is an important and critical issue,
and as a result, many researchers of different fields,
includingmathematical physics, dynamical astronomy,
celestial mechanics, etc., are studying the Hamiltonian
system of the problem in the vicinity of the triangular
equilibrium points.

In 1969, Deprit [15] has presented the concept of
Lie series to the case, in which the generating function
is explicitly dependent on the small parameter. For the
small parameter, Lie transformations naturally define a
class of canonicalmappings in the formof power series.
They have demonstrated, how the canonical transfor-
mations contemplated by Von Zeipel’s method, which
are naturally defined. The canonicalmappings obtained
by using Lie transform comprise the natural ingredi-
ent for the Hamiltonian dynamical systems. Liu [16]
has studied the application of Birkhoff’s normal form
and singular perturbation in the stability of L4 point
in the RTBP. In 1986, Meyer and Schmidt [17] have
computed the normal form of Hamiltonian up to six
order and have applied the KAM theory for analysing
the stability of triangular equilibrium points. Coppola
and Rand [18] have used Lie transformmethod and the
method of perturbation to a Hamiltonian systems with
the help of computer algebra and have introduced a for-
mula for transforming the normalised Hamiltonian to
Birkhoff’s form for describing nonlinear stability crite-
ria. They have implemented these criteria for perform-
ing the nonlinear stability analysis of L4 point. Rao and
Sharma [19] and Ishwar [20] individually, have inves-
tigated the stability of triangular equilibrium points in
nonlinear sense, when one of the primaries is oblate
spheroid and they have found that L4 point is stable
for all μ within the stability range except at the critical
value of the mass ratio.

Jorba and Villanueva [21,22] have initiated to exe-
cute efficient computation of Hamiltonian normal
forms, first integrals of these systems, invariant tori
and centre manifolds for understanding the dynam-
ics of infinitesimal mass near the equilibrium points.
This study is based on algebraic manipulation of for-
mal series that have numerical coefficients, which is
equipped with a very efficient software implementa-
tion. Further, Kushvah et al. [23,24] have studied the

effect of PR-drag on the nonlinear stability of tri-
angular equilibrium points in the photo-gravitational
RTBP. They have computed the higher-order normal
forms of Hamiltonian system associated to the problem
and found that triangular equilibrium points are stable
within the stability range except those values of μ for
whichKAM theory does not holds. Alvarez-Ramírez et
al. [25] have obtained fourth-order normal form of the
Hamiltonian in the presence of radiation pressure and
have applied Arnold–Moser theorem to examine the
nonlinear stability of L4 point. In the literature, sev-
eral researchers [26–32] have studied either RTBP or
its generalised form with different kinds of perturba-
tions for nonlinear stability of equilibrium points and
have analysed the effect of perturbations in the context
of the nature of the stability property. Further, Zepeda
Ramírez et al. [33,34] have presented the nonlinear
stability analysis of equilibrium points in the planar
equilateral restrictedmass-unequal four-body problem.
The RTBP has received very little attention in case of
combined effect of several perturbations in the form of
radiation pressure due to first primary, albedo of second
primary, oblateness of both the primaries and presence
of a disc.

The present study is focused on the nonlinear sta-
bility test of the triangular equilibrium points L4,5 by
the use of Arnold–Moser theorem in non-resonance
case under the influence of radiation pressure, albedo,
oblateness and the disc. The paper is divided into five
sections, which are as follows: Sect. 2 deals with the
formulation of the problem and determination of the
triangular equilibrium points. Section 3 presents the
computation of Hamiltonian and estimation of its nor-
malised form. Section4 is devoted to the higher-order
normalisation of the Hamiltonian with the help of Lie
series method and application of Arnold–Moser theo-
rem. Section5 concludes the paper. The semi-analytical
and numerical computations throughout the paper are
performed by the use of latest version of Mathematica
software. An extra care has been given to lengthy inter-
mediate calculations and manipulations. For numerical
computation, a fixed accuracy goal up to 7 places of
decimal is used.

2 Formulation of the problem

Consider the motion of an infinitesimal mass m∗ (such
as small space objects, asteroid, spacecraft, satellite,
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etc.) under the gravitational influence of two oblate
masses m1 and m2 (known as primaries) such that
m∗ << m2 < m1 and a disc of dusts in space, which
is circumscribed the primaries and is rotating about the
common centre of mass of the system. Suppose, pri-
maries m1 and m2 are orbiting about their centre of
masses in a circular path and gravitational influence
of the infinitesimal mass on the remaining system is
negligible. It is also assumed that first oblate primary
m1 is a radiating body and second oblate primary m2

is such that it reflects the incident radiations from the
radiating oblate primarym1 and hence, second primary
m2 produces albedo effect. Suppose, Fr and Fa be the
radiation pressure force due to first radiating primary
and albedo of second primary then mass reduction fac-
tor q (also called radiation parameter) and albedo QA

are, respectively, defined [8,35] as

q =
(
1 − Fr

Fg1

)
and QA =

(
1 − Fa

Fg2

)
, (1)

where Fg1 and Fg2 are gravitational forces of the
respective primaries. Let A21 and A22 be the oblate-
ness coefficients of first and second primaries, which
are, respectively, defined [5,36] as

A21 = R2
e1 − R2

p1

5R2 and A22 = R2
e2 − R2

p2

5R2 , (2)

where Rei and Rpi for i = 1, 2 are equatorial and polar
radii of the primaries and R is the distance between
both the primaries. Since it is assumed that a circular
disc of dust in space circumscribed the system, then the
gravitational force exerted due to the discwithmassMd

on the infinitesimal mass defines a potential, which is
expressed [37,38] as

φ(r, 0) = Md√
r2 + T 2

where r =
√
X2 + Y 2 and

T = (a + b), (3)

with a and b as flatness and core parameters, which
determine the density profile of the disc and r is the
radial distance of the disc.

