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Abstract This paper focuses on the integrability and
exact solutions of a (2+1)-dimensional variable coeffi-
cient Korteweg-de Vries equation. The bilinear form,
Bäcklund transformations, andLaxpair of this equation
are obtained using the Bell polynomial method. Soli-
ton solutions, including lump solitons, breather soli-
tons, and hybrid solutions, are constructed by assum-
ing different auxiliary functions in the bilinear ansatz
method. Additionally, the soliton solutions are pre-
sented as figures for different variable coefficient func-
tions and undetermined items under appropriate param-
eter choices. TheBäcklund transformations also lead to
Lax pair and the infinity conservation laws that ensure
the integrability of the nonlinear system under study.

Keywords Variable coefficient Korteweg-de Vries
equation · Soliton solution · Bilinear ansatz method ·
Lax pair

1 Introduction

Nonlinear partial differential equations (NLPDEs) play
a key role in simulating various phenomena in mathe-
matical theory, physical science and engineering tech-
nology [1]- [6]. Searching for the exact solutions of
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NLPDEs is crucial for deep understanding of these phe-
nomena and developing new technologies, but it used
to be difficult. Emergence of integrable system theory
applicable to NLPDEs is a major breakthrough in this
field. The developments of integrable systems theory
with other mathematical tools make exact solutions of
complex NLPDEs possible. Currently, further research
on NLPDEs remains a vibrant field with many promis-
ing future opportunities.

In numerousNLPDEs, theKorteweg-deVries (KdV)
equation and its generalized equations have signifi-
cance for theirwide applications in engineering, plasma
physics, water waves, hydrodynamics and quantum
theory [7]–[11]. The classical KdV equation

ut = uxxx + 6uux (1)

as first discovered in 1895 by Korteweg and de Vries
while investigating the motion of long waves of small
amplitude in shallow water [12]. On account of the
importance and applicability of the KdV equations, the
studies on them have spread and deepened more and
more.

Boiti et al. [13] used the idea of the weak Lax pair
to derive the (2+1)-dimensional KdV equation{
ut + 3(uv)x + uxxx = 0,

ux = vy .
(2)

This equation falls under the category of NLPDEs and
has garnered significant interest in studying the dif-
ferent forms of exact solutions. To achieve this, vari-
ous distinguishing methods have been employed and
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contributed to finding the exact solutions of (2). For
example, the Hirota bilinear method [14], the tanh-coth
method, the cosh ansatz, the Exp-functionmethod [15],
the method combining positive quadratic function and
hyperbolic function [16], and the extended homoclinic
test technique [17].

The above research results are all based on the (2+1)-
dimensional constant coefficient KdV equation. How-
ever, NLPDEs with variable coefficients are also a very
important and constantly evolving research area that
needs to be explored to gain a deeper understanding
and clearer explanations of real physical phenomena.
Comparedwith the constant coefficientKdVequations,
the coefficients in the equations studied are the func-
tion(s) of the space variable or time variable. Currently,
the main methods for finding the exact solutions of
variable coefficient KdV equations include Bäcklund
transformation [18,19],Hirota’s directmethod [20,21],
Darboux transformation [22,23], Painlevé analysis [19,
24], nonlinear superposition principle [25] and auxil-
iary equation method [26,27].

In this paper, we will aim at the (2+1)-dimensional
variable coefficient KdV equation (vcKdV) from Eq.
(2){

ρ(t)ut + 3(uv)x + uxxx = 0,

ux = vy,
(3)

where u = u(x, y, t), v = v(x, y, t), x and y are space
variables, and t is time variable. And the coefficient
function ρ(t) is a function of time t . The bilinear ansatz
method will be applied to construct the exact soliton
solutions and hybrid solutions of the vcKdV equation
(3) with different ρ(t). The variable coefficient Equa-
tions more realistically model various situations, such
as superconductors, plasmas, and optical-fiber com-
munications, some of which have a distinct soliton
character. We propose the idea of the ansatz method
for solving constant coefficient equations, study the
ansatz method for variable coefficient equations, and
give the conditions on the parameters to get lump soli-
ton, breather soliton, and hybrid solutions, which pro-
vide useful ideas for solving other equations with vari-
able coefficients.

This paper is organized as follows. In Sect. 2.1, we
first review the Bell polynomials and further derive the
bilinear form, Bäcklund transformations, and Lax pair
from the relationship between the Bell polynomial and
theHirota bilinear operator. In Sect. 3, soliton solutions
including lump, breather, and line and hybrid solutions

of the vcKdV Eq. (3) are constructed by ansatz method
and their dynamics properties are illustrated by graphs.
In Sect. 4, the infinite conservation laws are derived on
the basis of Lax pair. In Sect. 5, certain conclusions end
in full text.

2 Bilinear form and Lax integrability

In this section, Bell polynomials will be used to derive
the bilinear form and Lax pair of the vcKdV equation
(3). The exponential polynomial was first proposed by
Bell in 1934 [28] and the generalized Bell polynomi-
als have played an important role in studying various
NLPDEs with constant or variable coefficients [29]–
[36].

2.1 Bilinear from

The bilinear form of the vcKdVEq. (3)will be obtained
next on the basis of the connection between Bell poly-
nomials, and the Hirota bilinear operator.

