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Abstract With the increasing demands for more flex-
ibility, lighter weight, and larger working space of
industrial robotic systems in many fields, the rigid–
flexible coupled robotic systems attract more atten-
tion. In this work, the desired angular tracking and
vibration suppression issues are investigated for the
rigid–flexible coupled robotic systems (RFCRSs) in the
presence of input quantization. The vibrating displace-
ment is coupled nonlinear due to the coupling between
two joints’ angular positions and flexible displace-
ments. Using the assumed mode principle, the nonlin-
ear infinite-dimension dynamics of rigid–flexible cou-
pled robotic systems are reduced by ordinary differ-
ential equations. With the backstepping-based Lya-
punov method, robust adaptive flexible prescribed per-
formance control (FPPC) law is developed to track the
given angular positions and to reduce the vibration
oscillations. Besides, the robust adaptive update law
is incorporated into the quantized FPPC for estimat-
ing the unknown parameters of logarithmic quantizers
in the face of input quantization. In terms of the above
robust adaptive FPPC control, the tracking errors of the
RFCRSs eventually converge to a compact set in face
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of input quantization. At last, three comparison cases
are implemented to verify the efficacy of the proposed
robust adaptive FPPC strategy in comparison with the
PD feedback law.
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1 Introduction

Rigid–flexible coupled robotic systems (RFCRSs) have
attracted wide attention spurred by the rapid devel-
opment of aerospace [1–3], marine engineering [4,5],
and modern medical technology [6,7]. In general, the
RFCRSs comprise a rigid link connected to a flexi-
ble link and are driven by the joint motor. Compared
with the conventional rigid robotic system, the above
RFCRSs are comparatively more agile and lighter[8].
However, the significant flaw of the RFCRSs mechan-
ics is that the flexible beam is vulnerable to producing
the flexible vibration that often leads to poor opera-
tional performance [9]. Hence, there are urgent require-
ments for vibration elimination of RFCRSs to prevent
destruction and guarantee successful operation [10].

In reality, the elastic vibration of RFCRSs involves
not only the time variable but also the spatial vari-
able. Mathematically, RFCRSs can be described as
distributed parameter systems governed by partial dif-
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ferential equations (PDEs). To be candid, modeling
and analyzing precise dynamic equations for RFCRSs
is a formidable challenge. This is primarily due to
the extreme difficulty in solving exact solutions for
the dynamics of infinite-dimensional systems, and
the inherent complexity of PDEs presents significant
obstacles and limitations in the development of vibra-
tion control strategies [11]. While there are control
approaches designed to address the dynamic model of
PDEs and tackle these challenges [12–14], many of
these methods require the installation of an input force
at the endpoint of theflexible structure to dampenvibra-
tions. Unfortunately, implementing such a solution is
often challenging, especially on the majority of indus-
trial robots [15].

More recently, the reduced-model method which
includes finite element methods, assumed mode
method, and lumped parameter method, has been
widely applied to transform PDEs into ordinary differ-
ential equations (ODEs) [16–18]. For instance, adopt-
ing the lumped spring-mass model, a flexible robotic
mechanismwith uncertain dynamics was controlled by
an adaptive neural network (NN). [19]. By using the
assumedmodemethod (AMM), a disturbance observer
was added to the NN control for the reduced dynam-
ics of a flexible beam to cope with unknown spa-
tiotemporally variable disturbances in [20]. Based on
the AMM, a planar two-link rigid–flexible manipula-
tor was modeled by the reduced ODEs, and the uncali-
brated visual servoing method was proposed subject to
joint-space-velocitymeasurement [17].A slidingmode
control law-based adaptive tracking controller was put
forward in [21] to enable an uncertain two-link rigid–
flexible manipulator to achieve the necessary angles
while being constrained by vibration amplitude. The
existing studies on RFCRSs governed by PDEs princi-
pally handle the issues of input constraints though a bar-
rier Lyapunov function, which is extensively applied to
handle the output or state constraints, is investigated in
[9,13] to follow the given positions and suppress flex-
ible displacements concurrently.

However, the prescribed performance functions
selected in most references [23–26] can only be
appended to exponential functions with symmetric fea-
tures, which belong to the conventional prescribed per-
formance scheme. Actually, the dynamic and steady-
state process with the aforementioned scheme is still
on the basis of intrinsic characterizes of the control
input design (semi-global/global converge approach)

[27,28]. Therefore, the traditional performance func-
tions have certain restrictions and lack flexibility. In
thiswork, amore relatively flexible situation, where the
steady-state performance of tracking errors relies on a
flexible performance function [29], is concerned. The
aforesaid literature on the RFCRSs did not consider the
input quantization topic which is an inevitable issue in
industrial control [30–32].

With the rapid development of network techniques,
the integration of communication and control with the
use of digital communication has triggered mounting
research attention [33–38]. The input quantization is a
core problem that usually combines with modern con-
trol methods to transform the control signal’s domain,
which is continuous, into one that is discrete. The
tradeoff between the controlled system stability and
the admissible control precision has become more sig-
nificant on account of quantization errors. Taking into
account the input quantization of the RFCRSs which
leads to the appearance of system instability makes the
control issue of such rigid–flexible coupled systems
relatively difficult [36,37]. In the existing research on
the RFCRSs, an adaptive boundary control with input
signal quantization was proposed in three-dimensional
space for an Euler–Bernoulli beam, and quantitative
logarithmic laws were used to eliminate the elastic
vibrations in [36]. With the help of the PDEs model, a
feedback boundary quantized control lawwas designed
to realize both joint angle tracking and vibration repres-
sion [37]. In comparison with the control issues in [36]
and [37], the flexible prescribed performance of track-
ing errors case is considered in our work where the
predefined flexible performance functions can be arbi-
trarily selected.

To construct the dynamic equation of RFCRSs and
address the aforementioned difficulties, the reduced-
model approach (AMM) is implemented and a novel
flexible prescribedperformance tracking approachwith
input quantization is proposed for such robotic systems.
The main innovations of this work, as compared to pre-
vious research, include:

1. Unlike the traditional barrier Lyapunov functions,
a novel parameter-type Lyapunov function is pro-
posed in this paper. By virtue of constructing the
parameter function Π(t), the both dynamic and
steady-state performance of tracking errors rely on
the flexible prescribed performance functions.
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Fig. 1 Basic structure diagram of RFCRSs

2. Ahybridflexible prescribedperformance controller
(FPPC) with a robust adaptive parameter compen-
sation scheme is developed. It is confirmed by
backstepping-based Lyapunov’s stability and three
numerical comparisons that input quantization-
induced flexible vibrations and regulation of out-
put errors will ultimately converge to zero over a
compact neighborhood.

The rest of the article is organized as follows. In Sect. 2,
the reduced dynamic equations and problem statements
for RFCRSs are presented. A novel FPPC scheme is
proposed via the backstepping method in the face of
quantized input signals in Sect. 3. Three numerical sim-
ulations are shown in Sect. 4 and conclusions are made
in Sect. 5.

