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Abstract This paper proposes a joint sparse least-

square model that utilizes a generalized fused lasso

penalty to jointly identify governing equations of

nonlinear dynamical systems frommultiple noisy state

measurements. The idea to combine a data fusion

approach with least squares is that the fusion term

added could make use of the more similarity infor-

mation carried by different state measurements, which

can further improve identified accuracy of dynamical

system in regression tasks. The threshold joint sparse

least-square algorithm is developed, wherein the

threshold parameter is picked using the L-curve

criterion. The results from the simulation experiment

demonstrate our method possesses a higher accuracy

in identifying dynamical system compared to tradi-

tional sparse least squares, indicating its potential

power to understand gradually more complex systems

from multiple data sources in the future.

Keywords Nonlinear system identification � Sparse
regression � Generalized fused lasso penalty �
Threshold joint sparse least-square algorithm

1 Introduction

Data-driven is an emerging and important study field

of engineering mathematics and mathematical physics

in identifying governing equations of dynamical

systems from noisy state measurements. Thanks to

the fact that the amount of digitally stored information

has explored over the past two decades, facilitating a

variety of innovations and growing intersection of

data-driven methods and applied optimization. The

purpose of this research is expected to discover the

structure that explains spatiotemporal activities of the

system, thereby further providing more comprehen-

sive information that can hopefully deepen under-

standing and analysis the structure and operating

mechanism of the system. Hence, it is significant and

meaningful to investigate how to learn more accurate

dynamical systems from abundant observational or

simulated time-series data and grasp their physical

behaviors and interpretability.

In recent years, many efforts have been made to

construct new models or explore computing methods

for identifying governing equations of the systems

from measured data [1, 2]. The early method of

building possible nonlinear chaotic systems from data

was discussed [3]. Advanced regression method from

statistics, such as sparse regression, is driving new

algorithms that identify parsimonious nonlinear

dynamical systems from measurements of complex

systems. While the expression of the dynamical
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system is unknown, a special method of approximat-

ing dynamical systems based on the overcomplete

functional space of state variables is studied, which

eliminates the expansion terms that have no contribu-

tion to the dynamics and attracts more and more

attention [4, 5]. The symbolic regression was used in

the past work to find equations of dynamical systems

directly from observational data [6–10] and also was

employed to predict and identify the dynamical

systems [11–13]. However, it may easily cause over-

fitting.

With the influx of a large number of experimental

data, regression and machine learning are becoming

important tools to discover dynamical systems from

data. The Least Absolute Shrinkage and Selection

Operator (LASSO) algorithm was proposed to allevi-

ate the influence of noise when identifying nonlinear

dynamical systems from observational experimental

data [14]. Based on minimum coefficient error of the

polynomial basis expansion,Wang et al. [15] proposed

the compressed sensing to discover the nonlinear

dynamical system. Brunton et al. [16] proposed a

sparse identification of nonlinear dynamics (SINDy)

method that employs the Sequentially Thresholded

Least Squares (STLS) algorithm to learn governing

equations from the overcomplete candidate basis

function. The SINDy was extended to identify the

system including input and control [17] and was also

extended to identify the dynamical system with

rational function nonlinearity [18], integral terms

[19], and highly damaged and incomplete data [20].

The SINDy method was also used to include partial

derivatives, making it possible to identify partial

differential equation [21, 22]. Most methods of system

identification involve in the form of regression from

data to dynamics, and the difference between different

technologies is the limitation of this regression.

In all the above methods, a common assumption is

that the data are collected from a measurement source

or a simulation experiment, and all the data here are

discrete points obtained by discretizing the system in

time or space. However, in practical dynamical system

studies, obtaining data from some complex systems

needs to consume a lot of manpower and financial

resources, and at the same time, higher accuracy is

required for system identification problems. There-

fore, it is very necessary to make full use of all the

information collected in as many ways as possible, and

the information usually has prominent similarities that

are generally ignored. Separate estimates will lack

power that uses important shared patterns due to the

limited size of each individual data source, but simply

merging datasets together may suffer from large

errors. Thus, we use the similarity information to

improve the performance of dynamical system iden-

tification through joint analysis of multiple datasets.

The fused lasso penalty is chosen because it has been

successfully applied to jointly estimate multiple

graphical models to discover differential dependency

networks [23–25]. To the best of the authors’ knowl-

edge, it is an unexplored topic to apply it to

identification task of nonlinear dynamical systems

from multiple measurement datasets for achieving

sparsity and more accurate estimates simultaneously.

Hence, there has been a growing interest in fully

mining the information of multiple datasets to fill this

gap.

Motivated by this, we propose a novel joint sparse

least-square model via generalized fused lasso penalty

(JSLSGF) to jointly identify multiple sparse least

squares models corresponding to different data

sources. As illustrated in Fig. 1 with data from L

measurement sources, the main idea is to explore the

similarity of multiple sources, thereby improving the

identification accuracy of the system. In this way, the

generalized fused lasso penalty is imposed on the

coefficient values of the basis function, in which the

l1 - norm penalty of the system coefficients for each

set of data encourages the sparsity for each individual

coefficient vector that takes advantage of the sparsity

prior property of system identification, and the

l1 - norm penalty of the difference between the system

coefficients presented by every two datasets stimulates

them to share the similar physical mechanism, which

utilizes the similarity among different measurements.