2.1.1 Bell polynomials

Firstly, we will briefly review the one-dimensional Bell
polynomials, multi-dimensional Bell polynomials and
the binary Bell polynomials.

The one-dimensional Bell polynomials [28] are
defined as

Zmx (g) = Zm(gx , . . . , gnx ) = exp(−g)∂mx exp(g),

(4)

where gix = ∂ ix g.
If mi (i = 1, 2, . . . , j) are arbitrary nonneg-

ative integers, g = g(x1, . . . , x j ) is a C∞ multi-
variable function and gs1x1,...,s j x j = ∂

s1
x1 ...∂

s j
x j g (si =

0, . . . ,mi , i = 1, . . . , j), then the multi-dimensional
Bell polynomials (Z -polynomials) [29]- [31] read

Zm1x1,...,m j x j (g) = exp(−g)∂m1
x1 ...∂

m j
x j exp(g). (5)

The binary Bell polynomials (Z -polynomials) have
the following form

Zm1x1,...,m j x j (ι, κ) = Zm1x1,...,m j x j (g)|gs1x1,...,s j x j

=
{

ιs1x1,...,s j x j , if s1 + . . . + s j is odd,

κs1x1,...,s j x j , if s1 + . . . + s j is even.

(6)
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Here list several common terms of the binary Bell poly-
nomials
Zx (ι, κ) = ιx ,

Z2x (ι, κ) = κ2x + ι2x ,

Zxt (ι, κ) = κxt + ιx ιt ,

Z3x (ι, κ) = ι3x + 3ιxκ2x + ι3x ,

Z2xt (ι, κ) = ι2xt + κ2x ιt + 2κxt ιx + ι2x ιt ,

Z4x (ι, κ) = ι4x + 6ι2xκ2x + 3ι22x + 4ιx ι3x + κ4x .

(7)

Define the Hirota bilinear operators Dmi
xi (i =

1, . . . , j) as

Dm1
x1 · · · Dm j

x j (F · G) = (∂x1 − ∂x1′)m1 · · ·
(∂x j − ∂x j ′)

m j F(x1, . . . , x j )G(x1′ , . . .

, x j ′)|x1=x1′ ,...,x j=x j ′ ,

(8)

where F = F(x1, . . . , x j ), G = G(x1′ , . . . , x j ′) and
mi (i = 1, . . . , j) are nonnegative integers.

The binary Bell polynomials and theHirota operator
have the following relation

Zm1x1,...,m j x j (ι = ln F/G, κ

= ln FG) = (FG)−1Dm1
x1 · · · Dm j

x j F · G, (9)

which can further be expressed by the Q-polynomials
and the Z -polynomials

(FG)−1Dm1
x1 · · · Dm j

x j (F · G)

= Zm1x1,...,m j x j (ι, κ) |ι=lnG/F,κ=ln FG

= Zm1x1,...,m j x j (ι, ι + q) |ι=ln F/G,q=2 ln F

=
∑

m1+···m j=even

m1∑
s1=0

· · ·
m j∑
s j=0

j∏
k=1

(
mk

sk

)
Qs1x1,...,s j x j (q)

× Z(m1−s1)x1,...,(m j−s j )x j (ι).

(10)

If F = G, then ι = ln F
G = 0, κ = ln F2 = 2 ln F ,

and Eq. (10) turns into

F−2Dm1
x1 · · · Dm j

x j F
2 = Zm1x1,...,m j x j (0, q = 2 ln F)

=
{
0, if m1 + · · · + m j is odd,

Qm1x1,...,m j x j (q), if m1 + · · · + m j is even,

(11)

where Qm1x1,...,m j x j (q) are Q-polynomials with even
part partitional structure and a few terms to be used
below are listed here
Q0 = 1,

Q2x (q) = q2x ,

Qx,y(q) = qxy,

Qy,t (q) = qyt ,

Q3x,y(q) = q3xy + 3q2xqxy .

(12)

Under the Hopf-Cole transformations

ι = lnW, W = F/G, (13)

the multi-dimensional Bell polynomials have the fol-
lowing property

Zm1x1,...,m j x j (ι) |ι=lnW= Wm1x1,...,m j x j /W, (14)

and the binary Bell polynomials can be linearized.

2.1.2 Bilinear form of the vcKdV equation

Based on the relation (11) between the binary Bell
polynomials and the bilinear operator, we will derive
the bilinear transformations that convert the nonlinear
vcKdV Eq. (3) into its equivalent bilinear Eq. will be
obtained. The relevant conclusions will be presented as
the following theorem.

Theorem 1 The bilinear form of the vcKdV Eq. (3) is

(ρ(t)DyDt + D3
x Dy + 3γ D2

x + 3δDx Dy) f ·
f = 0, (15)

and the equivalent bilinear equation is

ρ(t)( fyt f − ft fy) + fxxxy f − fxxx fy − 3 fxxy fx

+3 fxx fxy + 3γ ( fxx f − f 2x ) + 3δ( fxy f − fx fy)

= 0. (16)

Proof For the vcKdV Eq. (3), we consider the trans-
formations

u = γ + my, v = δ + mx , (17)

where γ and δ are real parameters, andm = m(x, y, t)
is a differentiable function of x , y and t . Substituting
the transformations (17) into Eq. (3), we have

ρ(t)myt + 3[(γ + my)(δ + mx )]x + mxxxy = 0.

