
ORIGINAL PAPER

On Hamel’s paradox

Thanapat Wanichanon . Hancheol Cho

Received: 12 February 2023 / Accepted: 28 October 2023 / Published online: 23 November 2023

� The Author(s), under exclusive licence to Springer Nature B.V. 2023

Abstract In his book Hamel pointed out through an

example that the embedding of a nonholonomic

constraint directly in the Lagrangian of an uncon-

strained mechanical system causes one to obtain

incorrect equations of motion for the constrained

system upon the application of Lagrange’s formalism.

Wanichanon and Udwadia provided the reason for this

and illustrated their result through a series of exam-

ples. They also gave the reason why such an embed-

ding for holonomic constraints in the Lagrangian gives

the correct equations of motion, a view conjectured by

Rosenberg in his book. A recent paper by Ye-Hwa

Chen again raised the issue of Hamel’s Paradox and

claimed that embedding holonomic constraints in the

Lagrangian of an unconstrained mechanical system

can yield, in general, incorrect equations of motion.

The purpose of this paper is to provide a resolution to

the problem of whether the embedding of holonomic

constraints in the Lagrangian yields the correct

equations of motion of a constrained mechanical

system. It is shown that the complete embedding of

honolomic constraints in the Lagrangian when used

properly with the Lagrange formalism will yield the

correct equations of motion of a mechanical system.

Keywords Hamel’s paradox � Constrained motion �
Honolomic constraints � Nonhonolomic constraints �
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1 Introduction

In an example of a skate moving on a frictionless

surface, Hamel pointed out that when a nonholonomic

constraint is embedded directly into the kinetic energy

of an unconstrained mechanical system, the resultant

equations of motion obtained using this kinetic energy

do not lead to the correct equations of motion of the

constrained system [1]. The example is meant to

caution mechanicians against the substitution of

nonholonomic constraints directly into the kinetic

energy of an unconstrained system when trying to

obtain the equation of motion for the constrained

mechanical system. Hamel gave no reasons why such

an innocuous looking substitution of the constraint—

for after all, the constraint is to be satisfied by the

system at every instant of time—should lead one to the

wrong equations of motion for the constrained system.

One should note that, as in Hamel’s example, even
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after the embedding of the constraint in the kinetic

energy of the unconstrained system, the coordinates

may still not be independent of one another so that

even after the embedding is done one would still need

to treat the problem as a problem of constrained

motion, and would be obliged to use methods such as

the Lagrange multiplier method (or, say, the funda-

mental equation of Udwadia and Kalaba [2] to obtain

the appropriate equations of motion when using the

embedded kinetic energy.

Following Hamel, Rosenberg in his book [3]

considered several examples and set forth the follow-

ing conjecture related to constrained mechanical

systems that can be summarized as follows:

While embedding holonomic constraints in the

kinetic energy (or Lagrangian) expression of an

unconstrained mechanical system will yield the cor-

rect equations of motion of the constrained mechanical

system after a proper application of Lagrange’s

method to obtain the equations of motion, embedding

nonholonomic constraints in the kinetic energy (or

Lagrangian) in a similar fashion will yield, in general,

incorrect equations of motion [3].

Udwadia and Wanichanon in considering the

Hamel Paradox pointed out that the reason why this

happens is because of an incorrect conceptualization

of constrained motion [4]. They pointed out that the

general problem of constrained motion in analytical

dynamics requires conceptualization in the following

three successive steps:

1. description of the unconstrained system in which

all the coordinates are assumed to be independent

of one another.

2. description of the constraints, and,

3. description of the constrained system through the

use of the fundamental equation of constrained

motion (see [2, 5–8] for theoretical development

and [9–14] for applications).

Recently, Schutte and Udwadia [15] have shown

the usefulness of this three-step conceptualization by

using it as a basis for developing a new approach for

modeling complex multi-body mechanical systems.

The general procedure and the fundamental equa-

tion obtained in Refs. [2, 5–8] are valid for sets of

constraints that may include holonomic and/or non-

holonomic constraints. These constraints (a) may be

functionally dependent, (b) may be nonlinear in the

generalized velocities, and (3) may explicitly depend

on time.

They pointed out that when this conceptualization

is followed systematically, one is ensured to obtain the

correct equations of motion for a constrained mechan-

ical system. They showed that embedding nonholo-

nomic constraints in the expression for the kinetic

energy of the unconstrained system disregards the

three-step procedure outlined above. It conflates the

unconstrained system with the constraints and the

constrained system, and this causes the resultant

equations of motion obtained to be, in general,

incorrect.

