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Abstract Based on trigonometric functions, we pro-
pose a three-dimensional (3D) hyperchaotic map with
a concise symmetric structure. From the perspective
of Lyapunov exponents, we establish the mathemat-
ical proof that the new map consistently maintains
a chaotic state across an infinitely wide parameter
range.Numerical simulations illuminate a diverse array
of dynamic behaviors, including an ultra-wide range
of non-degenerate hyperchaotic parameters, antimono-
tonicity, transient chaos, andmultiple coexisting attrac-
tors. Particularly noteworthy, altering initial values
enables the periodic switch of symmetric attractors—a
rare phenomenonwithin other chaoticmaps.Moreover,
in conjunctionwith an offset constant, successful polar-
ity transformation of attractors in a single direction
has been achieved. Furthermore, performance analy-
sis underscores that the sequence generated by the new
map embodies significantly elevated complexity and
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pseudo-randomness. Finally, we implement the new
map using a digital signal processing platform and suc-
cessfully validate its physical feasibility by obtaining
the chaotic attractors.

Keywords Discrete map · Non-degenerate hyper-
chaotic · Infinitely wide parameter range · Attractors
periodic switching · DSP implementation

1 Introduction

Chaos is a complex dynamic behavior of a determin-
istic nonlinear system under certain conditions [1].
Due to the properties of the initial sensitivity, internal
randomness, and unpredictability, chaotic systems are
widely used in secure communication, image encryp-
tion, and pseudo-random sequence generation [2–4].
Hyperchaos is a much more complex behavior than
chaos since it has more than one positive LE. There-
fore, applications based on hyperchaotic systems have
a higher security level than those based on general
chaotic systems [5]. Generally speaking, to gener-
ate hyperchaos, the system dimensions required for
a discrete system are lower than the continuous sys-
tem, which means the applications based on the dis-
crete hyperchaotic system usually have higher compu-
tational efficiency and lower resource cost [6,7].

However, when a chaotic system is implemented on
hardware with poor computational precision, unpre-
dictable quantization errors are inevitably added in
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each iteration, causing the chaotic trajectory to devi-
ate from the initial trajectory. The variables of the
iterative state will eventually converge to a periodic
cycle over time. Additionally, initial value sensitiv-
ity, long-term unpredictability, and ergodicity will all
diminish or even vanish [8–10]. In an effort to pre-
vent the dynamic degradation of digital chaos, sev-
eral efficient anti-degradation techniques, including
the perturbation approach, cascade method, analog-
digital mixing method, and random jump method,
were proposed to improve the dynamic properties of
chaotic maps [11–15]. Nevertheless, compared with
the original chaotic systems, the improved chaotic sys-
tems by the anti-degradation method are also diffi-
cult to show advantages in key space, cycle length,
sequence complexity, etc. The non-degenerate hyper-
chaotic system refers to a class of chaotic systems in
which the number of positive LEs can reach the max-
imum possible number. Consequently, their dynamic
behaviors are much more complex than the same or
lower-dimensional degenerate chaotic system. Addi-
tionally, the non-degenerate hyperchaotic system out-
performs the degenerate chaotic system in terms of
preventing dynamic degradation when the discrete
chaotic system is naturally implemented by the digi-
tal circuit[7,16,17]. Therefore, the modeling, analysis,
and implementation of non-degenerate chaotic systems
is a research topic of great theoretical significance and
engineering application value.

In recent years, chaotic systems have evolved from
low-dimensional systems to complexhigh-dimensional
systems. To generate hyperchaotic systems with bet-
ter performance, many researchers choose to cou-
ple memristors into existing chaotic systems, several
chaotic systems that highly sensitive to initial val-
ues have been designed and thoroughly studied [18–
21]. For instance, in [19], a distinctive memristor-
coupled approach reveals intricate coexisting and syn-
chronous behaviors in memristive systems, showcas-
ing diverse attractors and synchronization patterns. In
addition, many new construction methods for the non-
degenerate hyperchaotic system have also been pro-
posed. Shen et al. [22] proposed a new method for
designing ideal dissipative hyperchaotic systems based
on the anti-control principle. Reference [23] presented
a systematic method for generating continuous-time
autonomous hyperchaotic systems with an arbitrary
expected positive LE. Reference [24] used a block
diagonal matrix in the design of the nominal system

to construct the desired non-degenerate hyperchaotic
system. These constructed chaotic systems exhibit rich
dynamic behaviors and extremely hidden multistabil-
ity, contributing to the enhanced security of crypto-
graphic algorithms based on these systems. Nonethe-
less, certain significant defects, such as a limitedparam-
eter range and a discontinuous chaotic domain, still
persist in most high-dimensional chaotic systems. On
the other hand, although these above studies on non-
degenerate hyperchaotic systems can make the num-
ber of positive LEs reach the maximum possible num-
ber if the configuration method is reasonable, most of
these methods are aimed at continuous systems, and
the design process is fussy. The complicated structures
of those systems usually result in lower computational
efficiency and higher resource costs in practical engi-
neering applications.