(18)

Taking the further transformations

m = qx , q = 2 ln f, (19)

and substituting the transformations (19) into Eq. (18),
we get

ρ(t)qxyt + 3[(γ + qxy)(δ + qxx )]x + qxxxxy = 0,

(20)

where q = q(x, y, t) and f = f (x, y, t) are two dif-
ferentiable functions of x , y and t .
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Integrating Eq. (20) with respect to x , we have

ρ(t)qyt + 3(γ + qxy)(δ + qxx ) + qxxxy = C. (21)

We assume the combinations of the integral constantC
and the constant term 3γ δ to be zero, and denote

E(q) = ρ(t)qyt + +qxxxy + 3γ qxx + 3δqxy = 0.

(22)

From the Q-polynomials (12) of the binary Bell poly-
nomials, Eq. (22) can be rewritten as

E(q) = ρ(t)Qyt + Q3xy + 3γ Q2x + 3δQxy = 0.

(23)

According to the formula (11), we confirm that the
bilinear representation of the vcKdVEq. (3) is Eq. (15).
By the bilinear operator (8), the bilinear form (15) will
be converted into the corresponding bilinear Eq. (16).

��
In the process of proving the theorem above, we also
obtained the bilinear transformation

u = γ + (2 ln f )xy, v = δ + (2 ln f )xx (24)

of the vcKdV Eq. (3) obviously.

2.2 Lax integrability

Based on the bilinear form (15) and the Hopf-Cole
transformations (13), the Bäcklund transformations
and the relative Lax pair will be derived, which ensure
the Lax integrability of the vcKdV Eq. (3). Two related
theorems will be given in this part.

Theorem 2 The Bäcklund transformations of the
vcKdV Eq. (3) are⎧⎪⎨
⎪⎩

(Dx Dy + λDx )F̃ · G̃ = 0,

(ρ(t)Dt + D3x )F̃ · G̃ = 0,

(3γ Dx + 3δDy)F̃ · G̃ = 0,

(25)

where λ is an arbitrary constant and F̃ = F̃(x, y, t)
and G̃ = G̃(x, y, t).

Proof Suppose that q(x, y, t) and q̂(x, y, t) are two
different solutions ofEq. (22). Thenew transformations

ι = q̂ − q

2
= ln

F̃

G̃
, κ = q̂ + q

2
= ln F̃ G̃

with Eq. (22) and the binary Bell polynomials (7) lead
to

0 = E(q̂) − E(q))

= ρ(t)(q̂ − q)yt + (q̂ − q)xxxy

+ 3(q̂xyq̂xx − qxyqxx )

+ 3γ (q̂ − q)2x + 3δ(q̂ − q)xy

= 2(ρ(t)ιyt + ι3xy + 3(κ2x ιxy

+ κxyι2x ) + 3γ ι2x + 3διxy)

= 2(∂y(ρ(t)Zt + Z3x ) + ∂x (3γZx

+ 3δZy) + R(ι, κ)),

(26)

in which

R(ι, κ) = 3(κxyι2x − ιxκ2xy − ι2x ιxy). (27)

Eq. (26) can be rewritten as

0 = E(q̂)−E(q)
2 = ∂y(ρ(t)Zt + Z3x )

+∂x (3γZx + 3δZy). (28)

Introducing another constrained conditionZxy + λZx

= 0 and combining it with Eq. (28), we obtain a set of
equations⎧⎨
⎩

Zxy + λZx = 0,
ρ(t)Zt + Z3x = 0,
3γZx + 3δZy = 0,

(29)

which with Eq. (9) can deduce the Bäcklund transfor-
mations (25) for the vcKdV Eq. (3). ��
Theorem 3 When 3γWx + 3δWy = 0, the Lax pair
of the vcKdV Eq. (3) is as follows{
L1(W) = Wxy + λWx + uW = 0,

L2(W) = ρ(t)Wt + 3vWx + W3x = 0.
(30)

Proof According to the Hopf-Cole transformations
(13) and Eqs. (10) and (14), there hold

Zx (ι, κ) = Wx

W
, Zy(ι, κ) = Wy

W
,

Z2x (ι, κ) = q2x + W2x

W
,

Zxy(ι, κ) = qxy + Wxy

W
,

Z3x (ι, κ) = 3q2x
Wx

W
+ W3x

W
. (31)

For 3γWx + 3δWy = 0, we substitute (31) into (29)
and obtain{
Wxy + λWx + myψ = 0,

ρ(t)Wt + 3mxWx + W3x = 0.
(32)
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Taking the transformations (17) into Eq. (32), we
prove that the Lax pair (30) holds. The compatibility
condition Wxyt = Wt xy leads to

ρ(t)myt + 3[(γ + my)(δ + mx )]x + myxxx = 0.

(33)

All these prove that the vcKdVEq. (3) is completely
integrable. ��

3 The exact solutions of the vcKdV equation

In this section, we will use ansatz-methods [37]- [41]
to construct the solutions of the bilinear Eq. (16) and
further obtain the exact solutions of the vcKdV Eq. (3).
For convenience, we take γ = 0 and δ = 0. The differ-
ent expressions of auxiliary functions f and different
choices of the parameters will determine the types of
solitons, such as lump solitons, breather solitons and
line solitons.

