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Abstract A massive vaccination programme against
COVID-19 infection started at the beginning of 2021.
Studies show that vaccinated people are subject to rein-
fection, and there is uncertainty in the rate of immunity
loss, the force of infection, recovery rate and vaccine
efficacy. Here we study a six-dimensional stochastic
epidemic model with vaccine-induced immunity loss
to demonstrate the effect of vaccination in controlling
the COVID-19 epidemic. It is shown that the disease
persists for a long time if the stochastic basic reproduc-
tion number RS

0V > 1 holds.We have also proved a suf-
ficient condition for disease eradication. Our analysis
shows that the disease cannot persist if Rext

0V < 1. How-
ever, this latter condition may not hold if the infectiv-
ity increases and/or the vaccine-induced immunity loss
increases. Indian and ItalianCOVID-19 data are used to
demonstrate various dynamical behaviours of the sys-
tem and disease persistence. A non-trivial observation
is that mass vaccination cannot eradicate the disease
if the vaccine-induced immunity loss is high. Disease
eradication is also challenging with the ongoing immu-
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nization process if the infectivity of the virus is also
high. These results decipher that the infection will last
long unless a long-lasting vaccine candidate appears or
a low infectious variant replaces the highly contagious
COVID-19 variant.
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1 Introduction

Vaccination against COVID-19 infection started in the
UK at the end of 2020 [33]. Presently, ten WHO-
recommended vaccine candidates are in use through-
out the globe [42]. A good proportion of the popula-
tion is vaccinated in the one year of its application [7].
Though the COVID-19 pandemic has not been con-
trolled, its morbidity and mortality have significantly
reduced due to vaccination [35,36]. Numerous math-
ematical models have been proposed and analysed to
determine the course of the COVID-19 pandemic since
the WHO announced the public health emergency of
international concern (PHEIC) on 30 January 2020
[41] to restrict the spread of the novel coronavirus.
These are mainly deterministic SEIR epidemic models
or their variants [2,17,25,26,29,30,32,38]. A few are
stochastic models [1,16,19,40,45]. Obviously, these
earlier models did not consider the effect of vacci-
nation and can no longer be used for the epidemic
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course once the full-fledged COVID-19 vaccination
has started. Any current time epidemic model should
contain a vaccinated class. Recently, some researchers
have proposed and analysed some COVID-19 vacci-
nation models to find the effect of immunization on
the disease dynamics [11,12,18,27,28,34,39,44]. A
case study of Japan shows that reduced vaccine effi-
cacy and roll-out of COVID-19 restriction may lead
to a surge of COVID-19 cases [11]. Ghostine et al.
[12] have proposed an enhanced SEIR model, includ-
ing a vaccination compartment to mimic the spread of
the coronavirus epidemic in Saudi Arabia. It is shown
that intensifying the vaccination campaign can signif-
icantly decrease the number of confirmed cases and
deaths. Kurmi and Chouhan [18] analysed an eight-
compartmentCOVID-19 vaccinationmodel using opti-
mal control theory. They investigated the impact of
vaccination on the spread of the disease and demon-
strated that a combination of community mitigation
strategies and vaccination can effectivelyminimize this
pandemic. The simulations, however, were done with
a hypothetical parameter set. A COVID-19 vaccina-
tion model was studied in [27] to show that the waning
of vaccine-induced immunity significantly impacts the
disease dynamics. Rabiu and Iyaniwura [34] developed
a COVID-19 model to assess the impact of vaccina-
tion and immunity waning on the dynamics of the dis-
ease. Without considering a precise vaccination class,
De la Sen and Ibeas [39] analysed an SEIR-type epi-
demic model to observe the combined role of vaccina-
tion and antiviral drugs in controlling the COVID-19
pandemic. An SEIR-type epidemic model with time
delay and vaccination control was considered by Zhai
et al. [44]. They have considered the vaccination strat-
egy based on feedback linearization techniques and
showed that the disease would persist in the popula-
tion if there is no vaccination control. All these models
are deterministic types and do not consider any uncer-
tainty in the rate parameters. None of these models
studied the effect of vaccine-induced immunity loss on
the persistence of the disease. However, understand-
ing the dynamics of a novel virus is insufficient if the
inherent noise in the rate parameters is not considered.
It is reported that there is uncertainty in the COVID-
19 infection rate [24]. Due to spatial heterogeneity and
other physical factors, there is a significant variation
in the COVID-19 recovery time and rate [8,37]. Most
importantly, the efficacy of vaccines produced in the
shortest time is primarily unknown. It is also unclear

how long these vaccines will provide protection against
COVID-19 infection and towhat extent. Even after tak-
ing a total dose of the vaccine, it is now recommended
for a booster dose, implying the vaccine’s efficacy loss
[6,15]. This indicates the existence of many uncer-
tainties in the COVID-19 disease dynamics, its recov-
ery rate and vaccine efficacy. So the question is: Can
the existing vaccination drive eradicate the disease? If
it is, what should be the parametric condition, given
that there are many uncertainties in COVID-19 disease
and vaccine efficacy? We answered these questions by
analysing a six-dimensional stochastic epidemicmodel
and demonstrated the effect of vaccination in control-
ling the COVID-19 epidemic. We considered noise in
these rate parameters due to the variability in the infec-
tion rate, recovery rate and vaccine efficacy and deter-
mined the disease persistence and eradication condi-
tions. Using the Indian and Italian COVID-19 data, we
estimated the best-fitted parameters and noise intensi-
ties for the considered model. We then observed the
variational effects of the force of infection, vaccination
and immunity waning rate parameters. Our analysis
reveals that the COVID-19 disease will persist over the
existing vaccine efficacy and transmissibility for a long
time.

The remaining portion of this paper is organized
in the following sequence. The stochastic COVID-19
vaccination model is proposed in Sect. 2. Analytical
results, including disease extinction conditions and sta-
tionary distribution of the solutions, are prescribed in
Sect. 3. Section4 shows parameter estimation and two
case studies. A discussion is presented in Sect. 5, and
the paper ends with a conclusion in Sect. 6.

2 The model

We propose an extended SEIR stochastic compartmen-
tal epidemic model to investigate the COVID-19 dis-
ease under vaccination. The total human population,
N (t), of a region is divided into six mutually exclusive
groups, viz. susceptible, exposed, detected infectives,
undetected infectives, recovered and vaccinated, which
are denoted by S, E, I, A, R and V , respectively. The
susceptible individuals are recruited through birth at a
rate Λ. After effective contact with a detected or unde-
tected COVID-19 infected individual, susceptible indi-
viduals become infected and join the E class, who carry
the virus but are not yet infectious. The transmission
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probability of COVID-19 infection from the detected
and undetected individualsmay differ. Assume that κ is
the transmission probability of disease due to the con-
tact between susceptible and undetected infected indi-
viduals. The same is (1−κ) for the contact between the
susceptible and detected individuals. If β is the average
per capita daily contact, then the susceptible individual
that joins the E class is given by β(

(1−κ)SI
N + κSA

N ). The
susceptible individuals are vaccinated at a rate q and
join the V class. Since the vaccination of a susceptible
individual does not give 100 % immunity against coro-
navirus, the vaccinated peoplemay again be infected by
the undetected and detected individuals, but possibly at
a lower rate. Considering η as the vaccination-induced
immunity loss, the portion of the vaccinated individuals
who join the exposed class at time t isη(

(1−κ)SI
N + κSA

N ).
Observe that it gives the fraction of vaccinated individ-
uals at time t losses immunity after effective interaction
with the detected and undetected infected individuals.
We call η the vaccine-induced immunity loss param-
eter or the vaccine efficacy parameter. If η = 0, then
the vaccine will be 100% effective. An exposed class
individual spends on an average 1

ω
time in E class and

then joins either the undetected class with probabil-
ity δ or the detected class with probability (1 − δ).
An average time of 1

γ1
and 1

γ
are spent by the unde-

tected and detected individuals, respectively, before
moving to the recovered class. Recovered people can
also lose immunity and join the susceptible class at a
rate of g. Natural death at a rate m is incorporated in
every compartment, and an additional disease-related
death rate di is included in the detected class, I . We do
not consider any disease-related death in the A class
because critically ill individuals, if any, may be shifted
to the I class at a rate ν. Since the coronavirus is a
novel virus, there are substantial uncertainties in the
rate constants, like infection rate [22], recovery rate [3]
in A and I classes, and also in the rate of immunity
loss [10]. To incorporate this uncertainty, we consider
random perturbations to these parameters as follows:
∓β → ∓β + σ1dB1(t), η → η + σ2dB2(t), γ1 →
γ1 + σ3dB3(t), γ → γ + σ4dB4(t), where Bi (t)
are standard mutually independent Brownian motions
and σ 2

i , i = 1, 2, 3, 4, are the intensities of the white
noises. Similar parametric perturbation has also been
considered in other biological models [4,20,21,43,46].
Encapsulating all these assumptions, the stochastic
compartmental model for COVID-19 reads

dS =
[
Λ − qS − βS

N
((1 − κ)I + κA) − mS + gR

]
dt

− σ1S

N
[(1 − κ)I + κA] dB1(t),

dE =
[

βS

N
((1 − κ)I + κA) + ηV

N
((1 − κ)I + κA)

