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Abstract Numerouspowerfulmethods exist for devel-
oping reduced-order models (ROMs) from finite ele-
ment (FE) models. Ensuring the accuracy of these
ROMs is essential; however, the validation using
dynamic responses is expensive. In this work, we pro-
pose a method to ensure the accuracy of ROMswithout
extra dynamic FE simulations. It has been shown that
the well-established implicit condensation and expan-
sion (ICE)method can produce an accurate ROMwhen
the FE model’s static behaviour are captured accu-
rately. However, this is achieved via a fitting procedure,
which may be sensitive to the selection of load cases
andROM’s order, especially in themulti-mode case. To
alleviate this difficulty, we define an error metric that
can evaluate the ROM’s fitting error efficiently within
the displacement range, specified by a given energy
level. Based on the fitting result, the proposed method
provides a strategy to enrich the static dataset, i.e. addi-
tional load cases are found until the ROM’s accuracy
reaches the required level. Extending this to the higher-
order and multi-mode cases, some extra constraints are
incorporated into the standard fitting procedure tomake
the proposed method more robust. A curved beam is
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utilised to validate the proposedmethod, and the results
show that the method can robustly ensure the accuracy
of the static fitting of ROMs.
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metric nonlinearity · Finite element model · Error
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1 Introduction

Nowadays, with the trend for increasing flexibility
and extreme loading environments, engineering struc-
tures are likely to work outside of the linear enve-
lope and oscillate at a high amplitude level. In these
cases, many nonlinear phenomena can be induced by
geometric nonlinearities [1,2]. Thanks to the devel-
opment of the finite element (FE) method and com-
mercial software, structures with large displacement
can be modelled accurately [3]. However, the com-
putational demands quickly become prohibitive, espe-
cially when considering the dynamical analysis of sys-
tems with a large number degrees-of-freedom (DoFs)
[4], referred to as full-order models. To alleviate the
computational burden, model reduction techniques are
developed extensively to construct reduced-order mod-
els (ROMs). These ROMs can capture the full-order
model’s salient dynamical characteristics by using a
low-dimensional dynamical system [5,6].
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Conventionally, the equations of motion of an FE
model are projected to a small set of linear normal
modes (LNMs) to achieve the model reduction. This
garlekin-based projection can output a very accurate
result under a small amplitude level [7]. When the dis-
placement increases, the result from this linear pro-
jection departs from the accurate one, as the modal
interaction induced by geometric nonlinearities occurs,
e.g. the modal coupling between bending modes and
membrane modes. In this case, the updating of the
modal basis is essential to provide an accurate dynamic
response under large amplitudes [8,9]. In addition, the
proper orthogonal decomposition (POD) method may
be used to generate a set of POD modes as the opti-
mal reduction basis in terms of the energy contribu-
tion [10]. However, the identification of POD modes
requires dynamic simulation of the FE model, which is
time-consuming for complex structures.

In nonlinear dynamics, the response frequencies,
and the resulting modeshapes, are both dependent
on the amplitude of the system, and the LNMs are
only accurate under the small-amplitude displacement.
Motivated by this fact, the modal derivatives (MDs)
have been used to model this dependence by differenti-
ating the eigenvalue problem, whilst the modal reduc-
tion is achieved by incorporating theLNMs and the cor-
responding MDs into the reduction basis [11,12]. One
limitation is that, when the nonlinearity becomes sig-
nificant, the number of MDs increases quadratically
with respect to the number of LNMs in the basis,
which requires a rapid increase in the size of the reduc-
tion basis. To circumvent this issue, the concept of a
quadratic manifold is proposed to illustrate the non-
linear mapping from the physical coordinates to the
reduced coordinates [13]. In the quadratic manifold
approach, the amplitudes of the MDs are dependent on
the amplitudes of the LNMs; i.e. they are not included
as independent variables. References [14,15] show that
the quadratic manifold can output reliable results only
when the assumption of the slow/fast decomposition
holds (see Ref. [16]), i.e. the remaining modes should
be stiffer than the reduced modes. In the FE context,
the computational procedure of theMDs is not explicit,
since some terms in the computational formula do not
correspond to standard FE executions. Hence, a simpli-
fied version, static modal derivatives (SMDs), is intro-
duced by neglecting the inertial effects, which can be
applied to any commercial FE software [13].

In nonlinear analysis, the nonlinear normal modes
(NNMs) represent an important concept as the exten-
sion to LNMs. The NNMs are firstly defined as syn-
chronous periodic responses in a conservative system,
and then relaxed to periodic, but not necessarily syn-
chronous, responses [17–19], which provide a good
metric for evaluating the ROM’s accuracy [20]. Mean-
while, on account of the concept of the invariant man-
ifold, the NNM motion can be defined directly on
the invariant manifold, which is tangent to the linear
modal subspace at the equilibrium point. Using this
concept, every component’s motion in a system can be
expressed by a functional dependence of the displace-
ment/velocity pairs in a set of invariant normal coor-
dinates, and the ROM is constructed based on these
invariant normal coordinates [21,22]. Studies show that
the ROM based on the invariant manifold is able to
capture the system’s nonlinear phenomena accurately,
e.g. hardening/softening behaviour [23] and internal
resonance [24].Besides, the invariantmanifold can also
be described and parametrised using the normal form
theory, in which a nonlinear relationship between a set
of new normal coordinates and the initial modal coordi-
nates is bulit. The dynamics related to these new coor-
dinates represent the motion on NNMs [23,25]. Nor-
mally, the invariance relationship derived from normal
form theory can be solved using the asymptotic expan-
sion, whose validity in the case of the third expansion is
discussed in Refs. [15,23,25]. Considering FE models
with a large number of DoFs, the direct computation of
nonlinear mapping from physical coordinates to invari-
ant manifolds is derived from the normal form theory,
which is named direct normal form [26,27]. Using this
technique, the cumbersome modal coordinate change
and stiffness evaluation procedure in high-dimensional
FE models can be avoided during the reduction pro-
cess [26]. Meanwhile, the arbitrary order of expansion
to calculate the nonlinear mapping from the FE dis-
cretisation is proposed to consider complex dynamic
behaviours [28–30].

Besides themethodsmentioned above, there are two
indirect/non-intrusive methods for modal reduction in
geometrically nonlinear structures, the enforced modal
displacement (EMD) method and the applied modal
force (AMF) method, which do not explicitly require
the equations ofmotion.Unlike the rigorousmathemat-
ical framework in the manifold-based methods, both
of these indirect methods use only the static dataset
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extracted from FE models to calculate the nonlinear
coefficients in the ROM’s construction, therefore they
are applicable to FE commercial software where the
equations of motion are normally not available.

The EMDmethod, or the related stiffness evaluation
procedure (STEP), was firstly introduced byMuravyov
and Rizzi [31], and then developed by Perez et al.
[32]. This method evaluates an FE model’s nonlin-
ear modal stiffness coefficients using a set of modal
displacements and the static forces required to reach
these displacements.When applying the EMDmethod,
all relevant modes coupling to the modes of inter-
est, e.g. the bending modes and the coupled membrane
modes, must be explicitly included in the reduction
basis, otherwise, the insufficient size of the basis can
cause a non-negligible error [20,33]. This leads to a
large number of modes in the reduction basis [32]. In
recent studies, this STEP approach is more often used
as a method to identify the coupling coefficients of
nonlinear terms in an FE model instead of using it to
construct the ROM [34,35]. Starting from this STEP
approach, the coupling coefficients which correspond
to the modes that potentially exhibit dynamic interac-
tion may be calculated for further reduction, e.g. using
manifold-based methods [24]. In addition, two numer-
ical characteristics in the STEP approach should be
noticed. The first is that parameters identified from
the STEP approach are not sensitive within a large
displacement range [34,36], and the second is the
slow convergence with respect to the number of cou-
pled modes in the reduction basis [34,35]. The latter
issue makes this method less appealing, as it’s difficult
to identify all coupled modes in complex structures
[37]. However, this issue can be overcome using dif-
ferent methods e.g. static modal derivatives [35], modi-
fied STEPmethod [35], dual modes [38] or companion
modes [37].