For non-dimensionalising the parameters, let the
characteristic mass be defined as the sum of masses
of the primaries, the characteristic length be taken as
the sum of distance between the primaries and the char-
acteristic time be assumed as the orbital period of the
primaries in rotating frame. However, authors are inter-
ested to analyse the nature of motion in orbital plane,
i.e. in XY -plane, only. Therefore, the motion along Z -
direction is uncoupled and behaves like a harmonic

oscillator with frequency 1, which is already in real
normal from. Hence, formulation of the problem in
hand andwhole analysis are performed in XY -plane, in
which the frame of reference of the model is described
as follows: the barycentre is placed at origin of the
frame, the line joining the primaries defines the X -axis;
however, the Y -axis is perpendicular to the X -axis. Let
(−μ, 0) and (1 − μ, 0) be the coordinates of the first
and second primary, respectively, and (X, Y ) be that of
infinitesimal mass in the XY -plane, whereμ = m2

m1+m2
is the mass ratio. Then, the equations governing the
motion of infinitesimal mass in the orbital plane under
the synodic frame are written [8,39] as

Ẍ − 2nẎ = ∂�

∂X
, (4)

Ÿ + 2n Ẋ = ∂�

∂Y
, (5)

where effective potential � is expressed as

�(X, Y ) = n2

2
(X2 + Y 2) + q(1 − μ)

r1

(
1 + A21

2 r21

)

+μ QA

r2

(
1 + A22

2 r22

)

+ Md√
r2 + T 2

. (6)

In Eq. (6), r1 = √
(X + μ)2 + Y 2,

r2 = √
(X + μ − 1)2 + Y 2 and r = √

X2 + Y 2 are
the distances of the infinitesimal mass from first and
second primaries and from the origin, respectively, and
n is the perturbed mean motion, which is given [8,40]
as

n =
√
1 + 3(A21 + A22)

2
+ 2Md rc

(r2c + T 2)3/2
, (7)

where rc is the radial distance of the test body in the
classical RTBP [41]. The Hamiltonian function of the
problem in hand is expressed [4] as

H(X, Y, PX , PY ) = P2
X + P2

Y

2
+ n(Y PX − X PY )

−�(X, Y ) + n2

2
(X2 + Y 2),

(8)

where PX = Ẋ−n Y and PY = Ẏ+n X aremomentum
coordinates.
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Fig. 1 Semi-analytical solutions relative to a linear order terms of perturbation parameters, b higher-order terms of perturbation
parameters and c combination of (a) and (b)

2.1 Triangular equilibrium points

In a dynamical system, the point at which velocity of
the infinitesimal mass vanishes, is called an equilib-
rium point. There are two types of equilibrium points,
namely, collinear equilibrium points and triangular
equilibrium points. In circular RTBP, collinear equi-
librium points lie on the line joining both the primaries
and are unstable in nature for all values of mass ratio
μ ∈ (0, 0.5], hence unimportant for nonlinear stabil-
ity. On the other hand, triangular equilibrium points lie
in the orbital plane except the collinear axis and consti-
tute equilateral triangle with the primaries. Triangular
equilibrium points are denoted by L4 and L5 and these
are stable in the range 0 < μ < 0.0385209. These are

obtained by solving
∂�

∂X
= 0 and

∂�

∂Y
= 0, simulta-

neously for X and Y . In the present study, only linear
order terms of the perturbing parameters are included,
whereas second- and higher-order terms are ignored to
reduce the complexity in the semi-analytical compu-
tations for finding the normal forms. For the numeri-
cal treatment, following fixed values as T = 0.11 and

rc = 0.90 are used so that mean motion n given by Eq.
(7) changes its form as

n2 = 1 + 3(A21 + A22)

2
+ 3Md

2
. (9)

Now, to avoid the lengthy and complex computations
with the available resources, only linear order terms
of the perturbation parameters, throughout the study,
are considered. However, all the perturbation param-
eters are very small quantities; hence, their contri-
butions for higher-order terms are negligible. That is
nature of motion in both the cases is very similar.
In Fig. 1, semi-analytical solutions of the linearised
equations of motion (22) are displayed, in which red
trajectory (Fig. 1a) corresponds to the linear order
terms of perturbation parameters in the coefficients
a5, a6, a7, which are expressed by Eqs. (18–20) and
blue-dashed trajectory (Fig. 1b) corresponds to that of
higher-order terms of perturbation parameters in the
coefficientsa5, a6, a7, i.e. nonlinearised actual expres-
sion of a5, a6, a7, whereas Fig. 1c represents combi-
nation of Fig. 1a, b. From Fig. 1c, it can be seen that
the solution with higher-order terms of perturbations
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seems coincident with that of linear order terms. There-
fore, the higher-order terms of the perturbations are
neglected and for further analysis and discussion, only
linear order terms of perturbation parameters are con-
sidered, so that complexity in the intermediary expres-
sions can be minimised.

As, q and QA range over (0, 1], so taking q = 1−ε1
and QA = 1 − ε2 with 0 < ε1, ε2 < 1, the coordi-
nates (X0, ±Y0) of the triangular equilibrium points
L4,5 are expressed in linear order terms of perturbing
parameters as

X0 = 1

2
− μ − 2

3
(ε1 − ε2) + (A21 + A22), (10)

Y0 =
√
3

2

(
1 − 2

9
(ε1 + ε2) − 1

3
(A21 + A22) − 2

3
Md

)
.