− ωE − mE

]
dt + [(1 − κ)I + κA]

N

(σ1SdB1(t) + σ2V dB2(t)),

dA = [
δωE − (γ1 + ν + m)A

]
dt − σ3AdB3(t),

dI = [
(1 − δ)ωE − (γ + m + di )I + νA

]
dt

− σ4 IdB4(t),

dR = [
γ1A + γ I − gR − mR

]
dt

+ σ3AdB3(t) + σ4 IdB4(t),

dV =
[
qS − ηV

N
[(1 − κ)I + κA] − mV

]
dt

− σ2V

N
[(1 − κ)I + κA] dB2(t). (1)

In each equation, the expression multiplied with dt is
called the drift coefficient and the expressionmultiplied
with dBi (t) is called the diffusion coefficient.

The initial values for the state variables are consid-
ered as

S(0) ≥ 0, E(0) ≥ 0, A(0) ≥ 0, I (0) ≥ 0, R(0) = 0,

V (0) = 0. (2)

3 Results

It is to be noted that the system (1) considers the human
population as its variables which must be non-negative
and bounded. Also, from a dynamical point of view, the
solution of the system (1) should exist uniquely. Themul-
tiplicative noise considered in (1)may cause a population
explosion. It is, therefore, imperative to show that the
supposed system has a unique solution without any pop-
ulation explosion, i.e. the solution is global, and all the
solutions are positive when starting with positive initial
values. We have the following theorem for these results.

Theorem 1 For any initial value (S(0), E(0), A(0),
I (0), R(0), V (0)) ∈ R

6+, there exists a unique global
solution of the system (1) such that (S(t), E(t), A(t),
I (t), R(t), V (t))∈ R

6+ for all t ≥ 0 and the solution
remains inR6+ with probability 1, i.e. almost surely (a.s).
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Proof See Appendix I for its proof. ��
It is worth mentioning that the stochastic system (1)

has no equilibrium point. However, it may have some sta-
tionary distribution, meaning that no significant change
will occur in the asymptotic solution of the system when
the time is substantial. From an epidemic point of view,
such distribution implies the long-term persistence of the
disease.We show that the stationary distribution occurs if
the following theorem holds good. We adopted the tech-
nique given in [13] to prove this result. The following
lemma will be used in the sequel.

Lemma 1 [47] Let X (t) be a regular Markov process
(time-homogeneous) inRn+ whose dynamics is described
by the stochastic equation

dX (t) = b(X)t + Σk
r=1hr (X)dBr (t). (3)

Then the corresponding diffusion matrix is defined as

A(x) = [
aij

]
, aij = Σk

r=1h
i
r (X)h j

r (X)

and the solution X (t) of (3) has a unique stationary dis-
tribution π(.) if there exist a bounded domain U ∈ Rn

with regular boundary Γ and (a) there is a positive num-
ber M2 such that Σ l

i, j=1ai j (x)ξiξ j ≥ M2|ξ |2, (b) there
exist a non-negativeC2-function V1 such that LV1 is neg-
ative for anyRn+ for all x ∈R

n+, where f (.) is a function
integrable with respect to the measure π .

Theorem 2 Assume that

RS
0V = ω(βm + ηq)

(q + m + 1
2σ 2

1 )(γ + m + di + 1
2σ 2

4 )

× {κδ(γ + m + di ) + (1 − κ)(δν + (1 − δ)(ν + γ1 + m))}
(ν + γ1 + m + 1

2σ 2
3 )(ω + m + 1

2 (σ 2
1 + σ 2

2 ))
.

Then, for any initial value (S(0), E(0), A(0), I (0), R(0),
V (0)) ∈ R

6+, a sufficient condition for existing a station-
ary distribution π(.) of the system (1) is RS

0V > 1.

Proof By Theorem 1, for any initial size of population
(S(0), E(0), A(0), I (0), R(0), V (0)) ∈ R

6+, there exists
a unique non-local global solution (S, E, A, I, R, V ) ∈
R
6+. Let us denote D = 1

N [(1 − κ)I + κA]. The diffu-
sion matrix of the system (1) is given by

A′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ 2
1 S

2D2 0 0 0 0 0

0 σ 2
1 S

2D2+ 0 0 0 0
σ 2
2 V

2D2

0 0 σ 2
3 A

2 0 0 0
0 0 0 σ 2

4 I
2 0 0

0 0 0 0 σ 2
3 A

2+ 0
σ 2
4 I

2

0 0 0 0 0 σ 2
2 V

2D2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Let D̄α be a bounded domain in R
6+ which excludes the

origin.ChooseM1 = min(S,E,A,I,R,V )∈D̄α∈R6+{σ 2
1 S2D2,

(σ 2
1 S2 + σ 2

2 V
2)D2, σ 2

3 A
2, σ 2

4 I
2, σ 2

3 A
2 + σ 2

4 I
2, σ 2

2 V
2

D2}. For ζ̄ = (ζ̄1, ζ̄2, ζ̄3, ζ̄4, ζ̄5, ζ̄6) ∈ R
6+, we obtain

Σ6
i, j=1ai j (S, E, A, I, R, V )ζ̄i ζ̄ j = σ 2

1 S
2D2ζ̄1

2

+ (σ 2
1 S

2 + σ 2
2 V

2)D2ζ̄2
2 + σ 2

3 A
2ζ̄3

2 + σ 2
4 I

2ζ̄4
2

+ (σ 2
3 A

2 + σ 2
4 I

2)ζ̄5
2 + σ 2

2 V
2D2ζ̄6

2
,

(S, E, A, I, R, V ) ∈ D̄α.

Thus, the condition (a) of Lemma 1 holds. In order to
prove the second assertion of the lemma, define a non-
negative C2 function H1, where H1 : R6+ → R be such
that H1 = (S+ E+ A+ I + R+V )− B1lnS− B2lnE−
B3lnA − B4lnI , where B1, B2, B3 and B4 are positive
constants to be determined later.

Applying Ito formula, one gets

L(S + E + A + I + R + V ) = Λ − m(S + E + A + I

+ R + V ) − di I,

L(−lnS) = −Λ

S
+ β

N
[κA + (1 − κ)I ] + q + m − gR

N

+ 1

2N 2 σ 2
1 [κA + (1 − κ)I ]2,

L(−lnE) = − ηV

NE
[κA + (1 − κ)I ]

− ηV

NE
[κA + (1 − κ)I ]

+ ω + m + 1

2N 2E2 (σ 2
1 S

2 + σ 2
2 V

2)[κA + (1 − κ)I ]2,

L(−lnA) = −δωE

A
+ (γ1 + ν + m) + 1

2
σ 2
3 ,

L(−lnI ) = − (1 − δ)ωE

I
− νA

I
+ (γ + m + di ) + 1

2
σ 2
4 .

Therefore, we have

LH1 = Λ − m(S + E + A + I + R + V ) − di I

+B1

(
− Λ

S
+ β

N
[κA + (1 − κ)I ] + q + m

− gR

N
+ 1

2N 2 σ 2
1 [κA + (1 − κ)I ]2

)

+B2

(
− βS

N E
[κA + (1 − κ)I ] + ω + m

−ηβV

NE
[κA + (1 − κ)I ]

+ 1

2N 2E2 (σ 2
1 S

2 + σ 2
2 V

2)[κA + (1 − κ)I ]2
)

+B3

(
− δωE

A
+ (γ1 + ν + m) + 1

2
σ 2
3

)
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+B4

(
− (1 − δ)ωE

I
− νA

I
+ (γ + m + di ) + 1

2
σ 2
4

)

≤ −4

(
m(S + E + A + I + R + V )

ΛB1

S

βSB2κA

NE

) 1
4

×
(

δωB3E

A

) 1
4

+
(
q + m + 1

2
σ 2
1

)
B1 + Λ +

(
ω + m

+1

2
(σ 2

1 + σ 2
2 )

)
B2 +

(
γ1 + ν + m + 1

2
σ 2
3

)
B3

+
(

γ + m + di + 1

2
σ 2
4

)
B4 − di I

+ 1

N
β(κA + (1 − κ)I )B1

−β(1 − κ)SI

N E
B2 − gR

N
B1

− βV

NE
(κA + (1 − κ)I )B2 − (1 − δ)ωE

I
B4

−νA

I
B4. (4)

Define
B1 = (βm+ηq)(κδ(γ+m+di )+(1−κ)δν+(1−κ)(1−δ)(γ1+ν+m))(

q+m+ 1
2 σ 2

1

)
mβκδ

(
γ+m+di+ 1

2 σ 2
4

)
and let

Λ =
(

ω + m + 1

2
(σ 2

1 + σ 2
2 )

)
,

B2 =
(

γ1 + ν + m + 1

2
σ 2
3

)
,

B3 =
(

γ + m + di + 1

2
σ 2
4

)
B4.