Inspired by the optimization framework [26], we here
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design an effective two-step algorithm to solve this

optimization problem and develop a selected criterion

of the threshold parameter in the first step of the

algorithm according to the L-curve criterion. Using

multiple simulated test datasets and taking the com-

prehensive comparison, we demonstrate the effective-

ness of the proposed method in identifying nonlinear

dynamical systems from multiple measurements.

The rest of the paper is arranged as follows: In

Section 2, as preliminary, the background of identifying

dynamical systems from state measurements by sparse

regression techniques is introduced. In Sect. 3, the

JSLSGF model and threshold joint sparse least-square

algorithm are proposed, and the selection of the

threshold parameter and the calculation of time deriva-

tives of state variables are discussed. In Sect. 4, three

numerical experiments are presented to illustrate that

our method often results in improved accuracy com-

pared with separate analysis on each data source for

system identification. Section 5 concludes this paper.

2 Problem and background

Dynamical systems provide physical insight and

interpretability into a system’s behavior through

trajectories and solutions obtained from the governing

equations of motion. In most regression problems,

only a few terms are important, and thus, the feature

selection mechanism is required. Considering the

dynamical system [27]

_xðtÞ ¼ dxðtÞ
dt

¼ f ðxðtÞÞ; xð0Þ ¼ x0: ð1Þ

The (known or measurable) state variable xðtÞ and
derivative _xðtÞ denote the evolution of the system on

discrete time points t1; t1; . . .; tm , and m is the number

of samples, the function f ðxðtÞÞ constrains dynamics

that describe the motion of the systems. Our goal is to

seek a parsimonious system that f ðxðtÞÞ includes only
a few active terms, meaning that it is sparsely

expressed in candidate basis function.

Fig. 1 Comparison of the separate sparse least squares and joint sparse least squares
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We review the SINDy that is used as a sparse

regression problem. The expanded library of candidate

p functions UðxÞ ¼ ½/1ðxÞ � � �/pðxÞ� 2 Rp is built,

wherein each /iðxÞ; i ¼ 1; . . .; p is a candidate func-

tion term. The select and use of the basis function

usually reflect some knowledge of the system of

interest, gathering such information often requires a

certain domain knowledge. The common choice of the

basis function is constant, polynomial, and trigono-

metric; we select polynomials as basis function

because the Taylor expansion of complex nonlinear

systems is usually polynomial. The basis function is

used to establish an overdetermined linear system that

can be written as:

_xðtÞ ¼ UðxÞn; ð2Þ

where the unknown vector n is estimated sparse

coefficient values of the basis function that decide

which terms work in f ðxðtÞÞ.
Equation (2) does not actually hold because there is

always noise in practical applications. Instead, calcu-

lating the coefficient vector n that satisfies the least-

square constraint

UðxÞn� _xk k2 � d; ð3Þ

where d� 0 is a tolerance parameter to avoid over-

fitting. To solve Eq. (3) and obtain a sparse solution,

one usually relaxes the l0 - norm via convex l1 - norm

penalty

min
n

nk k1 s:t: UðxÞn� _xk k2 � d: ð4Þ

The unconstrained expression is given by:

argmin
n

1

2
UðxÞn� _xk k22þk nk k1; ð5Þ

where k is a nonnegative parameter that balances the

trade-off between fitting error and sparsity.

Enabled by unprecedented availability of data and

computational resources, datasets from multiple mea-

surement sources can be collected using different

devices or collection ways, and those datasets have the

prominent similarity that is usually neglected, even

though it is helpful to enhance the system identifica-

tion performance.

3 Joint sparse least squares via generalized fused

lasso penalty approach

3.1 Generalized model

To make full use of the similarity information among

multiple noisy state measurements and their deriva-

tives to boost the accuracy and robustness of SINDy

for dynamical system identification, we add an

additional generalized fused lasso penalty to the

sparse least-square model. The generalized fused

lasso penalty encourages two sparse vectors to share

a similar system mechanism, which is crucial to

achieve the fusion of solutions. As described in the

introduction and shown in Fig. 1, we assume that L

state measurements are collected and propose the joint

sparse least squares via generalized fused lasso

penalty (JSLSGF) model as

argmin
½n1;...;nL�

XL

l¼1

1

2
UðxÞnl � _xlk k22 þ

XL

l¼1

k nlk k1

þ
X

l\l0
b nl � nl0k k1; ð6Þ

where ½n1; . . .; nL� 2 Rp�L are L sparse coefficient

vectors of the system, and each sparse column vector

corresponds to the basis function coefficient values of

each data resource and determines which terms are

contributing in the candidate basis function, k and b
are nonnegative parameters. Note that the penalty

terms (the second and third terms) of the object

function (6) are convex, so the object function (6) is

convex with respect to n. Our approach is inspired by

the work [28], wherein the generalized fused lasso has

been shown to outperform the standard l1 - norm in

promoting sparsity and accuracy from varied data

sources. The l1 - norm on every nl, controlled by k,
encourages the sparsity for individual identified coef-

ficient vector. The l1 - norm penalty on the differences

between every two coefficient vectors from different

data resources encourage them to share a similar

physical mechanism, which applies the similarity

among different measurements. The parameter b plays
a vital role to adjust the degree of fusion. It is not fused

across multiple sparse vectors when b ¼ 0. The object
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function (6) is achieved only when all the sparse

vectors are identical to each other with b ¼ 1.