They also pointed out that were the constraints to be

all holonomic, then such an embedding of the

constraints in the Lagrangian of the unconstrained

system would be permissible. The reason for this is

that a holonomically constrained system can always be

transformed to an unconstrained system using a

suitable transformation of coordinates; and this trans-

formation can always be obtained from the indepen-

dent holonomic constraints [16, 17]. Thus, replacing

one of the generalized coordinates in terms of the

others—completely embedding (see, Sect. 3 below for

meaning of completely) an holonomic constraint in the

Lagrangian of the unconstrained system—will simply

describe the same holonomically constrained system

but with one less dynamical (time varying) coordinate

and one less independent constraint. For a constrained

system with just one holonomic constraint, embedding

the holonomic constraint in the Lagragian will simply

yield the correct Lagrangian for an equivalent uncon-

strained system. Application of Lagrange’s formalism

using this embedded Lagrangian will then yield the

correct equations of motion for the constrained

system.

In addition to solving Hamel’s example in exten-

sion, Ref. [4] showed several examples to illustrate

these results. The approach used in them is the

following. A single constraint is considered and

embedded in the Lagrangian of the unconstrained

system. After embedding the constraint this Lagran-

gian is used to obtain the equation of motion of the

system utilizing Lagrange’s formalism. This result is

then compared with that obtained using the funda-

mental equation, which gives the correct equation of

motion of the constrained system. In the case of a

single holonomic constraint, the general result stated
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earlier, namely, that the complete embedding of the

constraint in the Lagrangian is equivalent to simply a

change in coordinates that now produces an equivalent

Lagrangian for the system that is unconstrained, was

pointed out. This Lagrangian then results in the correct

equations upon proper use of Lagrange’s formalism.

In short, they found that such an embedding is

permissible and would yield the correct equations of

motion of the holonomically constrained system.

In the case of nonholonomic constraints, we cannot

proceed with such a coordinate transformation. In

other words, embedding the constraints in the

Lagrangian cannot convert the system to an uncon-

strained system [16, 17], and they showed that the

resultant Lagrangian, in general, does not correspond

to either that of the constrained system or to that of the

unconstrained system. The three-step procedure stated

earlier having been ignored, causes the constrained

system, the constraints, and the unconstrained systems

to get conceptually conflated with one another. Upon

using Lagrange’s formalism, the equations of motion

obtained from this embedded Lagrangian conse-

quently differ from the correct equations obtained

using the fundamental equation.

A recent paper by Chen [18], gave the general

equations of motion obtained after one embeds a set of

independent Pffafian constraints in the kinetic energy

of an unconstrained mechanical system. This was done

by substituting the constraints in the expression for the

kinetic energy of the unconstrained system and then

directly using Lagrange’s equations in an effort to

obtain the equations of motion of the constrained

system. Thus, the paper aimed at formalizing the

Hamel embedding method when the constraints are

independent and linear in the generalized velocities

(Pffafian). These equations were then compared with

the correct equations obtained using the fundamental

equation, which is referred to as the Udwadia–Kalaba

equation in Ref. [18]. Whether the equations of motion

from the embedded Lagrangian are correct (i.e., agree

with what is obtained using the Udwadia–Kalaba

equation) was established by using a set of examples.

On the basis of the examples, by comparing the

equation of motion obtained from the formalized

Hamel embedding method with that obtained from the

Udwadia–Kalaba equation, the paper concluded that

embedding holonomic constraints in the Lagrangian,

would, in general, yield incorrect equations of motion

for a holonomically constrained mechanical system.

This result is contrary to that of Ref. [4] and also to the

conjecture given in Ref. [3].

Since both Refs. [4, 18] agree that use of the

embedded Lagrangian will lead to incorrect equations

of motion of the constrained system when the

constraints are nonholonomic, it will be sufficient for

us to begin by investigating first the situation in which

the constraints are holonomic. Later, we consider the

embedded Hamel equations given in Ref. [18] for

nonholonomic constraints.

2 On embedding holonomic constraints

in the Lagrangian of the unconstrained system

The main result in Ref. [18] hinges on the use of two

examples of a holonomically constrained system, in

which it is shown that the result from the embedded

Hamel method is not the same as that obtained using

the Udwadia–Kalaba equation. Hence it is claimed

that for holonomically constrained systems, the

embedded Lagrangian yields, in general, the incorrect

equations of motion. We therefore revisit these same

two examples in this section.