Therefore,

B2 = Λ(
ω + m + 1

2 (σ
2
1 + σ 2

2 )
) ,

B3 = Λ(
γ1 + ν + m + 1

2σ
2
3

) ,

B4 = Λ(
γ + m + di + 1

2σ
2
4

) .

Define

RS
0V = ω(βm + ηq)

(q + m + 1
2σ 2

1 )(γ + m + di + 1
2σ 2

4 )

×{κδ(γ + m + di ) + (1 − κ)(δν + (1 − δ)(ν + γ1 + m))}
(ν + γ1 + m + 1

2σ 2
3 )(ω + m + 1

2 (σ 2
1 + σ 2

2 ))

(5)

so that (4) becomes

LH1 ≤ −4Λ

[(
RS
0V

) 1
4 − 1

]
+

(
q + m + 1

2
σ 2
1

)
B1 − di I

+ 1

N
β(κA + (1 − κ)I )B1 − β(1 − κ)SI

N E
B2 − νA

I
B4

− βV

NE
(κA + (1 − κ)I )B2 − (1 − δ)ωE

I
B4.

(6)

We further define

H2 = B5((S + E + A + I + R + V ) − B1lnS − B2lnE

− B3lnA − B4lnI ) − lnS − lnR − lnV + (S + E + A

+ I + R + V ) = (B5 + 1)(S + E + A + I + R + V )

− (1 + B1B5)lnS − B2B5lnE − B3B5lnA − lnR − lnV .

(7)

LetWk1 =
(

1
k1

, k1
)

×
(

1
k1

, k1
)

×
(

1
k1

, k1
)

×
(

1
k1

, k1
)

×(
1
k1

, k1
)

×
(

1
k1

, k1
)
. As k1 → ∞, it is evident that

lim inf(S,E,A,I,R,V )∈R6+\Wk1

H2(S, E, A, I, R, V ) = +∞. (8)

Now, we intend to prove that H2(S, E, A, I, R, V ) has
the unique smallest value

H2(S(0), E(0), A(0), I (0), R(0), V (0)).

Taking partial derivatives of the function H2(S, E, A, I,
R, V ) with respect to each state variable, we get

∂H2(S, E, A, I, R, V )

∂S
= 1 + B5 − 1 + B1B5

S
,

∂H2(S, E, A, I, R, V )

∂E
= 1 + B5 − B2B5

E
,

∂H2(S, E, A, I, R, V )

∂A
= 1 + B5 − B3B5

A
,

∂H2(S, E, A, I, R, V )

∂ I
= 1 + B5 − B4B5

I
,

∂H2(S, E, A, I, R, V )

∂R
= 1 + B5 − 1

R
,

∂H2(S, E, A, I, R, V )

∂V
= 1 + B5 − 1

V
. (9)

Making each of these partial derivatives equal to zero,
one gets S = 1+B1B5

1+B5
, E = B2B5

1+B5
, A = B3B5

1+B5
, I =

B4B5
1+B5

, R = 1
1+B5

, V = 1
1+B5

as the unique stagnation
point of H2. Furthermore, the Hesse matrix of the func-
tion H2(S, E, A, I, R, V ) at the given initial population
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density reads

M1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1+B1B5
S2(0)

0 0 0 0 0

0 B2B5
E2(0)

0 0 0 0

0 0 B3B5
A2(0)

0 0 0

0 0 0 B4B5
I 2(0)

0 0

0 0 0 0 1
R2(0)

0

0 0 0 0 0 1
V 2(0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Clearly, the matrix M1 is positive definite. Hence, H2

attains the smallest value at

(
1+B1B5
1+B5

,
B2B5
1+B5

,
B3B5
1+B5

,
B4B5
1+B5

,

1
1+B5

, 1
1+B5

)
. From the continuity of H2 and using

equation (8), the function H2(S, E, A, I, R, V ) has the
unique smallest value H2(S(0), E(0), A(0), I (0), R(0),
V (0)) inside R6+.

Wenowdefine a non-negativeC2 function H : R6+ →
R+ such that H(S, E, A, I, R, V ) = H2(S, E, A, I, R,

V )−H2(S(0), E(0), A(0), I (0), R(0), V (0)).Applying
Ito formula on H and using the model (1), one obtains

L(H) ≤ B5

{
− 4Λ

[(
RS
0V

) 1
4 − 1

]
+

(
q + m + 1

2
σ 2
1

)
B1

− di I − gR

N
B1 − β(1 − κ)SI

N E
B2

+ 1

N
β(κA + (1 − κ)I )B1

− νA

I
B4 − βV

NE
(κA + (1 − κ)I )B2 − (1 − δ)ωE

I
B4

}

− Λ

S
+ β

N
(κA + (1 − κ)I ) + q

+ m − gR

N
+ 1

2
σ 2
1 − γ1A

R

− γ I

R
+ g

+ m + 1

2
σ 2
3
A2

R2 + 1

2
σ 2
4
I 2

R2 − qS

V
+ m + 1

2
σ 2
2 + Λ

+ β

V
[κA + (1 − κ)I ] − di I

− m(S + E + A + I + R + V ).

(10)

Under the assumption B6 = 4Λ

[(
RS
0V

) 1
4 − 1

]
> 0,

(10) becomes

L(H) ≤ −B5B6 − (B5 + 1)di I + B1B5

(
q + m + 1

2
σ 2
1

)

+(1 + B1B5)
β

N
(κA + (1 − κ)I ) − (1 + B1B5)

gR

N

−β(1 − κ)SI

NE
B2B5 − B4B5νA

I

−γ1A

R
− γ I

R
− Λ

S
+ g

−βV

NE
(κA + (1 − κ)I )B2B5 − (1 − δ)ωE

I
B4B5

−qS

V
+ q + 3m + Λ + 1

2
σ 2
1 + 1

2
σ 2
2 + 1

2
σ 2
3
A2

R2

+1

2
σ 2
4
I 2

R2 − mN . (11)

Consider now the following bounded subsetU =
{
δ1 <

S < 1
δ2

, δ1 < E < 1
δ2

, δ1 < A < 1
δ2

, δ1 < I <

1
δ2

, δ1 < R < 1
δ2

, δ1 < V < 1
δ2

}
, where δi > 0, for

i = 1, 2, are negligibly small constants to be chosen later
on. Now, we divide the domainR6+\U into the following
sub-domains:

U1 = {(S, E, A, I, R, V ) : 0 < S ≤ δ1} ,

U2 = {(S, E, A, I, R, V ) : 0 < E ≤ δ1, S > δ2} ,

U3 = {(S, E, A, I, R, V ) : 0 < A ≤ δ1, E > δ2} ,

U4 = {(S, E, A, I, R, V ) : 0 < I ≤ δ1, A > δ2} ,

U5 = {(S, E, A, I, R, V ) : 0 < R ≤ δ2, I > δ1} ,

U6 = {(S, E, A, I, R, V ) : 0 < V ≤ δ1, R > δ2} ,

U7 =
{
(S, E, A, I, R, V ) : S ≥ 1

δ2

}
,

U8 =
{
(S, E, A, I, R, V ) : E ≥ 1

δ2

}
,

U9 =
{
(S, E, A, I, R, V ) : A ≥ 1

δ2

}
,

U10 =
{
(S, E, A, I, R, V ) : I ≥ 1

δ2

}
,

U11 =
{
(S, E, A, I, R, V ) : R ≥ 1

δ2

}
,

U12 =
{
(S, E, A, I, R, V ) : V ≥ 1

δ2

}
.