(11)

As, the points L4,5(X0, ±Y0) are symmetric in nature
with respect to the collinear axis, so it is enough
to analyse only L4(X0, Y0) point and analysis for
L5(X0, −Y0) point will be followed. Now, for the non-
linear stability test of L4 point, we determine the linear
order normal form of the Hamiltonian of the system
in the vicinity of L4 point and record the correspond-
ing symplectic changes in the state variables. Further,
these normal forms are utilised to obtain higher-order
normal forms of the Hamiltonian to predict the nature
of L4 point as summarised in [22].

3 Linear order normal form of Hamiltonian

For computation of linear order normal form, we start
from translation of the origin to the triangular equilib-
rium point L4(X0, Y0) by the use of symplectic change
in the coordinates, which are given as

x = X − X0, y = Y − Y0, (12)

px = PX + Y0, py = PY − X0. (13)

The changes in the coordinates (12–13) transform
the effective potential � given by Eq. (6) to �̃, which
is given as

�̃ = [
(x + X0)

2 + (y + Y0)
2] + q(1 − μ)

r̃1

(
1 + A21

2 r̃21

)

+μ QA

r̃2

(
1 + A22

2 r̃22

)
+ Md√

r̃2 + T 2
, (14)

where

r̃1 =
√

(x + X0 + μ)2 + (y + Y0)2,

r̃2 =
√

(x + X0 + μ − 1)2 + (y + Y0)2 and

r̃ =
√

(x + X0)2 + (y + Y0)2.

and the Hamiltonian function (8) takes the form

H̃ (x, y, px , py) = (px − Y0)2 + (py + X0)
2

2
+n [(y + Y0)(px − Y0)

−(x + X0)(py + X0)
]

−�̃ + n2

2

[
(x + X0)

2 + (y + Y0)
2
]
.

(15)

By the use of Taylor’s series expansion,Hamiltonian
H̃ is expanded about the origin (i.e. about L4 point) as

H̃ = H0 + H1 + H2 + H3 + H4

+H5 + · · · + Hn + · · · , (16)

where Hn in the expansion (16) is given as

Hn =
∑

j+k+l+m=n

Hjklm x j yk plx pmy .

Since the terms H0 and H1 in (16) do not affect the
dynamics of the infinitesimal mass so, we take H2 as
starting term for higher-order normalisation of Hamil-
tonian about L4 point, which is expressed as

H2 = p2x + p2y
2

+ n(ypx − xpy)

+a5x
2 + a6y

2 + a7xy, (17)

where the coefficients a5, a6 and a7 are

a5 = 1

8

(
1 + 11

2
ε1 − 15

2
ε2 − 51

4
A21 + 39

4
A22 − 10

21
Md

)
,

(18)

a6 = −5

8

(
1 + 3

2
ε1 − 19

10
ε2 + 9

20
A21 + 15

4
A22 + 15

8
Md

)
,

(19)

a7 = −γ

(
1 − 1

18
ε1 + 5

18
ε2 + 35

12
A21 + 17

12
A22 + 14

5
Md

)

(20)

with γ = 3
√
3

4 (1 − 2μ).
Now, Hamiltonian H2 in Eq. (17) can be expressed

as a sumof several parts corresponding to different kind
of perturbations such as
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H2 = H2c + H2ε1ε1 + H2ε2ε2 + H2A21 A21

+H2A22 A22 + H2Md Md , (21)

where

H2c = p2x + p2y
2

+ n(ypx − xpy) +
(
1

8
x2 − 5

8
y2 − γ xy

)
,

H2ε1 =
(
11

16
x2 − 15

16
y2 + γ

18
xy

)
,

H2ε2 =
(

−15

2
x2 + 19

16
y2 − 5γ

18
xy

)
,

H2A21 =
(

−51

32
x2 − 9

32
y2 − 35γ

12
xy

)
,

H2A22 =
(
39

32
x2 − 75

32
y2 − 17γ

12
xy

)
,

H2Md =
(

− 10

168
x2 − 75

64
y2 − 14γ

5
xy

)

are the parts of Hamiltonian H2 corresponding to clas-
sical term, radiation parameter, albedo, oblateness of
first primary, oblateness of second primary and the
disc, respectively. Now, consider the Jordan matrix

J =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0

⎞
⎟⎟⎠ and write it as

J =
(

0 I2
−I2 0

)
, where I2 =

(
1 0
0 1

)
.

Then, the linearised equations of motion for the trans-
formed Hamiltonian function H2 in Eq. (17) are given
as⎛
⎜⎜⎝

ẋ
ẏ
ṗx
ṗy

⎞
⎟⎟⎠ = J · Hess(H2)

⎛
⎜⎜⎝

x
y
px
py

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

0 n 1 0
−n 0 0 1

−2 a5 −a7 0 n
−a7 −2 a6 −n 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

x
y
px
py

⎞
⎟⎟⎠ . (22)

Suppose, M = J · Hess(H2), then the characteristic
equation corresponding to matrix M is written as

λ4 + P λ2 + Q = 0, (23)

where

P = 2a5 + 2a6 + 2n2, (24)

Q = n4 + 2a5n
2 − 2a6n

2 − a27 + 4a5a6. (25)