2 Dynamic modeling and control objectives of
RFCRSs

The fundamental structural components of RFCRSs
consist of two links, as illustrated in Fig. 1. The first
and second links of the RFCRS, located above the hor-
izontal plane, are rigid and flexible, respectively. It is
commonly assumed that the second link is modeled
as an Euler–Bernoulli beam with a length of l2. The
coordinate axis of inertia is denoted as ΞOY , while
the local rotating reference frame mounted at hub O is
represented as ξOy. The angular positions of the two
joints, with i = 1, 2, are denoted by θi (t). The elastic
displacement of the flexible link at a given position ξ

and time is denoted as w(ξ, t). The control inputs for
this RFCRS, described by τi (t), i = 1, 2, represent the
joint torques. Additional characteristics of RFCRSs are
presented in Table 1.

Table 1 Feature parameter configuration of RFCRSs

Items Meaning Values Unit

E I Uniform flexural rigidity 3 Nm2

Mh Mass about joint 0.2 kg

Mt Mass about tip payload 0.3 kg

ρ Mass density per unit 0.4 kg/m

l1 1st link length 0.5 m

l2 2nd link length 0.8 m

J1 rigid link inertia 0.0625 kgm2

Ih flexible link inertia 0.042 kgm2

Remark 1 For ease of understanding, the following
sections make use of these notations (∗)′ = ∂(∗)/∂ξ ,
(∗)

′′ = ∂2(∗)/∂ξ2, ˙(∗) = ∂(∗)/∂t ,
...
(∗) = ∂3(∗)/∂t3.

2.1 Dynamics formula of RFCRSs via energy analysis

The following dynamic equations are derivable from
the energy analysis of RFCRSs using the expanded
Hamilton’s principle [9,22].

These are the angular positions θ(t) for which the
dynamic model is given:

M(ω(ξ, t), θ)θ̈(t)+C(ω̇(ξ, t), θ(t))θ̇(t)

+G(θ(t), θ̇ , ω̇(ξ, t), ω̈(ξ, t))=Q(τ (t)) (1)

Considered is the dynamic formula for the vibration
displacement w(ξ, t):

ρ

∫ l2

0

[
ω̈(ξ, t) + l1(θ̇

2
1 sin θ2 + θ̈1 cos θ2) + ξ(θ̈1

+θ̈2) + ω(ξ, t)(θ̇1

+θ̇2)
2
]
dξ + E I

∫ l2

0
ω

′′′′
(ξ, t)dξ + Mt ω̈(l2, t)

+Mtl1(θ̇
2
1 sin θ2 + θ̈1 cos θ2)

+Mtl2(θ̈1 + θ̈2) − Mtω(l2, t)(θ̇1 + θ̇2)
2 = 0.(2)

The following boundary conditions apply to them:

w
′′
(l2, 0) = w

′′′
(l2, 0) = 0, (3)

w(0, t) = w
′
(0, t) = 0, (4)

Remark 2 For the sakeof simplicity and to facilitate the
explanation of the subsequent reduced-order technique
for infinite-dimensional systems, detailed information
about the parameter matrices, such as M(ω(ξ, t), θ),
C(ω̇(ξ, t), θ(t)), G(, ω̇(ξ, t), θ(t), θ̇ (t)), has been
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omitted in this section but can be found in our previ-
ous works [9,22]. Additionally,Q(τ (t)) represents the
quantized input signal of τ(t), which will be elaborated
upon in the following section.

2.2 Reduced-order finite-dimensional dynamic model
of RFCRSs

The aforementioned approach AMM is used to con-
vert the infinite-dimension system model governed by
PDEs into ODEs. The dynamic equations are usually
truncated to some finite-dimensional models with the
use of the assumed mode method (AMM). For the
AMM, the elastic deflection is usually represented by
an infinite number of separable harmonic modes theo-
retically, but practically only a finite number of modes
with comparatively low frequencies are considered as
they are generally dominant in the system dynamic
behavior.

The method of arc approximation is used to rep-
resent the vibration displacement of the flexible link,
which leads to the finite dimensional reduced-order
dynamics. Following is a description of the vibration
displacement of the flexible portion w(ξ, t).

w(ξ, t) =
N∑
i=1

φi (ξ)qi (t) (5)

where the i th shape of the mode function is denoted
by φi (ξ) and the i th generalized mode coordinate is
represented by qi (t).

The i th mode shape function φi (ξ) is presented in
[18] as

φi (ξ) = 1

Ξi

[−γi (sinh (λiξ) − sin (λiξ))

+ cosh (λiξ) − cos (λiξ)]

γi =cosh (λi l2) + cos (λi l2)

sin (λi l2) + sinh (λi l2)
,

where if Mt = 0, then Ξi = √
l2; otherwise,

Ξi =
[
l2 + E I

Mtλ
2
i

(
1 + cosh(λi l2) cos(λi l2)

sinh(λi l2) sin(λi l2)

)2
] 1

2

and λi is the i th positive resolution such that

Mtλi

E I l2
[− sin(λi ) cosh(λi ) + cos(λi ) sinh(λi )]

+ cosh(λi ) cos(λi ) = −1.

Remark 3 It ought to be noticed that the first two
modes are adequate to represent how the flexible beam
vibrates, which can also refer to [8]-[10]. Only the
first two modes are taken into consideration in this
work to simplify the structure of the proposed track-
ing and vibration control technique, that is w(ξ, t) =
q1(t)φ1(ξ) + q2(t)φ2(ξ).

The following vectors are utilized to recreate the finite-
dimensional dynamic:

τ(t) = [
τ1(t) τ2(t) 0 0

]T
and

Θ(t) = [
θ1(t) θ2(t) q1(t) q2(t)

]T
.

The dynamic equations of PDEs can be reduced into
the form of ODEs by substituting (5) into (1) and (2),
which could be described via the subsequent compact
formula:

MΘ̈(t) + KΘ(t) + F(Θ(t), Θ̇(t)) = Q(τ (t)) (6)

where K represents a stiffness matrix and M specifies
a positive-definite symmetric inertia matrix as follows:

K =

⎡
⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 k1 0
0 0 0 k2

⎤
⎥⎥⎦ , ki = E I

∫ l2

0
[φ ′′

i (ξ)]2dξ, i = 1, 2,

and F(Θ(t), Θ̇(t)) which denotes a hybrid Coriolis
and centrifugal matrix satisfies the following property

F(Θ(t), Θ̇(t))= dM(Θ(t))

dt
Θ̇(t)− 1

2

∂[Θ̇T M(Θ)Θ̇]
∂Θ

= C(Θ(t), Θ̇(t))Θ̇(t)

Following are a few notations that have been included
for clarity:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σi =
∫ l2

0
φi (ξ)dξ, ψi =

∫ l2

0
ξ · φi (ξ)dξ,

ηi =
∫ l2

0
φ2
i (ξ)dξ, with i = 1, 2
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Following are specifics on the inertia matrix M :

M11 = J1 + Ih + Mhl
2
1 + ρ2l

2
1 l2 + 1

3
ρ2l

3
2

+ ρ2l1l
2
2 cos θ2 − 2l1ρ2 sin θ2(q2(t)σ2 + q1(t)σ1)

+ Mt (l
2
1 + l22) + ρ2l2(q

2
1 (t)η1 + q22 (t)η2)

+ Mt [q21 (t)φ2
1(l2) + l1l2 cos θ2 + q22 (t)φ2

2(l2)]
− 2l1 sin θ2(q2(t)φ2(l2) + q1(t)φ1(l2))