(12)

We have to prove that LH(S, E, A, I, R, V ) < 0 on
R
6+\U , or equivalently, LH < 0 in all of the above

twelve regions. We provide proofs of the first two cases.
The other cases can be proved with a similar argument.
Case 1. Suppose (S, E, A, I, R, V ) ∈ U1, then (11)
becomes

L(H) ≤ −B5B6 − (B5 + 1)di I

+B1B5

(
q + m + 1

2
σ 2
1

)

+(1 + B1B5)
β

N
(κA + (1 − κ)I )

−(1 + B1B5)
gR

N
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−β(1 − κ)SI

N E
B2B5 − B4B5νA

I
− Λ

δ1

−γ1A

R
− γ I

R
+ g

− βV

NE
(κA + (1 − κ)I )B2B5

− (1 − δ)ωE

I
B4B5 − qS

V

+q + 3m + Λ + 1

2
σ 2
1 + 1

2
σ 2
2

+1

2
σ 2
3
A2

R2 + 1

2
σ 2
4
I 2

R2 − mN .

Choosing δ1 > 0 sufficiently small, one obtainsL(H) <

0 for every (S, E, A, I, R, V ) ∈ U1.
Case 2. If (S, E, A, I, R, V ) ∈ U2, then from (11), we
obtain

L(H) ≤ −B5B6 − (B5 + 1)di I

+ B1B5

(
q + m + 1

2
σ 2
1

)

+ (1 + B1B5)
β

N
(κA + (1 − κ)I ) − (1 + B1B5)

gR

N

− β(1 − κ)SI

NE
B2B5 − B4B5νA

I

− Λ

S
− γ1A

R
− γ I

R
+ g

− βV

NE
(κA + (1 − κ)I )B2B5

− (1 − δ)ωE

I
B4B5 − qS

V

+ q + 3m + Λ + 1

2
σ 2
1 + 1

2
σ 2
2 + 1

2
σ 2
3
A2

R2

+ 1

2
σ 2
4
I 2

R2 − mδ2

δ1
.

Letting δ22 = δ1 and choosing large positive value of B5
and sufficiently small value of δ2, one haveL(H) < 0 for
every (S, E, A, I, R, V ) ∈ U2. Similarly, by selecting
sufficiently small values of either δ1 > 0 or δ2 > 0, it can
be easily shown that L(H) < 0 for the rest cases. Thus,
L(H) < 0 can be attained for every (S, E, A, I, R, V ) ∈
U12. Therefore, condition (b) of Lemma1 is satisfied, and
hence, Theorem 2 is proved, following Lemma 1. ��
Remark 1 Here, RS

0V defined in (5) may be called as
the stochastic basic reproduction number (SBRN),which
ensures the disease establishment in the stochastic sys-
tem (1) when RS

0V > 1.

Remark 2 One can easily obtain (see Appendix II) the
deterministic basic reproduction number (DBRN) as
RD
0V = ω(βm+ηq){κδ(γ+m+di )+(1−κ)δν+(1−κ)(1−δ)(ν+γ1+m)}

(q+m)(γ+m+di )(ν+γ1+m)(ω+m)
.

If RD
0V > 1, then disease can be established in the cor-

responding deterministic system. Observe that the basic
reproduction number of the stochastic system (RS

0V ) is
smaller than that of the corresponding deterministic sys-
tem (RD

0V ). Furthermore, if σi = 0, i = 1, .., 4, then RS
0V

coincides with RD
0V .

Observe that both the infected classes (symptomatic
and asymptomatic) originate from the exposed class.
Thus, the infection will eventually be eradicated if the
individuals of the exposed class go extinct. For the sys-
tem (1), the exposed class E(t) is said to be extinct (i.e.
the systemwill be disease-free) if limt→∞ E(t) = 0 a.s.
[19]. We give here some sufficient conditions for which
the exposed class dies out over time. In proving the
extinction criterion, the result of the strong law of large
number given in the following lemma will be used.

Lemma 2 [31]Let M = {M}t≥0 be a continuous valued
local martingale and vanishing at t = 0, then

limt→∞ < M, Mt >< ∞ �⇒ lim
t→∞

Mt

< M, M >t
= 0,

and

lim sup
t→∞

< M, M >t

t
< 0 �⇒ lim

t→∞
Mt

t
= 0 a.s.

Theorem 3 The exposed individuals of the system (1)
tend to zero exponentially almost surely if Rext

0V < 1,

where Rext
0V = 1

ω+m

(
β2

2σ 2
1

+ η2

2σ 2
2

)
.

Proof Assume that (S(t), E(t), A(t), I (t), R(t), V (t)) ∈
R
6+ is a solution of system (1) satisfying the initial value

(S(0), E(0), A(0), I (0), R(0), V (0)) ∈ R
6+. Following

Ito’s formula, we have

d(ln E(t)) =
(

βS(τ )((1 − κ)I (τ ) + κA(τ ))

N (τ )E(τ )

− σ 2
1 S

2(τ )((1 − κ)I (τ ) + κA(τ ))2

2N 2(τ )E2(τ )

)
dt

+
(

ηV (τ )((1 − κ)I (τ ) + κA(τ ))

N (τ )E(τ )

− σ 2
2 V

2(τ )((1 − κ)I (τ ) + κA(τ ))2

2N 2(τ )E2(τ )

)
dt − (ω + m)

+ σ1S

N E
((1 − κ)I + κA) dB1(t)

+ σ2V

NE
((1 − κ)I + κA) dB2(t).

(13)
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Upon integration from 0 to t , we have

ln E(t) =
∫ t

0

(
βS(τ )((1 − κ)I (τ ) + κA(τ ))

N (τ )E(τ )

− σ 2
1 S

2(τ )((1 − κ)I (τ ) + κA(τ ))2

2N (τ )2E2(τ )

)
dt

+
∫ t

0

(
ηV (τ )((1 − κ)I (τ ) + κA(τ ))

N (τ )E(τ )

− σ 2
2 V

2(τ )((1 − κ)I (τ ) + κA(τ ))2

2N 2(τ )E2(τ )

)
dt

− (ω + m) t + M1(t) + M2(t) + ln E(0),

(14)

whereM1(t) = ∫ t
0

σ1S
N E ((1−κ)I+κA)dB1(τ ), M2(t) =∫ t

0
σ2V
NE ((1− κ)I + κA) dB2(τ ) are the local continuous

martingale with M1(0) = 0, M2(0) = 0. We, then have

< M1, M1 >t=
∫ t
0

σ 2
1 S2

N2E2 ((1−κ)I +κA)2 dt < σ 2
1 and

< M2, M2 >t=
∫ t
0

σ 2
2 V

2

N2E2 ((1 − κ)I + κA)2 dt <

σ 2
2 . Using the fact max

(
βS(τ )((1−κ)I (τ )+κA(τ ))

N (τ )E(τ )

− σ 2
1 S2(τ )((1−κ)I (τ )+κA(τ ))2

2N (τ )2E2(τ )

)
= β2

2σ 2
1
and(

ηV (τ )((1−κ)I (τ )+κA(τ ))
N (τ )E(τ )

− σ 2
2 V

2(τ )((1−κ)I (τ )+κA(τ ))2

2N2(τ )E2(τ )

)

= η2

2σ 2
2
, (14) can be written as

ln E(t) ≤
(

β2

2σ 2
1

+ η2

2σ 2
2

− (ω + m)

)
t

+ M1(t) + M2(t) + ln E(0).

(15)

Taking the limit superior as t → ∞, after dividing both
sides of (15) by t (> 0) and using Lemma 2, we have

lim
t→∞ sup

ln E(t)

t
≤

(
β2

2σ 2
1

+ η2

2σ 2
2

− (ω + m)

)
< 0.

(16)

If 1
ω+m

(
β2

2σ 2
1

+ η2

2σ 2
2

)
< 1, then limt→∞ E(t) = 0

almost surely. Hence, the theorem is proved. ��
It is observable that Rext

0V is an increasing function of β

and η. Thus, if the infection rate increases or the vaccine-
induced immunity loss increases, the inequality Rext

0V < 1
may not be held, and consequently, the disease eradica-
tion may not be possible.

4 Case study

For the case study, we considered the COVID-19 data
from two countries, India and Italy. The parameters

estimation and other detailed analysis were done using
the Indian COVID-19 epidemic data available from
the repositories Covid19India.Org (https://covid19india.
org) andWorldometers.info (https://www.worldometers.
info/coronavirus/country/india/). The daily and cumula-
tive numbers of infected, recovered, deceased, and vacci-
nated cases are reported and updated daily in these depos-
itories. The results of Italy were obtained following a
similar analysis.