The characteristic equation (23) concludes that the sys-
tem (22) is stable for μ ∈ (0, μR] and unstable for
μ ∈ (μR, 0.5] [1,39],whereμR is calledRouth’s value
ofmass ratio of the problem in hand (see Table 1). From
Table 1, it is clear that Routh’s value of mass ratio μR

increasing rapidly with respect to radiation parameter
ε1 from classical value 0.0385209 to onwards within
the upper limit of μ. However, it decreases almost in
the same trends with respect to the values of albedo
parameter ε2. Moreover, it decreases gradually from
μR = 0.0385209 towards lower limit of μ relative to
oblateness of the primaries A2i , i = 1, 2 and that of
disc parameter Md . Thus, it is concluded that in the
presence of radiation pressure, the stability range is
expanded, whereas it is contracted because of albedo
of second primary, oblateness of the primaries and the
disc. Since the nonlinear stability test is to be performed
within the stable range μ ∈ (0, μR] of the triangular
equilibriumpoints so, it is assumed that all the solutions
of the characteristic equation (23) are purely imaginary,
i.e. λ1,2,3,4 = ±iω1,2, ω1,2 ∈ R.

Now, we require a real symplectic change of vari-
ables which transforms the Hamiltonian function H2

to a real normal form. For this, we first determine the
eigenvector of matrix M. The matrix Eλ = M − λ I
(where I is identitymatrix of the order ofM) associated
to the eigenvalue λ can be written as

Eλ =
(
A I2
B A

)
, where A =

(
λ n

−n λ

)
and

B =
(−2 a5 −a7

−a7 −2 a6

)
. (26)

Thus, the eigenvectors are obtained by solving the sys-
tem of equations(

A I2
B A

) (
w1

w2

)
=

(
0
0

)
with

w1 =
(
x
y

)
and w2 =

(
px
py

)
. (27)

On simplification, we obtain two sets for x and y as

x = a7 − 2nλ, y = −(2a5 − n2 + λ2) and (28)

x = 2a6 + n2 + λ2, y = −(a7 + 2 λ). (29)

For further analysis, one can take any one of these two
sets of x and y. Using (29), in Eq. (27), we get corre-
sponding momentum coordinates as

px = na7 + 2a6 λ + n2 λ + λ3,
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Table 1 Routh’s value of mass ratio μR with respect to perturbation parameters

ε1 ε2 A21 A22 Md μR

0 0 0 0 0 0.0385209

0.04 0 0 0 0 0.0478447

0.08 0 0 0 0 0.0573648

0.12 0 0 0 0 0.0670942

0.12 0.02 0 0 0 0.0596718

0.12 0.06 0 0 0 0.0451903

0.12 0.08 0 0 0 0.0381198

0 0 0.002 0 0 0.0346414

0 0 0.003 0 0 0.0327137

0 0 0.004 0 0 0.0307939

0 0 0 0.0001 0 0.0384916

0 0 0 0.0002 0 0.0384624

0 0 0 0.0003 0 0.0384331

0 0 0 0 0.0005 0.0377790

0 0 0 0 0.0010 0.0370382

0 0 0 0 0.0020 0.0355602

0.02 0.01 0.003 0.0003 0.0020 0.0307876

py = 2na6 − n3 − a7λ − nλ2. (30)

Thus, the resulting eigenvector is written as

⎛
⎜⎜⎝

x
y
px
py

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

2a6 − n2 + λ2

−a7 − 2nλ

na7 + 2a6λ + n2λ + λ3

2na6 − n3 − a7λ − nλ2

⎞
⎟⎟⎠ . (31)

However, eigenvalue λ = iω is the solution of charac-
teristic equation (23); hence, the frequencies ω1,2 can
be obtained from the equation

ω4 − Pω2 + Q = 0, (32)

If ω2
1 and ω2

2 are roots of the quadratic equation (32) in
ω2, then we have the relations

ω2
1 + ω2

2 = P = −2a5 − 2a6 − n2, (33)

ω2
1 ω2

2 = Q = n4 + 2a5n
2 − 2a6n

2 − a27 + 4a5a6.
(34)

From Eq. (32), the frequencies are expressed as

ω1 = ±
√

P + √
P2 − 4 Q

2
, ω2 = ±

√
P − √

P2 − 4 Q

2
.

(35)

where the coefficients P and Q are written in linear
order terms of the perturbation parameters as

P = 1 − 1

2
ε1 + 1

2
ε2 − 13

12
A21 + 5

12
A22 + 26

33
Md ,

(36)

Q = 27

16
− γ 2 − 27

16
ε1 + 39

16
ε2 + 371

32
A21

+ 65

32
A22 + 342

31
Md . (37)

On substituting λ = i ω in eigenvector (31) and sepa-
rating the real and imaginary parts as

U (ω) =
(
−2a6 + n2+ω2, a7,−na7,−na6+n3 − nω2

)T
,

(38)

V (ω) =
(
0, 2nω, −2a6ω − n2ω + ω3, a7ω

)T
, (39)

whereU andV represent the real and imaginary parts of
eigenvector associated to each frequency ωi , i = 1, 2
and T denotes the transpose of matrix. Now, construct
a matrix C as C = (V1, V2, U1, U2) which represents
real symplectic change in state variables corresponding
to each frequency ω1 and ω2. For symplectic change,
matrix C must satisfy the condition CT · J ·C = J . By
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the use of Eqs. (33) and (34), symplectic condition is
verified and found that

CT · J · C=

⎛
⎜⎜⎝

0 0 d(ω1) 0
0 0 0 d(ω2)