The applied modal force (AMF) method, or implicit
condensation (IC)method, was first discussed byMcE-
wan et al. [39,40]. The AMF method constructs the
ROM using a set of static load cases imposed on an FE
model and the corresponding displacements extracted
from the static analysis. The ROM’s stiffness coef-
ficients are then estimated using a regression analy-
sis. In this method, only the modes of interest are
included in the reduction basis as reducedmodes, while
the coupling effects of remaining modes can be con-
densed implicitly [37]. The dynamics of these con-
densed modes are then recovered using a recovering

step, which, when combined with the IC method, leads
to a more comprehensive model reduction procedure,
which is named as ‘Implicit Condensation and Expan-
sion’ (ICE) [41]. Compared with the STEP approach, a
significant advantage of the IC/ICE method is its small
volume reduction basis [35]. Nevertheless, the ROM’s
coefficients estimated by the ICE method are sensi-
tive to the distribution range of load cases controlled
by the ‘scale factor’, and a proper scale factor needs
to be selected carefully to ensure the ROM’s accuracy
[20,42].

To alleviate the variation in ROM’s coefficients,
Nicolaidou et al. suggest that the highest term in the
nonlinear restoring forces of ROMs should be higher
than the counterpart in FE models, due to the quasi-
static coupling between reduced and condensedmodes,
and they show that the parameters of higher-order
ROMs aremuch less sensitive to the change of the scale
factor [43]. Meanwhile, the introduction of higher-
order ROMs is helpful to improve the ROM’s accuracy
in terms of the backbone curve predictions in complex
structures, e.g. the curved beam [44]. In earlier stud-
ies, the ICE method neglects the inertial contribution
from the condensed modes, which leads to an incor-
rect result for structures with a large in-plane kinetic
energy, e.g. the over-hardening behaviour prediction in
a cantilever beam [14,45]. Motivated by this fact, Ref-
erence [45] proposes the concept of ‘Inertial Compen-
sation’ to consider the kinetic energy contributed by
condensed modes. This extension can be constructed
without adding computational cost compared to the
original ICE method.

The ICE’s procedure described above is based on
the static analysis and does not consider the dynamic
interaction between the reduced modes and condensed
modes [20], and it can only enable the accuracy of
ROMs when the system fulfills the slow/fast decompo-
sition [14,24]. This suggests that a multi-mode ROM
is required to capture dynamic interaction between
modes in the full-order model. However, it is not triv-
ial to identify these dynamically significant modes
without a prior computation. To achieve this, Nico-
laidou et al. introduce time-dependent terms, which
represent the error of the quasi-static coupling relation-
ship, to detect the dynamic interaction in the system
efficiently [46]. Monitoring these errors allows for a
modal selection strategy for developing a multi-mode
ROM, since the mode with a large error is deemed
as dynamically significant and should be added to
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the reduction basis. In addition, the analytical results
inspired by this idea have also been discussed based on
a general two-mode oscillator [47].

Besides using NNMs to evaluate the accuracy of
ROMs [4,45], recent studies demonstrate that the
ROM’s ability to capture the static behaviour of an
FE model is important to reproduce this FE model’s
dynamic response [42,44], which suggests that a
ROM’s accuracy may be reflected by its capacity to
capture the static behaviour.

In this study,we present amethod to ensure the accu-
racy of ROMs without requiring dynamic FE analy-
sis for validation. To be specific, the proposed method
aims to capture the static behaviour of FE models to a
high accuracy level within the range related to a given
energy level. This objective is achieved by introducing
a computationally efficient error metric, along with a
strategy for selecting the additional load cases based
on this metric. It is found that the proposed method can
effectively alleviate the complexity of the construction
of multi-mode ROMs in which the multi-dimensional
fitting procedure is seen as a shortcoming of the ICE
method in the past. To this end, the rest of the paper is
organised as follows.

In Sect. 2, the procedure of the ICE method is
reviewed, and a curved beam is utilised to demonstrate
the limitation of the standard error measurement. Then,
a method to construct a ROM within a specific fit-
ting range, defined using energy, is described in Sect. 3.
Here, an algorithm is proposed to ensure the accuracy
of ROMswithin this range, and an efficient errormetric
is proposed. This is first demonstrated for the single-
mode case and later extended to the multi-mode case.
Meanwhile, the characteristic of the error metric, in
terms of guiding the load case selection to improve the
ROM’s accuracy, is described. Finally, the generalisa-
tion of the proposed method to the higher-order case is
given in Sect. 4.

2 Motivation

2.1 An overview of the implicit condensation and
expansion (ICE) technique

In this section, we explore the evaluation and construc-
tion of a ROM under the ICE’s framework. In an FE
model, a continuous system is discretised into N DoFs,

and written as,

Mẍ + Kx + f̃x(x) = 0 (1)

where x is the N × 1 displacement vector in the phys-
ical space, M, K are the N × N mass and stiffness
matrices, and f̃x(x) represents the N × 1 vector of the
nonlinear restoring forces1. Due to the orthogonality
between linear normal modes, this full-order model’s
displacement in physical space is transformed into the
linear modal space using,

x = �q (2)

where q is the N × 1 displacement vector in the modal
space and � is the mass-normalised linear modeshape
matrix with dimension N × N . The column vector
φi (i = 1 ∼ N ) in � is solved from the eigenvalue
problem, (K−ω2

n,iM)φi = 0, where ω2
n,i is the square

of the linear natural frequency corresponding to this
i th linear modeshape φi . Using Eq. (2), the matrices
M and K can be fully uncoupled and Eq. (1) can be
projected into the linear modal space,

q̈ + �q + f̃(q) = 0 (3)

where � is the diagonal N × N matrix consisting of
ω2
n,i (i = 1 ∼ N ), and f̃(q) = �T f̃x(�q) represents

the nonlinear restoring forces in the modal space. It is
noted that f̃(q) is likely to be coupled when the FE
model contains geometric, or other, nonlinear features
– in FE models with geometric nonlinearities, f̃(q) is
normally described as the combination of quadratic and
cubic polynomials that couple all coordinates in the dis-
placement vector, q [6]. In addition, the algebraic form
of f̃(q) generally cannot be accessed in commercial FE
software.

To reduce the full-order model, the reduced modes,
(i.e. the modes forming the reduction basis), should
be selected first. The modes of the FE model, q,
can be separated into two parts: (1) the dynamically
important modes, qr, which are normally some low-
frequencymodes and contain themajority of the energy
in the motion, (2) the remaining modes, qs, which
can be viewed as being quasi-statically coupled to qr,
induced by geometric nonlinearities [45]. Based on

1 In this paper, we only consider the construction of ROMs using
the ICE method. In this process, there is no excitation on the
right-hand side of Eq. (1). Once a ROM is constructed, a general
nonconservative excitation, Fx(x, ẋ, t), can be added to Eq. (1),
as detailed in Ref. [48].
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these, Eq. (3) is rewritten as,[
q̈r
q̈s

]
+

[
�r 0
0 �s

] [
qr
qs

]
+

[
f̃r(qr,qs)
f̃s(qr,qs)

]
=

[
0
0

]
(4)

where qr and qs are the R×1 and S×1 vectors, respec-
tively. The ICE method assumes that the dynamics of
qr can be governed by a lower dimensional reduced-
order model (ROM) which consists of a reduced set of
modes,

r̈ + �rr + f̃n(r) = 0 (5)

where r ≈ qr, and �r is the diagonal R × R matrix
representing the square of ROM’s linear natural fre-
quencies, ω2

n,ri , f̃n(r) is a R×1 vector representing the

ROM’s nonlinear restoring forces. Normally, f̃n(r) can
be approximated by an nth-order polynomial whose
parameters must be estimated. Similarly, the quasi-
static coupling relationship between qr and qs can be
approximated as a vector function, s = g(r), where we
treat s ≈ qs.2

According to the ICE’s framework, the static load
cases, F̂r, in the modal space are projected into the
physical space,

F̂x = M�rF̂r (6)

where �r contains the modeshapes related to qr, and
the variable with “ˆ” denotes that this variable is related
to an FE execution in this paper. Then, F̂x is imposed
on the FE model, and the static FE analysis is executed
in commercial FE software (e.g. Abaqus) to solve the
static equation,

Kx̂ + f̃x(x̂) = F̂x (7)

where the resulting physical displacement, x̂, will be
extracted. After running the static FE analysis, the cor-
responding modal displacement, r̂, is obtained3,

r̂ = �T
rMx̂ (8)

Finally, the static dataset, {r̂, F̂r}, is substituted into
the static equation of the ROM to estimate parameters
in the ROM’s nonlinear restoring force, f̃n(r), via the
least-square regression,

f̃n(r̂) = F̂r − �rr̂ (9)

2 In Ref. [45], the quasi-static coupling relationship is used
to consider the kinetic energy in the remaining/condensed
modes, qs, and the corresponding ROM’s construction technique
is named as the ‘ICE-IC’ method.
3 Here, the quasi-statically coupled modes, s, are used to recover
the physical displacement, which is not considered in this paper.
Meanwhile, Ref. [48] indicates that the physical displacement
can be recovered directly using �r and r.