The per day birth rate of new susceptibles is assumed
to be constant during the study period. So, we consid-
ered this rate Λ as a constant. However, the parameters,
infection spreading rate β, probability of joining from
the exposed class to the undetected class δ, the recovery
rates γ1, γ , the death rate di , vaccination-induced immu-
nity loss rate η and vaccination rate (q) are all subject
to be different at different time. For example, β is differ-
ent because the severity of the contagious nature of the
COVID-19 virus is different due to the different infec-
tivity of the virus strain. The parameter value of δ may
be different because of the different policies imposed
by the government from time to time. The parameters
γ1, γ, di , η are also different as the different COVID-19
strains have different fatalities, and different individu-
als have different immunity levels, and the presence of
comorbidities andother immunosuppression factors. The
vaccination rate (q) is also not uniform throughout the
period as it depends on the vaccine availability and the
infrastructure level. It is unexpected to have a single data
set for the long vaccination period of any country thatwill
best fit the actual data. Instead, it will bemoreworthwhile
to adopt the method of piecewise fitting the actual data
with the vaccine model (1).

We have considered India’s COVID-19 data for 2
February 2021 to 7 July 2022. Different variants of
Covid-19 have different infectivity and virulence. Fur-
thermore, the vaccination rate was low initially but
increased subsequently. We, therefore, divided the data
set of the study period into five intervals to obtain a good
fit parameter set: (1) from 2 February 2021 to 6 May
2021 (the date when the peak is attained in the second
wave); (2) from 7 May 2021 to 27 December 2021 (end
of the second wave); (3) from 28 December 2021 to 20
January 2022 (the date when the peak of the third wave
is attained); (4) from 21 January 2022 to 15 April 2022
(end of the third wave); and (5) from 16 April 2022 to
7 July 2022, where study period ends. We fitted (see
Fig. 1) the actual COVID-19 data (in red colour) for the
considered period with the stochastic model solution (in
blue colour). Table 1 provides the best-fitted parame-
ters and optimal noise intensities. The Italian COVID-19
data (available from the repository ourworldindata.org
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Table 1 Estimated parameter values of system (1) for Indian
COVID-19 data for the periods: (1) 2 February 2021 to 6 May
2021; (2) 7 May 2021 to 27 December 2021; (3) 28 December

2021 to 20 January 2022; (4) from 21 January 2022 to 15 April
2022; (5) from 16 April 2022 to 7 July 2022

Period Λ m β κ δ ω γ γ1 g di ν η q σ1 σ2 σ3 σ4

1 77756 4.1 × 10−5 0.115 0.92 0.66 0.18 0.03 0.032 0.004 0.007 0.002 0.11 1.6 × 10−3 0.03 0.02 .035 0.04

2 77756 4.1 × 10−5 0.109 0.92 0.66 0.18 0.014 0.16 0.064 0.018 0.002 0.23 2.1 ×10−3 0.06 0.05 0.04 0.05

3 77756 4.1 × 10−5 0.57 0.92 0.97 0.18 0.004 0.205 0.14 0.017 0.002 0.23 4 × 10−3 0.09 0.08 0.12 0.1

4 77756 4.1 × 10−5 0.090 0.92 0.99 0.18 0.004 0.364 0.42 0.024 0.002 0.12 4.8 × 10−3 0.14 0.11 0.07 0.4

5 77756 4.1 × 10−5 0.134 0.92 0.66 0.18 0.029 0.030 0.0004 0.013 0.002 0.15 2.5 × 10−3 0.015 0.023 0.031 0.03

Fig. 1 COVID-19 data fitting with the parameter values and
noise intensities as in Table 1. The first row provides the cumula-
tive actualCOVID-19data (red-coloured curve) of the confirmed,
recovered and vaccinated cases in India from 2 February 2021 to

5May 2021. The solution (blue-coloured curve) of the stochastic
model (1) is the fitted curve with the parameter values of the first
row of Table 1. The other rows represent the same consecutive
periods mentioned in Table 1
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Fig. 2 Per dayCOVID-19positive cases in India for the variation
in the rate parametersη andq, representing the immunity loss and
vaccination rate, respectively. The total disease cases (asymptotic
plus symptomatic) are the end values of the solutions for 1000
time steps. Noise intensities and other parameter values remain
fixed from 28 December 2021 to 20 January 2022 (see Table 1,
third row), the increasing phase of COVID-19 cases of the last
wave

(https://ourworldindata.\\org/covid-cases), used for the
study period 11 October 2021 to 7 July 2022, were
divided into three time segments: (1) from 11 October
2021 to 18 January 2022 (the date when the peak is
attained in the second wave); (2) from 18 January 2022
to 20 April 2022 (peak is attained in third wave); (3)
from 21 April 2022 to 7 July 2022 (where the study
period ends). As in the case of Indian COVID-19 data
fitting, we fitted (see Fig. 7) the actual COVID-19 data
(red colour) of Italy with the model generated data (blue
colour). The best-fitted parameters and the optimal noise
intensities are provided in Table 2. The parameters and
noise estimation techniques are given in Appendix III.

Indian COVID-19 vaccination programme started on
16 January 2021 [5]. Though the initial vaccination rate
was slow, it intensified later on.Wedemonstrated how the
vaccination rate (q) and the immunity loss rate (η) jointly
influence the disease burden. We also explained why the
COVID-19 positive cases increased during the thirdwave
even after mass vaccination. To elucidate, we considered
the parameter values of the third row (see Table 1), repre-
senting the increasing phase of the third wave, and plot-
ted (Fig. 2) the per day COVID-19 positive cases (A+ I )
from the solution of system (1) for simultaneous variation
in q and η. The parameters q and η were varied in the
range 0−0.024 and 0.1−0.25, respectively. The lower
range value of each parameter was considered smaller
than all the estimated values of the said parameter (see

Fig. 3 Per day COVID-19 positive cases with respect to β and
q (up) and β and η (down). Noise intensities and other parameter
values remain fixed for the period of 28 December 2021 to 20
January 2022, see Table 1

Table 1), and the value at the higher rangewas considered
larger than all the estimated values. It shows that daily
COVID-19 positive cases increase with the increasing
vaccination rate (q) when the vaccine-induced immunity
loss (η) exceeds the value 0.23, i.e. if the vaccine efficacy
is lower than 77%. On the contrary, if vaccine efficacy
is higher than 77% (or η < 0.23), then daily COVID-
19 positive cases decrease with increasing immuniza-
tion. Observe that the per day cases become as high as
0.397 million when η = 0.25 and q = 0.22. It is to be
mentioned that Indian COVID-19 positive cases during
the peak (20th January) of the third wave were reported
as 0.34 million per day (https://www.worldometers.info/
coronavirus/country/india/). Thus, increased vaccina-
tion cannot eradicate COVID-19 infection if the vaccine
efficacy is low; instead, it increases the COVID-19 cases.
However, infection eradication is possible with a higher
vaccination rate if the vaccine immunity is more than
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Fig. 4 Left: Per day COVID-19 positive cases in Italy for the
variation in the rate parameters η and q, representing the immu-
nity loss and vaccination rate, respectively. The total disease
cases (asymptotic plus symptomatic) are the end values of the

solutions for 1000 time steps. Right: same for the variation of β

and η. Noise intensities and other parameter values remain fixed
in the period from 21st April 2022 to 7th July 2022 (see Table 2)

77%. It is to be mentioned that RS
0V < 1 holds for the

lower values of q and η; RS
0V > 1 for its higher values.

A similar phenomenon is plotted in Fig. 3 (up) when
the vaccination rate (q) and force of infection (β) are var-
ied simultaneously. The COVID-19 positive cases grad-
ually increase if β is high and q is low. The number of
positive cases may be as high as 0.5 million per day at
the low vaccination and high transmission rates (below
figure). In the opposite case, the disease is eradicated.
The lower figure represents the newly infected per day
COVID-19 cases when the force of infection (β) and the
vaccine efficacy (η) parameters are jointly varied. The
infection spreads rapidly when β > 0.25 and η > 0.2
(Fig. 3, below). The COVID-19 cases in this parametric
range may be as high as 0.532 million per day. It is also
to be noted that the number of COVID-19 cases will be
few if β is high and η is low. It demonstrates that vac-
cine effectiveness is crucial in controlling the COVID-19
cases. The disease may be controlled even at a very high
infection rate if the vaccine efficacy is close to 100%
(i.e. η is close to zero). On the other hand, daily COVID-
19 cases will remain under control if β is low and η is
significantly high. Thus, a strain of coronavirus with low
infectivity would not sustain at the present immunization
rate.