The two examples considered in Ref. [18] deal with

a single particle of mass m subjected to no ‘given’

forces. The particle moves in 3-dimensional space and

its position is given by (x, y, z) in an inertial Cartesian

frame of reference. The kinetic energy of the uncon-

strained particle is given by

T ¼ 1

2
mð _x2 þ _y2 þ _z2Þ: ð1Þ

Example 1 (Case (ii) in Ref. [18]) The unconstrained

particle described above whose kinetic energy is given

by relation (1) is subjected to the holonomic constraint

xy ¼ rðtÞ; or, y ¼ rðtÞ
x

; x 6¼ 0: ð2Þ

Differentiating (2) yields, assuming that x 6¼ 0, the

relation
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_y ¼ � y

x
_xþ _r

x
¼ � r

x2
_xþ _r

x
ð3Þ

where we have used relation (2) in the second equality.

Substituting for _y in Eq. (1) we get the so-called

embedded kinetic energy as

Ty ¼ 1

2
m _x2 þ r2

x4
_x2 � 2

r _r

x3
_xþ _r2

x2
þ _z2

� �
: ð4Þ

We shall see in what follows that this gives an

equivalent (and correct) description of the kinetic

energy of the constrained particle, except that in this

description the coordinates x and z are independent

and the virtual displacements dx and dz can be chosen

independently. Since these two coordinates are inde-

pendent of each other, using this kinetic energy Ty, the

equations of motion by Lagrange’s formalism are

d

dt

o Ty
o _x

 !
� o Ty

o x
¼ 0 ð5Þ

and

d

dt

o Ty
o _z

 !
� o Ty

o z
¼ 0: ð6Þ

Since

o Ty
o _x

¼ m _xþ r2

x4
_x� r _r

x3

� �
; and

o Ty
o _z

¼ m _z ð7Þ

we have

d

dt

o Ty
o _x

 !
¼m 1 þ r2

x4

� �
€xþ 5

r _r

x4
_x� 4

r2

x5
_x2 � _r2

x3
� r€r

x3

� �
;

and
d

dt

o Ty
o _z

 !
¼ m€z:

ð8Þ

We also get from relation (4)

o Ty
o x

¼ m �2
r2

x5
_x2 þ 3

r _r

x4
_x� _r2

x3

� �
; and

o Ty
o z

¼ 0:

ð9Þ

Using relations (8) and (9) in Eqs. (5) and (6), the

equations of motion that the embedded kinetic energy

Ty yields are

m 1þ r2

x4

� �
€x¼mr

x3
�2 _r _x

x
þ2r _x2

x2
þ €r

� �
; and m€z¼0:

ð10Þ

The result obtained in Eq. (10) is the same as the

result obtained using the Udwadia–Kalaba equation

(Eq. (4.39) in Ref. [18]), and these equations are the

correct equations of motion of the constrained particle.

The crucial observation is that the coordinate

transformation (2) has converted the constrained

holonomic system to an equivalent unconstrained

system whose kinetic energy is correctly given by Ty
in Eq. (4). The equivalent system is unconstrained

since the coordinates x and z can now be chosen in (4)

independently. Such a coordinate transformation is

guaranteed to exist when any system has only one

holonomic constraint [16, 17]. One simply uses the

constraint equation to eliminate one of the variables,

thereby obtaining an expression for the kinetic energy

in which all the coordinates are (locally) independent.

Example 2 (Case (iii) in Ref. [18]): The particle

described before whose unconstrained kinetic energy

is given by Eq. (1) is now subjected to the holonomic

constraint

x2 þ y2 ¼ q2: ð11Þ

Differentiating Eq. (11) with respect to time gives

_y ¼ q _q� x _x

y
; y 6¼ 0 ð12Þ

so that

_y2 ¼ ðq _q� x _xÞ2

y2
¼ ðq _q� x _xÞ2

q2 � x2
: ð13Þ

The last equality above follows from Eq. (11).

Eliminating _y from the expression of the kinetic

energy of the unconstrained system yields the correct

kinetic energy

Ty ¼ 1

2
m _x2 þ ðq _q� x _xÞ2

q2 � x2
þ _z2

 !
ð14Þ
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of the constrained particle except that now the

coordinates x and z are (locally) independent. Here

again, the transformation (12) (i.e., the constraint)

allows the variable y to be eliminated, so that the

correct kinetic energy of the constrained system is

(locally) obtained. Since the coordinates x and z are

independent, the Lagrange’s formalism yields the

equations of motion given by (5) and (6).