+ 2q1(t)q2(t)φ
2
1(l2)φ

2
2(l2)

M12 = Ih + 1

3
ρ2l

3
2 + ρ2(q

2
1 (t)η1 + q22 (t)η2)

+ 1

2
ρ2l1l

2
2 cos θ2 − ρ2l1 sin θ2(q1(t)σ1 + q2(t)σ2)

+ Mt [l22 + l1l2 cos θ2 − l1 sin θ2(q1(t)φ1(l2)

+ q2(t)φ2(l2)) + q21 (t)φ2
1(l2)

+ φ2
2(l2)q

2
2 (t) + 2φ1(l2)q1(t)q2(t)φ2(l2)]

M13 = ρψ1 + ρl1σ1 cos θ2 + Mtl1φ1(l2) cos θ2

+ Mtl2φ1(l2)

M14 = ρψ2 + ρl1σ2 cos θ2 + Mtl1φ2(l2) cos θ2

+ Mtl2φ2(l2)

M22 = Ih + 1

3
ρ2l

3
2 + ρ2(q

2
1 (t)η1 + q22 (t)η2)

+ q22 (t)φ2
2(l2)

+ Mt [l22 + q21 (t)φ2
1(l2) + 2φ1(l2)q2(t)q1(t)φ2(l2)]

M23 = ρψ1 + Mtl2φ1(l2); M24 = ρψ2 + Mtl2φ2(l2)

M33 = ρη1 + Mtφ
2
1(l2); M34 = φ2(l2)φ1(l2)Mt ;

M44 = ρη2 + Mtφ
2
2(l2)

and coriolis matrix’s equivalent components are:

F1(Θ, Θ̇)

=
[
−ρl1 sin θ2l

2
2 + 2 cos θ2l1ρ

(
2∑

i=1

qi (t)σi

)

−2 sin θ2l1Mtl2 + 2 cos θ2l1Mt

2∑
i=1

qi (t)φi (l2)

]
θ̇1θ̇2

−
[
ρl1 sin θ2

l22
2

+ cos θ2l1ρ

(
2∑

i=1

σi qi (t)

)

+Mtl1l2 sin θ2 + cos θ2l1Mt

2∑
i=1

φi (l2)qi (t)

]
θ̇22

−
[
2ρ sin θ2l1

2∑
i=1

q̇i (t)σi − 2ρ
2∑

i=1

qi (t)ηi q̇i (t)

+2Mtl1 sin θ2

2∑
i=1

q̇i (t)φi (l2)

−2Mt

2∑
i=1

qi (t)φi (l2)
2∑

i=1

q̇i (t)φi (l2)

] (
θ̇1 + θ̇2

)

F2(Θ, Θ̇)

=
[
ρl1 sin θ2

l22
2

+ cos θ2l1ρ

(
2∑

i=1

σi qi (t)

)

+Mtl1l2 sin θ2 + cos θ2l1Mt
2∑

i=1

φi (l2)qi (t)

]
θ̇21

+2ρ
2∑

i=1

qi (t)ηi q̇i (t) · (θ̇1 + θ̇2
)

+
[
2Mt

2∑
i=1

φi (l2)qi (t) +
2∑

i=1

φi (l2)q̇i (t)

]
· (θ̇1 + θ̇2

)

F3(Θ, Θ̇)

= ρq1(t)η1l2(θ̇1 + θ̇2)
2 − θ̇21ρl1 sin θ2σ1

+Mt (θ̇1 + θ̇2)
2(φ1(l2)q2(t)φ2(l2) + q1(t)φ

2
1(l2))

+l1θ̇
2
1 sin θ2Mtφ1(l2)

F4(Θ, Θ̇)

= ρq2(t)η2l2(θ̇1 + θ̇2)
2 − θ̇21ρl1 sin θ2σ2

+Mt (θ̇1 + θ̇2)
2(φ2

2(l2)q2(t) + φ1(l2)q1(t)φ2(l2))

+l1θ̇
2
1 sin θ2Mtφ2(l2)

2.3 Flexible prescribed performance control
objectives

With the compact system described above, one can
derive the equivalent formulation as follows:⎧⎪⎨
⎪⎩
ẋ1(t) = x2(t),

ẋ2(t) = M(x1)
−1 [Q(τ (t)) − Kx1(t) − C(x1, x2)x2(t)

](7)

with x1(t) = Θ(t) and x2(t) = Θ̇(t).
Concerning the RFCRSs (1) with prescribed per-

formance, the flexible PPC law is developed via the
backstepping-based Lyapunov strategy in the presence
of quantization, so that the whole states of the closed-
loop RFCRSs are semi-globally consistent and ulti-
mately bounded under input quantization:

a) The tracking errors of two desired joint positions
satisfy the prescribed performance, i.e., ei (t) meets
Ai (t) < ei (t) < Bi (t) with i = 1, 2, and ei (t) is
asymptotically close to χai+χbi

2 , where lim
t→∞Ai (t) =

χai and lim
t→∞Bi (t) = χbi .

b) When achieving prescribed performance regula-
tion, themodevibration coordinatesqi (t)of theflexible
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link under input quantization converge to a small con-
fined area around the origin, indicating the successful
suppression of vibrations.

3 Preliminaries

3.1 Logarithmic quantization

The logarithmic quantizerQ(·) : R → X is employed
to quantize the system’s inputs τ(t). With a quantiza-
tion density parameter 0 < k < 1, the logarithmic set
of quantization levels is represented as X = {±x j :
x j = k j x0, j = 0,±1,±2, · · · }∪{0}, where the initial
value x0 is a positive number.

The associated quantizer Q(·) is defined as follows
[35]:

Q(β) =
⎧⎨
⎩

xi , if 1
1+δ

xi < β ≤ 1
1−δ

xi , β > 0;
0, if β = 0;

−Q(−β), if β < 0,

(8)

with the sector bound δ = 1−k
1+k ∈ (0, 1).

3.2 Characteristic decomposition of logarithmic
quantizer

In light of the approach proposed in [31], the logarith-
mic quantizer Q(τ (t)) can be constructed as below:

Q(τ (t)) = g1(t)τ (t) + g2(t), (9)

where two auxiliary parameters g j (t), j = 1, 2 are
defined as:

g1(t) =
{ Q(τ (t))

τ (t) , if |τ(t)| � b;
1, if |τ(t)| < b; (10)

g2(t) =
{

0, if |τ(t)| � b;
Q(τ (t)) − τ(t), if |τ(t)| < b; (11)

Note that the g1(t) is greater than zero in (10) during the
quantitative process. If |τ(t)| ≤ b with a positive input
constraint b > 0, then Q(τ (t)) has bound, and thus
g2(t) has upper bound limitation, that is |g2(t)| � ḡ2,
where ḡ2 is a positive constant.

3.3 Novel flexible prescribed performance statement

Definition 1 (Novel flexible prescribed performance
K )

K =
{
(t, e(t)) ∈ R

+× R|A(t) < e(t) < B(t), lim
t→∞ e(t)

= χa + χb

2

}

where A(t) and B(t) are two smooth flexible pre-
scribed performance functions that can be selected on
the basis of actual circumstances, and the following
requirements should be met in designing the flexible
prescribed performance functions.