We plotted a similar figure as in the case study for
India (Fig. 2) to explore how the number of disease cases
in Italy would change under the variation of parameters
q and η. In the case of Italy, we observe (Fig. 4, left)
that if the vaccination-induced immunity loss is higher

Fig. 5 Left: Predicted cumulative COVID-19 confirmed cases
in India for the next 150 days starting 7 July 2022. The simula-
tion results of the system (1) (blue line) predict that India may
observe 4.88× 107 positive cases until the first week of Novem-
ber 2022. The confidence interval (95%) is plotted with a yellow
shed. Right: Predicted daily confirmed cases for the same period.
The red curve in both figures indicates the actual cases, and the
dotted vertical line indicates 7 July 2022. Parameters and noise
intensities as in the last row of Table 1

than 12%, the epidemic will rapidly grow. In case of
variation of β and η, it is observed that when β is low
(< 0.1), number of confirmed cases is low (Fig. 4, right).
However, confirmed cases increase rapidly for a higher
transmission rate.

Indian COVID-19 cases are again in increasingmode.
We predicted the cumulative confirmed COVID-19 pos-
itive cases for the next 150 days based on the current
epidemiological status of India. To provide a forecast,
we repeated the stochastic system’s solution 1000 times
and then took the mean to get the estimated values with
a 95 % confidence interval (blue line of Fig. 5, left). The
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Table 2 Estimated parameter values of system (21) for Italian COVID-19 data for the periods: (1) 11 October 2021 to 18 January 2022;
(2) 19 January 2022 to 20 April 2022; and (3) 21 April 2022 to 7 July 2022

Period Λ m β κ δ ω γ γ1 g di ν η q σ1 σ2 σ3 σ4

1 1428 3.35 × 10−5 0.228 0.88 0.66 0.16 0.025 0.035 0.035 0.003 0.004 0.32 4.2 × 10−4 0.12 0.50 .23 0.21

2 1428 3.35 × 10−5 0.118 0.88 0.66 0.16 0.025 0.035 0.065 0.003 0.004 0.45 1 × 10−4 0.11 0.10 0.08 0.10

3 1428 3.35 × 10−5 0.208 0.88 0.66 0.16 0.025 0.038 0.065 0.0026 0.004 0.45 5 × 10−5 0.10 0.07 0.18 0.16

See Appendix IV for curve fitting

Fig. 6 Left: Predicted cumulative COVID-19 confirmed cases
in Italy for the next 150 days starting 7 July 2022. The simulation
results of the system (1) (blue line) predict that Italy may observe
2.49×107 positive cases until the first week of November 2022.
The confidence interval (95%) is plotted with a yellow shed.
Right: Predicted daily confirmed cases for the same period. The
red curve in both figures indicates the actual cases; the dotted
vertical line means 7 July 2022. Parameters and noise intensities
as in the last row of Table 2

curve is increasing and will continue till the first week
of November 2022, indicating that the newly infected
cases are surging gradually. The cumulative number of
the predicted infected case till the firstweek ofNovember
2022 might be between 4.82 ×107 to 5.01 ×107 in the
95% confidence interval. The predicted daily COVID-19
confirmed cases in India till the first week of November
2022 are presented in Fig. 5, right. The COVID-19 cases
in Italy also exhibit an increasing trend. Figure6 indicates
that the daily case may be around 37,142 and the cumu-
lative cases might be between 2.41 × 107 to 2.54 × 107

till the first week of November 2022. It is, however, to be
mentioned that the accurate prediction for a significantly
long period is quite impossible in the case of COVID-19
infection because this novel virus can mutate to some
strains with high infectivity [14]. Also, a change in the
control measure imposed by the authority can change the
trend.

5 Discussion

The COVID-19 infection has put the world under pres-
sure for more than two years. Most countries have expe-

rienced several waves of this infection at the cost of
millions of lives. A massive vaccination programme
started at the end of 2020, hoping the disease would be
controlled. Though the morbidity and mortality of the
COVID-19 disease reduced significantly, disease eradi-
cation, even of its control, is far fromexpected. In the sec-
ond and third waves, many countries experienced higher
positive cases than the previous peak values. Several
European countries, the UK and the USA have fully vac-
cinated a significant proportion of their population but
cannot resist further COVID-19 infection. This fact has
put the efficacy of the vaccine under question. Recent
studies show that vaccine-induced immunity is signifi-
cantly reduced after six to eightmonths post-vaccination.
The level of a COVID-19 antibody that persists after this
periodmay not be sufficient to prevent reinfection. There
is, however, uncertainty regarding the immunity loss rate
among the vaccinated population. Uncertainty also exists
in different rate parameters, e.g. the force of infection and
recovery rates. It is undoubtedly true that the infectivity
of the omicron variant is much higher than the previous
strains. Also, the severity of the disease is relatively low,
and the recovery rate is high in the current wave caused
due to the omicron variant of coronavirus. Thus, there
are many uncertainties in the COVID-19 disease dynam-
ics, the force of infection, recovery rate, vaccine avail-
ability and administration. The efficacy of vaccines and
their protection duration is unclear even after receiving
the full vaccine dose. There is also uncertainty regard-
ing the immunity loss rate among the vaccinated popu-
lation. Therefore, we searched for the answer to whether
existing vaccination drives eradicate the disease. What
would be the parametric condition for disease eradication
through vaccination in the presence of various uncertain-
ties?

Considering such uncertainties in the rate parame-
ters, we have proposed and analysed a six-dimensional
stochastic COVID-19 epidemic model in the presence
of vaccination to know whether the ongoing vaccination
drive can eliminate the disease. We used the theories of
the asymptotic behaviour of the nonlinear stochastic sys-
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tem to analyse this noise-induced dynamical system. We
here prescribed both the disease persistence and erad-
ication conditions. It is shown that the disease indeed
persists for a long time if the stochastic basic reproduc-
tion number (SBRN) is greater than unity. It is noticed
that this value of SBRN is smaller than the DBRN (deter-
ministic basic reproduction number) of the correspond-
ing deterministic model, which is usually considered a
measure of disease establishment in the latter type of
epidemic models. A sufficient condition (Rext

0V < 1) is
established for the disease eradication from the system.
Noticeably, this condition may not hold if the disease’s
infectivity increases and/or the vaccine-induced immu-
nity loss increases (i.e. if the vaccine efficacy is reduced).
Both issues are probably real for many countries, where
vaccination starts in the initial months of 2021, implying
that vaccinated people will significantly lose their immu-
nity from July/August onwards (seven to eight months
post-vaccination). Furthermore, the new variant, omi-
cron, is highly infectious. These two reasons are probably
responsible for the second, third and subsequent waves
in different countries. We used the Indian and Italian
COVID-19 data to demonstrate the variational effects of
the rate parameters q, η andβ. Noticeably, if the vaccine-
induced immunity loss rate, η, is higher than 0.23 for
India, eradicating infection is practically impossible. The
same value of η for Italy is 0.12. The COVID-19 positive
cases will surge in India if the force of infection is high
(> 0.25) and vaccine-induced immunity loss is higher
than 20%. For Italy, these values are 0.1 and 12%, respec-
tively. It implies that the disease will last long unless a
long-lasting vaccine candidate appears or a low infec-
tious variant replaces the highly contagious variant.

There are, however, some limitations of this model.
For example, this model does not consider the popula-
tion’s age structure. It is to bementioned that a higher age
group population is more prone to COVID-19 infection.
Secondly, there are many variants of coronavirus with
different infectivity and virulence. Therefore, a multi-
strain epidemicmodel would bemore appropriate to rep-
resent the ongoing pandemic. Despite such limitations,
our theoretical and simulation results justify the reason
for long-lasting disease persistence even when a large-
scale immunization process has been implemented. To
our knowledge, such effects have not been reported ear-
lier using a dynamic mathematical model.