−d(ω1) 0 0 0
0 −d(ω2) 0 0

⎞
⎟⎟⎠ ,

(40)

where d(ω) = ω
[
4a26 + a27 + 4a6n2 − 3n4

+(2n2 − 4a6) ω2 + ω4
]
. In order to satisfy the sym-

plectic condition, a scaling is performed in the columns
of matrix C, so that CT · J · C = J . To do this,
define c1,2 = +√

d(ω1,2) and rewrite the matrix C
as C = (V1/c1, V2/c2, U1/c1, U2/c2). Again, matrix
C to be real, we must take d(ω1,2) > 0. In other words,
frequencies must satisfy ω1 > 0 and ω2 > 0. With
this transformation, matrix C become symplectic, and
hence, the Hamiltonian function (17) reduces to a real
normal from as

H2 = ω1

2
(x2 + p2x ) + ω2

2
(y2 + p2y). (41)

The elements of the final symplectic matrix C = [ci j ]
are given as

c11 = 0, c12 = 0, c13 = −2 a6 + n2 + ω2
1√

d(ω1)
,

c14 = −2 a6 + n2 + ω2
2√

d(ω2)
,

c21 = 2nω1√
d(ω1)

, c22 = 2nω2√
d(ω2)

, c23 = a7√
d(ω1)

,

c24 = a7√
d(ω2)

,

c31 = −(2a6 + n2)ω1 + ω3
1√

d(ω1)
, c32 = −(2a6 + n2)ω2 + ω3

2√
d(ω2)

,

c33 = na7√
d(ω1)

, c34 = n a7√
d(ω2)

, c41 = a7ω1√
d(ω1)

,

c42 = a7ω2√
d(ω2)

,

c43 = −2n a6 + n3 − nω2
1√

d(ω1)
, c44 = −2n a6 + n3 − nω2

2√
d(ω2)

.

In the absence of perturbation parameters ε1, ε2,

A21, A22 and Md , the elements of the symplectic
matrix C agree with the results in [17,22]. Next, we
obtain generating function for the solution of inter-
mediary homological equations. To obtain generating
function in simpler way, real normalised Hamiltonian
(41) is transformed in complex normal form by the use

of complex variables defined [22] as

x = X1 + i X3√
2

, y = X2 + i X4√
2

, (42)

px = i X1 + X3√
2

, py = i X2 + X4√
2

, (43)

and complex normal form of Hamiltonian is obtained
as

H2 = i ω1 X1 X3 − i ω2 X2 X4, (44)

where real variables X1, X2 correspond to space coor-
dinates and X3, X4 to that of corresponding momen-
tum coordinates. Equation (44) represents the linear
order normal form of the Hamiltonian of the problem
in question,which is to be used to obtained higher-order
normal form of the Hamiltonian.

4 Nonlinear stability

In this section, the nonlinear stability of the equilib-
rium points in non-resonance case with the assumed
perturbations is studied. In resonance case, one can per-
form the nonlinear stability test by the use of theorems
as in [42], also stated as in [43]. For non-resonance
case, Arnold–Moser theorem is to be applied, which
predicts the nonlinear stability of equilibrium points
in the restricted three-body problem. Before apply-
ing Arnold–Moser theorem, we have to determine
the Birkhoff’s normal form of the Hamiltonian up to
fourth order about the equilibrium point as a func-
tion of action-angle variable (I1, I2, φ1, φ2) as follows
[17,30,44,45]:

4.1 Birkhoff’s normal form

A Hamiltonian function, which is expressed in action-
angle variables (I1, I2, φ1, φ2) as

K = K2 + K4 + · · · + K2n + K2n+1, (45)

is of Birkhoff’s normal form [45,46] up to the terms n
if K2n denotes homogeneous polynomial of degree n
in action variables I1, I2 and K2n+1 is that of higher
degree polynomial than n; K2 = ω1 I1−ω2 I2 with con-
stantsω1,2 > 0; K4 is given as K4 = −(AI 21 +BI1 I2+
C I 22 ) with A, B, C as constants to be determined.
This form can be found by imposing non-resonance
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Nonlinear stability of triangular equilibrium points 1851

Fig. 2 Frequency ω1 (bold line) and ω2 (dashed line) with
respect to mass ratio μ at (i) ε1 = 0 (red) (ii) ε1 = 0.04 (blue)
(iii) ε1 = 0.08 (green) (iv) ε1 = 0.12 (black) (v) ε1 = 0.20
(cyan)

condition on the frequencies ω1, ω2 described as in
[30,31,47] and which is stated as if frequencies of
infinitesimal mass in linear dynamics are ω1, ω2 and
s ∈ Z is such that s ≥ 2, then

s1ω1 + s2ω2 �= 0 (46)

for all s1, s2 ∈ Z with |s1| + |s2| ≤ 2 s. This con-
dition of irrationality insures the existence of a sym-
plectic normalising transformation which transforms
the Hamiltonian (16) in the form of Hamiltonian (45)
and the coefficients of the normalised Hamiltonian are
independent to the integer s as well as to the transfor-
mation determined. In particular, the determinant

det

∣∣∣∣∣∣∣∣

∂2K
∂ I 21

∂2K
∂ I1∂ I2

∂K
∂ I1

∂2K
∂ I2∂ I1

∂2K
∂ I 22

∂K
∂ I2

∂K
∂ I1

∂K
∂ I2

0

∣∣∣∣∣∣∣∣
I1,I2=0

(47)

is an invariant of the Hamiltonian (45) with respect
to this symplectic transformation. Now, the Arnold–
Moser theorem is stated [17,48] as

Arnold–Moser Theorem: The origin is stable for
the system whose Hamiltonian is in Birkhoff’s normal
form provided for some integer i ∈ [2, n], D2i =
K2i (ω2, ω1) �= 0.