Especially for L ¼ 1, the proposed model reduces to

traditional sparse least squares.

3.2 The proposed optimization algorithm

To solve the JSLSGF model that is a special fused

lasso signal approximation [29], the two-step (sparsi-

fication and fusion) approach is an efficient algorithm

and available as in [23, 26].

In the sparsification step, the preliminary sparse

vector is computed by setting b ¼ 0 and writing

argmin
½n1;...;nL�

XL

l¼1

1

2
UlðxÞnl � _xlk k22 þ

XL

l¼1

k nlk k1: ð7Þ

Considering that the convergence of the sequential

thresholded least-square (STLS) algorithm used in

SINDy had been guaranteed [26], we utilize the STLS

algorithm to improve the numerical robustness of the

system identification in calculation process. Comput-

ing the derivative of
PL

l¼1
1
2

UlðxÞnl � _xlk k22 with

respect to nl, we enjoy

UT
l ðxÞðUlðxÞnl � _xlÞ ¼ 0; l ¼ 1; . . .; L; ð8Þ

and have the preliminary solution

nl ¼ ðUT
l ðxÞUlðxÞÞ�1UT

l ðxÞ _xl; l ¼ 1; . . .; L: ð9Þ

Introducing the discriminant criteria

M ¼ j : nlj
�� ��� a� max

1� i� p
nlij j

� �
; j ¼ 1; . . .; p;

ð10Þ

where the threshold parameter a 2 ð0; 1Þ. Its selection
is very challenging and difficult because the content of

nl is unknown and mainly depends on the candidate

basis function. To alleviate this problem, we adopt L-

curve criterion to guide the selection of the tuning

threshold parameter a, yielding a much less sensitive

calculation process. Then, the preliminary sparse

solution is achieved.

In the fusion step, setting k ¼ 0, the object function

(6) can be rewritten as:

argmin
½n1;...;nL�

XL

l¼1

1

2
UM

l ðxÞn
M
l � _xl

�� ��2
2
þ
X

l\l0
b nMl � nMl0
�� ��

1
;

ð11Þ

where UM
l ðxÞ is the updated matrix composed of the

columns of the matrix UlðxÞ, the position of the

columns depends on the row of the nonzero terms in

the derived sparse vector nl from the sparsification

step. nMl is the vector of all the nonzero terms in nl, the
items that are set to zeros not considered in the

subsequent iteration process, which greatly reduces

the computational complexity. This step fuses the

terms in the sparse vectors that do not have significant

difference (dependent on b). We say that the j - th

polynomial term in UlðxÞ and Ul0 ðxÞ is fused between

the l-th and l0-th data sources if nlj ¼ nl0j.
After the above two-step iterations, until the

absolute value of the difference between the sparse

vectors for the next iteration and the previous iteration

reaches a minimum.

To assess the quality of the solution obtained by

STLS and JSLSGF, the arithmetic mean vector n of L

sparse solution vectors is introduced as the final

solution. The relative error of the solution is reported

as:

en ¼
n� n

�� ��
2

nk k2
; ð12Þ

where n and n are the approximate and exact solution

vectors of each state variable, respectively. The

iteration will terminate when the error of the solution

vector satisfies n
wþ1 � n

w
���

���
2

2
� e0 ðe0 ¼ 10�10Þ. We

summarize the pseudo-code of the proposed threshold

joint sparse least-square algorithm as below.
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Algorithm 1 The threshold joint sparse least-square algorithm

3.3 Parameter selection

There are three tuning parameters k, a and b in joint

sparse least-square model. The parameter k plays an

unimportant role and will not work on the continuous

operation of the algorithm, since we adopt the

threshold algorithm in the sparsification step and the

l1 - norm penalty sparse regression problem does not

rely on it theoretically. Therefore, the remaining two

parameters a and b need to be adjusted. The former

controls the number of selected polynomial terms

from candidate basis function. The latter determines

how similar the derived coefficient values of the

selected polynomial terms are. In this work, we utilize

a two-step parameter selection method.

In the sparsification step, we note that the model

complexity (defined by the number of nonzero coef-

ficients in sparse solution vectors) reduces and the

model accuracy (residual norm) increases as the

increase of the threshold parameter a, and thus, the

results may lose fidelity. In contrast, for a small a, the

model accuracy will be very small, leading to an over-

fitting solution in practice. Therefore, a proper a
should be based on the trade-off between data fidelity

and solution sparsity, making both norms small

simultaneously. The Pareto method has been shown

to outperform cross-validation for sparse approxima-

tion [30]. Motivated by the previous study [31], we

employ the linear scale instead of log–log to show the

solution. The curves of the residual norm and solution

norm with change of the threshold parameter a are

used to determine the optimal a according to the L-

curve criterion, wherein we utilize one state measure-

ment (L ¼ 1) and its derivative and set b ¼ 0. This

process will be represented in the following numerical

examples.

In the fusion step, the joint sparse least-square

algorithm is fitted with fixed a from the sparsification

step and a candidate set b. It is extremely time-

consuming by blind grid search. We employ some

tricks to accelerate the tuning procedure. The major

difference between the traditional sparse least squares
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and joint sparse least squares is the last penalty term.