(i) Bounded property: A(t) and B(t) and their
derivatives need to be bounded.

(ii) Limit condition:A(t) and B(t) exist limits such
that lim

t→∞A(t) = χa and lim
t→∞B(t) = χb.

(iii) Stability condition:A(t) and B(t) are chosen to
meet thatχa+χb = 0 (nonessential flexible condition).

Furthermore, in order to analyze the system stability,
Lemma 1 is given on the property of parameter-type
functions as follows:

Lemma 1 The two parameter-type functions with
respect to a function Π(t) consist of the following:

L1(Π(t)) = ln
�

� − Π2(t)
,L2(Π(t)) = Π2(t)

� − Π2(t)
, (12)

where � � 1 is a positive parameter. Then, the
subsequent inequality is satisfied during the interval
−√

� < Π(t) <
√

� ,

L1(Π(t)) � L2(Π(t)). (13)

Proof By constructing L(Π(t)) = L2(Π(t)) −
L1(Π(t)), one has L(Π(t) = 0) = 0, and differen-
tiating L(Π(t)) w.r.t. Π(t) as follows:

dL(Π(t))

dΠ(t)
= dL2(Π(t))

dΠ(t)
− dL1(Π(t))

dΠ(t)

= 2Π3(t)

(� − Π2(t))2
,−√

� < Π(t) <
√

�.

(14)

In view of Eq. (14), one can derive dL(Π(t))
dΠ(t) < 0

among the interval −√
� < Π(t) < 0; it deduces

that L(Π(t)) can be monotonously reduced to zero,
then L(Π(t)) > 0 for −√

� < Π(t) < 0. Accord-
ingly,L(Π(t)) > 0 among the interval

√
� > Π(t) >
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0. Therefore, one can conclude that L(Π(t)) =
L2(Π(t))−L1(Π(t)) � 0 for−√

� < Π(t) <
√

� ,
which also indicates L2(Π(t)) � L1(Π(t)). 
�

Remark 4 Different from the traditional prescribed
performance design strategies [13,23–26], the devel-
oped FPPC scheme of this work has the following three
merits.

(i) To improve both the dynamic and steady-state
performance of regulation errors in the controlled
robotic system, we introduce the parameter-type func-
tion Π(t) by selecting appropriate prescribed perfor-
mance functions. Additionally, it’s worth noting that
from Eq. (12), it is evident that both of these perfor-
mance aspects can also be adjusted by the parameter
� .

(ii) As for the prescribed performance functions
A(t) and B(t), we proposed can be more flexible than
other performance functions in [13,23–26], since they
can be symmetrical or asymmetric.

(iii) Considering the global control strategy, the
prescribed performance functions are generally cho-
sen as the exponentially decaying function ν(t) =
ν1e−l1t + ν∞ such that lim

t→∞ ν(t) = ν∞, and ν1, l1
and ν∞ are normal constants. However, the ν∞ in our
work can be set as ν∞ � 0.

4 Robust flexible prescribed performance
controller design

The FPPC controller design with flexible prescribed
performance tracking without and under input quanti-
zation is developed in this section, respectively. Both
control goals of the above two considered cases are to
realize θ(t) follow the desired joint angular positions
θd(t) in an expected compact error set with suppressing
the vibration of the flexible link around zero eventually.

4.1 Novel flexible prescribed performance without
input quantization

The prescribed performance tracking control aims to
create a satisfactory tracking performance of x1(t) fol-
lowing x1d(t). For the simplicity of the whole paper,
the tracking error variables e(t) as well as virtual error
z2(t) are introduced as follows:

{
e(t) = x1(t) − xd(t)

z2(t) = x2(t) − α(t)
(15)

where α(t) is a virtual control variable to be deter-
mined.

Step 1. Concerning the novel prescribed perfor-
mance K, the following Lyapunov function candidate
is defined as:

V1(t) =
4∑
j=1

ln
� j

� j − Π2
j (t)

withΠ j (t) = e j (t)−A j (t)
B j (t)−A j (t)

+ e j (t)−B j (t)
B j (t)−A j (t)

. And its deriva-
tive w.r.t. time consists of the following:

dV1(t)/dt

=
4∑
j=1

2Π j (t)

(B j (t) − A j (t))(� j − Π2
j (t))

[2ė j (t) − Ȧ j (t) − Ḃ j (t) − Π j (t)(Ḃ j (t) − Ȧ j (t))]

=
4∑
j=1

2Π j (t)

(B j (t) − A j (t))(� j − Π2
j (t))

[2ż1 j (t) − Ȧ j (t) − Ḃ j (t) − Π j (t)(Ḃ j (t) − Ȧ j (t))]

=
4∑
j=1

2Π j (t)

(B j (t) − A j (t))(� − Π2
j (t))

[2(z2 j (t) + α j (t) − ẋ jd (t)) − Ȧ j (t) − Ḃ j (t)

−Π j (t)(Ḃ j (t) − Ȧ j (t))] (16)

Then, the virtual backstepping controller α j (t)
should be designed by:

α j (t)= ẋ jd(t) + 1

2
[Ȧ j (t) + Ḃ j (t)

+Π j (t)(Ȧ j (t) − Ḃ j (t))]
−1

2
k1Π j (t)(B j (t) − A j (t)), (17)

Substituting α j (t) into V̇1(t), one gets:

V̇1(t) =
4∑
j=1

2Π j (t)z2 j (t)

(B j (t) − A j (t))(�i − Π2
j (t))

−
4∑
j=1

k1Π2
j (t)

� j − Π2
j (t)

, (18)

Step 2. To eliminate the term z2 j (t) in Eq. (18), one
can define:

V2(t) = V1(t) + 1

2
zT2 (t)M(x1(t))z2(t). (19)
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Accordingly, the time derivative of V2(t) gives:

V̇2(t) = V̇1(t) + 1

2
zT2 (t)Ṁ(x1(t))z2(t)

+zT2 (t)M(x1(t))ż2(t)

= V̇1(t) + 1

2
zT2 (t)Ṁ(x1(t))(x2(t) − α(t))

+zT2 (t)M(x1(t))(ẋ2(t) − α̇(t))

= V̇1(t) + zT2 (t) [M(x1(t))(ẋ2(t) − α̇(t))

−1

2
Ṁ(x1(t))α(t)

]

+1

2
zT2 (t)Ṁ(x1(t))x2(t) (20)

With the equivalent formal (7), one can obtain

V̇2(t) =
4∑
j=1

2Π(t)z2 j (t)

(B j (t) − A j (t))(� j − Π2
j (t))

−
4∑
j=1

Π2
j (t)

� j − Π2
j (t)

+ 1

2
zT2 (t)Ṁ(x1(t))x2(t)

+zT2 (t)

[
M(x1(t))(ẋ2(t) − α̇(t)) − 1

2
Ṁ(x1(t))α(t)

]

=
4∑
j=1

2Π(t)z2 j (t)

(B j (t) − A j (t))(� j − Π2
j (t))

+zT2 (t)[τ(t) − Kx1(t) − C(x1, x2)x2(t)

−M(x1)α̇(t) − 1

2
Ṁ(x1(t))α(t)]

−
4∑
j=1

k1Π2
j (t)

� j − Π2
j (t)

+ 1

2
zT2 (t)Ṁ(x1)x2(t) (21)

Based on the property of inertia matrix [21], one gives
that

C(x1, x2)x2 = Ṁ(x1)x2 − 1

2

∂xT2 (t)M(x1)x2(t)

∂x1
Then, one has

V̇2(t) =
4∑
j=1

2Π j (t)z2 j (t)

(B j (t) − A j (t))(� j − Π2
j (t))

+zT2 (t)[τ(t) − Kx1(t) − M(x1(t))α̇(t)

−1

2
Ṁ(x1(t))α(t)] −

4∑
j=1

k1Π2
j (t)

� j − Π2
j (t)

= zT2 (t)[τ(t) − Kx1(t) + 2H̃(t) − M(x1(t))α̇(t)

−1

2
Ṁ(x1(t))α(t)]

−
4∑
j=1

k1Π2
j (t)

� j − Π2
j (t)

(22)

with H̃(t) ∈ R
4, H̃ j1(t) = Π j (t)

(B j (t)−A j (t))(� j−Π2
j (t))

.