Based on the above considerations, we aim to pro-
pose a high-dimensional non-degenerate hyperchaotic
map with a concise structure, an ultra-wide continuous
chaotic domain, the largest possible chaotic parameter
space, and complex dynamical behavior. To this end,
we introduce the sine function into a simple linear map,
due to the periodic feedback of the trigonometric func-
tion, a new 3D non-degenerate hyperchaotic map is
proposed. Our research methodology in this work is
consistent with the majority of previous studies on dis-
crete chaoticmaps [6,18–23,25], which can be summa-
rized in the following three aspects: chaos theory anal-
ysis, numerical simulation, and hardware circuit exper-
iments. Not only does it analyze the complex dynamic
characteristics of the newmap, but it also demonstrates
the physical feasibility of the new map and the appli-
cability of the generated sequences. The novelty of our
work can be briefly summarized as follows:

1. The new map simultaneously combines complex
dynamic characteristics and a simple kinetic equa-
tion. This concise symmetric structure allows for
higher computational efficiency and lower resource
costs in industrial applications of chaotic systems.

2. The new map exhibits an ultra-wide range of
parameters for chaos and non-degenerate hyper-
chaos. Moreover, it showcases a unique phe-
nomenon of periodic switching between symmetric
attractors, which is rarely observed in other maps.

3. The new map can generate two types of coexist-
ing attractors: chaotic attractor and quasi-periodic
curve. Within one period of alternating changes
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Fig. 1 a The LEmax of (1). b The LEmin of (1)

between the coexisting attractors, the proportion of
each individual attractor varies depending on the
initial values.

The rest of this paper is organized as follows: In
Sect. 2, a new 3D discrete chaotic map is constructed,
and its chaotic parameter range is analyzed and veri-
fied. Section3 analyzes the dynamic behaviors includ-
ing strange attractors, bifurcation behavior, antimono-
tonicity, and transient chaos of the new map. Section4
studies themultistability and the offset-boosting behav-
ior of the new map. In Sect. 5, performance analysis of
the sequence generated by the new map and the DSP
implementation are conducted. Finally, Sect. 6 summa-
rizes this paper.

2 Construction of a 3D non-degenerate
hyperchaotic map

Introducing trigonometric functions into dynamic sys-
tems is an effective way to achieve multistability.
Inspired by this, a new 3D discrete hyperchaotic map
with a concise symmetric structure is constructed. The
mathematical model of the new map is written as

⎧
⎪⎨

⎪⎩

xn+1 = sin(xn) + asin(yn)

yn+1 = sin(yn) + bzn

zn+1 = sin(zn) + xn

(1)

where xn , yn , zn are the state variables of the new map
when the number of iterations is n (n is a natural num-
ber). a, b are two nonzero system parameters.

2.1 Non-degenerate hyperchaotic region

The LE is one of the most important criteria used to
judge whether a system is chaotic in the current chaos
research. Generally, the number of positive LEs can be
used to directly judge the state of the system. Set the ini-
tial values to (0.1, 0.1, 0.1), Fig. 1 show the maximum
Lyapunov exponent (LEmax) and the minimum Lya-
punov exponent (LEmin) of the map (1) with the con-
stant change of parameters a and b. It can be observed
that the LEs are closely related to the two parameters.
Near the two parameters close to 0, there are some
periodic and quasi-periodic windows. As the absolute
value of the parameters increase, the map (1) gradually
enters the chaotic state and finally remains in a contin-
uous non-degenerate hyperchaotic state. Moreover, the
value of LEmin is also proportional to the absolute value
of the parameters, which makes the map (1) within a
large range of parameters, as shown in Fig. 2, all the
LEs are positive and show an upward trend in general,
which indicates that (1) owns an ultra-wide parame-
ters range of non-degenerate hyperchaotic state, and
its chaotic characteristics are also enhanced with the
increase of the LEs.

2.2 Infinitely wide parameter range of chaos

To prove that map (1) always maintains the chaotic
state with a positive LE across an infinitely wide range
of parameters, only the following two criteria need to
be met [23]:

1. The trajectory is globally bounded.
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Fig. 2 The LEs spectrum when a ∈ [−20000, 20000]

2. Has at least one positive LE.

According to the difference equation of the map (1),
the systemonly contains linear terms and trigonometric
function terms. From the boundedness of the trigono-
metric function, it can be concluded that the state vari-
able xn of the system is globally bounded since the
linear combination of bounded functions and trigono-
metric functions is still bounded, so we can easily con-
clude that the other two state variables yn and zn of the
map (1) are also globally bounded.

To prove that themap (1) has at least one positive LE
in an infinitely wide parameter range, massive iterative
operations are required to calculate the output sequence
when a and b are used as unidentified variables to
acquire the analytical solution of the LEs. This method
is computationally intensive and almost impossible to
complete. Reference [25] proposed a modified pertur-
bation method, which can evaluate the output sequence
of the discrete map without replacing concrete param-
eters.

Here,we introduce themodifiedperturbationmethod.
Suppose the difference equation of an N-dimensional
discrete map is

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x1(n + 1) = F1(p, x1(n), x2(n), . . . , xN (n))

x2(n + 1) = F2(p, x1(n), x2(n), . . . , xN (n))

...

xN (n + 1) = F2(p, x1(n), x2(n), . . . , xN (n))

(2)

where xN (n) is the nth(n ∈ N∗)) iteration value of the
N th state variable, p(p ∈ R) is a control parameter,
F : RN → RN.

Assign p = p0 as the base point, fix the initial val-
ues [x1(0), x2(0), . . . , xN (0)]T , in this case, there is

no unknown variable in the map (2), and its iteration
output matrix of the map (2) is as follows:

H =

⎡

⎢
⎢
⎢
⎣

x1(0) x1(1) · · · x1(n)

x2(0) x2(1) · · · x2(n)
...

...
. . .