In previous work, it is noted that the ROM’s perfor-
mance is sensitive to the scale factor if the order of the
ROM is insufficient [20,42], but this issue can be allevi-
ated by introducing higher-order ROMs [43]. However,
the accuracy of higher-order ROMs is easily violated
by the selection of load cases and the fitting proce-
dure, especially when the ROM is composed of mul-
tiple modes [24]. In this paper, we propose a method
to ensure the ROM’s accuracy within a given energy
level. We then demonstrate that this method can effec-
tively be applied to the construction of higher-order and
multi-mode ROMs.

2.2 Motivating example: a curved beam

To discuss the issues around the current ICE frame-
work, a motivating example in which the ICE method
is applied to an Abaqus FE model of a geometrically
nonlinear curved beam is presented, which is a segment
of a circle. The schematic and main parameters of this
curved beamare presented in Fig. 1 andTable 1, respec-
tively. Based on these parameters, this curved beam is
modelled using 130 beam elements of type B32, result-
ing in 1554 DoFs.

In this section, only the 1st mode is included in
the ROM, and the natural frequency of this mode is
ωn,r1 = 233.28 rad s−1. For this single-mode ROM
case, the restoring force, fn(r1), is approximated as

Fig. 1 The schematic of the curved beam

Table 1 The main parameters of the curved beam

Parameters Value

Length (l0) 650 mm

Height (h0) 2 mm

Width (b) 30 mm

Thickness (h) 2 mm

Young’s modulus (E) 210 GPa

Shear modulus (G) 80 GPa

Density (ρ) 7850kg m−3
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the polynomial,

fn(r1) = ω2
n,r1r1 + f̃n(r1)

= ω2
n,r1r1 +

n∑
k=2

(k + 1)Akr
k
1 (10)

Note that (k + 1) term results from Lagrangian energy
considerations – this is described in Sect. 3. To estimate
the ROM’s parameters, Ak , in the nonlinear restor-
ing force, f̃n(r1), 10 static load cases (denoted F̂r1)
are applied. These load cases, which are evenly dis-
tributed between−100 and 100, and the corresponding
modal displacements, r̂1, generate the static dataset,
{r̂1, F̂r1}, that is used in the fitting procedure. As
described in Ref. [44], the ROM’s accuracy is depen-
dent on the fitting results, and a good performance in
the backbone curve prediction requires a small fitting
error. In this paper, thefitting error of annth-orderROM
is evaluated by the error function,

ε̂n(r1) = ‖ fn(r1) − f̂FE(r1)‖
max‖ f̂FE(r1)‖

(11)

where ε̂n(r1) is the error representing the fitting result
in the ROM’s construction, fn(r1) and f̂FE(r1) are the
restoring forces used in the ROM (see Eq. (10)) and the
true modal force extracted from the FE model, respec-
tively. Once fn(r1) is known, the fitting result can be
evaluated from Eq. (11). Here, we term ε̂n(r1) as the
‘FE error metric’, as this error is benchmarked against
the FE model. Note that, in practice, ε̂n(r1) is not a
convenient metric as it requires extra load cases across
the range of interest, denoted as dots in Fig. 2a, rather
than just the 10 data points used to construct the ROM.
The extraction of these extra load cases increases the
computational burden, i.e. more FE static analyses are
required, especially in multi-mode cases. In the next
section, a less computationally intensive approach is
introduced to alleviate the computational burden.

Using the static dataset generated from these 10 load
cases, Fig. 2 shows the fitting error, ε̂n(r1), given by
Eq. (11), and backbone curves found using the numeri-
cal continuation toolbox COCO [49]. In Fig. 2a, ε̂n(r1)
is evaluated within the displacement range covered by
r̂1, which shows a strongly asymmetric behaviour. In
this range, ε̂n(r1) significantly decreases as the ROM’s
order increases from 3 to 11, and the 11th-order ROM
has the smallest fitting error. Meanwhile, it is found
that, in Fig. 2b, the backbone curves converge as the
order of the ROM increases. This is to be expected

as the accuracy of the fitting is improved as the order
increases (see Fig. 2a).

In addition, an important consideration is the range
over which the static behaviour of an FE model needs
to be captured accurately (referred to here as the fit-
ting range), which has yet to be defined clearly. If this
range is too large, an excessively high-order ROMwill
be required. More critically, if the range is too small,
the ROM’s accuracy cannot be guaranteed. According
to the theory of NNMs, a point on the backbone curve
represents aNNMmotion, and the range of thismotion,
i.e. velocities and displacements of the coordinates, is
limited by the energy of the system, which consists
of the kinetic energy and potential energy. The forces
coupling the modes are only related to the potential
energy. Motivated by this, the method for constructing
a ROM based on the energy level will be proposed in
this paper, which dictates the fitting range. To illus-
trate the relationship, Fig. 3 depicts a schematic rep-
resentation of the energy level across the fitting range
for a single-mode case. Note that the extreme ampli-
tudes towards the positive and negative directions have
the same potential energy, Elevel, but not necessary the
same displacement or load amplitude, allowing struc-
tures with asymmetry to be accurately captured. We
propose that the ROM should be accurate within the fit-
ting range, which determines theROM’s validity range,
i.e. this fitting range can cover all possible motions
of NNMs up to Elevel

4. In the following sections we
develop a strategy to find additional static load cases
by exploiting the fitting range, such that we can ensure
the ROM’s accuracy within a given energy level.

According to Fig. 2, a higher-order ROM can reach
a smaller fitting error; however, the fitting procedure
becomes more complex as well due to the increasing
parameters. Considering this issue, the following sec-
tion first starts from a 5th-order ROM to demonstrate
the proposed method, and the construction of higher-
order ROMs would be discussed in Sect. 4.

4 In synchronous NNMs, all coordinates vibrate synchronously
and reach the extreme amplitudes simultaneously with zero
velocities [17]. For a given Elevel, the range of motion of NNMs
is in exact agreement with the fitting range determined by Elevel.
For asynchronous NNMs, the range of the motions, in terms of
displacements, should be smaller than the range in synchronous
NNMs under the same Elevel due to the non-zero velocities con-
tributing to nonzero kinetic energy [19,50].
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Fig. 2 The fitting error analysis and backbone curve compar-
ison between 3rd, 5th, 7th, 9th and 11th-order ROMs. The left
panel is in the projection of the first static modal displacement,
r1, against the error distributions, ε̂n(r1), described by Eq. (11).

Note that the dots in panel a indicates that ε̂n(r1) is calculated at
discrete points, corresponding to extracted load cases. Panel b is
in the projection of the response frequency, �, against the first
modal displacement amplitude, R1, for different order ROMs

Fig. 3 The relationship between the energy level and fitting
range. The blue curve is the potential function, V (r1), at which
the modal displacements, r1,p and r1,m , have the same energy
level, Elevel, defining the fitting range, but r1,p is not necessarily
equal to r1,m . The red dots on the r1 and Fr1-axis denote load
cases in the static dataset, {r̂1, F̂r1}, used for the fitting procedure

3 Using energy to define the fitting range

In this section, we propose a method to construct
an accurate ROM within the fitting range defined by
energy. For a given energy level, we first use the poten-
tial energy function in a ROM to specify the range for
the fitting procedure in which the minimum number of
load cases for constructing aROMis illustrated. Then, a
computationally efficient error metric is proposed, as
the extension of Eq. (11), to evaluate the accuracy of
ROMswithin this fitting range. This errormetric is used
to find additional load cases for enriching the static
dataset. By combining the error metric and the strategy
of the load case selection, we propose a method for
constructing ROMs that can ensure the desired accu-

racy up to the energy level. The curved beam used in
Sect. 2 is used to illustrate the proposedmethod’s appli-
cation to the single-mode case and the extension to the
multi-mode case, as discussed in Sects. 3.2 and 3.3.