3.1 Lump soliton solutions

Lump soliton solution is a special rational solution,
which is local in all spatial directions. Many schol-
ars have used the positive quadratic function in ansatz-
methods to construct the lump soliton solutions of
NLPDEs [37]- [39].

To find the lump soliton solutions to the vcKdV Eq.
(3),we startwith the following solution f of the bilinear
Eq. (16)

f = ζ 2
1 + ζ 2

2 + η, (34)

with

ζi = ki x + bi y + ci (t) + di , (i = 1, 2), (35)

where ki , bi and di are undetermined real parameters,
and ci (t) are functions of t . After taking (34) into Eq.

(16) to collect the coefficients of x and y, and setting
these coefficients equal to 0, we can get the conditions
that ci (t) (i = 1, 2) and η satisfy the following equal-
ities

c1(t) = −
∫

3(b21k1 + b1k21 − b1k22 + b22k1 + 2b2k1k2)

ρ(t)(b21 + b22)
dt,

c2(t) = −
∫

3(b21k2 − b2k21 + b2k22 + b22k2 + 2b1k1k2)

ρ(t)(b21 + b22)
dt,

η = −k31b
3
1 + k31b1b

2
2 + k21b

2
1k2b2 + k21k2b

3
2 + k1b31k

2
2 + k1b1k22b

2
2 + b21k

3
2b2 + k32b

3
2

(b1k2 − b2k1)2
, (36)

where ki and di (i = 1, 2) are arbitrary, but conditions
that η > 0, b1 �= 0, b2 �= 0 and b1k2−b2k1 �= 0 should
be satisfied simultaneously to avoid the singularity of
the lump soliton.

When we choose ρ(t) = 1, k1 = 4, b1 = −3, d1 =
2, k2 = 3

2 , b2 = 1, d2 = 2, the bilinear Eq. (16)
becomes a constant-coefficient case, and its solution
is

f = (4x − 3y − 129

40
t + 2)2 + (

3

2
x

+y + 417

40
t + 2)2 + 7665

289
. (37)

It is easy to obtain the lump soliton solutions u and v

of the vcKdV Eq. (3) from (37) and (24). The explicit
expressions are omitted here and in the rest of this paper
for the sake of brevity. The corresponding figures of u
and v are presented in Fig. 1 (a1) and (a2).

When we choose ρ(t) = 1
t , k1 = 2, b1 = −3, d1 =

1, k2 = 3
2 , b2 = 5, d2 = 5, the solution of bilinear Eq.

(16) is

f = (2x − 3y − 1113

272
t2 + 1)2 + (

3

2
x

+5y + 291

272
t + 5)2 + 1275

841
. (38)

It is easy to obtain the lump soliton solutions u and v

of the vcKdV Eq. (3) from (38) and (24). The corre-
sponding figures of u and v are presented in Fig. 1 (b1)
and (b2).

When we choose ρ(t) = 1
t2
, k1 = 1, b1 = 2, d1 =

5, k2 = 2, b2 = −3, d2 = −2, the solution of bilinear
Eq. (16) is

f =
(
x + 2y + 5

13
t3 + 5

)2

+
(
2x − 3y

−25

13
t3 − 2

)2 + 260

49
. (39)
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Fig. 1 As y = 0, lump soliton solutions of Eq. (3) for the different variable coefficient function: (a) ρ(t) = 1; (b) ρ(t) = 1
t ; (c)

ρ(t) = 1
t2

The lump soliton solutions u and v of the vcKdV Eq.
(3) are obtained from (39) and (24). The corresponding
figures of u and v are presented in Fig. 1 (c1) and (c2).

In the above three cases, ρ(t) is the inverse of a
power function. The shape of lumps takes a parabolic
shape and cubic parabolic shape, which was related to
the variable coefficient ρ(t).

Next, we will analyze the movement of the lump
soliton in detail by the method of characteristic lines.
From the expressions of ζi in (35), letting ζ1 = 0 and
ζ2 = 0, we get respectively the two characteristic lines
L1 and L2 of f . Because b1k2 − b2k1 �= 0, these two
lines must intersect and their angle is θ as shown in
Fig. 2 (a1) and (a2). Under the given parameters and at
t = 0, L1 : 4x − 3y+ 2 = 0 and L2 : 3

2 x + y+ 2 = 0,
which both cross the center of the lump. As time goes
from t = −2 to t = 2, the two characteristic lines
will move parallelly and their angle does not change

(θ = θ1 = θ2) in Fig. 2a and c. The red line L3 : 4x −
3y+ 169

20 = 0 and the green line L5 : 4x−3y− 89
20 = 0

parallel with L1. The red line L4 : 3
2 x + y − 377

20 = 0
and the green line L6 : 3

2 x + y + 457
20 = 0 parallel

with L2. The connecting line between the intersection
of two red lines and the intersection of two green lines
is the moving trajectory of the center of the lump, seen
in Fig. 2 (b) and (c).