...

x j (0) x j (1) · · · x j (n)

⎤

⎥
⎥
⎥
⎦

Set p1 = p0 + Δp, Δp is a minor increment, now
the output matrix can be described as:

H∗ =

⎡

⎢
⎢
⎢
⎣

x1(0) x∗
1 (1) · · · x∗

1 (n)

x2(0) x∗
2 (1) · · · x∗

2 (n)
...

...
. . .

...

xN (0) x∗
N (1) · · · x∗

N (n)

⎤

⎥
⎥
⎥
⎦

To obtain the specific output matrix H∗, typically,
parameter p1 and initial value [x1(0), x2(0), . . . , xN (0)]T

are substituted into (2) for iteration. Differently, the
modified perturbation method is based on the output
matrix H , and let x∗

N (n) perform the Taylor series
expansion near the base point p = p0, and then yields:

x∗
N (n) = FN + (p1 − p0) F

′
N + · · ·

+ (p1 − p0)n F
(n)
N

n! + Rn

Based on the demand for calculation accuracy, choose
the appropriate location for truncation, and substitute
the obtained x∗

N (n) back into the matrix H∗, the output
matrix at the parameter p1 can then be obtained.

The modified perturbation method uses the pertur-
bation increment to calculate the output sequence under
different parameters and then calculates the LEs. As a
result, it obviates the need for extensive iterative opera-
tions on the substitution equation and allows obtaining
the output sequence of the equation with little loss of
accuracy.

For the map (1), since parameter a only appears in
the expression of xn+1 and is a one-order term, so we
can regard xn+1 = F1(a, xn, yn, zn) as a first-order
function of a, and the impact of a on yn+1 and zn+1 is
ignored here. Therefore, we can cast off the limitation
thatΔp can only take aminor increment when carrying
out the Taylor series expansion.

Fix parameter b = 10 and initial values (1, 1, 1). Set
the base point a0 = 10, when ai = a0 + i, (i ∈ N∗), i
is the perturbation increment, the output matrix of (1)
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Table 1 The LEs calculated by two methods

Parameter Traditional method Perturbation method

a=11 1.4209,1.3537,1.2449 1.4141,1.3467,1.2252

a=103 2.8853,2.8470,2.7847 2.8798,2.8400,2.7759

a=105 4.4112,4.3847,4.3447 4.4003,4.3722,4.3284

a=107 5.9389,5.9148,5.8803 5.9276,5.9070,5.8714

is as follows:

⎡

⎣
x0 x1 + i sin (y1) · · · xn + i sin (yn)
y0 y1 · · · yn
z0 z1 · · · zn

⎤

⎦

Table 1 lists the results that acquired by the modified
perturbation method and the traditional method. As
can be seen that the LEs calculated by the modified
perturbation method are very close to those calculated
by the traditional method (the number of iterations is
105). Next, this paper will use the modified perturba-
tion method to prove that the map (1) has at least one
positive LE within an infinitely wide parameter range.

The definition method of calculating the LE is given
by

LE = lim
n→∞
ε→0

1

n
ln

∣
∣
∣
∣
Fn(x0 + ε) − Fn(x0)

ε

∣
∣
∣
∣ (3)

where Fn(x0) denotes the value iterated n times at the
initial value x0.

Take parameter a as an example, set b = 10 and the
initial values (1, 1, 1). Assign the base point a0 = 10,
ai = a0 + i(i ∈ N∗), where i is the perturbation incre-
ment. Take a0 = 10, the LEs calculated by QR orthog-
onal decomposition method are LE0

1 = 1.384, LE0
2 =

1.315, LE0
3 = 1.192.When applying themodified per-

turbation method to calculate the LEs, set two groups
of initial values as [x0, y0, z0], [x0 + ε, y0, z0](ε is
an infinitesimal quantity), respectively, and the output
matrix under the two groups of initial values can be
expressed as:

⎡

⎣
x0 x1 · · · xn
y0 y1 · · · yn
z0 z1 · · · zn

⎤

⎦ ,

⎡

⎣
x0 + ε x1∗ · · · xn∗
y0 y1∗ · · · yn∗
z0 z1∗ · · · zn∗

⎤

⎦

From (2) and LE0
1 = 1.384, one obtains:

LE0
1 = lim

n→∞
ε→0

1

n
ln

∣
∣
∣
∣
xn∗ − xn

ε

∣
∣
∣
∣ > 0 (4)

Let S1 = xn∗−xn
ε

, then

|S1| > 1 (5)

Next, we will prove that map (1) has at least one
positive LE in an infinitely wide range of parameter by
mathematical induction, and prove that this positive LE
is proportional to the change of parameter a.

(1) When i = 1, a1 = a0 + i = 11, all the LEs of the
map (1) are calculated as LE1

1 = 1.421, LE1
2 =

1.354, LE1
3 = 1.245, on this condition, the map

(1) has three positive LEs, and LE1
1 > LE0

1 . The
output matrices of the map (1) under two groups
of initial values when applying the perturbation
method are acquired as follows:

⎡

⎣
x0 x1 + i sin(y1) · · · xn + i sin(yn)
y0 y1 · · · yn
z0 z1 · · · zn

⎤

⎦ ,

⎡

⎣
x0 + ε x1∗ + i sin(y1∗) · · · xn∗ + i sin(yn∗)
y0 y1∗ · · · yn∗
z0 z1∗ · · · zn∗

⎤

⎦

From (2), one of the LEs is calculated as:

LE1
1 = lim

n→∞
ε→0

1

n
ln

∣
∣
∣
∣S1 + sin(yn∗) − sin(yn)

ε
)