3.1 The energy level and static dataset in the ROM’s
construction

3.1.1 The definition of the energy level

Ideally, we would describe the energy in terms of the
FE model’s potential energy function; however this is
non-trivial to obtain, and we will consider the poten-
tial energy function of ROMs. For an nth-order ROM,
we write the potential energy as V (r), which can be
approximated as a polynomial function, and using the
given energy level, Elevel, the fitting range is given by,

0 ≤ V (r) ≤ Elevel (12)

Considering Eq. (5), the relationship between the
ROM’s potential energy, V (r), and restoring forces,
fn(r), is given by,

fn(r) = ∂V (r)
∂r

= �rr + f̃n(r) (13)

In the single-mode case, the potential energy for an
nth-order ROM may be written as,

V (r1) = 1

2
ω2
n,r1r

2
1 + A2r

3
1 + · · · + Anr

n+1
1 (14)
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which, using Eq. (13), leads to the ROM’s restoring
force,

fn(r1) =ω2
n,r1r1 + 3A2r

2
1

+ 4A3r
3
1 + · · · + (n + 1)Anr

n
1

(15)

Note that Ai (i = 2 ∼ n) are parameters that need to
be estimated using the static dataset. Similarly, the nth-
order ROM’s potential energy in the two-mode case is
written as,

V (r1, r2) = 1

2
ω2
n,r1r

2
1 + 1

2
ω2
n,r2r

2
2

+A2,1r
3
1 + A2,2r

2
1r2 + A2,3r1r

2
2 + A2,4r

3
2

+A3,1r
4
1 + A3,2r

3
1r2 + · · · + A3,4r1r

3
2

+A3,5r
4
2 + · · ·

+An,1r
n+1
1 + · · · + An,n+2r

n+1
2 (16)

This will lead to the restoring forces,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fn,1(r1,r2) = ω2
n,r1r1

+ 3A2,1r
2
1 + 2A2,2r1r2 + A2,3r

2
2 + · · ·

+ (n + 1)An,1r
n
1 + · · · + An,n+1r

n
2

fn,2(r1,r2) = ω2
n,r2r2

+ A2,2r
2
1 + 2A2,3r1r2 + 3A2,4r

2
2 + · · ·

+ An,2r
n
1 + · · · + (n + 1)An,n+2r

n
2

(17)

where Ai, j (i = 2 ∼ n, j = 1 ∼ i + 2) need to be
estimated. It can be seen that some parameters appear
in both restoring force expressions (e.g. A2,2), which
arises from the Lagrangian derivation of the force from
the energy function, Eq. (16), and ensures energy bal-
ances across these force functions. Considering these
parameter relationships in the construction of multi-
mode ROMs can make the results more stable and
robust, and is known as the ‘Constrained IC’ method
[51]. This also allows the ROM’s potential energy and
the fitting range to be found after the ROM’s parame-
ters are estimated (e.g. using Eqs. (16) and (12) in the
two-mode case).

3.1.2 The minimum number of load cases

In the ICE method, the fitting procedure requires that
the number of static relationships, which can be seen as
the number of static equations in Eq. (9), contributed by
load cases in the static dataset, {r̂, F̂r}, should be at least
equal to the number of independent parameters in the
ROM. For example, a single-mode 3rd-order ROM has

Table 2 The number of independent parameters (N f ) and min-
imum number of load cases (Nm ) in the construction of ROMs

ROM’s One-mode ROM Two-mode ROM
order N f Nm N f Nm

3 2 2 9 5

5 4 4 22 11

7 6 6 39 20

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

n n − 1 n − 1 (n+6)(n−1)
2 � (n+6)(n−1)

4 �1
n + 2 n + 1 n + 1 (n+8)(n+1)

2 � (n+8)(n+1)
4 �

1 �·� represents the ceiling function, e.g. � 9
2 � = 5

2 independent parameters (see Eq. (15)), A2, A3. This
indicates at least 2 unique static relationships should
be included in the static dataset, such that A2, A3 may
be computed using,{

3A2r̂
2
1(1) + 4A3r̂

3
1(1) = F̂r1(1) − ω2

n,r1r̂1(1)

3A2r̂
2
1(2) + 4A3r̂

3
1(2) = F̂r1(2) − ω2

n,r1r̂1(2)
(18)

where {r̂1(1), F̂r1(1)}, {r̂1(2), F̂r1(2)} are two unique load
cases in the static dataset.

When considering the two-mode case, the number of
independent parameters in a 3rd-order ROM increases
to 9, and each load case contributes two static relation-
ships in Eq. (9) (see Appendix A). Hence, at least 5
load cases should be used for constructing a 3rd-order
ROM in the two-mode case. Table 2 summarises the
relationship between the ROM’s independent parame-
ters, N f , and the minimum number of load cases, Nm ,
for the construction of ROMs. Note that a similar pro-
ceduremay be followed for a casewith a higher number
of modes.

3.2 Construction and evaluation of a single-mode
ROM

3.2.1 An efficient metric to evaluate a ROM’s
accuracy

As previously mentioned, the FE error metric given
in Eq. (11) is not computationally efficient for evalu-
ating the accuracy of ROMs, as extra validation load
cases are required. In this section, an alternative error
metric is proposed. This exploits the observation that a
higher-order ROM (with a higher-order polynomial) is
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able to capture the restoring forcewith greater accuracy
[43,44]. Motivated by this fact, f̂FE(r1) (i.e. the true
modal force extracted from the FE model in Eq. (11))
is approximated by fn+2(r1), i.e. the restoring force in
a ROM with order (n + 2). As such, the error function
Eq. (11) can be approximated as,

ε̂n(r1) ≈ εn(r1) = ‖ fn(r1) − fn+2(r1)‖
max‖ fn+2(r1)‖ (19)

Compared with Eq. (11), computing Eq. (19) is much
more efficient, as it does not require extra load cases
from the FE model beyond the necessary load cases
to fit a ROM of order (n + 2) (see Table 2). If the
ROM’s order is sufficient, a small maximum fitting
error, max{εn(r1)}, suggests that ROMs of order n and
(n + 2) are both accurate.

3.2.2 Description of the proposed algorithm

The construction and evaluation of ROMs based on
energy level, Elevel, is discussed using an approxi-
mate error metric,5 εn(r). After the parameters of the
ROM are estimated, two extra procedures are con-
ducted: (1) quantifying the fitting error using the error
metric, εn(r), (2) identifying additional load cases
to improve the accuracy, if necessary. After the FE
model’s structural parameters (i.e. mass and stiffness
matrices) and modal properties (i.e. frequencies and
modeshapes) are known, the algorithm to construct an
accurate ROM is presented in Fig. 4. Technical details
in some of the steps for the single-mode case6 are:

1. In Step (2), the number of load cases in the initial
load dataset should at least match the independent
parameters, N f , in the ROMwith order (n+2) (see
Table 2). Here, we select these load cases based on
the initial assumption that the system is linear (as
no nonlinear parameters are predicted at this stage);
hence energy level is assumed to be given by the
linear energy formula,

Elevel =1

2
ω2
n,r1r

2
1 = F2

r1

2ω2
n,r1

(20)

5 Note that the proposed error metric, εn(r), in a single-mode
ROM has been presented in Eq. (19), while εn(r) for a general
multi-mode ROM is given by Eq. (21)
6 Note that, for the multi-mode case, these steps are outlined in
Sect. 3.3

In this paper, the initial load cases are then

evenly distributed between −
√
2ω2

n,r1Elevel and√
2ω2

n,r1Elevel.
2. Steps (3) and (9c) represent the procedure related

to static FE analyses. In this procedure, the load
cases, F̂r (or F̂r,add), are transformed into the phys-
ical space for imposing on the FE model, and then
the modal displacement, r̂ (or r̂add), for generat-
ing the static dataset, {r̂, F̂r} (or {r̂add, F̂r,add}),
is extracted. The corresponding equations refer to
Eqs. (6)–(8).

3. In Step (9b), the additional load case, F̂r,add, are
calculated using the maximum error point, rmax,
which is given by F̂r,add = �rrmax + f̃n(rmax).

3.2.3 Application to an FE model

To illustrate the validity of the proposed algorithm, a
single-modeROMof a curvedbeam is constructed.This
curved beam’s schematic and main parameters have
been presented in Sect. 2 (see Fig. 1 and Table 1). In
this case, the ROM only consists of the 1st mode,
r1, and the related natural frequency is ωn,r1 =
233.28 rad s−1. According to Fig. 2, a 5th-order ROM
is firstly considered to demonstrate the proposed algo-
rithm given in Fig. 4 due to the simpler fitting proce-
dure. The application of this algorithm to the higher-
order (11th-order) case is investigated in Sect. 4. The
energy level, Elevel, is set to 5×10−2 J in this example.

Following the procedure outlined in Sect. 3.2.2, the

initial load cases are selected between −
√
2ω2

n,r1Elevel

and
√
2ω2

n,r1Elevel, which is presented schematically in

Fig. 5. Once the initial load dataset is determined, a 5th-
order ROM can be constructed following the algorithm
shown in Fig. 4.