6 Conclusion

Nonlinear analysis of a six-dimensional stochastic epi-
demic model reveals that eradicating COVID-19 infec-

tion is challenging if the vaccine-induced immunity loss
or the infectivity of the virus strain is high. Therefore, the
disease will last long unless a long-lasting vaccine can-
didate appears or a low infectious variant replaces the
highly contagious variant. Using the method described
here, one can estimate the required vaccination rate when
the vaccine-induced immunity loss or the infectivity of
the disease is known, and vice versa. The authority may
use it in the immunization and disease eradication pro-
cess of COVID-19.
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Appendices

Appendix 1

Since the coefficients of the model system (1) are locally

Lipschitz continuous, for any

(
S(0), E(0), A(0), I (0),

R(0), V (0)

)
∈ R

6+, there is a unique local solu-

tion

(
S(t), E(t), A(t), I (t), R(t), V (t)

)
∈ R

6+ for all

t ∈ [0, τe), where τe is the explosion time [23]. We
now prove τe = ∞ a.s. so that the solution becomes
global. Let κ0 > 0 be sufficiently large for every coordi-

nate

(
S(0), E(0), A(0), I (0), R(0), V (0)

)
lyingwithin

the interval
[

1
κ0

, κ0

]
. We then define, for every integer

κ > κ0, the stopping time

τκ = inf

{
t∈[0, τe) : S(t)/∈

(
1

κ
, κ

)
, E(t) /∈

(
1

κ
, κ

)
,

A(t) /∈
(
1

κ
, κ

)
, I (t) /∈

(
1

κ
, κ

)
, R(t) /∈

(
1

κ
, κ

)
,

V (t) /∈
(
1

κ
, κ

) }
. (17)
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Thus, τκ is increasing as κ → ∞. Set limκ→∞ τκ = τ∞,
when τ∞ ≤ τe a.s. We now show that τ∞ = ∞ by a con-
tradiction. Let us assume that our claim is not true and
there exist two constants T2 > 0 and ε ∈ (0, 1) such that
P(τ∞ ≤ T2) > ε. Thus, there exists an integer κ1 ≥ κ0
such that

P(τκ ≤ T2) ≥ ε, ∀ κ ≥ κ1. (18)

Noticing that u + 1 − ln u > 0 for all u > 0 and
(S(t), E(t), A(t), I (t), R(t), V (t)) ∈ R

6+, we define the
following positive definite function

L = (S + 1 − ln S) + (E + 1 − ln E) + (A + 1 − ln A)

+ (I + 1 − ln I ) + (R + 1 − ln R) + (V + 1 − ln V ).

Applying Ito’s formula, one can have

dL =
(
1 − 1

S

)
dS + 1

2S2
(dS)2 +

(
1 − 1

E

)
dE

+ 1

2E2 (dE)2 +
(
1 − 1

A

)
dA + 1

2A2
(dA)2

+
(
1 − 1

I

)
dI + 1

2I 2
(dI )2 +

(
1 − 1

R

)
dR

+ 1

2R2 (dR)2 +
(
1 − 1

V

)
dV + 1

2V 2 (dV )2

=
(
1 − 1

S

)[(
Λ − qS − βS

N
((1 − κ)I + κA) − mS

+gR

)
dt − σ1S

N
((1 − κ)I + κA) dB1(t)

]

+ 1

2N2 σ 2
1 ((1 − κ)I + κA)2dt

+
(
1 − 1

E

) [(
βS

N
((1 − κ)I + κA)

+ηV

N
((1 − κ)I + κA) − (ω + m)E

)
dt

+ [(1 − κ)I + κA]

N
(σ1SdB1(t) + σ2V dB2(t))

]

+ 1

2N2E2 (σ 2
1 S

2 + σ 2
2 V

2)((1 − κ)I + κA)2dt

+
(
1 − 1

A

) [(
δωE − (γ1 + ν + m)A

)
dt

−σ3AdB3(t)
] + 1

2
σ 2
3 dt +

(
1 − 1

I

) [(
(1 − δ)ωE

−(γ + m + di )I + νA
)
dt − σ4 IdB4(t)

] + 1

2
σ 2
4 dt

+
(
1 − 1

R

) [
(γ1A + γ I − gR − mR) dt + σ3AdB3(t)

+σ4 IdB4(t)
] + 1

2R2 (σ3AdB3(t) + σ4 IdB4(t))
2

+
(
1 − 1

V

) [ (
qS − ηV

N
[(1 − κ)I + κA] − mV

)
dt

−σ2V

N
[(1 − κ)I + κA] dB2(t)

]

+ σ 2
2

2N2 [(1 − κ)I + κA]2dt.

Noting u ≤ 2(u + 1 − ln u) for all u > 0 and N is the
total population, the above expression becomes

dL ≤
[
Λ + 6m + q + β + ν + di + g + ω + γ1 + γ + di

+ η + 1

2
(σ 2

3 + σ 2
4 )

(
1 +

(
Λ

m

)2
)

+ 2(S + 1 − ln S)

+ 2ω(E + 1 − ln E) + 2γ1(A + 1 − ln A) + σ 2
1 + σ 2

2

+ 2γ (I + 1 − ln I )

]
dt + 2(R + 1 − ln R)

+ 2(V + 1 − ln V ) + σ1

N

{
1 − S

E

}
[κA

+ (1 − κ)I ]dB1(t) + σ2

N

{
1 − V

E

}
[κA

+ (1 − κ)I ]dB2(t) + σ3

{
1 − A

R

}
dB3(t)

+ σ4

{
1 − I

R

}
dB4(t).

Let Δ1 = Λ + 6m + q + β + ν + di + g + ω + γ1 +
γ + di + η + 1

2 (σ
2
3 + σ 2

4 )
(
1 + (

Λ
m

)2) + σ 2
1 + σ 2

2 and

Δ2 = max {1, ω, γ, γ1}. Then

dL ≤ (Δ1 + Δ2L)dt + σ1

N

{
1 − S

E

}

[κA + (1 − κ)I ]dB1(t)

+ σ2

N

{
1 − V

E

}
[κA + (1 − κ)I ]dB2(t)

+ σ3

{
1 − A

R

}
dB3(t) + σ4

{
1 − I

R

}
dB4(t).

Defining Δ3 = max{Δ1,Δ2}, we have

dL ≤ Δ3(1 + L)dt + σ1

N

{
1 − S

E

}

[κA + (1 − κ)I ]dB1(t)

+ σ2

N

{
1 − V

E

}
[κA + (1 − κ)I ]dB2(t)

+ σ3

{
1 − A

R

}
dB3(t) + σ4

{
1 − I

R

}
dB4(t).

(19)
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Noticing that

σ1

N

{
1 − S

E

}
[κA + (1 − κ)I ] ≤ σ1

(
1 − m

Λ

)
,

σ2

N

{
1 − V

E

}
[κA + (1 − κ)I ] ≤ σ2

(
1 − m

Λ

)
,

σ3

{
1 − A

R

}
≤ σ3

(
1 − m

Λ

)
,

σ4

{
1 − I

R

}
≤ σ4

(
1 − m

Λ

)
,

we have

E

∫ τκ1∧T2

0

∣∣∣σ1
N

{
1 − S

E

}
[κA + (1 − κ)I ]

∣∣∣2dt < ∞,

E

∫ τκ1∧T2

0

∣∣∣σ2
N

{
1 − V

E

}
[κA + (1 − κ)I ]

∣∣∣2dt < ∞,

E

∫ τκ1∧T2

0

∣∣∣σ3
{
1 − A

R

}∣∣∣2dt < ∞,

E

∫ τκ1∧T2

0

∣∣∣σ4
{
1 − I

R

}∣∣∣2dt < ∞.

Since all the functions σ1
N

{
1 − S

E

} [κA + (1 − κ)I ],
σ2
N

{
1 − V

E

} [κA + (1 − κ)I ], σ3
{
1 − A

R

}
, σ4

{
1 − I

R

}
are continuous, bounded and non-anticipative, then for
a sequence of partition of the interval [0, τκ1 ∧ T2] with
mesh size Δt → 0, one have

E

∫ τκ1∧T2

0

σ1

N

{
1 − S

E

}
[κA + (1 − κ)I ]dB1(t)

= lim
Δt→0

Σ jE
σ1

N (t j )

{
1 − S(t j )

E(t j )

}

[κA(t j ) + (1 − κ)I (t j )]
× E(B1(t j+1) − B1(t j ))[

∵ σ1

N (t j )

{
1 − S(t j )

E(t j )

}
[κA(t j ) + (1 − κ)I (t j )] and

B1(t j+1) − B1(t j ) are independent

]
.

Similarly, we have

E

∫ τκ1∧T2

0

σ2

N

{
1 − V

E

}
[κA + (1 − κ)I ]dB2(t)

= lim
Δt→0

Σ jE
σ2

N (t j )

{
1 − V (t j )

E(t j )

}

[κA(t j ) + (1 − κ)I (t j )]
×E(B2(t j+1) − B2(t j )),

E

∫ τκ1∧T2

0
σ3

(
1 − A

R

)
dB3(t)

= lim
Δt→0

Σ jE

(
σ3

(
1 − A(t j )

R(t j )

))
E(B3(t j+1) − B3(t j )),

and

E

∫ τκ1∧T2

0
σ4

(
1 − I

R

)
dB4(t)

= lim
Δt→0

Σ jE

(
σ4

(
1 − I (t j )

R(t j )

))
E(B4(t j+1) − B4(t j )).