∣
∣
∣
∣ > 0

(6)

Let S2 = sin(yn∗)−sin(yn)
ε

, then we can obtain:

|S1 + S2| > 1, |S1 + S2| > |S1| (7)

(2) Suppose when i = m, the proposition is true, that
is, when am = a0 + m, there is

LEm
1 > 0, LEm

1 ≥ LEm−1
1 (8)
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Now, the output matrix of (1) under two groups of
initial values are as follows:
⎡

⎣
x0 x1 + m sin(y1) · · · xn + m sin(yn)
y0 y1 · · · yn
z0 z1 · · · zn

⎤

⎦ ,

⎡

⎣
x0 + ε x1∗ + m sin(y1∗) · · · xn∗ + m sin(yn∗)
y0 y1∗ · · · yn∗
z0 z1∗ · · · zn∗

⎤

⎦

LEm
1 = lim

n→∞
ε→0

1

n
ln |S1 + mS2| > 0 (9)

thus, one gets:

|S1 + mS2| > 1, |S1 + mS2| > |S1 + (m − 1)S2|
(10)

(3) When i = m + 1, the output matrix of (1) under
two groups of initial values are as follows:
⎡

⎢
⎣

x0 x1 + (m + 1) sin(y1) · · · xn + (m + 1) sin(yn )

y0 y1 · · · yn
z0 z1 · · · zn

⎤

⎥
⎦ ,

⎡

⎢
⎣

x0 + ε x1
∗ + (m + 1) sin(y1

∗) · · · xn∗ + (m + 1) sin(yn∗)

y0 y1
∗ · · · yn∗

z0 z1
∗ · · · zn∗

⎤

⎥
⎦

LEm+1
1 = lim

n→∞
ε→0

1

n
ln |S1 + (m + 1)S2| (11)

When the positive and negative properties of S1, S2
are the same, from (10) we can get:

|S1 + (m + 1)S2| > |S1 + mS2| > 1 (12)

Namely: LEm+1
1 > LEm

1 > 0. On this condition, the
proposition is true.

When the positive and negative properties of S1 and
S2 are different, and |S2| > 2 |S1|, obviously, since
|S1 + S2| and |S2| have the same positive and nega-
tive properties, so |S1 + mS2| and |S2| also have the
same positive and negative properties, and because
m > 1,m ∈ N∗, then |S1 + (m − 1)S2| and |S2| have
the same positive and negative properties, From (10),
one obtained:

|S1 + mS2 + S2| > |S1 + (m − 1)S2 + S2| > 1 (13)

Organize and obtain:

|S1 + (m + 1)S2| > |S1 + mS2| > 1 (14)

Namely: LEm+1
1 > LEm

1 > 0. The proposition is
proved.

Table 2 The corresponding LEs and states of (1) under several
typical parameters settings

(a,b) (LE1,LE2,LE3) System state

(0.5,1) (−0.27,−0.30,−5.25) Period-2

(−1.11,1) (0.05,−0.01,−1.18) Quasi-periodic state

(1.57,1) (0.30,−0.01,−0.55) Chaotic

(−5.2,0.5) (0.16,−0.03,−0.24) Chaotic

(2.37,1) (0.58,0.14,−0.37) Hyperchaotic

(40,30) (0.65,0.51,0.31) Non-degenerate hyperchaotic

Similarly, fixed a = 10, b0 = 10, set bi = b0 + i ,
it can also be obtained that the map (1) has at least
one positive LE in such an infinitely wide parameter
range. In a conclusion, map (1) has an infinite two-
dimensional parameter space [a, b], in which the sys-
tem can always maintain the chaotic state.

3 Dynamic behaviors

3.1 Strange attractors

Table 2 lists the LEs and corresponding system state of
the map (1) under several typical parameters settings,
with these settings, Fig. 3 shows the phase diagram of
the map (1). As can be seen, there is a big difference in
the attractors between different system states, even in
the same state, chaotic for example, the trajectory of the
map (1) also has great differences. When the map (1) is
in the non-degenerate hyperchaotic state, in particular,
its attractor becomes a cuboid with strong ergodicity.

3.2 Parameter-relied bifurcation behaviors

To investigate the effects of parameters on the bifur-
cation behavior and the LEs, fix the initial values as
(0.1, 0.1, 0.1). Figure 4 plots the bifurcation diagramof
the state variable xn and theLE spectrumwhen parame-
tera changes. It is clearly viewed that themap (1) shows
rich dynamic behaviors. Keep b=1 while gradually
increasing a from 0, the map (1) goes through a short
quasi-periodic window after a period-doubling bifur-
cation, and then enters a chaotic state; as a decreases
from 0, themap (1) undergoes transitions among quasi-
periodic, periodic, and chaotic states before finally sta-
bilizing into a chaotic state. Additionally, it can be
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Fig. 3 Phase diagram of attractors under different parame-
ters. a Period-2 attractor with discrete points. b Quasi-periodic
attractor with closed curves. c Chaotic attractor. d Symmetric
chaotic attractorwith twopieces. eHyperchaotic attractor. f Non-
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observed that the period and quasi-periodic region of
the map (1) increase significantly when b is reduced to
0.1. In this case, as a increases from0, themap (1) owns
the route to chaos in the way of period-doubling bifur-
cation and inverse period-doubling bifurcation; when
a decreases from 0, a wide range of period and quasi-
period, bifurcation fracture and other special phenom-
ena exist in themap (1). To sumup, themap (1) exhibits
complex dynamical behaviors which are highly depen-
dent on the parameters.