From (14) we get

o Ty
o _x

¼ m _xþ xðx _x� q _qÞ
q2 � x2

� �
; and

o Ty
o _z

¼ m _z

ð15Þ

so that

d

dt

o Ty
o _x

 !
¼ m 1 þ x2

q2 � x2

� �
€xþ 2xðx _x� q _qÞ2

ðq2 � x2Þ2
þ xð2 _x2 � _q2 � q€qÞ � _xq _q

q2 � x2

" #
;

and
d

dt

o Ty
o _z

 !
¼ m€z:

ð16Þ

We also get from (14) the relations

o Ty
o x

¼ m
x _x2 � _xq _q
q2 � x2

þ x
ðq _q� x _xÞ2

ðq2 � x2Þ2

" #
; and

o Ty
o z

¼ 0:

ð17Þ

Using relations (16) and (17) in Eqs. (5) and (6)

gives

m 1 þ x2

q2 � x2

� �
€x ¼ mx

q2 � x2
� _x2 þ ðq _q� x _xÞ2

q2 � x2

" #
þ _q2 þ q€q

( )

and m€z ¼ 0:

ð18Þ

The equations in (18) are the same as those obtained

using the Udwadia–Kalaba equations in Ref. [18] [see

Eq. (4.64)], and are the correct equations of motion.

We have thus shown that for the two examples in

Ref. [18] of holonomically constrained systems that

form the basis of the claim made in it, the embedding

method gives the correct equations of motion.

Remark 1 In the development of the equations of

motion using the Hamel embedding method there is an

error in Eq. (2.15) thereby making the final equations

obtained in Ref. [18] incorrect. Equation (2.15) should

read (in the notation used in Ref. [18])

Uðq; tÞ ¼ ð�A�1
1 A2ÞTM11ðA�1

1 cÞ þ 1

2
MT

12ðA�1
1 cÞ

þ 1

2
M21ðA�1

1 cÞ þ ð�A�1
1 A2ÞTNT

1 þ NT
2 :

ð19Þ

The coefficients of the first three terms in Eq. (2.15)

are incorrect. The right-hand side of relation (19) can

be further simplified since M12 ¼ MT
21 and the second

and third members are therefore identical, but we

leave it in the form above for easy comparison. Had

direct use of Lagrange’s equations with the embedded

kinetic energy been made, as shown here, this error

would have been obviated.

Remark 2 The reason why the example in Case (i) of

Ref. [18] that also deals with holonomic constraints

shows that the embedding method works, even though

use is made of Eq. (2.15) in it, is the fortuitous choice

of the constraint y� kx ¼ 0, for which c ¼ 0 in the

notation in Ref. [18]. Hence the contribution made by

the first three terms of Uðq; tÞ in Eq. (2.15) does not

show up.

3 On embedding constraints and the formalized

Hamel method

Consider an unconstrained mechanical system whose

kinetic energy is given by

Tðq; _q; tÞ ¼ 1

2
_qTMðq; tÞ _qþ Nðq; tÞ _qþ Pðq; tÞ; ð20Þ

where q is an n-vector (n by 1 vector), M[ 0 is an n by

n symmetric matrix, N is an 1 by n vector, and P is a

scalar. We partition the n-vector q so that q ¼
½qT

1
; qT

2
�T; where q1 is an r-vector and q2 is an (n-r)-

vector. We assume that this unconstrained mechanical

system is subjected to r independent constraints given

by

A1ðq1; q2; tÞ _q1 þ A2ðq1; q2; tÞ _q2 ¼ cðq1; q2; tÞ: ð21Þ

When the rank of the r by rmatrix A1 is r, the matrix

A1 is invertible. One can then solve for _q1 from

Eq. (21) and substitute it in the expression for the

kinetic energy T given in Eq. (20) to yield the

embedded kinetic energy given by

Ty ¼ Tyð _q2; q1; q2; tÞ: ð22Þ
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For simplicity we shall assume that the system is

force-free (as in the examples in Ref. [18]) and that the

‘given’ force on the system is zero. One observes from

Eq. (22) that even after substituting the constraint (21)

in the kinetic energy of the unconstrained system,

when the constraints are nonholonomic, the system is

still constrained since q1ðtÞ is dependent, in general,

on q2, _q2, and t. The coordinate q1 cannot, in general,

be eliminated. More technically, the virtual displace-

ments dq1 and dq2 are not independent. Also, since the

coordinate q1ðtÞ is not independent of q2ðtÞ, when

using the Lagrange formalism, one cannot obtain the

appropriate equations of motion using the kinetic

energy Ty without the use of Lagrange multipliers (or

some other method, such as, the fundamental equa-

tion) that recognizes that the coordinate r-vector q1 is

constrained. The embedding, in short, does not go

away, in general, with the interdependence of q1 and

q2.