Figure 6 shows the distribution of the fitting error
represented by two error metrics, ε̂5(r1) and ε5(r1),
under different static datasets, Si (i = 1 ∼ 5). The ini-
tial load cases are applied and the resulting displace-
ment components are represented by black circles in
Fig. 6a. The initial static dataset, S1, is then used to
estimate the parameters in the restoring force, fn(r1),
of ROMs with order of n = 5 and 7. These force
functions are then used to compute the error metric,
ε5(r1), represented by the light blue line in Fig. 6a.Note
that the results are only considered within the fitting
range (given by the computed energy). The maximum
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Fig. 4 The main algorithm of the proposed method for the con-
struction and evaluation of ROMs. Note that this is generally
applicable for all cases, and the technical details in the single-

mode case and multi-mode case are illustrated in Sects. 3.2 and
3.3, respectively

error point, representing the maximum fitting error,
max{ε5(r1)}, is then selected (red circle in Fig. 6a)
and the location of this point, rmax, is substituted into
f5(r1), i.e. ω2

n,r1r1 + f̃5(r1), to identify the additional
load case, Fr1,add.

Meanwhile, the FEerrormetric, ε̂5(r1), is also calcu-
lated for comparison where additional FE analyses are
required to extract extra load cases, denoted as green
dots, covering the fitting range. The black dashed line

-100 -50 0 50 100

Load cases

Fig. 5 The load cases in the initial load dataset

denotes the critical error, εcri, which is set as 2× 10−3.
After F̂r1,add is found, the corresponding displacement,
r̂1,add, is obtained by a single static FE analysis, which
leads to the enriched static dataset, S2, according to
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Fig. 6 The fitting result in the single-mode ROM’s construc-
tion. In each panel, the light blue curve and green dots indicate
the distribution of the error metric, ε5(r1), and the FE error met-
ric, ε̂5(r1), which are calculated using Eq. (19) and Eq. (11),

respectively. The black circles denote the load cases used to con-
struct the ROM, while the red circle represents the maximum
error point for determining the additional load case, F̂r1,add

Step (9d). The fitting result under S2 is presented in
Fig. 6b where max{ε5(r1)} is smaller when compared
with the value in Fig. 6a. Following the same proce-
dure, more load cases can be found, and it is shown
that, when the static dataset evolves to S5, max{ε5(r1)}
is smaller than εcri (see Fig. 6e).

During this process, the maximum value of the FE
error metric, max{ε̂5(r1)}, also decreases until it is
smaller than εcri in the 5th iteration. As max{ε̂5(r1)}
decreases, ε̂5(r1) converges to the error metric, ε5(r1),
e.g. they are much closer in Fig. 6e than in Fig. 6a
within the fitting range. This indicates the additional
load case has improved the accuracy of the restoring
force, f5(r1).

Figure 7a depicts the relationship between themaxi-
mumfitting error,max{ε5(r1)}, and the number of static
analyses, Nst, for a number of iterations under the pro-
posed algorithm. It is found that max{ε5(r1)} decreases
rapidly as additional load cases enrich the static dataset.
However, the new additional load cases do not reduce
max{ε5(r1)} significantly after the 5th iteration, cor-
responding to the static dataset S5. This suggests that
the limit of accuracy of the 5th-order ROM has been
reached. If a smaller critical error is required, a higher-

order ROM should be considered, which is discussed
further in the construction of multi-mode ROMs in
Sect. 4.

Figure 7b compares the backbone curves of 5th-
order ROMs which have been found by fitting to the
static datasets S1 ∼ S5 and S25. As the ROMs are only
valid up to the energy level, Elevel, the backbone curves
are terminated at this energy, indicated by circles. From
this figure, it is noted that the backbone curves from S1
to S5 become closer to the backbone curve generated
by S25, which might be seen as a baseline for compar-
ison because of the converged value of max{ε5(r1)} in
Fig. 7a. Compared with S1 to S3, the backbone curves
generated by S4 and S5 are more consistent with those
generated by S25. These results are to be expected as
max{ε5(r1)} decreases from S1 to S5 in Fig. 7a. As
defined in Fig. 4, the algorithm is terminated at i = 5
and the ROMconstructed using dataset S5 is deemed as
accurate as it meets the predefined critical error level.

To summarise, the algorithm outlined in Fig. 4
provides an effective method to construct a ROM
of the FE model. The proposed approximate error,
εn(r), is utilised as a measurable metric to evaluate
the ROM’s accuracy before calculating ROM’s back-
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Fig. 7 TheROM’s construction in the single-mode case. Panel a
shows the number of static analyses, Nst , against the maximum
fitting error, max{ε5(r1)}. The dashed black line denotes the crit-
ical error, εcri. Panel b shows the response frequency, �, against

to the ROM’s maximum displacement amplitude, R1, under dif-
ferent static datasets (marked as S1, S2, S3, S4, S5, S25 in panel a)

bone curves. Also, the proposed algorithm provides a
means for selecting additional load cases to improve the
ROM’s accuracy. These characteristics are discussed
further in the construction of multi-mode ROMs in the
following subsection.

3.3 Extending the proposed method to the
multi-mode case

3.3.1 Definitions for the multi-mode case

In the multi-mode case, the number of independent
parameters, N f , and the minimum number of load
cases, Nm , are both much larger than the values in the
single-mode case (see Table 2). Note that many FE
packages utilise incremental load steps to analyse non-
linear static problems, and are able to output the data
of all incremental steps, e.g. Abaqus [52]. Hence, the
data from all increments are utilised to generate the
static dataset, {r̂, F̂r}, to ensure that the total number
of load cases in the static dataset satisfies the require-
ment described in Sect. 3.1.2 whilst reducing the num-
ber of the nonlinear FE analyses required. In this paper,
we denote the final incremental load steps as ‘Tar-
get points’, and the remaining points as ‘Intermediate
points’.

To extend the proposed method to the multi-mode
case, the approximate error metric, εn(r), is calculated
for all reduced modes. For an nth-order ROM with R

modes, the error metric in the i th (i = 1 ∼ R) reduced
mode can be defined as,

εn,i (r) = ‖ fn,i (r) − fn+2,i (r)‖
max‖ fn+2,i (r)‖ (21)

where r = (r1, r2, · · · , rR)T, and where fn,i (r) and
fn+2,i (r) are the restoring forces in i th mode of the
ROMs with order n and (n + 2), respectively. With
reference to Fig. 4, the necessary technical details in
terms of the multi-mode case are clarified as,

1. In Step (2), the initial load dataset can be deter-
mined from the linear energy contour related to
Elevel,

Elevel =
R∑

i=1

1

2
ω2
n,ri r

2
i =

R∑
i=1

F2
ri

2ω2
n,ri

(22)

2. In Step (7), the fitting error is calculated using
Eq. (21) for all modes, while the fitting range
is found by rejecting the data outside the energy
bounds, such that the inequality Eq. (12) is not
solved exactly. This is detailed in Sect. 4. Consider-
ing the variation of ROM’s parameters, which leads
to the change of the fitting range, the load cases out-
side the fitting range are temporarily excluded from
the fitting procedure and reused if they belong to
the fitting range in future iterations.

3. From Step (8) to (9a), the largest error value
across all the reduced modes, max{εn,i (r)}, is
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labelled as max{εn(r)}, whose location corre-
sponds to the maximum error point, rmax =
(r1,m, r2,m, · · · , rR,m)T.

4. In Steps (9b) and (9c), rmax is used to calculate
the target point of additional load cases, F̂r,targ

= (F̂r1,targ, F̂r2,targ, · · · , F̂r R,targ)
T, imposed on

the FE model for the next iteration, which is given
by,

F̂r,targ = �rrmax + f̃n(rmax) (23)

Based on this new target point, the additional load
cases, r̂add and F̂r,add, now include all incremental
data generated by the static FE analysis.

3.3.2 Application to an FE model

The curved beam used in the single-mode case is also
used here to demonstrate the algorithm’s application
in the multi-mode case – specifically the two-mode
case. The ROM now consists of the 1st and 3rd modes,
which are denoted r1 and r2, respectively. The cor-
responding natural frequencies are ωn,r1 = 233.28
rad s−1 and ωn,r2 = 853.91 rad s−1. Here, a single
static FE analysis is configured to include 20 incre-
mental load steps, as discussed in Sect. 3.3.1.7

According to Step (2) in Fig. 4, the load cases in
the initial load dataset can be found from the linear
energy contour related to the energy level, Elevel. Here,
4 target points related to these load cases are located
at (±F̂r1, 0) and (0,±F̂r2). Force amplitudes F̂r1 and

F̂r2 are given by Eq. (22), i.e. F̂r1 =
√
2ω2

n,r1Elevel and

F̂r2 =
√
2ω2

n,r2Elevel. These target points lead to a total

of (19 ( intermediate points) + 1 ( target point)) ×
4 (static analysis) = 80 load cases. These load cases
are represented by black dots in Fig. 8, and demonstrate
that the intermediate points provide data across a range
of energies, even though every target point is at a single
energy.