3.3 Antimonotonicity

In various nonlinear systems, when a parameter of
the system changes monotonically, the periodic orbits
generate and disappear by the inverse period-doubling

bifurcation, which is called antimonotonicity [26]. As a
fundamental phenomenon in the bifurcations of chaotic
systems, it has significant implications for experiments
on the fine structure of chaotic systems. Parlitz et al.
[27] first reported the antimonotonicity in the Duffing
oscillator. Reference [28] pointed out that antimono-
tonicity is a special property inChua’s circuit. Later, the
jerk circuit based on memristor also reported the anti-
monotonicity phenomenon [29]. In [30,31], antimono-
tonicity was observed in the logistic map and derived
maps from the logistic map. As a discrete system, the
map (1) has the property of antimonotonicity. Fix the
initial values as (0.1, 0.1, 0.1), and let parameter b take
different values. Figure 5 presents the bifurcation dia-
gram of the state variable xn with the change of the
parameter a, in Fig. 5a, a reverse period-doubling bifur-
cation occurred from period-2 to period-1 at b = 0.07,
generating a period-2 bubble; when b increases to 0.08,
a reverse period-doubling bifurcation from period-4 to
period-2, and from period-2 to period-1 occurred as
shown in Fig. 5b, and a period-4 bubble was gener-
ated in the original period-2 bubble; when b is further
increased to 0.09, a small chaotic window appeared
in the period-4 bubble as shown in Fig. 5c; when b
increases to 0.1, the map exhibits a reverse period-
doubling bifurcation from period-2 to period-1, and
from period-8 to period-4 as shown in Fig. 5d, simulta-
neously accompanied by the special bifurcation behav-
ior of bifurcation and fracture.

Hence, it can be concluded that map (1) has rich
dynamic behaviors with minor change in parame-
ters, these characteristics also make the application
prospect of the map (1) wider. Especially, the critical
state between ordered dynamics and chaotic dynamics
caused by period-doubling bifurcation makes the dis-
crete chaotic maps have potential application value in
reservoir calculation and other research fields [32,33].

3.4 Transient chaos

Innonlinear systems, during a certain transient time, the
system trajectory exhibits chaos in a certain region of
the phase space and ultimately falls into normalmotion,
this state transition phenomenon is called transient
chaos. For map (1), fixed initial values (0.1, 0.1, 0.1),
when parameters are set to a = 1.715, b = 1, the
first 8, 800 iteration points are hyperchaotic state, and
then turn to period state. The time series generated by
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Fig. 4 Bifurcation diagram of xn and the LEs spectrum. a b=1. b b=0.1

Fig. 5 Bifurcation diagrams of xn with varying a under different parameter b. a b=0.07. b b=0.08. c b=0.09. d b=0.1

Fig. 6 a The sequences diagram when a = 1.715, b = 1. b The phase diagram when a = 1.715, b = 1. c The sequence diagram when
a = 2.85, b = 0.5. d The phase diagram when a = 2.85, b = 0.5

the map (1) and its corresponding phase diagram are
shown in Fig. 6a, b. When the system parameters are
set to a = 2.85, b = 0.5, the time series generated
by the map (1) and its corresponding phase diagram
are shown in Fig. 6c, d. It can be seen that the system
presents an alternation of transient chaos and period
within the number of iterations n = (10, 000, 32, 000).
In summary, the map (1) demonstrates state transition
phenomena such as transient chaos and transient peri-
odicity. Moreover, the choice of iteration values allows

for the generation of multiple states, thereby signifi-
cantly increasing the complexity of map (1).

4 Multistability and offset boosting

4.1 Coexisting attractors

Multistability refers to the phenomenon that, when the
parameter of a nonlinear dynamic system is fixed, the
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Fig. 7 a Bifurcation diagramwhen a = −4.5, b = 0.1. bCoex-
isting periodic attractors, blue: (0.1, 0.1, 0.1), red: (−8, 0.1, 1).
c Bifurcation diagram when a = −8, b = 0.1. d Coexisting

periodic attractor and quasi-periodic curve, blue: (0.1, 0.1, 0.1),
red: (5.5, 0.1, 1). (Color figure online)

trajectory of the nonlinear dynamic system is changed
by changing the initial conditions of the state vari-
ables, resulting in different types of coexisting attrac-
tors. If the topological structure and spatial position of
the coexisting attractors show a completely symmet-
ric form, it is called symmetric coexisting attractors.
The map (1) constructed in this paper also has the mul-
tistability with the coexistence of multiple states. Fix
initial values y0 = z0 = 0.1. When the system param-
eters are set to a = −4.5, b = 0.1, the bifurcation
diagram of xn for varying x0 is shown in Fig. 7a, as
can be seen that with the change of x0, there are many
coexisting periodic states in the map (1), the coexist-
ing periodic phase diagram under two sets of initial
values (0.1, 0.1, 0.1) and (−8, 0.1, 0.1) is shown in
Fig. 7b.When the system parameters are set to a = −8,
b = 0.1, the bifurcation diagramof xn when x0 changes
is shown in Fig. 7c, the coexistence of periodic point
and quasi-periodic curve under two sets of initial values
(0.1, 0.1, 0.1) and (5.5, 0.1, 1) are shown in Fig. 7d.
When combined with some appropriate controls, this
initial dependent multistability can be used to induce
explicit switching between different coexisting states,
which provides great flexibility for many chaos-based
engineering applications.