In this paper, we are interested to compute the
Birkhoff’s normal form of the Hamiltonian (16) in
action variables and then compute the determinant D4

corresponding to K ’s (45) in terms of assumed pertur-
bations.

Fig. 3 Frequency ω1 (bold line) and ω2 (dashed line) with
respect to mass ratio μ at (i) ε2 = 0 (red) (ii) ε2 = 0.02 (blue)
(iii) ε2 = 0.04 (green) (iv) ε2 = 0.06 (black) (v) ε2 = 0.08
(cyan)

Fig. 4 Frequency ω1 (bold line) and ω2 (dashed line) with
respect to mass ratio μ at (i) A21 = 0 (red) (ii) A21 = 0.002
(blue) (iii) A21 = 0.006 (green) (iv) A21 = 0.008 (black) (v)
A21 = 0.020 (cyan)

Fig. 5 Frequency ω1 (bold line) and ω2 (dashed line) with
respect to mass ratio μ at (i) A22 = 0 (red) (ii) A22 = 0.002
(blue) (iii) A22 = 0.006 (green) (iv) A22 = 0.008 (black) (v)
A22 = 0.020 (cyan)
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Fig. 6 Frequency ω1 (bold line) and ω2 (dashed line) with
respect to mass ratio μ at (i) Md = 0 (red) (ii) Md = 0.002
(blue) (iii) Md = 0.006 (green) (iv) Md = 0.008 (black) (v)
Md = 0.020 (cyan)

Fig. 7 Comparison between the frequencies up to linear order
(red line) and higher-order (black dashed line) terms of pertur-
bation parameters with respect to mass ratio μ

Fig. 8 D4 Vs μ in the absence of perturbations

4.2 Fourth-order Normalised Hamiltonian

However, at least fourth-order Birkhoff’s normal form
of the normalised Hamiltonian is required to verify the
Arnold–Moser theorem, which can be obtained from
second order normalised Hamiltonian (44) by using the
Lie transform method described in [18,22,30,31,49].
Suppose, higher-order normalisedHamiltonian [49,50]
is given as

K = K2 + K3 + K4 + K5 + · · · + Kn + · · · , (48)

where Kn is defined as

Kn =
∑

j+k+l+m=n

K jklm X j
1 Xk

2 X
l
3 X

m
4 .

The first term K2 of the normalised Hamiltonian K ,
equals to H2 (44) and the nth term of K (48) is
expressed as [18]

Kn = 1

n
{H2, Wn} + terms previously known,

where {., .} denotes Lie bracket and Wn is generating
function to be determined. Now, generating function
Wn is chosen in such a way that Kn is reduced in its
better form. The Lie bracket {H2, Wn} is expanded as

{H2, Wn} = i ω1

[
X3

∂ Wn

∂ X3
− X1

∂ Wn

∂ X1

]

−i ω2

[
X4

∂ Wn

∂ X4
− X2

∂ Wn

∂ X2

]
. (49)

Now, we have to determine Wn such that the partial
derivatives of Wn result in cancellation of terms as
much as possible in Kn . It is noticed that these terms
be of the form M∗X j

1 X
k
2X

l
3X

m
4 where M∗ is constant

and Wn is chosen to be the sum of terms that cancels
each terms, given as Wn = N∗X j

1 X
k
2X

l
3X

m
4 where N∗

is to be determined. The expression

1

n
{H2, Wn} = 1

n
[iω1 (l − j) − iω2 (m − k)]

N∗X j
1 X

k
2X

l
3X

m
4 (50)

leads to

N∗ = inM∗

ω1 (l − j) − ω2 (m − k)
. (51)

If the denominator in Eq. (51) vanishes, then
the above scheme fails. But, we are discussing the
case of non-resonance (in which frequencies are in-
commensurable), so the denominator equals to zero
only if l = j and m = k, simultaneously. This
implies that the terms in normalised Hamiltonian
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Nonlinear stability of triangular equilibrium points 1853

Fig. 9 D4 Vs μ in the presence of radiation pressure a ε1 = 0.04, b ε1 = 0.08, c ε1 = 0.12 and d ε1 = 0.20

K will be a homogeneous polynomial of the form
(X1X3)

j (X2X4)
k . Thus, in non-resonance case, the

terms of the normalised Hamiltonian K (48) reduce
to the form as
K2 = H2 = i ω1 X1 X3 − i ω2 X2 X4,

K3 = 0,

K4 = K2020 (X1 X3)
2 + K1111 (X1 X3) (X2 X4)

+K0202 (X2 X4)
2,

K5 = 0,

K6 = K3030 (X1 X3)
3 + K2211 (X1 X3)

2(X2 X4)

+K1122 (X1 X3)(X2 X4)
2 + K0303 (X2 X4)

3,

K7 = 0,

and so on.