On the one hand, JSLSGF will reduce to STLS when b

is too small, i.e., b\minj ðUM
l ðxÞÞ

T _xl
�� ��. On the other

hand, JSLSGF will over-fuse the result if b is very

large, i.e., b[ maxj ðUM
l ðxÞÞ

T _xl
�� ��, which implies all

the sparse vectors are identical to each other. Thus, it is

reasonable that the parameter range that is neither too

large nor too small is used in the simulation experi-

ment. We will conduct a series of experiments to

display the identification performance of the system

coefficients with proper b.

3.4 Numerical computation of state time

derivatives

In many practical applications, the state trajectory x

can be available, and its derivative _x can be usually

obtained by the finite difference method for ordinary

differential equations (ODEs). To mitigate the error

caused by differentiation, we employ the total varia-

tion regularization method [32] to compute the

derivative of the ODEs, which can de-noise the

derivative, and retain more edge information as well

as estimate more robust derivative [33].

4 Numerical examples

In the simulation study, to evaluate the performance of the

proposed model, we mainly tend to investigate the

potential power whether joint sparse least squares by

generalized fused lasso penalty can boost the performance

of STLS from our motivation or not. Therefore, it is

reasonable touseSTLSasbenchmark for comparison.For

STLS, we estimate the coefficient values of the system

individually on each state measurement of every case and

then compute their arithmeticmean as the final coefficient

values, which is named as STLS (Separate) that is the

separate sparse least squares in Fig. 1. The other refers to

STLS (Combined), which identifies coefficient values of

the system when all state measurements with different

noise levels are combined into one data set.

We exhibit three specific numerical examples to

explore the validity and serviceability of JSLSGF for

identifying dynamical system. To study the perfor-

mance of the proposed method in different scenarios,

several cases are conducted to estimate the effect of

the fusion for every example. We simulate two

datasets (L ¼ 2) with different noise levels as every

experimental case in this work to see the effect of the

proposed model on identification performance. Sup-

posing that we have no prior knowledge of the

governing equation that generates the data, excepting

that they can be sparsely expressed by a multivariate

polynomial basis of the state variable with the known

dimension. The exact state variables (numerical

solution) of ODEs are computed by the fourth-order

Runge–Kutta method under the tolerance 10�12, and

each Dt time unit at discrete time tk ¼ kDt ðDt ¼
0:001Þ is sampled. The number of simulated samples

is considered to catch the fundamental behavior of

every dynamical system. The independent zero mean

Gaussian white noise with different variance r2 is

contaminated to the exact state variables to obtain the

state measurements of different noise levels, which is

used to test the robustness of the proposed model. The

noisy formula

x�vðtkÞ ¼ xvðtkÞ þ gvðtkÞ; ð13Þ

where x�vðtkÞ; v ¼ 1; . . .; n and xvðtkÞ; v ¼ 1; . . .; n are

the corrupted and exact state variables at times

tk; k ¼ 1; . . .;m, respectively, and v is the state

variable as well as gvðtkÞ	Nð0; rÞ. We approximate

two ODEs by using the multivariate monomial basis

function library UðxÞ to form candidate nonlinear

function [16], where the total degree of the basis is one

more than the highest degree in the governing

equation.

To alleviate the error of the numerical differenti-

ation, mentioned in Sect. 3.4, may yield wrong results

close to the function boundary, and that the time

derivatives of the state are unknown at the end of the

training time, we therefore compute the time deriva-

tives of the state within a time interval (from both

sides) 5% larger than the required time range for

experiment, but merely utilize the state measurement

and estimated time derivative within the original

required time to calculate solution vector. To evaluate

the quality of the derivative, we define the relative

error

e _x ¼
_x� � _xk k2

_xk k2
; ð14Þ

where _x� and _x denote the computed and true state

derivative values, respectively. To ensure the fairness

of the comparison of numerical experimental results,
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we separately calculate the derivative of each noisy

state measurement with different noise levels, so that

the used data are same when STLS (Separate and

Combined) and our proposed method are executed.

The nonlinear dynamical systems considered are as

follows: the Lorenz 63 system as a model to identify

chaotic dynamics, the Duffing oscillator as nonlinear

stiffness and damping model and Burgers’ equation as

a partial differential equation. In the next section, we

will explore how the proposed model can further

improve the dynamical system identification perfor-

mance by using the similarity information of two state

measurement sources.

4.1 Lorenz 63 system

We consider a well-known nonlinear chaotic Lorenz

system [34] that was developed when Lorenz studied

atmospheric motion by simplifying the convection

model. Its state trajectories are chaotic, aperiodic and

confined to a butterfly shaped attractor. The governing

equation of Lorenz system is:

_x ¼ bðy� xÞ;
_y ¼ xðq� zÞ � y;
_z ¼ xy� lz;

8
<

: ð15Þ

where the coefficient values are b ¼ 10, q ¼ 28,

l ¼ 8=3, and the initial value is ðx0; y0; z0Þ ¼
ð�8; 7; 27Þ. The highest order of the state variables

is square on the right-hand side of Eq. (15), and the

basis function UðxÞ ¼ 1 x y z x2 xy xz y2 yz z2 x3½
x2y x2z xy2 xyz xz2 y3 y2z yz2 z3� is constructed.