Following Table 2, a 15th-order ROM may theo-
retically be generated from such a large initial load
dataset, but a 5th-order ROM continues to be used
here to demonstrate the application of the proposed
method in the multi-mode case. The generalisation of
this method to higher-order ROMs is discussed in the
next section.

7 The incremental load steps are typically defined by the user in
the FE software. Here, 20 incremental load steps are assumed to
be sufficient for this example.

Fig. 8 The load cases in the initial load dataset. The pink ellipse
represents the linear energy contour given by Eq. ( 22), and black
dots denote the load cases resulting from theFE analyses. The tar-
get points, relating to the final incremental load steps, are labelled
as black circles

Similarly to the single-mode case, the algorithm
given in Fig. 4 also instructs the additional load cases
based on the maximum fitting error, max{εn(r)}, in the
multi-mode case. Figure 9 presents the procedure of
the load case selection under the 1st and 11th iteration,
respectively. In Fig. 9a, after the ROM’s parameters
are identified using the initial load cases (black dots),
the maximum error point, rmax, is found to calculate
the new target point (red circle), F̂r,targ, using Eq. (23),
which leads to the additional load cases (red dots) by
exploiting the incremental data. Following the algo-
rithm, these additional load cases are incorporated in
the existing load cases for the subsequent iterations.
Figure 9b shows the result of the load case selection
under the static dataset S11 where 10 target points have
been found and the resulting load cases havebeen added
in the static dataset. These additional load cases can
reduce max{ε̂n(r)}, which is illustrated subsequently.
Meanwhile, considering the variations of the ROM’s
parameters, which leads to the change of the fitting
range (or its mapping in the (Fr1, Fr2)-plane), only the
load caseswithin the fitting range are considered for the
fitting range in the next iteration. Those points outside
the fitting range, checked using Eq. (12), are excluded
(see grey dots and circles in Fig. 9b).

Figure 10adepicts the relationship between thenum-
ber of static analyses, Nst, and the maximum fitting
error, max{ε5(r1, r2)}. This shows a steady decrease
in max{ε5(r1, r2)} as additional load cases enrich the
static dataset. The static dataset, S11, whose load
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Fig. 9 The demonstration of the load case selection in the con-
struction of multi-mode ROMs. Panels a and b show the cases
under the 1st and11th iteration, respectively.Theblue ellipse-like
loops represent the nonlinear energy contour related to the energy
level, Elevel, projected in the (Fr1, Fr2)-plane, calculated using
Eqs. (12) and (13) for the relevant iteration. The pink ellipses
represent the linear energy contour related to Elevel for deter-

mining the initial load dataset. The black dots and circles rep-
resent the load cases in the static dataset and the corresponding
target points, respectively. In these load cases, those points out-
side the fitting range are labelled as grey. The red circles in the
panels denote the new target point, F̂r,targ, given by Eq. (23), for
generating additional load cases (red dots)
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Fig. 10 The ROM’s construction in the two-mode case. Panel
a shows the number of static analyses, Nst , against the maxi-
mumfitting error,max{ε5(r1, r2)}. The dashed black line denotes
the critical error, εcri. Panels b and c show the response fre-

quency, �, against the maximum displacement amplitude of the
ROM’s first mode, R1, and second mode, R2, under different
static datasets (marked as S1, S11, S27 in panel a, respectively)

cases have been presented in Fig. 9b, has an error,
max{ε5(r1, r2)}, below 4 × 10−4 (the critical error
selected for this example), which indicates the algo-
rithm in Fig. 4 can be terminated here and an accurate
ROM can be generated; however, we show the effect
of further data leading towards convergence for illus-
tration. After S11, the new additional load cases do not
reducemax{ε5(r1, r2)} significantly,which implies that
a higher-order ROM would need to be considered if a
smaller fitting error is required.

Figure 10b and 10c compares the backbone curves
of the ROMs constructed by static datasets S1, S11, and
S27, and show that the backbone curves exhibit an
internal resonance branch. Throughout the captured
responses, the S11 backbone curves show a good agree-
ment to the S27 backbone curves. Meanwhile, the S1
backbone curves show a less good agreement at the
internal resonance and high energy region, which cor-
responds to a larger fitting error in Fig. 10a predicted
by the proposed method.
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3.3.3 Comparing load case selection methods

In previous analysis, it has been seen that additional
load cases can improve the accuracy of the ROM (see
Figs. 7a and 10a). However, it is unclear whether this
improvement is due to the strategic selection of addi-
tional load cases, as proposed in the algorithm, or sim-
ply the increased volume of data. To explore this, the
characteristics of different load case selection methods
are compared in this section. Three methods are used
for comparison: (1)where the load cases are determined
by scale factors, (2) where the load cases are deter-
mined randomly, (3) where the load cases are deter-
mined using max{εn(r)}, i.e. the proposed algorithm.

Considering the method based on scale factors, in
the single-mode case, there is a scale factor that can
produce the optimal results [20,42], while the optimal
scale factors in the two-mode case refer to searching
in the (Fr1, Fr2)-plane, which is not feasible in prac-
tice. Here, we simplify this procedure to demonstrate
the characteristics of this method in the multi-mode
case.

Assuming that the force amplitudes of target points
in load cases, F̂r1 and F̂r2, controlled by a single scale
factor, Fs , are given by,{

F̂r1 = Fs Fr1,0

F̂r2 = Fs Fr2,0
(24)

where Fr1,0 and Fr2,0 are linked to the linear energy
contour at the energy level, Elevel, which is given by

Eq. (22), i.e. Fr1,0 =
√
2ω2

n,r1Elevel and Fr2,0 =√
2ω2

n,r2Elevel. When F̂r1 and F̂r2 are both non-zero,

a reduction factor,
1

2
, is utilised, i.e. {1

2
F̂r1,

1

2
F̂r2}, as

shown in Refs. [20,51]. In addition, note that Fs is
defined as 1 when F̂r1 = Fr1,0 and F̂r2 = Fr2,0,
where we term the generating load dataset as ‘basic
load dataset’ (the target points of this load dataset are
depicted as black circles in Fig. 11). Under different Fs
values, the target points have the same shape as in the
basic case, but F̂r1 and F̂r2 are scaled by Fs (blue and
red circles in Fig. 11).

The total number of load cases used in Method (1)
(based on scale factors) is 280, which is equivalent
to the number of load cases in the 11th iteration
(see Fig. 9b) from our proposed method (labelled as
Method (3)). InMethod (1), these load cases are gener-
ated via 8 static FE analyses with 35 incremental load

Fig. 11 The target points of load datasets under different Fs
values

steps. In addition, the fitting results for different Fs val-
ues are both evaluated within the fitting range giving by
S11. Methods (2) and (3) follow the same framework,
however, the target point of the additional load cases
in Method (2) are selected randomly within the fitting
range identified by Eq. (12).

Figure 12 shows the results of the three load case
selection methods. Figure 12a shows that there is an
optimal scale factor, Fs , that can produce the smallest
max{ε5(r1, r2)}. However, this optimal result does not
satisfy the critical error, εcri, while max{ε5(r1, r2)} in
the 11th iteration, which has the same number of load
cases, is smaller than εcri (see Fig. 10a) and the scale
factor at which theminimumoccurswould be unknown
without running many simulations at different scale
factors which is computationally expensive. On the
other hand, Fig. 12b comparesmax{ε5(r1, r2)}between
Method (2) and Method (3). It shows that, under the
same initial load dataset, Method (2), whose addi-
tional load cases are selected randomly within the fit-
ting range, has a slow speed in terms of reducing
max{ε5(r1, r2)} and cannot satisfy the critical error,
εcri, within the number of static analyses shown here,
while the load cases guided by max{ε5(r1, r2)} can
expect a steady decrease and eventually converge.
These results indicate the importance of the load case
selection for the accuracy of ROMs, and shows the pro-
posed method provides a meaningful and efficient way
to choose these additional load cases in the construction
of multi-mode ROMs.