Step 3. Then, the FPPC tracking law is proposed as
follows:

τ(t)=−k2(x2(t) − α(t)) + Kx1(t) + 0.5Ṁ(x1)α(t)

−2H̃(t) + M(x1)α̇(t) (23)

In view of the above analysis, the achieved results
without input quantization effect Q(·) is summarized
in Theorem 1.

Theorem 1 For the closed-loopRFCRSs (1), theFPPC
control scheme (23) is proposed by adaptive backstep-
ping approach to realize the prescribed tracking per-
formance and vibration suppression such that:

1) lim
t→∞ e j (t) = (χaj+χbj )

2 = 0, j = 1, 2;

2) lim
t→∞ q j (t) = (χaj+χbj )

2 = 0, j = 1, 2.

Proof To better carry out the stable proof, an appropri-
ate Lyapunov function is selected as follows:

V (t) = V1(t) + 1

2
zT2 (t)M(x1(t))z2(t). (24)

With the previous analysis (22), then substituting the
above FPPC law (23) into Eq. (19), one has

V̇ (t) = −k1

4∑
j=1

Π2
j (t)

� j − Π2
j (t)

− k2z
T
2 (t)z2(t)

= −k1

4∑
j=1

ln
� j

� j − Π2
j (t)

− k2z
T
2 (t)z2(t)

≤ −c1V (t) (25)

with c1 = min{k1, 2k2
λmax (M(x1))

}. 
�

According to Ineq. (25), the two conclusions can be
made in the following propositions:

Property 1 According to Ineq. (25) and Barbalat’s
Lemma, one can derive

lim
t→∞ ln

� j

� j − Π2
j (t)

= 0. (26)

Since Π j (t) = e j (t)−A j (t)
B j (t)−A j (t)

+ e j (t)−B j (t)
B j (t)−A j (t)

, it follows

that

lim
t→∞ Π j (t) = 0 ⇒ lim

t→∞
{

e j (t)−A j (t)
B j (t)−A j (t)

+ e j (t)−B j (t)
B j (t)−A j (t)

}
= 0

⇒ lim
t→∞ 2e j (t) = lim

t→∞(A j (t) + B j (t))

⇒ lim
t→∞ e j (t) = lim

t→∞
1
2 (A j (t) + B j (t))
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Property 2 By virtue of Ineq. (25), one gives

⇒ V̇ (t) � −c1V (t)

⇒ −
√

� j − � j e−V (0)e−c1t ≤ Π j (t)

≤
√

� j − � j e−V (0)e−c1t

⇒ −1 ≤ −√
� j <

2e j (t) − A j (t) − B j (t)

B j (t) − A j (t)

<
√

� j ≤ 1

⇒ A j (t) < e j (t) < B j (t), j = 1, 2. (27)

The above two properties deduce that this pro-
posed method not only has the prescribed perfor-
mance A j (t) < e j (t) < B j (t) but also can guaran-
tee the limits of tracking errors meet that lim

t→∞ e j (t) =
lim
t→∞

1
2 (A j (t) + B j (t))=1

2 (χaj + χbj ) = 0 with j =
1, 2. Accordingly, the mode vibration suppression can
be realized such that lim

t→∞ q j (t) = χaj+χbj
2 = 0.

Theorem 1 has now been fully demonstrated.

Remark 5 In the context of measuring flexible vibra-
tion deformation, the utilization of two strain gauge
sensors is employed (the quantity of sensors being
determined by the truncation order). In the case of
the first two vibration modes, namely q1(t) and q2(t),
the specific approach involves affixing a strain gauge
to the flexible arm. As the flexible arm undergoes
movement within the system, it induces vibrations and
deformations across a broad range of motion. Conse-
quently, the strain gauge generates strain as a result.
The ensuing analog voltage signal is acquired through
the half-bridge method within a bridge box. Subse-
quently, the signal undergoes filtering and amplifica-
tion via dynamic strain gauge equipment. The primary
purpose of the strain gauge is to measure the bending
deformation of the flexible arm.

Remark 6 In relation to the feasibility of implement-
ing the proposedmethod in real-time, employing robust
adaptive FPPC laws, it is evident that the controllers
only require information about θ(t) and θ̇ (t), both of
which can be measured using a photoelectric encoder
and tachometer, respectively.However, it’s important to
acknowledge that it’s practically impossible to entirely
eliminate the influence of sensor noise,which can affect
the implementation of control, especially when deal-
ing with time-differentiating terms. The encoder and
strain gauge sensor are capable of detecting the rotation

angle θ(t) and deflection, providing real-time graphi-
cal data representation. To compute the signal deriva-
tives for angular displacement θ̇ (t), a derivative filter
is employed. For real-time experiments, the MATLAB
Simulink module generates control input signals, and
the associated control performance can be visualized
on an oscillograph.

4.2 Quantized flexible prescribed performance
control design

In light of the dynamic equations and the control objec-
tive, the appropriate logarithmic quantizer is utilized to
quantize control signals. The quantized control law and
parameter update law are developed to track the desired
joint angular positions and to guarantee the controlled
RFCRSs are stable. The control block of the above
quantized FPPC scheme is depicted in Fig. 2.

Following are the two portions of the primary quan-
tized control input:

⎧⎪⎨
⎪⎩
Q(τi (t))=gi1(t)τi (t) + gi2(t)

τi (t)=− (x2i (t) − αi (t))μ̂2
i (t)τ̄

2
i (t)

|(x2i (t) − αi (t))μ̂i (t)τ̄i (t)| + ρi
, i = 1, 2

(28)

where ρi is a normal constant and μi (t) = 1
infg1i (t)

.
Two adaptive laws μ̂(t) are expressed as:

˙̂μ j (t) = γ j z2 j (t)τ̄ j (t) − γ jσ j μ̂ j (t), j = 1, 2. (29)

with two positive control gains γ j , σ j .
The auxiliary control τ̄ (t) ∈ R

4 and virtual back-
stepping controller αi (t) ∈ R are proposed as below:

τ̄ (t)=−k2(x2(t) − α(t)) + Kx1(t) + 0.5Ṁ(x1)α(t)

+2H̃(t) + M(x1(t))α̇(t). (30)

α j (t)=ẋ jd(t) + 1

2
[Ȧ j (t) + Ḃ j (t)

+Π j (t)(Ȧ j (t) − Ḃ j (t))]
−1
2
k1Π j (t)(B j (t) − A j (t)), j = 1, 2.