The state trajectories of the Lorenz system for each

state measurement were obtained from t ¼ 0:001 to

t ¼ 2:2 with Dt ¼ 0:001, yielding m ¼ 2200 samples,

and we disturb them with different noise levels r.
Truncating the discrete state trajectory and calculating

state measurement derivative by the total variation

regularized numerical differentiation, and then gener-

ating 2000 samples from t ¼ 0:1 to t ¼ 2:1. We show

in Table 1 the relative errors of state derivatives for

each state measurement with different noise levels.

Observe that the error of derivative is fast increasing

around r ¼ 10�2, and the error of derivative is quite

large when r ¼ 100. After conducting a lot of

simulation experiments, we found that the Lorenz

systems identified by all methods failed seriously,

while the noise level is r ¼ 100. Therefore, it is

thrown, we give the combination (L ¼ 2) of the state

measurement with different noise levels in Table 2 for

every case, which means that there are 4000 samples

for each simulation case. The first two cases with

different noise levels, and the difference between them

is relatively large. The difference of the noisy levels in

the latter two cases is small. The purpose of this setup

is to explore the effect and impact of fusion on data

with different gap noisy levels.

We take the state measurement and its derivative

with noise level r ¼ 10�1 in Case 1 and implement L-

curve criterion as an example to investigate how the

threshold parameter a impacts the accuracy of the

result as well as how to select the proper a. The object
function (7) is computed for three state variables with

an increment Da ¼ 0:0001 ranging 0:0001� 1, and

the residual norm and solution norm are calculated,

Table 1 The relative errors of the Lorenz system state derivatives at different noise levels

Noise levels r ¼ 10�3 r ¼ 10�2 r ¼ 2� 10�2 r ¼ 10�1 r ¼ 2� 10�1 r ¼ 100

e _x 5:2276� 10�4 4:8� 10�3 10:5� 10�3 1:75� 10�2 3:67� 10�2 1:468� 10�1

e _y 4:1811� 10�4 3:2� 10�3 6:6� 10�3 1:33� 10�2 2:57� 10�2 1:321� 10�1

e _z 3:0761� 10�4 2:7� 10�3 5:2� 10�3 1:14� 10�2 1:99� 10�2 1:187� 10�1

Table 2 Cases consisting of the Lorenz system state with different noise levels

Cases Case 1 Case 2 Case 3 Case 4

Noise levels r ¼ 10�3 r ¼ 10�2 r ¼ 10�2 r ¼ 10�1

r ¼ 10�1 r ¼ 10�1 r ¼ 2� 10�2 r ¼ 2� 10�1
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respectively. We explain in Fig. 2 the resulting curves

versus different a. As mentioned previously, the

residual norm increases and solution norm decreases

as a increases. According to the L-curve criterion and

the results obtained with different a in the sparsifica-

tion step, for the variables x, y and z, we can observe in

Fig. 2a–c that 0:0016� a� 0:0376, 0:002� a� 0:01

83 and 0:0375� a� 0:3492 are the approximate

parameter value ranges, respectively, meaning that

there exist a wide range of a values that produce

similar and even same solutions.

Here we empirically analyze the convergence

behavior of the algorithm 1 by showing the changes

of the absolute sum of the obtained solution vector

versus iteration numbers in Fig. 3 for Case 1, clearly

indicating that the absolute sum of the solution vector

decreases during iterations and finally converges to a

constant value.

To probe and compare whether the fusion item in

the proposed method has effect on the identification of

system coefficients, we conduct JSLSGF in the

presence of the Case 1. The trajectories of exact and

learned system up to time-stamp t ¼ 10 with three

state variables in Fig. 4 are drawn for comparisons in

the prediction performance of the identified Lorenz

system. Note that the predicted trajectories agree with

the exact ones from t ¼ 0 to more than t ¼ 5.

Moreover, in Fig. 5, the short time prediction from

t ¼ 0 to t ¼ 3 (dashed red line) and long-time exact

trajectory from t ¼ 0 to t ¼ 16 (solid blue line) show

that the predicted trajectory is consistent with the

exact trajectory in a long-time period even the Lorenz

system is chaotic.

Fig. 2 The L-curve for each state of the Lorenz system. a State x, b state y and c state z at noise level r ¼ 10�1
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The ability to obtain attractor dynamics of the

Lorenz system is more essential than to predict the

state trajectory because chaos can cause the system to

diverge exponentially while small fluctuations occur

in the initial condition or system coefficient values.

Since the identified Lorenz system coefficient values

of most terms in the basis function are zeros, we only

list in Table 3 the nonzero coefficient values of the

results obtained from STLS (Separate and Combined)

and JSLSGF at different cases, and the optimal values

are shown in boldface.