In Sect. 3, we have shown that the proposed method
works well in both the single-mode and multi-mode
cases. The accuracy of ROMs is reflected by a mea-
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Fig. 12 The maximum fitting error comparison between differ-
ent load case selection methods. Panel a shows the scale factor,
Fs , described in Method (1), against the maximum fitting error,
max{ε5(r1, r2)}. Panel b shows the number of static analyses,
Nst , against max{ε5(r1, r2)}. Note that, in panel b, Method (2)

consists of random load case selection within the fitting range
(blue asterisk line), while the load cases in Method (3) are
selected within the fitting range based on max{ε5(r1, r2)} (red
circle line)

surable error metric, max{εn(r)}, and the given crit-
ical error, εcri. However, max{εn(r)} might always
be larger than εcri, no matter how many load cases
have been added to the static dataset. For example,
max{ε5(r1, r2)} can be smaller than 4 × 10−4 for
the case we considered, but cannot reach, for exam-
ple, 1 × 10−4 (Fig. 10a). In that case, a higher-order
ROM should be considered, as this may be able to
achieve a higher accuracy. However, as the number
of independent parameters increases, the fitting results
become extremely sensitive to the static datasets. Moti-
vated by this fact, the application of the proposed
method to themore generalised case, e.g. higherROM’s
order and higher energy level, is discussed in the next
section.

4 Generalisation to higher-order cases

Section 3 focussed on how to apply the proposed error
metric (Eqs. (19) and (21)) to construct an accurate
ROMwithin a given energy level, and a 5th-order ROM
was used to illustrate the proposed algorithm given in
Fig. 4. The results show that the ROM’s performance,
in terms of themaximumfitting error, max{εn(r)}, con-
verges as the size of the dataset increases (see Figs. 7a
and 10a). For example, a 5th-order ROM is unable to
satisfy the error level, 1 × 10−4, regardless of the size
of data used in the two-mode case due to the limitation
of ROM’s order (see Fig. 10a). In multi-mode cases,

the ROM with a large fitting error may not capture the
response in the regions of the internal resonance and
high energy (see Fig. 10). Here we consider the use
of a higher-order polynomial in the ROM, in this case
an 11th-order polynomial, to further reduce the error.
This requires amore complex fitting procedure. Specif-
ically, we must refine the method of selecting the next
data point to be added to the data set to ensure that
the dataset remains appropriately bounded in terms of
displacements and forces.

The construction of this 11th-order ROM is based
on the energy level, 1 × 10−1 J , and the initial load
dataset in this section is presented in Fig. 13. Note
that 8 target points with their 20 related increments
are used to help ensure the stability of convergence.
Besides the points (±F̂r1, 0) and (0,±F̂r2), 4 extra
target points, (±γ1 F̂r1,±γ2 F̂r2), are included in the
initial load dataset, which are the intersection points
between the linear energy contour and the straight lines,

Fr2 = ± F̂r2

F̂r1
Fr1, as shown in Fig. 13 using dashed red

line.
According to the proposed algorithm, the ROM’s

accuracy is evaluated within the fitting range in the
(r1, r2)-plane, under the static dataset, Si , and the
new target point for generating Si+1 is identified from
Eq. (23). As mentioned in Sect. 3.3, the fitting range
is not obtained by exactly solving the boundary of the
inequality (Eq. (12)), but by checking if the ROM’s
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Fig. 13 The initial load dataset with 8 target points. The pink
ellipse represents the linear energy contour. The black dots
and circles are load cases and the corresponding target points,
respectively. The red dashed lines represent the straight lines,

Fr2 = ± F̂r2

F̂r1
Fr1, which are used to determine the target points

(±γ1 F̂r1,±γ2 F̂r2)

energy satisfies the criterion in Eq. (12). After the
ROM’s parameters are estimated, Fig. 14a assesses the
potential energy of this 11th-order ROM over a grid,
labelled as computing points. The points that satisfy the
criterion are deemed as belonging to the fitting range,
which are named as ‘Energy points’ (light blue dots)
and occupy an irregular region. This irregularity arises
because fitting such a high-order ROM is very sensi-
tive, and hence the fitting result is likely to be less stable
when the static dataset is poorly distributed (note that,
in the previous section, the 5th-order ROM led to a
near-elliptical shape in the (Fr1, Fr2)-plane – see, for
example, Fig. 9). In this case, although the maximum
error point in the (r1, r2)-plane can be found, it is far
away from the existing load cases and hence represents
a much larger amplitude case. To alleviate this issue,
we limit the range of computing points, marked as �c,
within every iteration, as shown in Fig. 14b.

In the i th iteration, we suggest that the coordinates
of computing points in �c are given by,

�c,i =
{

(r1c, r2c)

∣∣∣∣∣
{
r1c,min ≤ r1c ≤ r1c,max

r2c,min ≤ r2c ≤ r2c,max

}
(25)

where we utilise the displacement component, r̂, in the
static dataset Si , to determine a rectangle (see Fig. 14b),

which is centred about r̂. Formally, the range of this
rectangle is given by,

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

r1c,min = 1 − α

2
max{r̂1} + 1 + α

2
min{r̂1}

r1c,max = 1 + α

2
max{r̂1} + 1 − α

2
min{r̂1}

r2c,min = 1 − α

2
max{r̂2} + 1 + α

2
min{r̂2}

r2c,max = 1 + α

2
max{r̂2} + 1 − α

2
min{r̂2}

(26)

where the size of the rectangle is controlled byα (where
α > 1), and r̂1 and r̂2 are the data in r̂ related to the
1st and 2nd modes in the ROM, respectively. Using
Eq. (25), the ROM’s potential energy within �c,i is
assessed based on an evenly distributed grid, and the
corresponding energy points are the points satisfying
the condition in Eq. (12). Note that this is extremely
computationally cheap, and does not require an energy
contour (blue loops in Fig. 9) to be calculated explicitly.
Following the algorithm in Fig. 4, the maximum error
point within the energy points, which is expressed as
a modal displacement vector, rmax, is used to generate
the new target point. As previously, rmax is converted
to a target force, F̂r,targ, using the identified restoring
force (see Eq. (23)). Fig. 14c shows all energy points
are projected into the (Fr1,, Fr2)-plane using Eq. (13)
and the maximum error point is marked again as the
red circle. However, Fig. 14c shows that this maxi-
mum error point includes a very large force level com-
pared to existing load cases, which suggests a large
fitting error. Furthermore, the mapping of the remain-
ing points again occupies an irregular region (unlike the
roughly elliptical region seen inFig. 9a previously); this
again suggests that the identified ROM is highly inac-
curate, due to the high-order polynomial in the restor-
ing forces. To control the force level of the new target
point, we place a further limit in the (Fr1, Fr2)-plane,
and only energy pointswithin this limit,whichwename
as ‘Force bounded points’ in Fig. 14d, are considered
for the load case selection.

In Fig. 14d, the force bounded points are denoted as
� f , and the maximum error point in � f is related to
the new target point, F̂r,targ, for generating additional
load cases. In this Figure, the coordinates of the points

123



2014 X. Xiao et al.

Fig. 14 The energy assessment and load case selection in the
construction of an 11th-order ROMunder the initial static dataset
S1. In panel a, green dots represent the computing points used to
find the ROM’s potential energy, while light blue dots, named as
‘Energy points’, denote the subset of these points which satisfy
the energy criterion. In panel b, computing points within a given
range are named as �c,1, while the blue points are corresponding
energy points within �c,1. In panels a and b, the black circles
denote the target points of load cases in the static dataset, and the
red circle represents the maximum error point within the energy
points. Panels c andd show the procedure of selecting the new tar-

get point, F̂r,targ. In panel c, all blue dots represent the projection
of energy points from panel b, and the red circle again represents
the maximum error point. In panel d, energy points are limited to
a given range and are named as ‘Force bounded points’, denoted
as � f,1. The points in � f,1 with the maximum fitting error repre-
sents the new target point, F̂r,targ. Note that the objective of these
panels is twofold. It demonstrates the introduced constraints in
the (r1, r2) and (Fr1, Fr2)-planes. Meanwhile, these panels also
show the specific computing procedure and results under S1 with
α = β = 1.25

in � f should satisfy,

� f,i =
⎧⎨
⎩(Fr1, f , Fr2, f )

∣∣∣∣∣∣
(
F

′
r1, f

Fr1,m

)2

+
(
F

′
r2, f

Fr2,m

)2

≤ 1

⎫⎬
⎭

(27)

where we determine an elliptical constraint centred on
the force component, F̂r, in the static dataset Si , which
depends on an ellipse encompassing load cases in Si ,
e.g. linear energy contour in S1. In the i th iteration, this
ellipse is constructed as below steps:

1. Find the maximum distance from load cases in Si
to the centre of load cases, labelled as (F̂r1, F̂r2),
which corresponds to a specific load case,
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Fig. 15 The 11th-order ROM’s construction in the two-mode
case. Panel a shows the number of static analyses, Nst , against
the maximum fitting error, max{ε11(r1, r2)}, under four differ-
ent parameter groups. The dashed black line denotes the critical
error, εcri. Panelsb and c show the response frequency,�, against
the maximum displacement amplitude of the ROM’s first mode,

R1, and second mode, R2, respectively. These static datasets,
where max{ε11(r1, r2)} is smaller than εcri, are labelled as S45,
S29, S25 in parameter groups (1), (2) and (3), respectively. The
black dashed lines denote the backbone curves predicted by S1
whose fitting result is presented in Fig. 14a

{F̂r1(m), F̂r2(m)}. This load case determines the
half-major axis, ld1,max, and the direction of the
required ellipse, which indicates the angle, θm ,
between the half-major axis and Fr1-axis.