Thus, even though the constraint has been substi-

tuted in the kinetic energy of the unconstrained

system, when the constraints are nonholonomic, the

Lagrange formulation does not permit the equation of

motion for q2 (obtained by using Ty) to be simply

given by

d

dt

oTy
o _q2

 !
� oTy

oq2

¼ 0 ð23Þ

since the coordinates q1ðtÞ and q2ðtÞ are not indepen-

dent of one another. Hence the equations for Hamel’s

embedding method given in (2.11)–(2.17) in Ref [18]

do not give, in general, the correct equation of motion

that would result from the use of the embedded kinetic

energy Ty when using the machinery of Lagrangian

dynamics.

While the above circumstance (lack of indepen-

dence of the coordinates in the embedded kinetic

energy Ty) most commonly occurs, in general, when

the constraints are nonholonomic, it could occur even

when the constraints are holonomic, if one were to

‘choose’ not to use the holonomic constraint equations

to entirely eliminate both the coordinates and corre-

sponding generalized velocities from the kinetic

energy of the unconstrained system. One might think

of eliminating the generalized velocities, while still

allowing some or all of the coordinates to persist in the

Lagrangian, a situation we refer to in what follows as

‘partial embedding.’ The following example illus-

trates this situation.

Example 3 Consider a system moving in 3-dimen-

sional space. The kinetic energy of the unconstrained

system is given by

T ¼ 1

2
½ _x2 þ ðy2 þ aÞ _y2 þ ðz2 þ bÞ _z2�; a; b[ 0;

ð24Þ

where a and b are constants. The system is subjected to

no ‘given’ forces, but is subjected to the holonomic

constraint

yðtÞ ¼ xðtÞ þ cðtÞ: ð25Þ

We shall illustrate what happens when we: (i) use

the fundamental equation to obtain the equations of

motion of the constrained system (see Appendix A)

(ii) do a ‘partial embedding’ of the constraint (25) (to

be explained shortly) in the kinetic energy expression

(24) and then use the Lagrange formalism to get the

equations of motion of the constrained system using

the embedded kinetic energy Ty(see Appendix B) (iii)

embed the constraint in the kinetic energy expression

by eliminating both y and _y from the expression in (24)

(thereby doing a ‘complete elimination’), and then use

the embedded kinetic energy Tyy in the Lagrange

formalism to obtain the equations of motion of the

constrained system (see Appendix C).

Equation (25) yields _y ¼ _xþ _c. Using this relation,

we choose to partially embed this constraint by

eliminating only _y from the expression for T given in

(24) so as to obtain the (partially) embedded kinetic

energy

Tyð _x; _z; y; z; tÞ :¼ Tyð _q2; q1; q2; tÞ

¼ 1

2
½ _x2 þ ðy2 þ aÞð _xþ _cðtÞÞ2 þ ðz2

þ bÞ _z2�;
ð26Þ

where we have denoted q1 ¼ y and q2 ¼ ½x; z�T.

We note that we have chosen not to eliminate y

from the expression in (24), and have therefore carried

out a ‘partial embedding’ of the constraint (25) in the

kinetic energy of the unconstrained system. The

reason for doing this is the following.
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Were the constraint on the system to be a general

nonholonomic constraint, say, _y ¼ z _x instead of that

given in (25), the elimination of y from the expression

for T in (24) would be impossible, and y would not be

independent of z and x in the expression for the

embedded kinetic energy after having substituted for

the _y2 term in (24) by using this constraint, _y ¼ z _x. But

even for a holonomic constraint such as (25), as shown

here, we can ‘choose’ not to eliminate y so that we

obtain the embedded kinetic energy Ty as a function of

the coordinate y—just like we would have obtained for

the nonholonomic constraint _y ¼ z _x, which is not

independent of x as shown in (25). The embedded

kinetic energy Ty in (26) is now of the same functional

form as that given in (22)—the form that would have

arisen, in general, with the nonholonomic constraint

_y ¼ z _x.

The development of the equations of motion using

Lagrange’s formalism with this embedded kinetic

energy Ty now requires that cognizance be given to

the fact that the coordinates x and y, despite the

(partial) embedding, are dependent on each other. As

pointed out earlier such a coordinate dependence

would be generally true when the constraints are

nonholonomic.

The development of the equations of motion that

this embedded kinetic energy Ty yields in confluence

with the constraint (25) (since x and y are no longer

independent) requires the use of the equation of

motion for constrained systems with singular mass

matrices (see Refs. [4, 19–21] for other examples).