Using the fact that the increment of the Brownianmotion
is normally distributed with mean zero and variance
(t j+1 − t j ), we have

E

∫ τκ1∧T2

0

σ1

N

{
1 − S

E

}
[κA + (1 − κ)I ]dB1(t) = 0,

E

∫ τκ1∧T2

0

σ2

N

{
1 − V

E

}
[κA + (1 − κ)I ]dB2(t) = 0,

E

∫ τκ1∧T2

0
σ3

(
1 − A

R

)
dB3(t) = 0,

E

∫ τκ1∧T2

0
σ4

(
1 − I

R

)
dB4(t) = 0.

Integrating both sides of (19) from 0 to τκ1 ∧ T2, taking
the expectation and using the above fact, we obtain

EL
(
S(τκ1 ∧ T2), E(τκ1 ∧ T2), A(τκ1 ∧ T2), I (τκ1 ∧ T2),

R(τκ1 ∧ T2), V (τκ1 ∧ T2)
)

≤ L
(
S(0), E(0), A(0), I (0), R(0), V (0)

)

+ Δ3 E

∫ τκ1∧T2

0
(1 + L)dt

≤ L
(
S(0), E(0), A(0), I (0), R(0), V (0)

)
+ Δ3T2

+ Δ3 E
∫ τκ∧T2

0
Ldt.

Since L is an increasing function on [0, τκ1 ∧T2], for any
t ∈ [0, τκ1 ∧T2], L

(
S(t), E(t), A(t), I (t), R(t), V (t)

)

≤ L

(
S(τκ1 ∧T2), E(τκ1 ∧T2), A(τκ1 ∧T2), I (τκ1 ∧T2),

R(τκ1 ∧ T2), V (τκ1 ∧ T2)

)
.

∴ EL
(
S(τκ1 ∧ T2), E(τκ1 ∧ T2), A(τκ1 ∧ T2), I (τκ1 ∧ T2),

R(τκ1 ∧ T2), V (τκ1 ∧ T2)
)

≤ L
(
S(0), E(0), A(0), I (0), R(0), V (0)

)
+ Δ3T2 + Δ3

× E

∫ τκ1∧T2

0
L

(
S(τκ1 ∧ T2), E(τκ1 ∧ T2), A(τκ1 ∧ T2),

I (τκ1 ∧ T2), R(τκ1 ∧ T2), V (τκ1 ∧ T2)

)
dt
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≤ L
(
S(0), E(0), A(0), I (0), R(0), V (0)

)
+ Δ3T2 + Δ3

×
∫ τκ1∧T2

0
EL

(
S(τκ1 ∧ T2), E(τκ1 ∧ T2), A(τκ1 ∧ T2),

I (τκ1 ∧ T2), R(τκ1 ∧ T2), V (τκ1 ∧ T2)

)
dt.

Gronwall’s inequality then gives
EL(S(τκ1 ∧ T2), E(τκ1∧T2), A(τκ1∧T2), I (τκ1∧T2),

R(τκ1 ∧ T2), V (τκ1 ∧ T2))

≤ (L(S(0), E(0), A(0), I (0), R(0), V (0))

+ Δ3T2)e
Δ3(τκ1∧T2) = Δ4 (say).

(20)

Set Ωκ1 = {τκ1 ≤ T2} for all κ1 ≥ κ2. Thus,
following (18), we get P(Ωκ1) ≥ ε3 for all ω2 ∈
Ωκ1 . Clearly, at least one of S(τκ1 , ω2), E(τκ1 , ω2),

A(τκ1 , ω2) I (τκ1 , ω2), R(τκ1 , ω2), V (τκ1 , ω2) is equal
to eitherκ1 or 1

κ1
.Hence, L(S(τκ1), E(τκ1), A(τκ1), I (τκ1),

R(τκ1), V (τκ1)) is no less thanmin{κ1+1−ln κ1,
1
κ1

+
1 + ln κ1}. From (18) and (20), we then obtain

Δ4 ≥ E[1Ωκ1
L(S(τκ1 , ω2), E(τκ1 , ω2), A(τκ1 , ω2),

I (τκ1 , ω2), R(τκ1 , ω2), V (τκ1 , ω2))]
≥ ε3

[
(κ1 + 1 − ln κ1) ∧

(
1

κ1
+ 1 + ln κ1

)]
,

where 1Ωκ1
is the indicator function of Ωκ1 . Letting

κ1 → ∞, we get∞ > Δ4 = ∞, a contradiction. Hence,
τ∞ = ∞ a.s. Hence, the theorem is proved.

Appendix 2

One can easily write the deterministic version of the
stochastic model (1) as

dS

dt
= Λ − qS − βS

N
[(1 − κ)I + κA] − mS + gR,

dE

dt
= βS

N
[(1 − κ)I + κA] + ηV

N
[(1 − κ)I + κA]

− ωE − mE,

dA

dt
= δωE − (γ1 + ν + m)A,

dI

dt
= (1 − δ)ωE + νA − (γ + m + di )I,

dR

dt
= γ1A + γ I − gR − mR,

dV

dt
= qS − ηV

N
[(1 − κ)I + κA] − mV . (21)

Using the next-generation matrix method [9], the infec-
tion sub-system of the system (21), which describes the
production of new infections and makes change in the
states, reads

dE

dt
= βS

N
[(1 − κ)I + κA] + ηV

N
[(1 − κ)I + κA]

− (ω + m)E,

dA

dt
= δωE − νA − (γ1 + m)A,

dI

dt
= (1 − δ)ωE + νA − (γ + m + di )I.

(22)

The transmission matrix (F) and the transition matrix
(Σ) associated with the system (22) are given by

F =
⎛
⎝ 0 κ

(βm+ηq)
q+m (1 − κ)

(βm+ηq)
q+m

0 0 0
0 0 0

⎞
⎠

Σ =
⎛
⎝−(ω + m) 0 0

δω −(ν + γ1 + m) 0
(1 − δ)ω ν −(γ + m + di )

⎞
⎠ .

(23)

Then thedeterministic basic reproductionnumber (DBRN)
RD
0V of (21) is the spectral radius of the next-generation

matrix −FΣ−1, i.e. RD
0V = ρ(−FΣ−1), where Σ−1 =

⎛
⎜⎜⎜⎜⎝

− 1
ω+m 0 0

− δω
(ω+m)(ν+γ1+m)

− 1
ν+γ1+m 0

− δων+(ν+γ1+m)(1−δ)ω
(ω+m)(ν+γ1+m)(γ+m+di )

− ν
(ν+γ1+m)

× − 1
γ+m+di

1
(γ+m+di )

⎞
⎟⎟⎟⎟⎠ .

Thus, RD
0V=

ω(βm+ηq){κδ(γ+m+di )+(1−κ)δν+(1−κ)(1−δ)(ν+γ1+m)}
(q+m)(γ+m+di )(ν+γ1+m)(ω+m)

.

If RD
0V > 1, then the disease is established in the system.

Appendix 3

Parameter estimation has been done in two steps [20].
First, we fitted the COVID-19 data with the correspond-
ing deterministic system (21) and next the optimal noise
intensities are determined to find the best-fitted param-
eter set for the stochastic system (1). In order to find
the best-fitted parameter values of the deterministic sys-
tem, we used a MATLAB embedded function, lsqcurve-
fit, which is a nonlinear solver that minimizes the sum
of squared difference between the model output and
a given data set. Here, a curve h = g(x, ω), param-
eterized by ω = (ω1, ω2, ..., ωm), is fitted with the
data points (x1, h1), (x2, h2), ...(xm, hm). The nonlinear
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least-squaresmethodfinds the certain value of the param-
eters such that Σm

i=1 (g(xi , ω) − hi )2 becomes mini-
mum. With this best-fitted parameter set, we then find
the optimum noise intensity for the stochastic system
(1). Assuming 10,000 randomvalues of σ1, σ2, σ3 and σ4
between 0 and 1, the stochastic system (2) is simulated
1000 times for each of these four tuples (σ1, σ2, σ3, σ4).
We then take the mean of those 1000 evolutions to deter-
mine the corresponding r -squared value. The particular
value of σ1, σ2, σ3 and σ4 for which the r -squared value
is closest to 1 is our required noise intensity.

Appendix 4

Fig. 7 COVID-19 data fitting with the parameter values and
noise intensities as in the Table 2. The first row provides the
cumulative actual COVID-19 data (red-coloured curve) of the
confirmed, recovered and vaccinated cases in Italy for the period
11October 2021 to 18 January 2022. The solution (blue-coloured
curve) of the stochastic model (1) is the fitted curve with the
parameter values of the first row of Table 2. The other rows
represent the same with the consecutive periods mentioned in
Table 2
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