2. Then, a set of ellipses can be constructed using
every remaining load cases, and the one with the
maximum half-minor axis, labelled as ld2,max, is
selected to ensure that all existing load cases are
included within the ellipse.

Using θm , ld1,max and ld2,max, Fr1,m and Fr2,m in
Eq. (27) are defined as,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fr1,m = βld1,max

Fr2,m = βld2,max

F
′
r1, f = (Fr1, f − F̂r1)cosθm

+ (Fr2, f − F̂r2)sinθm

F
′
r2, f = (Fr2, f − F̂r2)cosθm

− (Fr1, f − F̂r1)sinθm

F̂r1 = 1

2
(min{F̂r1} + max{F̂r1})

F̂r2 = 1

2
(min{F̂r2} + max{F̂r2})

(28)

where the size of the force constraint is controlled by
β (where β > 1), F̂r1 and F̂r2 are data in F̂r related to
the 1st and 2nd modes in the ROM, respectively.

Using constraints Eqs. (25) and (27), we can effec-
tively control the force level of additional load cases
in every iteration, such that the algorithm in Fig. 4
is able to construct higher-order ROMs in a robust
manner, despite the instability when data is poorly
distributed. The related results under the initial static

dataset, S1, are summarised in Fig. 14where the param-
eters α and β are both set as 1.25.

To demonstrate the application of this method to an
11th-order ROM, Fig. 15 presents the maximum fitting
error, max{ε11(r1, r2)}, and the backbone curves under
different groups of parameters, α and β. The α and
β values in these groups are, (1) α = β = 1.03, (2)
α = β = 1.1, (3)α = β = 1.25, (4)α = β = 2.5. Fig-
ure 15a shows that the proposed algorithmwith the first
three parameter sets canmakemax{ε11(r1, r2)} smaller
than the critical error, εcri, which is set as 1×10−4. The
algorithm using small α and β values, e.g. α = β =
1.03, requires more iterations to reach the critical error
level (the purple line), whereas larger α and β values
can lead to faster convergence. Under overly large α

and β values (α = β = 2.5), which performs similarly
to the case without constraints, the algorithm outputs a
diverged result (the grey dashed line), due to the sen-
sitivity of fitting such a high-order polynomial. This
shows that, while larger α and β parameters may lead
to faster convergence, they may also cause unstable
behaviour and non-convergence. According to the pro-
posed algorithm, the results from all parameter groups
are accurate as long as max{ε11(r1, r2)} is smaller than
εcri, which is corresponding to the static datasets, S45,
in group (1) and S29, S25 in groups (2) and (3), respec-
tively. The results of backbone curves from these three
parameter groups are presented in Figs. 15b and 15c.
Specifically, it is clear that the ROM constructed by
S1 cannot capture the internal resonance and provide a
diverged result at the high energy level. This is expected
due to the large fitting error as shown in Fig. 15a and
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the irregular region occupied by energy points, shown
in Fig. 14a. As the introduction of constraints, the pro-
posed algorithm now can construct the ROM satisfying
a desired accuracy level in higher-order cases.

5 Conclusions

In this paper, we propose a method to produce an accu-
rate ROM for a givenmodal basis under the ICE frame-
work. We also demonstrate that this method can be
effectively utilised to construct higher-order and multi-
mode ROMs.

The paper first demonstrates that a ROM’s accu-
racy in the ICE method is dependent on the fitting
data. In our proposedmethod, an algorithm is presented
to ensure a small fitting error within the fitting range
which is linked to a given energy level, Elevel. This
is achieved by introducing a computationally efficient
error metric and a strategy for selecting load cases. We
have shown that the proposed error metric can effi-
ciently represent the error within the fitting range and
can be readily extended to the multi-mode case. Mean-
while, the method provides a meaningful way to find
additional load cases for improving a ROM’s accuracy
based on the fitting results. A curved beam is used to
validate these characteristics in the single-mode and
two-mode cases, and the results show that these addi-
tional load cases instructed by our method effectively
reduce the maximum fitting error, max{ε(r)}. Further-
more, we compare our methodwith two other methods,
based on scale factors and random selection, in terms
of the load case selection. It is shown that randomly
selected load cases are inefficient at reducing the fitting
error, which indicates the significance of the locations
of load cases. In addition, the method based on scale
factors can output optimal results only when the scale
factors are selected carefully, which requires a search
procedure with a large computational burden.

To address the difficulties arising from the multi-
dimensional fitting procedure,we further generalise the
proposed algorithm to the higher-order andmulti-mode
cases. In the two-mode case, we demonstrate that the
fitting range and the additional load cases are both unre-
liable due to the poor fitting result if the ROM’s order
is too high. Some constraints in both the (r1, r2)-plane
and (Fr1, Fr2)-plane are introduced to limit the range
for assessing the ROM’s potential energy and selecting
additional load cases, which helps to avoid excessive

additional load cases. The numerical results show that
these additional constraints can effectively enhance the
proposed algorithm’s robustness and potential in the
construction of higher-order and multi-mode ROMs.

Based on the proposed algorithm, we can quantita-
tively monitor and control the accuracy of ROMs. The
algorithmenables additional load cases to be selected in
an efficient and strategic manner to enable the accuracy
of the ROMs to reach the desired level. This algorith-
mic procedure allows ROMs to be constructed without
user input whilst guaranteeing their accuracy, allowing
ROMs to be used in model updating and optimisation,
for example. Furthermore, by achieving very high lev-
els of accuracy, this approach may be used in conjunc-
tionwithmethods that require low levels of uncertainty,
such as gradient-based methods.
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AThefittingprocedure for constructing a two-mode
3rd-order ROM

This appendix describes the fitting procedure for con-
structing a 3rd-orderROMin the two-mode case.Acco-

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Indirect nonlinear dynamic reduced-order models 2017

rding to Eq. (17), a 3rd-order ROM’s restoring forces
are given by,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f3,1(r1, r2) = ω2
n,r1r1

+ 3A2,1r
2
1 + 2A2,2r1r2 + A2,3r

2
2

+ 4A3,1r
3
1 + 3A3,2r

2
1r2 + 2A3,3r1r

2
2 + A3,4r

3
2

f3,2(r1, r2) = ω2
n,r2r2

+ A2,2r
2
1 + 2A2,3r1r2 + 3A2,4r

2
2

+ A3,2r
3
1 + 2A3,3r

2
1r2 + 3A3,4r1r

2
2 + 4A3,5r

3
2

(29)

where Ai, j are to be estimated (in this case, there
are 9 unknown parameters in total). For a single load
case, (F̂r1(1), F̂r2(1)), and the corresponding displace-
ment, (r̂1(1), r̂2(1)), the corresponding static equations
in Eq. (9) have the form,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3A2,1r̂
2
1(1) + 2A2,2r̂1(1)r̂2(1) + A2,3r̂

2
2(1)+

4A3,1r̂
3
1(1) + 3A3,2r̂

2
1(1)r̂2(1) + 2A3,3r̂1(1)r̂

2
2(1)+

A3,4r̂
3
2(1) = F̂r1(1) − ω2

n,r1r̂1(1)

A2,2r̂
2
1(1) + 2A2,3r̂1(1)r̂2(1) + 3A2,4r̂

2
2(1)+

A3,2r̂
3
1(1) + 2A3,3r̂

2
1(1)r̂2(1) + 3A3,4r̂1(1)r̂

2
2(1)+

4A3,5r̂
3
2(1) = F̂r2(1) − ω2

n,r2r̂2(1)
(30)

This indicates that a single load case, (F̂r1(1), F̂r2(1)),
in the two-mode case can contribute two static relation-
ships in Eq. (9). To estimate the nine unknown param-
eters at least nine relationships are required in Eq. (9);
hence, at least 5 load cases are required for constructing
a 3rd-order ROM in the two-mode case.
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