τ (t) = [I2 0]T τ̄ (t) (31)

with Π j (t) = e j (t)−A j (t)
B j (t)−A j (t)

+ e j (t)−B j (t)
B j (t)−A j (t)

.
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Fig. 2 The quantized
control block of the
RFCRSs with flexible
prescribed performance

5 Stability analysis of the controlled RFCRSs

In this section, the main results of the flexible pre-
scribedperformance controlwith input quantization are
demonstrated in the subsequent Theorem 2.

Theorem 2 According to the reduced dynamics of the
RFCRSs described by (7), with the quantized FPPC
control law (28) and the adaptation law (29), the track-
ing errors of the controlled RFCRSs under the pre-
scribed performance are guaranteed. Error signals,
z2(t) and μ̃(t)will remain within the compact setsΩz2 ,
Ωμ̃, respectively, defined as follows:

Ωz2 :=
{
z2(t) ∈ R

4
∣∣∣||z2(t)|| �

√
D

λmin(M)

}
(32)

Ωμ̃ :=
{
μ̃(t) ∈ R

2
∣∣||μ̃(t)|| �

√
γμD

}
(33)

where D = 2(V (0) + λ/c2) with two positive con-
stants c2 and λ, and γ = max{γ1, γ2} as well as
μ = max{μ1, μ2}.
Proof In order to eliminate the input quantization influ-
ence, the control gains g1i (t) need to be estimated
and the adaptive parameter law μ̂i (t) is introduced to
observe the low bound value μi (t) = 1

inf{g1i (t)} , the
following Lyapunov function candidate is defined as
follows:

V (t) =
2∑

i=1

ln
�i

�i − Π2
i (t)

+
2∑

i=1

1

2γiμi
μ̃2
i (t)

+1

2
zT2 (t)M(x1(t))z2(t) (34)

where γi > 0, i = 1, 2 is positive constants and μ̃(t) =
μ̄(t) − μ(t).

Because g1(t) > 0, we know μ(t) > 0. With the
definition of μ̄(t), the derivative of V (t) is:

V̇ (t) = zT2 (t)[Q(τ (t)) − Kx1(t) + 2H̃(t) − M(x1(t))α̇(t))

−1

2
Ṁ(x1(t))α(t)]

+
2∑

i=1

1

γiμi (t)
μ̃i (t) ˙̂μi (t) −

2∑
i=1

k1Π2
i (t)

�i − Π2
i (t)

=
2∑

i=1

z2i (t)[g1i (t)τi (t) + g2i (t)] + zT2 (t)[2H̃(t)

−Kx1(t) − M(x1(t))α̇(t))

−1

2
Ṁ(x1(t))α(t)] +

2∑
i=1

1

γiμi (t)
μ̃i (t) ˙̂μi (t)

−
2∑

i=1

k1Π2
i (t)

�i − Π2
i (t)

(35)

With the analysis of logarithmic quantizer (9), one
obtains

V̇ (t) =
2∑

i=1

z2i (t)[g1i (t)τi (t) + g2i (t)] + zT2 (t)

[−k2z2(t) + k2z2(t) − Kx1(t) + 2H̃(t)

−M(x1(t))α̇(t)) − 1

2
Ṁ(x1(t))α(t)]

+
2∑

i=1

1

γiμi (t)
μ̃i (t) ˙̂μi (t) −

2∑
i=1

k1Π2
i (t)

�i − Π2
i (t)

=
2∑

i=1

z2i (t)[g1i (t)τi (t) + g2i (t)] − k2z
T
2 (t)z2(t)

+zT2 (t)τ̄ (t) −
2∑

i=1

k1Π2
i (t)

�i − Π2
i (t)

+
2∑

i=1

1

γiμi (t)
μ̃i (t)

[
γi z2i (t)τ̄i (t) − γiσi μ̂i (t)

]
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≤ −k2z
T
2 (t)z2(t) +

2∑
i=1

z2i (t)g1i (t)τi (t)

+
2∑

i=1

1

μi (t)
μ̃i (t)

[
z2i (t)τ̄i (t) − σi μ̂i (t)

]

−
2∑

i=1

[
k1Π2

i (t)

�i − Π2
i (t)

+ z2i (t)ḡ2i (t)

]

+
4∑

i=1

z2i (t)τ̄i (t)

Substituting Eqs. (29)–(30) into the above inequality,
one has

V̇ (t) ≤ −k2z
T
2 (t)z2(t) −

2∑
i=1

k1Π2
i (t)

�i − Π2
i (t)

−
2∑

i=1

z2i (t)g1i (t)
(x2i (t) − αi (t))μ̂2

i (t)τ̄
2
i (t)

|(x2i (t) − α(t))μ̂(t)τ̄ (t)| + ρi

+
2∑

i=1

1

μi (t)
μ̃i (t)

[
z2i (t)τ̄i (t) − σi μ̂i (t)

]

+
2∑

i=1

z2i (t)ḡ2i (t) +
4∑

i=1

z2i (t)τ̄i (t)

≤ −k2z
T
2 (t)z2(t) −

2∑
i=1

k1Π2
i (t)

�i − Π2
i (t)

+
2∑

i=1

z2i (t)ḡ2i (t) +
4∑

i=1

z2i (t)τ̄i (t)

+
2∑

i=1

1

μi (t)
μ̃i (t)

[
z2i (t)τ̄i (t) − σi μ̂i (t)

]

−
2∑

i=1

g1i (t)
z22i (t)μ̂

2
i (t)τ̄

2
i (t)

|z2i (t)μ̂i (t)τ̄i (t)| + ρi
(36)

Since

|ξ | − |ξ |2
ρi + |ξ | = ρi |ξ |

ρi + |ξ | < ρi (37)

Then

− z22i (t)μ̂
2
i (t)τ̄

2
i (t)

|z2i (t)μ̂i (t)τ̄i (t)| + ρi
< ρi − z2i (t)μ̂i (t)τ̄i (t)

(38)

Noticing that g1i (t) � g1imin = 1
μi (t)

> 0, one gets

− g1i
z22i (t)μ̂

2
i (t)τ̄

2
i (t)

|z2i (t)μ̂i (t)τ̄i (t)| + ρi
<

1

μi
(ρi − z2i (t)μ̂i (t)τ̄i (t))

(39)

With the above relationship (39), one has

V̇ (t) ≤ −(k2 − 1)zT2 (t)z2(t) +
4∑

i=1

z2i (t)τ̄i (t) + ḡ22(t)

+
2∑

i=1

1

μi
ρi

+
2∑

i=1

1

μi (t)

[
μ̃i (t)z2i (t)τ̄i (t) − z2i (t)μ̂i (t)τ̄i (t)

]

−
2∑

i=1

[
k1Π2

i (t)

�i − Π2
i (t)

+ 1

μi (t)
μ̃i (t)σi μ̂i (t)

]

≤ −(k2 − 1)zT2 (t)z2(t) +
4∑

i=3

z2i (t)τ̄i (t)

−
2∑

i=1

k1Π2
i (t)