When we choose ρ(t) = 1
sin t

2
, k1 = 1, b1 =

2, d1 = 5, k2 = 2, b2 = −3, d2 = −2, the solution
of bilinear Eq. (16) is

f =
(
x + 2y − 30 cos t

2

13
+ 5

)2

+ (2x − 3y

+150 cos t
2

13
− 2

)2

+ 260

49
. (40)
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Fig. 2 Contour and characteristic lines of one-lump soliton solu-
tions of Eq. (3) for ρ(t) = 1: (a) characteristic lines map and
contour map of u and v as t = 0; (b) contour plots of u and v at

t = −2 and t = 2; (c) characteristic plots of u and v as t = −2
and t = 2

It is easy to obtain the lump soliton solutions u and v

of the vcKdV Eq. (3) from (40) and (24). The corre-
sponding figures of u and v are presented in Fig. 3 (a1)
and (a2). Because ρ(t) is the inverse of a trigonomet-
ric function, which also appears in the expression of f ,
the lump soliton solution has corresponding periodicity
whose period is controlled by ρ(t).

When we choose ρ(t) = 1
sin t , k1 = 1, b1 = 2, d1 =

5, k2 = 2, b2 = −3, d2 = −2, the solution of bilinear
Eq. (16) is

f =
(
x + 2y − 15 cos t

13
+ 5

)2

+ (2x

−3y + 75 cos t

13
− 2

)2

+ 260

49
. (41)

It is easy to obtain the lump soliton solutions u and v

of the vcKdV Eq. (3) from (41) and (24). The corre-

sponding figures of u and v are presented in Fig. 3 (b1)
and (b2).

When we choose ρ(t) = 1
sin 2t , k1 = 1, b1 =

2, d1 = 5, k2 = 2, b2 = −3, d2 = −2, the solution
of bilinear Eq. (16) is

f = (x + 2y − 15 cos 2t

26
+ 5)2 + (2x − 3y

+75 cos 2t

26
− 2)2 + 260

49
. (42)

It is easy to obtain the lump soliton solutions u and v

of the vcKdV Eq. (3) from (42) and (24). The corre-
sponding figures of u and v are presented in Fig. 3 (c1)
and (c2).

From Fig. 1 and Fig. 3, it is obvious that the lump
solitons of v are all bright (a2, b2 and c2) and the ones
of u are all anti-bright (a1, b1 and c1). As for the period-
icity, it depends on the period of the auxiliary function
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Fig. 3 As y = 0, lump soliton solutions of Eq. (3) for the different ρ(t): (a) ρ(t) = 1
sin t

2
; (b) ρ(t) = 1

sin t ; (c) ρ(t) = 1
sin 2t

f . From the expressions of f in Eqs. (40)-(42), the
period of the first lump soliton is 4π , the period of the
second lump soliton is 2π , and the period of the last
lump soliton is π .

Figures4 (a), (b) and (c) are the three-dimensional
graphs of the periodic lump soliton solutions u and
v in Fig. 3 (a) at y = −4, y = 0 and y = 4 respec-
tively. The sectional diagrams of the components u and
v with different y values are shown in Fig. 5 (a) and (b)
respectively. In Fig. 5, the green, blue and red curves
correspond to y = −4, y = 0 and y = 4 respectively.
What y values can influence is only the amplitude of the
soliton. It can also be clearly seen that the amplitudes
of u and v at y = 0 are the largest.

3.2 Breather soliton solutions

To construct the breather soliton solutions of the vcKdV
Eq. (3),we assume that the solution f of the bilinearEq.

(16) is a combination of hyperbolic and trigonometric
functions as follows [42,43]

f = a1 cosh ζ1 + a2 cos ζ2

+a3 sinh ζ3 + a4 sin ζ4, (43)

with

ζi = ki x + bi y + ci (t) + di , (i = 1, 2, 3, 4), (44)

where ki , bi and di are undetermined real parameters,
and ci (t) are functions of t . From (43), it is not difficult
tofind that hyperbolic functions affect the locality of the
breather solitons and trigonometric functions control
the period. From this perspective, the breather solitons
can be viewed as consisting of the solitary wave and the
periodic wave. Substituting (43) into Eq. (16), collect-
ing the coefficients of different functions and setting
these coefficients equal to 0, we can determine specific
parameters, whichwill lead to different breather soliton
solutions.
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Fig. 4 Periodic lump soliton solutions of Eq. (3) for ρ(t) = 1
sin t

2
for different y values: (a) y = −4; (b) y = 0; (c) y = 4

Fig. 5 Two-dimensional cross-section graph of a periodic lump soliton solution of Eq. (3) for ρ(t) = 1
sin t

2
as y = 0, y = 4 and y = 10
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(1) From those parameters, we select the following
values: a1 �= 0, a2 �= 0, a3 �= 0, a4 = 0, and other
undetermined items satisfy

c1(t) = −
∫

k3(k23 + 3)

ρ(t)
, c2(t) =

∫
k2(k22 + 3)

ρ(t)
,

c3(t) = −
∫

k3(k23 + 3)

ρ(t)
,

k1 = k3, b1 = − 1

k3
,

b2 = 1

k2
, b3 = − 1

k3
,

(45)

where k2 �= 0 and k3 �= 0. When we take different ρ(t)
and appropriate a1, a2, a3, k2, k3, d1, d2, d3, we get
several solutions.