For the first three cases, we detect that JSLSGF not

only recognizes the correct basis function terms, but

also the identified coefficient values are closer to the

real values. However, under the condition of ensuring

that all the terms involved in Lorenz system com-

pletely appear in the sparse solution vectors, meaning

that the corresponding entries in the sparse vectors are

nonzero and the error of the solutions is minimized

Fig. 3 Convergence curves of our method on a the state x, b the state y and c the state z for Case 1

Fig. 4 Comparison of

predicted state trajectories

of a the xðtÞ, b the yðtÞ and c
the zðtÞ of Lorenz system for

Case 1
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simultaneously for Case 4 in Table 2. After conducting

many experiments, we derive the identified systems

and compute the root-mean-square error (RMSE) of

the coefficient values for the identified and true

systems as

STLS Separateð Þ :
_x ¼ �9:9766xþ 9:976y;

_y ¼ 27:6966x� 0:9117y� 0:993xz;

_z ¼ �2:6649zþ 0:999xy;

8
><

>:

with RMSESTLSðSeparateÞ ¼ 0:1201;

STLS Combinedð Þ :
_x¼�9:9766xþ9:976y;

_y¼27:648x�0:8939y�0:9922xzþ0:1205;

_z¼�2:6649zþ0:999xy;

8
><

>:

with RMSESTLSðCombinedÞ ¼ 0:1468;

and JSLSGF :
_x ¼ �9:9766xþ 9:976y;
_y ¼ 27:7046x� 0:914y� 0:9932xz;
_z ¼ �2:6649zþ 0:999xy;

8
<

:

with RMSEJSLSGF ¼ 0:117:

Based on the above discussion and representation,

in most cases, JSLSGF identifies items inherent to the

Table 3 The sparse

solutions obtained from

STLS and JSLSGF for the

Lorenz system at different

cases that are composed of

the state measurement

polluted by different noise

levels

n Basis True Methods Case 1 Case 2 Case 3

n1 x - 10 STLS (Separate) - 9.9947 - 9.9918 - 9.9986

STLS (Combined) - 9.9947 - 9.9918 - 9.9986

JSLSGF - 9.9961 - 9.9928 - 9.9994

y 10 STLS (Separate) 9.9914 9.9865 9.9956

STLS (Combined) 9.9913 9.9864 9.9956

JSLSGF 9.9918 9.9872 9.9967

n2 x 28 STLS (Separate) 27.9114 27.8786 27.955

STLS (Combined) 27.9112 27.8785 27.955

JSLSGF 27.918 27.8785 27.955

y - 1 STLS (Separate) - 0.976 - 0.971 - 0.9916

STLS (Combined) - 0.9759 - 0.9709 - 0.9916

JSLSGF - 0.9787 - 0.971 - 0.9916

xz - 1 STLS (Separate) - 0.9978 - 0.9968 - 0.9988

STLS (Combined) - 0.9978 - 0.9968 - 0.9988

JSLSGF - 0.9979 - 0.9968 - 0.9988

n3 z - 8/3 STLS (Separate) - 2.6664 - 2.6659 - 2.6658

STLS (Combined) - 2.6665 - 2.6659 - 2.6658

JSLSGF - 2.6665 - 2.6661 - 2.6659

xy 1 STLS (Separate) 0.9998 0.9994 0.9996

STLS (Combined) 0.9998 0.9994 0.9996

JSLSGF 0.9998 0.9995 0.9996

Fig. 5 Exact and identified state trajectories of the Lorenz

system for Case 1
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system from the two datasets, that is, the similarity

information of the datasets is mined. For different state

measurements, with a small noisy difference between

the latter two kinds of cases, the fusion plays a

relatively small role. The underlying reason for this

condition could be that the difference of measurement

data is smaller when the difference of noise level is

small. However, for all cases, we obtain that JSLSGF

has an essential advantage than STLS, and the STLS

(Combined) performs even worse than STLS (Sepa-

rate), especially for Case 4, the identified system via

STLS (Combined) introduces an extra constant term

0:1205. These results demonstrate that JSLSGF with

the proper fusion could hold the best combination of

multiple state measurements to increase the identifi-

cation accuracy.

4.2 Duffing oscillator

As the second example, the classical Duffing oscillator

describes forced vibration and presents cubic nonlin-

earity and chaotic behavior. The motion equation of

the unforced Duffing oscillator is:

€xþ b _xþ qxþ lx3 ¼ 0; ð16Þ

which can be rewritten into the first-order system of

two variables by setting _x ¼ y, we have

_x ¼ y;

_y ¼ �by� qx� lx3;

(
ð17Þ

where b ¼ 0:1, q ¼ 1 and l ¼ 5, and the initial

condition is ðx0; y0Þ ¼ ð1; 0Þ. The Duffing oscillator

does not show chaotic behaviors for these values. The

highest order on the state variables of (17) is cube; we

establish the basis function UðxÞ ¼ 1 x y x2 xy½
y2 x3 x2y xy2 y3 x4 x3y x2y2 xy3 y4�. The system, in

fact, only is expressed by four terms of them. Like

the Lorenz system, the number of samples is 2200 for

every state measurement with different noise levels r
in each case, ranging from t ¼ 0:001 to t ¼ 2:2 with

Dt ¼ 0:001. The derivatives of the noisy state mea-

surements are calculated by the total variation regu-

larized numerical differentiation. We truncate the

noisy state measurements and compute derivatives,

gaining 2000 samples ranging from t ¼ 0:1 to t ¼ 2:1.

The relative errors of state derivatives for each state

measurement with different noise levels are given in

Table 4. We found that the error of derivative is

quickly increasing around r ¼ 10�3, and the error is

large at r¼10�2. After conducting numerous simula-

tion experiments, we discover that all methods fail to

recover the equations at the noise level r ¼ 10�2.

Therefore, we give the combination (L ¼ 2) of the

state measurement with different noise levels in

Table 5 for each case without including r ¼ 10�2,

signifying that 4000 samples are contained in each

case. The noise level in the first two cases is quite

different. The difference of noise level in the latter two

cases is small.