�i − Π2
i (t)

−
2∑

i=1

1

μi (t)
μ̃i (t)σi μ̂i (t) + ḡ22(t) +

2∑
i=1

1

μi
ρi (40)

with ḡ22(t) = max{ḡ21(t), ḡ22(t)}. 
�
Since the RFCRSs only has two real input τ j (t)with

j = 1, 2, and τ̄ j (t) with j = 3, 4 in Eq. (30) is not
required, there exists two extra virtual controller α j (t)
with j = 3, 4 such that

4∑
i=3

z2i (t)τ̄i (t) = 0. (41)

With the above relation, one can obtain

V̇ (t) ≤ −(k2 − 1)zT2 (t)z2(t) −
2∑

i=1

k1Π2
i (t)

�i − Π2
i (t)

+ ḡ22(t)

−
2∑

i=1

1

μi (t)
μ̃i (t)σi μ̂i (t) +

2∑
i=1

1

μi
ρi (42)

Noticing that

−μ̃i (t)μ̂i (t)=−μ̃i (t)(μ̃i (t) + μi ) = −μ̃2
i (t) − μ̃i (t)μi

≤−μ̃2
i (t) + 1

2
μ̃2
i (t) + 1

2
μ2
i (t) = −1

2
μ̃2
i (t) + 1

2
μ2
i (t)

(43)

Then,

− 1

μi
μ̃i (t)σi μ̂i (t) ≤ −σi

2
μ̃2
i (t) + σi

2
μ2
i (t) (44)
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Therefore, one has

V̇ (t) ≤ −(k2 − 1)zT2 (t)z2(t) −
2∑

i=1

k1Π2
i (t)

�i − Π2
i (t)

+ ḡ22(t)

−
2∑

i=1

σ1

2
μ̃2
i (t) +

2∑
i=1

σi

2
μ2
i (t) +

2∑
i=1

1

μi
ρi (45)

By using Lemma 1, one can obtain

V̇ (t)≤−(k2 − 1)zT2 (t)z2(t) − k1

2∑
i=1

ln
�i

�i − Π2
i (t)

−
2∑

i=1

σ1

2
μ̃2
i (t) +

2∑
i=1

σi

2
μ2
i (t)

+
2∑

i=1

1

μi
ρi + ḡ22(t)

≤−c2V (t) + λ (46)

with c2 = min{γ1σ, 2k1,
2(k2−1)

λmax (M(x1))
} and λ = ḡ2(t)+

2∑
i=1

σi
2 μ2

i (t) +
2∑

i=1

1
μi

ρi .

Then, one can derive that

V (t) ≤ λ

c2
+
(
V (0) − λ

c2

)
e−c2t ≤ λ

c2
+ V (0) (47)

Meanwhile, one has

1

2
||z2(t)||2 ≤

(
λ

c2
+ V (0)

)
/λmin(M), (48)

1

2γμ
||μ̃(t)||2 ≤ λ

c2
+ V (0) (49)

with γ = max{γ1, γ2} and μ = max{μ1, μ2}.
It can be seen from Ineq. (47) that

√
ln �i

�i−Π2
i (t)

is

uniformly ultimately converge to a bounded compact
set Ξ . Given any ς2∗ > 2λ

c2
> 0, then it selects T

meets that ln �i
�i−Π2

i (t)
� ς2∗ , |zi (t)| � ς2∗ ,∀t > T .

Thus, the compact set Ξ can be defined as {zi ∈ R
4 :

ln �i
�i−Π2

i (t)
� ς2∗ , |zi (t)| � ς2∗ }

In terms of the aforesaid observation, it follows that
ln �i

�i−Π2
i (t)

� ς2∗ and further derived as follows:

ln
�i

�i − Π2
i (t)

� ς2∗ ⇒ −
√

�i e−ς2∗ � Πi (t) �
√

�i e−ς2∗

⇒ ei (t) �
Bi + Ai + (Bi − Ai )

√
�i e−ς2∗

2
(50)

Further, there selects μ∗ sufficiently small via adjust-
ing the parameters, then tracking errors ei (t) approach
(χai + χbi )/2 with i = 1, 2.

With the definition of Πi (t), one can derive√
�i e−ς2∗ � √

�i < 1 ⇒ (Bi − Ai )

√
�i e−ς2∗ < Bi − Ai

⇒ Bi + Ai + (Bi − Ai )

√
�i e−ς2∗

2
< Bi (51)

Similarly, one can also derive that

Bi + Ai − (Bi − Ai )

√
�i e−ς2∗

2
> Ai (52)

Combining Ineq. (50) with Ineqs. (51)–(52), one has

Ai (t) < ei (t) < Bi (t) with i = 1.2. (53)

It should be concluded from the above analysis that
the tracking errors of angular position ei (t) are con-
stricted betweenAi andBi by virtue of selecting appro-
priate functions Ai and Bi , which also indicates that
RFCRSs achieve prescribed performance K defined in
Definition 1.

This is the end of Theorem 2.

6 Numerical simulation

To demonstrate the viability of the constructed control
law with flexible prescribed regulation performance.
These simulation results on the comparison with the
PD law [39], different flexible functions, and logarith-
mic quantization will be divided into three cases to
demonstrate.

Simulation of flexible prescribed performance con-
trol will be shown in the first part. A PD controller
[39] will be introduced in the second part in compar-
ison. Both the PD controller and the prescribed per-
formance controller based on the logarithm quantizer
will be revealed in the third part. The parameters of
rigid–flexible robotic systems are specified in Table 1.
The desired angular positions are chosen as θ1d = 0.5,
θ2d = 0.8.

Case 1. Novel flexible prescribed performance
controlwithoutquantization in comparisonwithPD
control

Regarding this PD control law [39] is utilized to
achieve the tracking control of angular position and
the flexible link’s ability to reduce vibration in com-
parison with the proposed FPPC laws. The PD control
is described by: u j (t) = −k jp(θ j (t)−θ jd)−k jd θ̇ j (t),
where k jp and k jd are positive gains with j = 1, 2.

The corresponding control values and performance
functions are listed as follows: k1p = 38, k1d = 22,
k2p = 23, k2d = 5;
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Fig. 3 Actual tracking of θ1d (rad) in Case 1

k1 = 1.8, k2 = 3.6, A1(t) = −0.65 and B1(t) =
0.65+0.7e−8t ,A2(t) = −0.50−e−1t ,B2(t) = 0.50+
0.6e−0.72t .

The real profiles of two angular position regulation
using PD and FPPC control are depicted in Figs. 3,
4, respectively. It is clear that the advocated FPPC
method provides superior regulation performance than
the comparative PD control [39], especially as can be
seen from the small windows of Figs. 3 and 4. To show
the deformation of flexible beam, the flexible displace-
ments of general 1st and 2nd mode coordinates are
shown in Figs. 5, 6. In view of the above vibrations in
Figs. 5, 6, the vibration of the flexible beam is quickly
eliminated approach zero, and the suppression effect
of the developed FPPC law is faster than the compared
PD control. It is noted that the first mode vibration
is the dominant frequency and the second mode will
also be suppressed as the first mode vibration reduces
to zero in Figs. 5, 6. The corresponding vibration sur-
face using the PD law and FPPC laws are revealed in
Figs. 7, 8. Although the reduced rigid–flexible robotic
system has high mode numbers, the regulation control
performance is not influenced as shown in Figs. 9, 10. It
can also be observed that the two-mode vibrations can
be suppressed rapidly and smoothly with the proposed
method in comparison with the PD control law [39].