When taking ρ(t) = 1, a1 = 3, a2 = −1, a3 =
2, k2 = 1, k3 = 1

2 , d1 = 3, d1 = 5, d1 = 4, this is a
case of the constant coefficientKdVEq.whose breather
solitons will be the ordinary ones. The solution of the
bilinear Eq. (16) is

f = 3 cosh

(
−1

2
x + 2y + 13

8
t − 3

)
− cos(−x − y + 2t − 5)

−2 sinh

(
−1

2
x + 2y + 13

8
t − 4

)
. (46)

From (46) and (24), we can obtain the expressions of
the breather soliton solutions u and v whose figures
are depicted in Fig. 6 (a1) and (a2). For ρ(t) = 1,
the vcKdV Eq. (3) is just constant-coefficient and the
shape of the breather soliton depends only on the under-
mined function ρ(t). From the expression of f , it can
be inferred that the breather soliton is straight and the
solitarywave propagates with a velocity of 13

4 along the
x-axis, while the periodic wave travels with a velocity
of 2.

If the parameters are chosen as ρ(t) = 1
t , a1 =

3, a2 = −1, a3 = 2, k2 = 1, k3 = 1
2 , d1 = 3,

d1 = 5, d1 = 4, the solution of the bilinear Eq. (16) is

f = 3 cosh(−1

2
x + 2y + 13

16
t2 − 3) − cos(−x − y

+2t2 − 5) − 2 sinh(−1

2
x + 2y + 13

16
t2 − 4).

(47)

The breather soliton solutions were obtained from (47)
and (24), whose figures are shown in Fig. 6 (b1) and
(b2). From Eq. (47) and Fig. 6 (b1) and (b2), the shapes
of the breather solitons are quadratic parabolic. The

moving velocity of the solitary wave is 13
8 along the

direction of the x-axis, and the propagating velocity of
the periodic wave is 2.

If the parameters are chosen as ρ(t) = 1
t2
, a1 =

3, a2 = −1, a3 = 2, k2 = 1, k3 = 1
2 , d1 = 2,

d1 = 3, d1 = 4. The solution to the bilinear Eq. (16)
can be obtained as

f = 3 cosh

(
−1

2
x + 2y + 13

24
t3 − 2

)

− cos

(
−x − y + 2

3
t3 − 3

)

−2 sinh

(
−1

2
x + 2y + 13

24
t3 − 4

)
.

(48)

The breather soliton solution obtained from (48) and
(24), whose figures are presented in Fig. 6 (c1) and
(c2) respectively. By going over Eq. (48) and Fig. 6
(c1) and (c2), we can determine that the shapes of the
breather solitons are cubic parabolic, and the solitary
wavemoves in the direction of the x-axiswith a velocity
of 13

12 and the periodic wave propagates with a velocity
of 2

3 .
2) If we select a1 = a1, a2 = a2, a3 = a3, a4 = a4,

c1(t) = −
∫

k3(k23 + 3)

ρ(t)
, c2(t) =

∫
k2(k22 + 3)

ρ(t)
,

c3(t) = −
∫

k3(k23 + 3)

ρ(t)
, c4(t) =

∫
k2(k22 + 3)

ρ(t)
,

k1 = k3, k4 = k2, b1 = − 1

k3
,

b2 = 1

k2
, b3 = − 1

k3
, b4 = 1

k2
,

(49)

the resulting lump soliton solutions closely resemble
those shown in Fig. 6. However, we will refrain from
providing further elaboration on this topic.

3) If a2 = 0 and a4 = 0, the trigonometric functions
disappear in the f expression (43). As a result, the
breather soliton no longer exhibits any periodicity and
instead degenerates into a solitary wave. Therefore, the
parameters are chosen as follows

c1(t) = −
∫

k1(k21 + 3)

ρ(t)
, c3(t) = −

∫
k3(k23 + 3)

ρ(t)
,

b1 = − 1

k1
, b3 = − 1

k3
, (50)
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Fig. 6 As y = 0, breather soliton solutions of Eq. (3) for different ρ(t): (a) ρ(t) = 1; (b) ρ(t) = 1/t ; (c) ρ(t) = 1/t2

where k1 �= 0, k3 �= 0, a1 �= 0 and a3 �= 0. When we
take different ρ(t) and appropriate a1, a3, k1, k3, d1,
d3, we get different solutions.

Assuming ρ(t) = 1, a1 = 3, a3 = 1, k1 = 1, k3 =
1, d1 = −4, d3 = 5, we obtain the solution of the
bilinear Eq. (16) is

f = 3 cosh(−x + y + 4t + 4)

− sinh(−x + y + 4t − 5). (51)

Fig. 7 (a1) and (a2) illustrate the line soliton solutions
u and v, which are derived from Eq. (51) and Eq. (24).
From Eq. (51), the velocity of the line soliton along the
x-axis is 4.

Setting ρ(t) = 1
t , a1 = 3, a3 = 1, k1 = 1, k3 = 1,

d1 = −4, d3 = 5, we get the solution to the bilinear
Eq. (16) is

f = 3 cosh(−x + y + 2t2 + 4)

− sinh(−x + y + 2t2 − 5). (52)

Fig. 7 (b1) and (b2) exhibit the line soliton solutions u
and v respectively, which are derived from Eqs. (52)
and (24). Based on Eq. (52) and Fig. 7 (b1) and (b2), it
can be concluded that the shapes of the line soliton are
parabolic and the velocity of the line soliton along the
x-axis is 2.