4.2 Attractors periodic switching

Fix a = b = 1, set the initial values y0=0.3, z0=0.1,
the top half of Fig. 8a draws the bifurcation diagram
of xn with varying x0. As can be seen, the change in
the initial value x0 causes the state variable xn to peri-
odically change within a range of values with oppo-

site polarities. When x0 and y0 change, the attraction
basin of (1) is shown in the bottom half of Fig. 8a.
Different color regions in the figure represent differ-
ent types of attractors. Figure 8b plots the phase dia-
gram of coexisting attractors when the initial values are
(0.1, 3, 0.1) and (5.5, 3, 0.1), respectively. The color
of attractors corresponds to the color of different ini-
tial value regions in Fig. 8a. It can be seen that the
basin of attraction of (1) appears as the alternation of
two color regions, and the topological structure and
spatial position of the attractors corresponding to the
initial values in these two regions show a completely
symmetric form. When y0 is fixed, with the change of
x0, the map (1) presents a periodic switching of two
coexisting symmetric attractors, and the proportion of
the two attractors will change with the difference of y0
within a period of x0. Besides, when x0 is fixed, with
the gradual change of y0, the map (1) may maintain
one type of attractor without change, or maybe exhibit
periodic switching between two coexisting symmetric
attractors, which depends on the specific value of x0.
Interestingly, due to the symmetric structure of themap
(1), it also generates the symmetric coexisting attrac-
tors under two sets of initial values with completely
opposite polarity. When the initial values are taken
as (0.1, 3, 0.1) and (−0.1,−3,−0.1), respectively, the
corresponding phase diagram of attractors is shown in
Fig. 8c. As can be seen, the map (1) produces a pair of
attractors with the same symmetric structure about the
origin, whether it is a periodic change of a single ini-
tial value or two sets of initial values with completely
opposite polarity. Figure 9a, b, respectively, draw the
sequences generated by the map (1) under two sets of
initial values. As can be observed, when a single initial
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Fig. 8 a The bifurcation diagram of xn with varying x0 (top) and
the attraction basin of (1)with x0 and y0 change (bottom).bSym-
metric coexisting attractors under different initial values, blue:

(5.5, 3, 0.1), red: (0.1, 3, 0.1). c Symmetric coexisting attrac-
tors under different initial values, blue: (−0.1,−3,−0.1), red:
(0.1, 3, 0.1). (Color figure online)

Fig. 9 The time sequences of (1) under two sets of initial values. a blue: (0.1, 3, 0.1), red: (5.5, 3, 0.1). b blue: (0.1, 3, 0.1), red:
(−0.1,−3,−0.1). (Color figure online)

value changes, the corresponding time sequences of the
two symmetric attractors generated are different, while
when the polarity of the initial values is completely
opposite, the elements in the two time sequences gen-
erated by it are symmetric.

In addition, when fixing a = 1.5, b = 0.5 and the
initial values y0 = 3, z0 = 0.1, the top half of Fig. 10a
draws the bifurcation diagram of xn with varying x0, as
can be seen, changing the initial value x0 leads to peri-
odic changes in the state variable xn within a range of
values with opposite polarities. Furthermore, when x0
and y0 change, the attraction basin of (1) is depicted in
the bottom half of Fig. 10a. Figure 10b plots the phase
diagram of coexisting quasi-periodic curves when the
initial values are (0.1, 3, 0.1) and (5, 3, 0.1), respec-
tively. The color of the initial value area in Fig. 10a
corresponds to the color of the quasi-periodic curves.
It can also be observed from Fig. 10b that under the

quasi-periodic state, the system can generate two types
of quasi-periodic curves with the same topology and
symmetrical spatial position. Similar to the two chaotic
attractors in Fig. 8b, these two types of quasi-periodic
curves exhibit periodic switching or maintain one type
without changes as the parameter a varies.

Similarly, the map (1) can also generate symmet-
ric coexisting quasi-periodic curves under two sets of
initial values with completely opposite polarity. Fixing
the initial values (0.1, 3, 0.1) and (−0.1,−3,−0.1),
respectively, the phase diagram is shown in Fig. 10b.
Figure 11a, b, respectively, draw the sequences gen-
erated by the map (1) under those two sets of initial
values. The obtained results lead to the same conclu-
sion as before.

The above results and analysis indicate that map (1)
has complexmultistabilitywith the coexistence ofmul-
tiple states; in particular, its symmetric attractors and
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Fig. 10 a The bifurcation diagram of xn with varying x0 (top)
and the attraction basin of (1) with x0 and y0 change (bottom).
b Symmetric coexisting quasi-periodic curves under different
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Fig. 11 The time sequences of (1) under two sets of initial values. a blue: (0.1, 3, 0.1), red: (5, 3, 0.1). b blue: (0.1, 3, 0.1), red:
(−0.1,−3,−0.1). (Color figure online)

quasi-periodic curves can switch periodically with a
single parameter changing. This special property not
only greatly enhances the dynamic properties of the
map (1), but also brings new directions and possibili-
ties to the control research and engineering applications
based on the chaotic sequences.