In view of the above comparison simulations,
although the traditional PD control [39] has a posi-
tive effect on trajectory regulation and vibration sup-
pression, its control performance is not satisfactory in
comparison with the developed robust adaptive FPPC
method.

Fig. 4 Actual tracking of θ2d (rad) in Case 1

Fig. 5 1st mode vibration q1(t)(m) in Case 1

Fig. 6 2nd mode vibration q2(t)(m) in Case 1
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Fig. 7 The total vibration surface w(ξ, t)(m) under the PD law

Fig. 8 The total vibration surface w(ξ, t)(m) under the FPPC
law

Fig. 9 Regulation index e1(t)(rad) under FPPC law in Case 1

Fig. 10 Regulation index e2(t)(rad) under FPPC law in Case 1

The control gains for the quantized FPPC scheme
are determined through the following procedures:

1. Setting the quantized parameters as ρ1 = ρ2 =
0.01 and k1 = k2 = 0.01. Then, increment the
value of K from zero until the controlled system
exhibits slight oscillations to some extent.

2. Determining the maximum error and error rate of
the two angular positions under the tuned values of
k1 and k2. Initially, choose half of the maximum
error as the value for k1 and half of the maximum
error rate as k2. Subsequently, increase the values of
ρ j , j = 1, 2 while simultaneously decreasing the
value of K to further minimize the error, making
necessary trade-offs between the two parameters.

3. Maintaining the tuning of k j , j = 1, 2 and K
achieved in the first two stages, and then increase
the values of σ j and γ j , j = 1, 2 to enhance
dynamic regulation and vibration suppression per-
formance. Next, finely adjust these two values and
strike a balance between σ j and γ j .

Case 2. Novel flexible prescribed performance
with different functional sets K

Tobetter present theflexible prescribedperformance
under the limitations on a functional set K. Some
feature prescribed functions with different converge
speeds are taken and the following three comparison
conditions are considered:

Condition 1) A11(t) = −0.58, B11(t) = 0.58 +
0.3e−8t , and A12(t) = −0.5 − 0.5e−0.75t , B12(t) =
0.5 + 0.6e−0.8t ;
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Fig. 11 Actual tracking of θ1d (rad)with different FPPCs inCase
2

Fig. 12 Actual tracking of θ2d (rad)with different FPPCs inCase
2

Fig. 13 Regulation index e1(t)(rad)—Case 2

Fig. 14 Regulation index e2(t)(rad)—Case 2

Condition 2) A21(t) = −0.58, B21(t) = 0.58 +
0.3e−1t andA22(t) = −0.5−0.45e−4t ,B22(t) = 0.5+
0.4
1+t2

;
Condition 3) A31(t) = −0.55, B31(t) = 0.55 +

0.3e−0.5t and A32(t) = −0.5 − 0.45e−0.5t , B32(t) =
0.5 + 0.4

1+2t3
.

In order to reflect the regulation ability of the dif-
ferent performance functions, the above selected func-
tions are divided into two categories, i.e., � + μe−κt ,

κ
μ+tς . As for the first exponential function, Bi1(t) =
0.58 + 0.3e−κi t are chosen that varies with exponen-
tial index κi , which determines the convergent rate of
regulation error.

FromFig. 11, the regulation convergent rate increases
with the increase of exponential gain κi . It is clear from
Fig. 12 that the convergence performance of the expo-
nential function � + μe−κt is superior to fractional
polynomial function κ

μ+tς . Accordingly, the regulation
error of two angular positions with prescribed perfor-
mance functions is displayed in Figs. 13 and 14. From
Figs. 15 to 16, it indicates that the generalized
mode vibration can be reduced to zero with different
rates. As shown in Figs. 17, 18, 19, the vibration dis-
placements under the above prescribed perform func-
tions become smaller along the time axis in contrast
with the fractional polynomial function.

Case 3. Novel flexible prescribed performance K
with input quantization

To better illustrate the efficacy of the quantized
FPPC law in this case, the following control gains and
performance functions are listed. k1 = 1.8, k2 = 3.6,
A1(t) = −0.60 andB1(t) = 0.60+0.45e−9t ,A2(t) =
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Fig. 15 1st vibration mode q1(t)(m)—Case 2

Fig. 16 2nd vibration mode q2(t)(m)—Case 2

Fig. 17 The total vibration surface w(ξ, t)(m) for Condition 1

Fig. 18 The total vibration surface w(ξ, t)(m) for Condition 2

Fig. 19 The total vibration surface w(ξ, t)(m) for Condition 3

Fig. 20 Actual tracking of θ1d (rad) with input quantization in
Case 3
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Fig. 21 Actual tracking of θ2d (rad) with input quantization in
Case 3

Fig. 22 The total vibration surface w(ξ, t)(m) in Case 3

−0.31− 0.55e−7t , B2(t) = 0.31+ 1
2+2t3

, ρ1 = 0.025,
δ1 = 0.25, ρ2 = 0.01, δ2 = 0.25, σ1 = 0.01 and
σ2 = 0.015, γ1 = 1.6 and γ2 = 1.8.

Figures20 and 21 show the regulation profiles of
angular positions under the designed FPPC law with
input quantization. Figure22 represents theflexible dis-
placement of the closed-loop RFCRSs with the quan-
tizedFPPC law.The corresponding control inputs of the
RFCRSs with quantization are displayed in Figs. 23,
24. Note that the regulation errors cluster in a tiny
area near zero in the presence of input quantization
in Figs. 25, 26 in comparison with the regulation errors
in Figs. 9, 10.

In termsof the above results, it canbe concluded that,
with the developed FPPC law with quantization, the

Fig. 23 Quantized input Q(τ1(t))(Nm) in Case 3

Fig. 24 Quantized input Q(τ2(t))(Nm) in Case 3

Fig. 25 Regulation e1(t)(rad) under quantization
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Fig. 26 Regulation e2(t)(rad) under quantization

desired angular position can be reached with flexible
prescribed performance and the vibration can also be
eliminated.

7 Conclusions

In this work, the model of the RFCRSs has been
obtained by using the reduced-order strategy—AMM.
The derived model and the flexible prescribed per-
formance control (FPPC) law have been proposed
for both with and without quantization. According
to the backstepping-based Lyapunov stability method,
the tracking errors of RFCRSs with the proposed
FPPC laws converge to a compact set within the pre-
scribed performance in the presence of quantization.
Meanwhile, the regulation errors of the rigid–flexible
robotic systems without quantization eventually con-
verge rapidly to zero. Finally, the cases of simulation
demonstrate the feasibility of the proposed flexible pre-
scribed performance control and the input quantiza-
tion has very little effect on the controlled RFCRSs
with robust adaptive FPPC law. In our forthcoming
work, we will explore the experimental implemen-
tation of the proposed FPPC approaches on rigid–
flexible robotic systems. This will involve utilizing
dSPACE-MATLAB/Simulink real-time hardware-in-
the-loop control technology to validate FPPCmethods.
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