Taking ρ(t) = 1
t2
, a1 = 3, a3 = 1, k1 = 1, k3 = 1,

d1 = −4, d3 = 5, the solution of the bilinear Eq. (16)
is

f = 3 cosh(−x + y + 4

3
t3 + 4)

− sinh(−x + y + 4

3
t3 − 5). (53)

Fig. 7 (c1) and (c2) show the line soliton solutions u
and v that can be obtained from Eqs. (53) and (24).
By analyzing Eq. (53) and examining Fig. 7 (c1) and
(c2), it can be concluded that the line solitons are cubic
parabolic and the velocity of the line soliton along the
x-axis is 4

3 .
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Fig. 7 As y = 0, line soliton solutions of Eq. (3) for different ρ(t) and β(t): (a) ρ(t) = 1; (b) ρ(t) = 1/t ; (c) ρ(t) = 1/t2

When a4 = 0 in Eq. (43), Fig. 6 presents the breather
solitons of the vcKdV Eq. (3), where (a1), (b1) and (c1)
represent anti-bright solitonsu,while (a2), (b2) and (c2)
represent bright solitons v. When a2 = 0 and a4 = 0 in
Eq. (43), Fig. 7 depicts the line solitons of the vcKdV
Eq. (3), which can be viewed as the degenerations of
breather solitons. Similar to analysis in Fig. 6, (a1), (b1)
and (c1) in Fig. 7 represent the anti-bright solitons u,
while (a2), (b2) and (c2) in Fig. 7 correspond to the
bright solitons v.

3.3 Hybrid solutions of lump and line solitons

To derive the hybrid solutions of lump soliton and line-
soliton waves named lump-line soliton solutions for
the vcKdV Eq. (3), we suppose that the solution f of
the bilinear Eq. (16) is a combination of quadratic and
exponential functions [37,38,40]

f = ζ 2
1 + ζ 2

2 + a exp(ζ3) + η, (54)

with

ζi = ki x + bi y + ci (t) + di , (i = 1, 2, 3), (55)

where ki , bi and di are undetermined real parameters,
and ci (t) are functions of t . By substituting (54) into
Eq. (16) and setting the coefficients of x , y and exp ζ3
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to 0, we can obtain several sets of parameters. Among
these sets, we will select one set of parameters

c1 =
∫

3(−b23k1k
2
3 + b1k23 − b23k1 − 2b3k1k3)

ρ(t)b23
dt,

c2 =
∫

3(−b23k2k
2
3 + b2k23 − b23k2 − 2b3k2k3)

ρ(t)b23
dt,

c3 = −
∫

k3(b3k23 + 3b3 + 3k3)

ρ(t)b3
dt,

(56)

where ki , di (i = 1, 2, 3), b1, b2, and η are arbitrary,
but a �= 0, b3 �= 0. It needs to be noted that if a = 0,
Eq. (54) will take the form of a lump soliton. To avoid
this case, we set a �= 0 here.

When we consider ρ(t) = 1, a = 1, k1 = 4, b1 =
−3, d1 = 2, k2 = 2, b2 = 5, d2 = 2, k3 = −1, b3 = 1,
d3 = 3 and η = 2, these parameters correspond to
lump-line solitons for the constant coefficient vcKdV
Eq. (3). The solution of the bilinear Eq. (16) can be
expressed as

f = (4x − 3y + 9t + 2)2 + (2x + 5y + 15t + 2)2

+e−x+y+t+3 + 2. (57)

The expressions of u and v can easily be obtained from
Eqs. (57) and (24). Figures8 (a1) and (a2) show the
hybrid solutions of one lump and one line.

Assuming ρ(t) = 1
t , a = 1, k1 = 4, b1 = −3,

d1 = −7, k2 = 32, b2 = 5, d2 = 2, k3 = −1, b3 = 2,
d3 = 3, η = 2, the solution to the bilinear Eq. (16) can
be expressed as follows

f = (4x − 3y − 57

8
t2 − 7)2 + (

3

2
x + 5y

−3

8
t2 + 2)2 + e−x+2y+ 5

4 t
2+3 + 2. (58)

The hybrid solutions u and v obtained from (58) and
(24) are shown graphically in Fig. 8 (b1) and (b2).

When we take ρ(t) = 1
t2
, a = 1, k1 = 4, b1 = −3,

d1 = −1, k2 = −2, b2 = 5, d2 = 7, k3 = −1, b3 = 1,
d3 = 3, η = 2, the solution of the bilinear Eq. (16) is

f =(4x − 3y − 3t3 − 1)2+(−2x+5y+5t3 + 7)2

+e−x+y+ 1
3 t

3+3 + 2. (59)

From (59) and (24), the expressions of the lump-line
soliton solutions u and v of the vcKdV Eq. (3) can be
obtained, whose graphs are depicted in Fig. 8 (c1) and
(c2) respectively.

Figure8 shows the lump-line solutions of the vcKdV
Eq. (3), with the different time-dependent function

ρ(t). (a1) and (a2) show the lump-line solutions of con-
stant coefficient equation. Similarly, the shapes of the
lump-line solutions are determined by ρ(t). In partic-
ular, (b1) and (b2) correspond to ρ(t) = 1

t2
, resulting

in parabolic shapes. On the other hand, (c1) and (c2)
correspond to ρ(t) = 1

t3
, resulting in cubic parabolic

shapes.