4.3 Offset boosting

Offset boosting is a displacement phenomenon of
chaotic attractors. By changing the offset constant, the
spatial position of attractors can be changed, and the
topology of attractors before and after the displace-
ment is consistent, thus realizing the mutual conver-
sion between bipolar signals and unipolar signals, so
as to meet the demands of chaotic signals in different
application fields. In this paper, an offset constant p is

added to the map (1), which is used as a controller of
the attractor in the direction of xn . The map difference
equation after adding an offset constant is written as

⎧
⎪⎨

⎪⎩

xn+1 = sin(xn + p) + asinyn − p

yn+1 = sinyn + bzn

zn+1 = sinzn + xn + p

(15)

Fix initial value (0.1, 0.1, 0.1). When parameter
b = 1 andb = 20, Figs. 12a and 13a, respectively, draw
the bifurcation diagram of xn with varying parameter
a when p = −20, 0, 20, 40. As can be seen, the vari-
ety of p only changes the value range of state variable
xn , but does not change its bifurcation behavior. When
parameters a = −1.11, b = 1, and a = b = 20, the
attractors of (15) with p = −20, 0, 20, 40 are, respec-
tively, shown in Figs. 12b and 13b. We can see that
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Fig. 12 a Bifurcation diagram of xn . b The phase diagramwhen
p = −20 (green), 0 (blue), 20 (red), 40 (black). (Color figure
online)
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Fig. 13 a Bifurcation diagram of xn . b The phase diagramwhen
p = −20 (green), 0 (blue), 20 (red), 40 (black). (Color figure
online)

with the change of p, the motion track of the state vari-
able xn moves uniformly, thus achieving the purpose of
polarity conversion. Similarly, we can also realize the
polarity transformation of the trajectory in the direc-
tions of yn and zn .

5 Performance analysis and hardware
implementation

5.1 Performance of chaotic sequences

For the sequence generated by the map (1), this
section will evaluate its performance from the follow-
ing aspects: the LEmax , spectral entropy (SE) [34],
permutation entropy (PE) [35], correlation dimension
(CorDim) [36] and NIST test. SE is a method of mea-
suring structural complexity, which can be used tomea-
sure the complexity of time series generated by any
chaotic maps. Here, the SE algorithm represents the
complexity of a discrete map by measuring the prox-
imity between the sequence generated by (1) and the
random sequence. The larger the SE, themore complex

the sequence. PE is a method for detecting dynamic
mutations and the randomness of time series, which
can quantitatively evaluate the random noise contained
in signal sequences. The size of the arranged entropy
value represents the randomness of the sequence: the
smaller the entropy value, the simpler and more regu-
lar the sequence; on the contrary, the larger the entropy
value, themore complex and random the time sequence
is. CorDim is a fractal dimension that can measure the
dimension of the space occupied by a group of discrete
state points. It can be calculated by the Grassberger–
Procaccia algorithm [36]. The size of the CorDim value
is proportional to the complexity of the map. The larger
the CorDim value, the more prominent the dynamic
performance of sequences generated by the discrete
chaotic map.

Table 3 compares the dynamic performance of the
constructed map (1) with the existing classical chaotic
maps and the same dimensional chaotic maps in their
respective chaotic regions (all chaotic sequences are set
to a length of 105). These classic chaotic maps include
Hénon maps[37], Sine boostable map[5], enhanced
Hénon (E-Hénon)map[38], hiddenNFIamap [39], and
CFa map with curve fixed points (CFa)[40]. The same
dimensional map include four 3D memristor-based
maps that coupled the discrete memristor model with
the Hénon map (3D-MH), the Duffing map (3D-MD),
the Lozimap (3D-ML), and a 2D simplemap (3D-MS),
respectively[41]. Simulation experiments and statisti-
cal analysis have verified the satisfactory performance
of themap (1). One can see that themap (1) constructed
in this paper performswell on almost all four indicators,
indicating the chaotic sequence generated by the map
(1) has extremely high randomness and better unpre-
dictability.

5.2 SE complexity

To investigate the impact of changes in two parame-
ters on the complexity of the map (1), Fig. 14 plots
the SE complexity maps of the parameters a and b
within the range of (−4, 4) and (−50, 50). As can be
observed from Fig. 14a, the complexity of the map (1)
is at a low level when the absolute value of the param-
eters is small, as the absolute value of the parameters
gradually increases, the SE complexity also increases
and eventually stabilizing after reaching 0.95. In other
words, the SE complexity of the map (1) is propor-
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Table 3 Performance comparisons for chaotic sequences of some maps

Chaotic maps Parameters Initial value LEmax SE PE CorDim

Hénon map [37] (1.4,0.3) (0,0) 0.4208 0.9276 4.2083 0.9107

Sine map [5] (1.5,3.8) (−2,1) 0.5316 0.9347 4.6675 0.9235

E-Hénon map [38] (1,2) (0,0.1) 1.0816 0.9502 4.7763 0.9502

NFIa map [39] (−) (0.93,−0.44) 0.0623 0.3076 2.3320 1.0293

CFa map [40] (1.2,2) (0.27,0.28) 0.1344 0.8328 3.5319 0.4512

3D-MH [41] (0.3,0.1,0.7) (0.5,0.5,0.1) 0.1862 0.6963 4.2847 1.9397

3D-MD [41] (0.4,0.2,2) (0.5,0.5,0.1) 0.3174 0.8763 4.0571 1.7963

3D-ML [41] (0.3,0.1,1.8) (0.5,0.5,0.1) 0.2633 0.6149 3.7383 1.8110

3D-MS [41] (1.2,0.1,1.8) (0.5,0.5,0.1) 0.2548 0.7196 3.7017 1.7803

Map (1) (20,20) (0.1,0.1,0.1) 1.8348 0.9508 4.7857 1.9062

Fig. 14 a The SE complexity map on a, b ∈ [−4, 4]. b The SE
complexity map on a, b ∈ [−50, 50]

tional to the absolute value of the parameters. More-
over, with an ultra-wide and continuous parameters
range of higher complexity as shown in Fig. 14b, the
map (1) has great advantages in secure communication
and pseudo-random number generation.