The equations obtained are (see Appendix B)

€x ¼ � ðy2 þ aÞ€c
y2 þ aþ 1

� y _y2

y2 þ aþ 1

€y ¼ €c

y2 þ aþ 1
� y _y2

y2 þ aþ 1

€z ¼ �z _z2

z2 þ b
:

ð27Þ

The fundamental equation from the use of T in (24)

and the holonomic constraint (25) gives the same

equations as those obtained in (27) (see Appendix A),

thereby verifying that upon the use of the Lagrange

formalism the (partially) embedded Lagrangian in the

holonomic case will yield the same equation of motion

as that given by the fundamental equation. Thus,

partial embedment of the constraint in the kinetic

energy is permissible, as long as the Lagrange

formalism is properly followed.

In order to compare the results with the same

example as that in Ref. [18], the equations provided by

(2.11)–(2.17) in that reference, which use the same

form of Tyð _q2; q1; q2; tÞ as given in (26) above, are

recalled. This yields the equations (see Appendix D)

[18]

€x ¼ � ðy2 þ aÞ€c
y2 þ aþ 1

� 2y _y2

y2 þ aþ 1

€z ¼ �z _z2

z2 þ b
:

ð28Þ

Equations (28), which are derived from Ref. [18],

are different from those obtained in (27). Recall that

Eq. (27) is obtained by: (i) using the embedded kinetic

energy Ty along with the proper formalism that

recognizes that the coordinates y and x are dependent;

and also (ii) using the fundamental equation. It is the

correct equation of motion.

We know that ‘partial embedding’, i.e., use of the

kinetic energy Ty in (26) should give us the correct

equations of motion (27). However, due to the

functional form of Ty ¼ Tyð _q2; q1; q2; tÞ of (26), were

we to use the formalized embedding equations given

in Ref. [18], we would need to use Eqs. (2.13)–(2.17)

[18]. But we find that these equations result in (28) and

since Eq. (28) differs from the correct Eq. (27),

Eqs. (2.13)–(2.17) (Ref. [18]) for the formalized

Hamel embedding method appear incorrect. These

equations of motion that are obtained in Ref. [18]

using the embedded kinetic energy Ty do not pay heed

to whether or not the coordinates (after the embed-

ding) are dependent on one another. It is precisely for

this reason that Eq. (28) differs from the correct

equation given by (27). As explained before, this

would occur, in general, if the constraints are

nonholonomic, but the same effect, as shown here,

can be seen to occur when using a partial embedding of

a holonomic constraint. Hence there is the incorrect-

ness of Eqs. (2.13)–(2.17) in Ref. [18] for nonholo-

nomic constraints. We should note that for

nonholonomic constraints the use of embedding (even

after including the requirement that after the embed-

ding is done one must pay attention to the dependence

of the coordinates), will not lead to the correct

equations of motion, as explained in Ref. [4].
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Nonetheless, such a partial embedding of the

holonomic constraint and use of the proper Lagrange

formalism (that pays heed to the possible dependence

of coordinates after doing the embedding) yields the

same equations of motion as those obtained using the

fundamental equation. Thus, even a partial substitu-

tion of the holonomic constraint in the kinetic energy

yields the correct equations of motion when the

Lagrangian formalism is properly followed, i.e.,

cognizance is given to dependent coordinates as

demanded by the formalism.

Moreover, we could eliminate both y and _y from the

kinetic energy T in (24), as one might normally do with

a holonomic constraint, so that the embedded kinetic

energy is given by

Tyyð _x; _z; tÞ ¼ 1

2
½ _x2 þ ððxþ cÞ2 þ aÞð _xþ _cðtÞÞ2 þ ðz2

þ bÞ _z2�:
ð29Þ

Instead of ‘partial embedding’ as before, one might

think of this as ‘complete embedding,’ and one can use

the Lagrange formalism, now without the need for any

Lagrange multiplier since the coordinates x and z are

independent of one another. Alternately speaking, an

appropriate transformation of coordinates has been

done eliminating one of the (dynamical) coordinates

and converting the system to an unconstrained system.

Use of this embedded Lagrangian Tyy yields the same

equations of motion given in (27) (see Appendix C),

again showing that the (completely) embedded

Lagrangian when used properly with the Lagrange

formalism will yield the correct equations of motion of

the constrained system for holonomic constraints.

4 Conclusion

The main conclusions of this paper are the following.

1. The examples that form the basis for the claim in

Ref. [18] that the embedding method does not

work, in general, for holonomically constrained

systems have been shown here to have errors. The

result that the embedding method works for

holonomically constrained systems is true.

The embedding of holonomic constraints in the

Lagrangian of an unconstrained mechanical sys-

tem will yield an embedded Lagrangian, which

when used with the Lagrangian formalism, will

yield the correct equations of motion of the

holonomically constrained mechanical system.