As, fourth-order Birkhoff’s normal form is sufficient
to apply Arnold–Moser theorem so we are restricted
to perform analysis with K2, K3 and K4, only. Now,
in the action variables I1 = i X1X3 and I2 = i X2X3,
K2, K3 and K4 are expressed as

K2 = H2 = ω1 I1 − ω2 I2, (52)

K3 = 0, (53)

K4 = −(K2020 I
2
1 + K1111 I1 I2 + K0202 I

2
2 ), (54)

where K2020, K1111 and K0202 are the coefficients of
homogeneous quadratic terms (54) in action variables.
Equations (52–54) together constitute the Birkhoff’s
normal form of theHamiltonian of the problem in ques-
tion up to order four, which is similar to that in [18,22].
Now, these coefficients are further expressed in terms
of perturbation parameters ε1, ε2, A21, A22 andMd as
follows

K2020 = Kc
2020 + K ε1

2020ε1 + K ε2
2020ε2 + K A21

2020A21

+K A22
2020A22 + KMd

2020Md , (55)

K1111 = Kc
1111 + K ε1

1111ε1 + K ε2
1111ε2 + K A21

1111A21

+K A22
1111A22 + KMd

1111Md , (56)

K0202 = Kc
0202 + K ε1

1111ε1 + K ε2
0202ε2 + K A21

0202A21

+K A22
0202A22 + KMd

0202Md , (57)

where the coefficients Kc
jklm , K

ε1
jklm , K

ε2
jklm , K

A21
jklm,

K A22
jklm and KMd

jklm with j, k, l,m = 1, 2, 3, 4 such that
j + k + l +m = 4, j = l and k = m, in each terms of
Eqs. (55–57) correspond to the classical term, radiation
parameter ε1, albedo parameter ε2, oblateness of first
primary A21, oblateness of second primary A22 and
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Fig. 10 D4 Vs μ in the presence of albedo a ε2 = 0.04, b ε2 = 0.06, c ε2 = 0.08 and d ε2 = 0.08393

the disc parameter Md , respectively. In the absence of
all perturbing parameters, the expressions of the coef-
ficients K2020, K1111 and K0202 coincide with coeffi-
cients as in case of the classicalRTBP [18,22].Now, the
determinant D4(ω2, ω1), required to use the Arnold–
Moser theorem [17], is computed to examine the non-
linear stability of triangular equilibrium points L4,5 in
the non-resonance case, which is given as

D4(ω2, ω1) = Dc
4 + Dε1

4 ε1 + Dε2
4 ε2 + DA21

4 A21

+DA22
4 A22 + DMd

4 Md , (58)

where Dc
4, D

ε1
4 , Dε2

4 , DA21
4 , DA22

4 and DMd
4 are the parts

of D4 correspond to classical case, radiation parameter,
albedo parameter, oblateness of first primary, oblate-
ness of second primary and disc parameter, respec-
tively. In the absence of perturbing parameters, expres-
sion (58) of D4 is agreed to that of classical result as in
[18,30,47], which is

D4 = Dc
4 = −36 + 541ω2

1 ω2
2 − 644ω4

1 ω4
2

8(1 − 2ω2
2)(−4 + 25ω4

1 ω4
2)

. (59)

In the present problem, corresponding parts of the D4

associated to theperturbingparameters ε1, ε2, A21, A22

and Md are, respectively, given as

Dε1
4 = G1

G2
, Dε2

4 = G3

G2
, DA21

4 = G4

G5
, DA22

4 = G6

G5
and

DMd
4 = G7

G8
, (60)

where

G1 = 93676500 − 558820053ω2
1ω

2
2 − 362539454ω4

1ω
4
2

+470308824ω6
1ω

6
2

+160171776ω8
1ω

8
2 + 11577344ω10

1 ω10
2 ,

G2 = −111837348 + 786057993ω2
1ω

2
2

+2379308438ω4
1ω

4
2 − 2738662648ω6

1ω
6
2

−265223424ω8
1ω

8
2 − 62580736ω10

1 ω10
2 ,

G3 = −197618292 + 5093401725ω2
1ω

2
2

−24531749522ω4
1ω

4
2 + 13637287400ω6

1ω
6
2

−4361320192ω8
1ω

8
2 − 1622632448ω10

1 ω10
2 ,

G4 = −294388668 + 2672825103ω2
1ω

2
2

−5556998150ω4
1ω

4
2 + 4738270136ω6

1ω
6
2

+257103104ω8
1ω

8
2 − 384555008ω10

1 ω10
2 ,

G5 = −1148948460 + 7875474171ω2
1ω

2
2
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Fig. 11 D4 Vs μ in the presence of oblateness of first primary a, b A21 = 0.002, c A21 = 0.004 and d A21 = 0.0044

−3538195892ω4
1ω

4
2 + 3475970190ω6

1ω
6
2

+1372056620ω8
1ω

8
2 − 676372950ω10

1 ω10
2 ,

G6 = 4313088ω2
1ω

2
2 − 60871680ω4

1ω
4
2

+1455906816ω6
1ω

6
2 − 1572028416ω8

1ω
8
2

−58982400ω10
1 ω10

2 ,

G7 = 8626176ω2
1ω

2
2 − 121743360ω4

1ω
4
2

+552517632ω6
1ω

6
2 − 784760832ω8

1ω
8
2

−117964800ω10
1 ω10

2 ,

G8 = 119558799360ω2
1ω

2
2

−1687362969600ω4
1ω

4
2 + 7657894379520ω6

1ω
6
2

−10876785131520ω8
1ω

8
2 − 1634992128000ω10

1 ω10
2 .