We adopt the state measurement and its derivative

with noise level r¼10�3 as input. For two state

variables in the range 0:0001� 1 with Da ¼ 0:0001,

we illustrate in Fig. 6 the resulting curves versus

different a. Based on the L-curve criterion, for the

Table 4 The relative errors of the Duffing oscillator state derivatives at different noise levels

r r ¼ 10�5 r ¼ 10�4 r ¼ 2� 10�4 r ¼ 10�3 r ¼ 1:5� 10�3 r ¼ 10�2

e _x 1:5263� 10�4 6:2234� 10�4 1:3� 10�3 7:4� 10�3 9:9� 10�3 3:21� 10�2

e _y 1:8614� 10�4 7:0878� 10�4 1:5� 10�3 3:1� 10�3 4:5� 10�3 2:11� 10�2

Table 5 Cases consisting of the Duffing oscillator state with different noise levels

Cases Case 1 Case 2 Case 3 Case 4

Noise levels r ¼ 10�5 r ¼ 10�4 r ¼ 10�4 r ¼ 10�3

r ¼ 10�3 r ¼ 10�3 r ¼ 2� 10�4 r ¼ 1:5� 10�3
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variables x and y, we acquire in Fig. 6a, b that

0:0024� a� 0:1613 and 0:0106� a� 0:02 are the

optimal parameter value ranges, respectively, imply-

ing that there is a large range of awill generate similar

and even identical solutions.

We now investigate the convergence behavior of

the algorithm 1. As we can observe from Fig. 7, our

proposed optimization algorithm has a good conver-

gence because it basically converges after five

iterations.

To probe and compare whether the additional

fusion item in the proposed method has effect on the

system identification, we conduct JSLSGF in the

presence of the Case 1. The trajectories of exact and

learned systems up to time-stamp t ¼ 16 with two

state variables are drawn in Fig. 8a, b. Note that the

predicted trajectories agree with the exact ones for a

long time. Moreover, in Fig. 8c, the prediction from

t ¼ 0 to t ¼ 20 (dashed red line) and exact trajectory

from t ¼ 0 to t ¼ 50 (solid blue line) describe that the

exact and learned trajectories agree in a relatively

long-time period.

We show the results of STLS and JSLSGF on

simulated data for every case in Table 6 and just give

in Table 6 the approximate coefficient values of the

nonzero terms that we derived by using methods STLS

and JSLSGF, wherein the best values are highlighted

by the boldface.

As expected, in all cases, three methods pick out the

correct terms that describe the Duffing oscillator. The

estimated values of the proposed JSLSGF are basically

consistent with that of the true coefficient values,

Fig. 6 The L-curves for each state of the Duffing oscillator. a State x and b state y at noise level r ¼ 10�3

Fig. 7 Convergence curves of our method on a the state x and b the state y for Case 1
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meaning that JSLSGF performs better than competing

methods STLS (Separate) and STLS (Combined) in

identifying coefficient values of the system. All results

indicate that JSLSGF could effectively use more

information from multiple state measurements and

achieve superior performance in identification accu-

racy of the dynamical system.

4.3 Burgers’ equation

Many systems of interest are governed by partial

differential equations (PDEs) [35]. Here we generalize

our proposed method to the PDEs and only consider

using combinations of monomials to express state

variables and partial derivatives of the PDEs in this

work, since these are the common terms in physics.

The general form of the PDEs is:

ut ¼ Nð1; u; ux; uxx; . . .; nÞ; t 2 ½0; T �; ð18Þ

where the subscripts denote the partial differentiation

with respect to time or space, and Nð
Þ describes the
evolution of the system that is generally a nonlinear

function of uðx; tÞ and coefficients in n. As a classic

example, the Burgers’ equation is derived from the

Navier–Stokes equations for the velocity field. The

Burgers’ equation is given as:

ut ¼ buux þ quxx; ð19Þ

Fig. 8 Comparison of predicted state trajectories of a the xðtÞ and b the yðtÞ of Duffing oscillator for Case 1. c Exact and identified

trajectories of Duffing oscillator for Case 1

Table 6 The sparse

solutions obtained from

STLS and JSLSGF for the

Duffing oscillator at

different cases composed of

the state measurement

polluted by different noise

levels

n Basis True Methods Case 1 Case 2 Case 3 Case 4

n1 y 1 STLS (Separate) 1.00005 1.00005 1 1.0002

STLS (Combined) 1 1 1 1.0002

JSLSGF 1 1 1 1.0002

n2 x - 1 STLS (Separate) - 1.00025 - 1.00025 - 1.0001 - 1.00085

STLS (Combined) - 1.0002 - 1.0003 - 1.0001 - 1.0008

JSLSGF - 0.9999 - 1 - 1.0001 - 1.0002

y - 0.1 STLS (Separate) - 0.10005 - 0.10005 - 0.1 - 0.1

STLS (Combined) - 0.1 - 0.1 - 0.1 - 0.1

JSLSGF - 0.1 - 0.1 - 0.1 - 0.1

x3 - 5 STLS (Separate) - 4.9995 4.99945 - 4.99965 4.9975

STLS (Combined) - 4.9995 - 4.9994 - 4.9996 - 4.9975

JSLSGF - 5 - 4.9998 - 4.9996 - 4.9984
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where coefficients b ¼ �1, q ¼ 0:5. Set the initial

condition uðx; 0Þ ¼ e�ðx�3Þ2 and the Dirichlet bound-

ary condition uð0; tÞ ¼ uð7:5; tÞ ¼ 0. The numerical

solution is calculated using finite difference method at

the grid points on x 2 ½0; 7:5� and t 2 ½0; 3:15� with
Dx ¼ 0:15 and Dt ¼ 0:015, see Fig. 9. As for the

partial derivatives of time, we use the points from two

adjacent times and calculate partial derivatives with

respect to space using central-difference formula.