2. The equations for the formalized Hamel embed-

ding method must take cognizance of whether or

not the coordinates, after the embedding is

performed, are independent. When not indepen-

dent, Lagrange’s formalism used with the embed-

ded of holonomic constraints in the Lagrangian

requires that the dependence of the coordinates be

included when obtaining the equations of motion.

Since the system is still constrained and the

coordinates are not independent to each other,

when using the Lagrange formalism, one cannot

obtain the appropriate equations of motion with-

out use of Lagrange multipliers or some other

method, such as, the fundamental equation.

3. We should note that for nonholonomic constraints

the use of embedding (even after including the

requirement that after the embedding is done one

must pay attention to the dependence of the

coordinates), will not lead to the correct equations

of motion.

4. Lastly, as explained in Ref. [4], we point out that

the result that the embedding method works for

holonomically constrained systems, does not rest

on the working out of examples, but on the

underlying result in analytical dynamics that any

holonomically constrained mechanical system can

be converted to an unconstrained system by a

suitable coordinate transformation (complete

embedding) through the use of the holonomic

constraints.
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Appendix A

Determination of equations of motion using the

fundamental equation using T in relation (24) and

the constraint given in Eq. (25).

The kinetic energy of the unconstrained system is

given by

T ¼ 1

2
½ _x2 þ ðy2 þ aÞ _y2 þ ðz2 þ bÞ _z2�; ðA � 1Þ

where a and b are any fixed positive constants. The

system is subjected to no ‘given’ forces, but is

subjected to the holonomic constraint

yðtÞ ¼ xðtÞ þ cðtÞ: ðA � 2Þ

Following the three-step conceptualization of con-

strained motions [2, 5–8], the first step, using the

generalized coordinate 3-vector q ¼ ½x; y; z�T,

Lagrange’s equation

d

dt

o T

o _qi

� �
� o T

o qi
¼ 0; i ¼ 1; 2; 3 ðA � 3Þ

for the unconstrained system in which all the virtual

displacements are assumed independent of one

another is trivially obtained as

1 0 0

0 y2 þ a 0

0 0 ðz2 þ bÞ

2
4

3
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
M

€x
€y
€z

2
4
3
5

|ffl{zffl}
€q

¼
0

�y _y2

�z _z2

2
4

3
5

|fflfflfflfflffl{zfflfflfflfflffl}
Q

:

ðA � 4Þ

Our next conceptual step is to impose the constraint

yðtÞ ¼ xðtÞ þ cðtÞ ðA � 5Þ

on the unconstrained system that is described by

relation (A-4).

Differentiating (A-5) twice with respect to time, we

obtain

�1 1 0½ �
€x
€y
€z

2
4
3
5 ¼ €c ðA � 6Þ

in the form of A€q ¼ b, where

A ¼ �1 1 0½ � and b ¼ €c: ðA � 7Þ

The equations of motion of the constrained sys-

tem—our last conceptual step—is obtained by simply

using the fundamental equation [2, 5–8]

€q ¼ M�1QþM�1ATðAM�1ATÞþðb� AM�1QÞ;
ðA � 8Þ

thus we have

€x
€y
€z

2
4
3
5 ¼

0
�y _y2

y2 þ a
�z _z2

z2 þ b

2
66664

3
77775þ

�1
1

y2 þ a
0

2
64

3
75 ðy2 þ aÞ€cþ y _y2

y2 þ aþ 1

¼

�ðy2 þ aÞ€c� y _y2

y2 þ aþ 1
€c� y _y2

y2 þ aþ 1
�z _z2

z2 þ b

2
6666664

3
7777775
;

ðA � 9Þ

which are the same as the equations of motion given in

Eq. (27).

Appendix B

Partial embedding: Determination of equations of

motion using Ty given in relation (26) and the

constraint given in Eq. (25).

The kinetic energy is given by

Ty ¼ 1

2
½ _x2 þ ðy2 þ aÞð _xþ _cðtÞÞ2 þ ðz2 þ bÞ _z2�:

ðB � 1Þ
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Under the assumption that all the coordinates are

independent, the equations of motion of the uncon-

strained system given by (A-3) are

y2 þ aþ 1 0 0

0 0 0

0 0 z2 þ b

2
4

3
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
M

€x
€y
€z

2
4
3
5

|ffl{zffl}
€q

¼
�2y _y2 � ðy2 þ aÞ€c

y _y2

�z _z2

2
4

3
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Q

: ðB � 2Þ

The next step to obtain the equations of motion of

the constrained system is again to impose the

constraint (A-7) to the unconstrained system (B-2).