5.3 NIST test

In order to test the randomness of the sequences gen-
erated by the map (1), this paper applies the National
Institute of Standards and Technology (NIST) SP800-
22 [42], which is a convincing comprehensive test
standard and includes 15 sub-tests. Each sub-test is
developed to find a group of non-random regions of
binary sequences from various aspects. A significant
level α in NIST SP800-22 is used to measure statis-
tical error. In our experiment, the default significance
level is selected as α=0.01. The length of each binary
sequence should not be less than 106, and the number

of binary sequences should be greater than the recipro-
cal of the significance level, which is set to 120 in our
experiment. Therefore, our experiment uses the map
(1) to generate a set of 120 binary sequences with a
length of 106, and tests the randomness of these binary
sequences throughNISTSP800-22. The test results can
be judged from two aspects: the pass rate (Proportion)
and P value. A P value greater than the significance
level α indicates passing the test. The pass rate is mea-
sured through a confidence interval, which is calculated
by

(

1 − α − 3

√
α(1 − α)

β
, 1 − α − 3

√
α(1 − α)

β

)

where α the significance level, β is the number of test
sequences. The confidence interval for this experiment
was calculated to be (0.9628,1.0173).

Table 4 lists the test results, and it can be seen that
the P values of all 15 tests are greater than 0.01, and the
pass rates of all tests are within the confidence interval,
which indicates that the sequence generated by themap
(1) can pass all 15 tests (for some test items with mul-
tiple test results, only the smallest P value test result is
listed in Table 4), and the sequences generated by the
map (1) have higher randomness.

5.4 DSP implementation

The design of the hardware circuit is the key to the
application of chaotic systems. Due to the multista-
bility of the map (1), which is closely related to the
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Table 4 NIST test results No. Test index P value Proportion

1 Frequency 0.383827 1.00

2 Block frequency 0.062821 0.97

3 Cumulative sums 0.657933 1.00

4 Runs 0.494392 0.98

5 Longest run 0.401199 0.99

6 Rank 0.699313 0.99

7 FFT 0.017912 0.99

8 Non-overlapping template 0.011791 1.00

9 Overlapping template 0.171867 1.00

10 Universal 0.474986 0.99

11 Approximate entropy 0.437274 0.99

12 Random excursions 0.023545 1.00

13 Random excursions variant 0.137282 1.00

14 Serial 0.834308 1.00

15 Linear complexity 0.779788 0.99

Fig. 15 DSP implementation: a Hardware diagram. b Chaotic
attractor. c Symmetric chaotic attractor. dHyperchaotic attractor

initial conditions, the stability and reliability of the
hardware platform are required in practical projects.
Besides, the discrete chaotic map can be naturally real-
ized by digital circuits. Therefore, this paper utilizes the

DSP hardware platform to implement the map (1). The
hardware diagram is shown in Fig. 15a. In our experi-
ment, we select a DSP hardware platformwith the CPU
TMS320F28335. We connect the simulator XDS100-
V1 to the computer and utilize a 32-bit 4-channel DAC
module with the chip of TLV5620 to output chaotic
signals. The strange attractors are observed through the
oscilloscope VOS-620B.

Fix initial value (0.1, 0.1, 0.1). When parameters
are set to a = 1.57 and b = 1, the chaotic attractor
generated by the map (1) is shown in Fig. 15b. When
a = −5.2 and b = 0.5, the symmetric chaotic attractor
of (1) is shown in Fig. 15c. When a = 40 and b = 30,
the hyperchaotic attractor of (1) is shown in Fig. 15d.
The results in Fig. 15 achieve the consistency between
theoretical simulation and hardware experiments, and
also successfully verify the physical realizability and
applicability of the map (1).

6 Conclusion

In this paper, we introduce a novel 3D non-degenerate
hyperchaotic map. By using the modified perturba-
tion method, we have proven that the map possesses
at least one positive LE within an infinitely wide
parameter range. The simulation results show that the
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map exhibits rich dynamic behaviors highly related to
the parameters, including an ultra-wide range of non-
degenerate hyperchaotic parameters, enhanced ergod-
icity, antimonotonicity, and transient chaos. Moreover,
the map exhibits various coexisting states, of particu-
lar significance is the phenomenon where symmetric
chaotic attractors and quasi-periodic curves periodi-
cally switch, further enhancing the multistability. Fur-
thermore,we have successfully achieved unidirectional
polarity transformation of attractors,which,when com-
bined with multistability, not only enhances the ampli-
tude control of the chaotic sequence but also improves
the performance of the new map in controlling and
applying chaotic sequences.

Subsequently, our investigation focus on evaluating
the effectiveness of the new map in generating random
sequences and the feasibility of its potential applica-
tions in the fields of secure communication. To com-
prehensively assess the chaotic sequences generated by
the map, we utilize multiple evaluation metrics, includ-
ing SE, PE, and NIST test, among others, and the com-
parison results undoubtedly confirmed the high ran-
domness and unpredictability of the generated chaotic
sequences. In pursuit of practical validation,we utilized
a DSP platform as our hardware experimental setup.
Visualizing chaotic attractors via an oscilloscope pro-
vided dual validation: confirming numerical simulation
results and highlighting the physical feasibility of the
newmap. Looking forward to future research,we antic-
ipate delving deeper into the characteristics of the map,
enabling broader applications, and making substantive
contributions to the development of related fields.
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