Now, the variation in the frequencies ω1 and ω2, which
defines the determinant D4(ω2, ω1) at different values
of perturbation parameters, is shown in Figs. 2, 3, 4, 5
and 6. It is noticed that

because of radiation pressure ε1 = 1 − q, the value
of ω1 increases and that of ω2 decreases, whereas due
to the presence of albedo ε2 = 1 − QA, oblateness of
the primaries A2i , i = 1, 2, and the disc Md , the value
of frequency ω1 decreases and that of the value of ω2

increases. This significant change in the values of fre-

quencies ω1 and ω2 leads to a considerable change in
the value of zeros of the D4 onμ-axis. Figure 7 is drawn
for the comparison between the frequencies which is
computed by truncating the expansion for perturba-
tion parameters up to linear order (red line) and those
obtained by taking higher-order terms of the perturbing
factors (black dashed line). Alike, in case of Fig. 1, it
is observed that frequencies in both the cases, i.e. red
curve and black dashed curve with respect to the mass
ratio μ, seem coincident (Fig. 7). As, in the absence
of perturbations, it is seen that semi-analytical results
agreed to that of classical one [22,30,47] and in that
case there exist only one value of μ such that D4 = 0
(Fig. 8). In order to analyse the effect of radiation pres-
sure ε1 = 1−q, albedo ε2 = 1−QA, oblateness of the
primaries A2i , i = 1, 2 and the presence of disc Md

in the context of the nonlinear stability of triangular
equilibrium points L4,5, the variations in the values of
the determinant D4 with respect to mass ratio μ within
the stability range 0 < μ < μR are observed (Fig. 9).
Figure 9 illustrates the changes in D4 and the existence
of values of μ within the stability range 0 < μ < μR
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Fig. 12 D4 Vs μ in the presence of oblateness of second primary a, b A22 = 0.0001, c A22 = 0.00036 and d A21 = 0.00037

at which D4 vanishes at different values of perturbing
parameters, which are responsible for the changing the
values of zeros of D4. It is seen that for the nonlinear
stability, the region within the stability range is con-
stant, where D4 �= 0 at different values of perturbing
parameters. We found that there exist some values ofμ
at which Arnold–Moser theorem fails (Fig. 9). In case
of radiation pressure ε1 = 1 − q, there exist two val-
ues of μ for which D4 = 0 and the difference in these
two values increases with the increase in the value of ε1
(Fig. 9).But for albedoparameter ε2, there are twozeros
of D4 for ε2 ∈ (0, 0.08393) and after that no such μ

exists at which D4 = 0 (Fig. 10). Further, due to oblate-
ness of the first primary A21, number of zeros of D4 is
varying. At A21 = 0.002, D4 = 0 for three values of
μ and at A21 = 0.004, D4 vanishes at two places on
the μ-axis, whereas nearly after A21 = 0.0043579, D4

is non-zero within the range of stability 0 < μ < μR

(Fig. 11). A similar trend is obtained for the oblateness
of the second primary A22 and noticed that D4 crosses

μ-axis four timeswhen A22 ∈ [0, 0.0001), twicewhen
A22 ∈ [0.0001, 0.000356] and once when A22 ∈
(0.000356, 0.013905) and for nearly A22 > 0.013905,
no such values of μ are found, where Arnold–Moser
theorem fails (Fig. 12). In case of variation in the val-
ues of disc parameter Md , there exists two values of
μ at which D4 = 0 for 0 < Md < 0.00241 and
for 0.00241 < Md < 0.5, D4 �= 0; hence, Arnold–
Moser theorem is applicable for all values of μ within
the stability range 0 < μ < μR (Fig. 13). Now, it
is summarised that because of perturbations, Arnold–
Moser theorem fails at several places within the range
of stability. Also, due to these perturbations, stability
range increases and the triangular equilibrium points
L4,5 are stable in nonlinear sense for those values of
μ, where D4 �= 0. Thus, the effect of perturbations
in the form of radiation pressure, albedo, oblateness
of the primaries and the disc influenced the stability
range as well as nature of triangular equilibrium points
in nonlinear sense within the stability range.
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Fig. 13 D4 Vs μ in the presence of disc a Md = 0.0005, b Md = 0.0024 and c Md = 0.0024148

5 Conclusion

The perturbed restricted three-body problem is studied
in the context of nonlinear stability analysis of the tri-
angular equilibrium points L4,5 in non-resonance case
by applying Arnold–Moser theorem under the influ-
ence of perturbations in the form of radiation due to
first primary, albedo of second primary, oblateness of
both the primaries and presence of the disc. First, equa-
tions of motion are established and then Hamiltonian
of the proposed problem is obtained. Next, the linear
order normalization of theHamiltonian is performed by
placing the origin at L4 point. Again, by the use of Lie
series method, fourth-order normalised Hamiltonian is
determined, which is similar to that of in [22,47,51], in
the absence of perturbations. Further, the nonlinear sta-
bility test is performed with the help of Arnold–Moser
Theorem. It is noticed that in the absence of pertur-
bations, determinant D4 vanishes at μ = 0.0109137
within the classical stability range 0 < μ < 0.0385209
as in [22,47,51]. However, in the presence of radiation
pressure, the range of stability expanded, significantly

with respect to the classical range of stability but in the
presence of other perturbations, i.e. albedo, oblateness
and the disc, it is contracted gradually. Moreover, the
number of zeros of the determinant D4(ω2, ω1) at μ-
axis is increased as compared to one as in classical case.
The trend of existence of zeros of D4 within the cor-
responding stability ranges are different for different
kind of perturbations. It is also found that frequencies
ω1,2 are influenced due to the perturbations. Finally,
it is concluded that in the presence of perturbations,
Arnold–Moser theorem fails at many point within the
respective stability ranges; hence, the triangular equi-
librium points L4,5 are unstable in nonlinear sense for
those value of mass ratio μ on the μ-axis at which
D4 = 0. In opposite of this, it is also mentioned that
the points L4,5 are stable within the range of stability
except for those values of μ at which D4 �= 0. The
current study and observations are applicable to other
generalised problem of a restricted few body system
and can be extended to higher-order normal form with
various types of disturbances such as P-R drag, solar
wind drag, etc.
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