4 Infinite conservation laws of the vcKdV equation

It is well known that the KdV Eq. (1) has infinite con-
servation laws. In this section, we will try to derive the
infinite conservation laws of the vcKdVEq. (3) starting
with Lax pair which is a convenient and popular way.

Combining Eq. (29) with the binary Bell polynomi-
als (7), we have⎧⎪⎨
⎪⎩

κxy + ιx ιy + λιx = 0,

ρ(t)ιt + (ι3x + 3ιxκ2x + ι3x ) = 0,

3γ ιx + 3διy = 0.

(60)

Introducing a new variable � = ιx , we have κx =
m + ιx , which is substituted with the transformations
(17) into Eq. (60), we have

u − γ + �y + �(∂−1
x �y) + λ� = 0, (61)

ρ(t)∂−1
x �t + [�xx + 3�(v − δ + �x ) + � 3]

= 0, (62)

and

3γ� + 3δ∂−1
x �y = 0. (63)

Differentiating Eqs. (62) and (63) with respect to x , we
get

ρ(t)�t + ∂x [�xx + 3�(v − δ + �x ) + � 3] = 0,

(64)

and

3γ�x + 3δ�y = 0, (65)

Substituting the series expansion

� =
∞∑
n=1

In(u, v, ux , vx , uy, vy, . . .)λ
−n (66)

into Eq. (61) leads to

u − γ +
∞∑
n=1

In,yλ
−n +

( ∞∑
n=1

Inλ
−n

)
(

∂−1
x

∞∑
n=1

In,yλ
−n

)
+ λ

∞∑
n=1

Inλ
−n = 0, (67)
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Fig. 8 As y = 0, lump-line solutions of Eq. (3) for different ρ(t): (a) ρ(t) = 1; (b) ρ(t) = 1/t ; (c) ρ(t) = 1/t2

in which the coefficients of λ are collected as

λ0 I1 = −(u − γ ) = −my,

λ−1 I2 = −I1,y = uy = myy,

λ−2 I3 = −I2,y − I1(∂
−1
x I1,y)

= −(uyy + (u − γ )∂−1
x uy)

= −(myyy + my∂
−1
x myy),

...

λ−n+1 : In = −In−1,y

−
∞∑
i=1

Ii (∂
−1
x In−i,y), (n = 2, 3, 4, . . .).

(68)

Respective substitutions of the expansion (66) into Eqs.
(64) and (65) make

ρ(t)
∞∑
n=1

In,tλ
−n + ∂x [

∞∑
n=1

In,xxλ
−n

+3(
∞∑
n=1

Inλ
−n)(v − δ +

∞∑
n=1

In,xλ
−n)

+(

∞∑
n=1

Inλ
−n)3] = 0, (69)

and

3γ
∞∑
n=1

In,xλ
−n + 3δ

∞∑
n=1

In,yλ
−n = 0. (70)

Collecting the coefficients of λ in Eq. (69), we obtain
the infinitely many conservation laws

ρ(t)Mn,t + Gn,x + ρ(t)Nn,y = 0,

(n = 1, 2, 3, . . .), (71)

where Mn , Nn and Gn are shown as

Mn = −
∞∑
i=1

Ii (∂
−1
x In−i+1,y), n = 3, 4, 5, . . . .

(72)

Nn = −∂−1
y In,t , n = 1, 2, 3, . . . . (73)
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and

G1 = (I1,xx + 3(v − δ)I1) = −(uxx + 3(v − δ)(u − γ ))

= −(mxxy + 3mxmy),

G2 = (I2,xx + 3(v − δ)I2 + 3I1 I1,x )

= uxxy + 3(u − γ )ux + 3(v − δ)uy,

= mxxyy + 3mymxy + 3mxmyy,

G3 = (I3,xx + 3(I1 I2,x + I2 I1,x + (v − δ)I3) + I 31 ),

.

.

.

Gn =
⎛
⎝In,xx + 3

⎛
⎝ ∑

i+ j=n

Ii I j,x + (v − δ)In

⎞
⎠

+
∑

i+ j+k=n

Ii I j Ik

⎞
⎠ , (n = 1, 2, 3, 4, . . .).

(74)

The first conservation law is

ρ(t)myt + mxxxy + 3mxmxy + 3mxxmy = 0, (75)

which is a distortion of the vcKdV Eq. (3). The second
conservation law reads

ρ(t)myyt + mxxxyy + 3mxymxy

+3mxmxyy + 3mxxmyy + 3mymxxy = 0, (76)

which is just the derivative formof thefirst conservation
law with respect to y. Similar operations will result
in an infinite number of conservation laws which can
correspond to different NLPDEs.

5 Conclusions

In this paper, we are concerned with the (2+1)-
dimensional variable coefficient KdV Eq. (3). On one
hand, the integrability of the vcKdV Eq. (3) is ver-
ified by Lax pair and infinite conservation laws that
are derived from the Bell polynomials and Bäcklund
transformations. On the other hand, based on the bilin-
ear form and ansatz method, the soliton solutions and
hybrid solutions of the the vcKdV Eq. (3) are con-
structed and are presented graphically.Wealso take into
account the different coefficient functions and unde-
termined functions, and do some detailed analysis on
the soliton solutions. What we have done and obtained
here is conducive to further research on the NLPDEs
with variable coefficients and may illustrate more phe-
nomena in the fields of hydrodynamics, shallow water
waves, plasma physics and quantum theory.
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