However, we note that the mass matrix in Eq. (B-2) is

now singular! Thus instead of using (A-8) as shown in

Appendix A, in the last step, we now use the

fundamental equation that is valid when the mass

matrix is singular [19]

€q ¼ ðI � AþAÞM
A

� �þ
Q
b

� �
; ðB � 3Þ

under the proviso that the rank of the matrix M jAT½ � is

full (that is, rank = 3), which it is. We thus obtain

€x
€y
€z

2
4
3
5 ¼

�ðy2 þ aÞ€c� y _y2

y2 þ aþ 1
€c� y _y2

y2 þ aþ 1
�z _z2

z2 þ b

2
6666664

3
7777775
: ðB � 4Þ

The above set of equations is the same as that

obtained by using the fundamental equation in (A-8)

and also that given in (27). This verifies that the use of

partial embedding of holonomic constraints gives the

correct equations of motion of the constrained system.

Appendix C

Complete embedding: Determination of the equations

of motion using Tyy given in relation (29).

We use the expression for the kinetic energy given

by

Tyy ¼ 1

2
½ _x2 þ ððxþ cÞ2 þ aÞð _xþ _cðtÞÞ2 þ ðz2

þ bÞ _z2�:
ðC � 1Þ

Since the coordinates x and z are independent, the

system is unconstrained and the Lagrange equations of

motion (A-3) of the unconstrained system are simply

€x ¼ �ðy2 þ aÞ€c� y _y2

y2 þ aþ 1
;

€z ¼ �z _z2

z2 þ b
:

ðC � 2Þ

Using the constraint relation (25) and the first

equation in (C-2), we obtain,

€y ¼ €xþ €c ¼ €c� y _y2

y2 þ aþ 1
ðC � 3Þ

which together with the equation set (C-2) give the

three equations of motion of the system. These

equations are identical to those in (A-9) and (27),

and are the correct equations of motion of the

constrained system, thus verifying that complete

embedding for holonomic constraints works.

Appendix D

Use of Eqs. (2.11)–(2.17) from Ref. [18]

We use here the kinetic energy

Tyð _x; _z; y; z; tÞ :¼ Tyð _q2; q1; q2; tÞ

¼ 1

2
½ _x2 þ ðy2 þ aÞð _xþ _cðtÞÞ2 þ ðz2

þ bÞ _z2�;
ðD � 1Þ

and investigate whether the equations given in Ref.

[18] are correct. If they yield the same equations as

those in (A-9) the embedded Eqs. (2.13)–(2.17) would

be correct.

In the following (and only in this Appendix), we use

the same notation used in Ref. [18], and we use the

corrected form of Eq. (2.15), which is given in

Eq. (19).

Noting that
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q1 ¼ y; q2 ¼ ½x; z�T; A1 ¼ 1; A2 ¼ ½�1 0�;
M11 ¼ y2 þ a;

ðD � 2Þ

and,

M22 ¼ 1 0

0 z2 þ b

� �
; ðD � 3Þ

we obtain

W ¼ y2 þ aþ 1 0

0 z2 þ b

� �
; U ¼

ðy2 þ aÞ _c
0

" #

and
oTy
oq2

¼ 0 z _z2
� �T

ðD � 4Þ

This yields, using Eq. (2.17) from Ref. [18]

Gðq2; q; tÞ :¼ � _W _q2 � _Uþ oTy
oq2

þ Q
y
2

¼
�2y _yð _xþ _cÞ � ðy2 þ aÞ€c

�z _z

" #
; ðD � 5Þ

The relation

W€q2 ¼ G ðD � 6Þ

then gives

y2 þ aþ 1 0

0 z2 þ b

� �
€x

€z

" #

¼
�2y _yð _xþ _cÞ � ðy2 þ aÞ€c

�z _z

" #
ðD � 7Þ

or,

€x

€z

" #
¼

�ðy2 þ aÞ€c� 2y _yð _xþ _cÞ
y2 þ aþ 1

�z _z

z2 þ b

2
664

3
775

¼

�ðy2 þ aÞ€c� 2y _y2

y2 þ aþ 1

�z _z

z2 þ b

2
664

3
775: ðD � 8Þ

Using the constraint relation (25) and the first

equation in (D-8), we obtain,

€y ¼ €c

y2 þ aþ 1
� 2y _y2

y2 þ aþ 1
ðD � 9Þ

which together with the equation set (D-8) give the

three equations of motion of the system. These

equations are the incorrect equations of motion when

compared with (B-4). Thus Eqs. (2.13)–(2.17) [18] are

not the correct equations of motion pertaining to the

embedded kinetic energy Ty given in (D-1).
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