Assume that 5 data points at both ends of the time and

space intervals are removed. The basis function

UðuÞ ¼ 1 u ux u
2 uux uxx u

3 uuxx u
2ux uxxx½ � is con-

structed, there are 10 terms, only two of which are

contributing. We provide different combinations

(L ¼ 2) of the numerical solution for the Burgers’

equation with different noise levels in Table 7.

In Fig. 10, we show the convergence curve during

the experiment to intuitively illustrate the convergence

property of the designed algorithm. One can see that

the absolute sum of the obtained solution vector

decreases rapidly within three iterations, illustrating

the fast convergence of the algorithm 1.

Next, the identified results are presented in Table 8

to investigate the performance of JSLSGF for identi-

fying PDEs. We observe that our proposed method

significantly outperforms STLS (Separate) and STLS

(Combined), and learn that STLS (Combined) is even

worse than STLS (Separate). Note that though all the

terms of the Burgers’ equation are identified by STLS

(Separate), the coefficient errors for Case 1 and Case 2

are relatively high. However, for Case 3, STLS

(Separate) and STLS (Combined) introduce more

non-contributing terms than JSLSGF, and the coeffi-

cient errors of the selected contributing terms are

larger.

Fig. 9 The numerical

solution of the Burgers’

equation with b ¼ �1 and

q ¼ 0:5

Fig. 10 Convergence curve of our method for Case 1

Table 7 Cases for numerical solution of the Burgers’ equation

with different noise levels

Cases Case 1 Case 2 Case 3

Noise levels r ¼ 10�5 r ¼ 10�4 r ¼ 10�3

r ¼ 10�3 r ¼ 10�3 r ¼ 1:13� 10�3
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Now,we solve the PDEs on x 2 ½0; 7:5� and t 2 ½0; 8�
using the coefficients identified by all methods for

Case 2 to study predictive performance of our method,

and the results are shown in Fig. 11. As a comparison,

the Burgers’ equation is computed by Eq. (19) with

b ¼ �1 and q ¼ 0:5 as illustrated in Fig. 11a. We

know that Fig. 11c deviates greatly from the true

equation. Figure 11b, d shows obvious differences on

x 2 ½5; 6� and around t ¼ 4, while Fig. 11d is closer to

the true Burgers’ equation. These highlight the broad

applicability of our proposed method and the better

performance in identifying PDEs.

Fig. 11 The solution of the Burgers’ equation plotted in space–time: a the true numerical solution, b predicted by STLS (Separate),

c predicted by STLS (Combined); and d predicted by JSLSGF

Table 8 The identified

PDEs from STLS and

JSLSGF at different cases

composed of the numerical

solution polluted with

different noise levels

Cases Methods Identified Burgers’ equation (True: ut ¼ �uux þ 0:5uxx)

Case 1 STLS (Separate) ut ¼ �1:0006uux þ 0:5022uxx

STLS (Combined) ut ¼ �0:2043uux þ 0:5049uxx � 1:217u2ux

JSLSGF ut ¼ �uux þ 0:5007uxx

Case 2 STLS (Separate) ut ¼ �1:0005uux þ 0:5022uxx

STLS (Combined) ut ¼ �0:204uux þ 0:5049uxx � 1:2175u2ux

JSLSGF ut ¼ �uux þ 0:5009uxx

Case 3 STLS (Separate) ut ¼ 12:4465� 32:22705u� 0:218ux � 0:4953uux þ 0:272uxx

STLS (Combined) ut ¼ 23:3805� 64:6603u� 0:4125ux � 0:0114uux þ 0:0402uxx

JSLSGF ut ¼ 8:8834� 32:7677u� 1:0052uux � 0:3329uxx
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5 Conclusion

In this work, we have proposed a joint sparse least-

square model with generalized fused lasso penalty,

which can make full use of more similarity information

among different state measurements, thereby boosting

the performance of system identification. We have also

presented an efficient threshold joint sparse least-square

algorithm, wherein the selection of the threshold

parameter in the sparsification step is achieved by using

the L-curve criterion. In addition, we have studied the

performance of the proposed method on two ODEs and

generalized the proposedmethod to a PDEwith a series

of cases. The numerical results demonstrate that the

appropriate fusion of multiple state measurements can

improve the identification accuracy of the systems than

traditional sparse least-square model. Thus, the pro-

posed method identifies more accurate governing

equations and exploits the richness of the data when

explicitly accounting for the similarity information of

multiple datasets, which means that it has a greater

potential applicability for dynamical system identifica-

tion problems that require higher accuracy.

As part of future work, we will investigate how to

find a more extensive basis function search space to

further promote the power for identifying complicated

dynamical systems. Furthermore, it is an exciting

avenue of future research to extend this work to

dynamical system identification problems with multi-

ple data sources.
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