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Abstract This paper presents a novel resonant para-

metric feedback controller (RPFC) for suppressing

nonlinear resonances and chaos in a cantilever beam

using acceleration feedback. The excitation of the

system may be due to 1:1 direct excitation, 1:3

subharmonic direct excitation, 3:1 superharmonic direct

excitation, 1:2 parametric excitation, 1:4 subharmonic

parametric excitation, self excitations, and combina-

tions of two or more of these. The controller is designed

in two stages. First, the measured acceleration signal of

the beam is fedback to a second-order filter. Subse-

quently, the states of the second-order filter are used to

formulate the nonlinear control function that is applied

to the structure as a parametric input such that the

controlled parametric variation produces dissipative

force at the resonance. The analysis of the system is

carried out using the method of multiple time-scales. A

number of special cases demonstrating the efficacy of

the controller in suppressing various nonlinear reso-

nances and their combinations are studied. Finally, a

novel frequency adaptation law is proposed to deal with

the uncertainty in the system’s natural frequency. The

results are verified by numerical simulations and some

experiments. Though the analysis is carried out for an

SDOF system, the proposed control scheme can easily

be extended to any MDOF system, and it can target any

mode by tuning the filter frequency.

Keywords Vibration � Active vibration control �
Resonant controller � Parametric feedback � Adaptive
control

1 Introduction

Flexible structures are susceptible to large deflections

when excited at lower modes. The sources of excita-

tions can be categorized into three main types: direct

excitation, parametric excitation, and self-excitation.

In the case of direct excitation, the system is subjected

to time-dependent force. In the case of parametric

excitation, the system gets excited due to variations in

parameters with time. Mathieu first modeled the most

straightforward parametrically excited system without

any nonlinearities [1]. The non-dimensional equation

of a base-excited cantilever beam with tip mass is

similar to the Mathieu equation with some added

nonlinearities. Self-excited systems, on the other hand,

start to oscillate on their own [2]. The vibrations can be

reduced in all three cases by improving the system

damping. Improving the damping by physical means

may not be possible in some applications, such as

flexible appendages of a spacecraft.
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The simplest way of improving damping by active

means is by using direct velocity feedback [3]. Oueini

et al. proposed a cubic velocity feedback control to

suppress the vibrations in an axially excited cantilever

beam [4]. Huang et al. studied the performance of cubic

velocity and cubic displacement feedback control in

suppressing the vibrations of a parametrically excited

system [5]. Tehrani et al. studied the performance of

velocity and displacement feedback for controlling

parametrically excited systems [6]. Similar studies have

been performed for negative velocity feedback with

linear [7] and nonlinear control laws [8]. Maccari

implemented time-delayed state feedback to control

principal parametric resonance [9]. Zhao et al. used

delayed position feedback for the vibration suppression

of 1:2 principal parametric resonance in a system [10].

Chatterjee proposed recursive time-delayed accelera-

tion feedback for controlling principal and 1:3 subhar-

monic resonance in a nonlinear system [11]. Control

schemes with direct feedback are not immune to the

noise andmay excite the highermodes of the system. To

avoid this spillover effect, Fanson and Caughey first

proposed a resonant controller using a second-order

filter with positive position feedback (PPF) for active

vibration control [12]. If the filter frequency is tuned to

the system’s natural frequency, the filter adds a phase of

�p=2 to the feedback signal (i.e., position). It

generates the force in anti-phase with the velocity,

resulting in improved damping at resonance. Sim and

Lee applied a similar control strategy with accelera-

tion feedback [13]. Mondal and Chatterjee studied the

performance of resonant controllers with velocity

feedback and time-delayed nonlinear control law for

suppressing the vibrations in a self-excited system

[14]. The detailed parametric study of a generalized

resonant controller with time delay and fractional-

order input can be found in [15]. Abdelhafez et al. used

a positive position feedback (PPF) controller with

delay to control the vibrations of a beam subjected to

both self and external excitations [16].

Few researchers have tried a slightly different

approach for active vibration control. Warminski et al.

studied the performance of nonlinear saturated control

(NSC) to mitigate the vibrations of a beam subjected to

both self and external excitations [17]. Kamel et al.

used a similar strategy to suppress the vibrations of a

nonlinear magnetic levitation system [18] and a

compressor blade [19], which is excited by both

external and parametric excitations.

Researchers have observed that by adding a para-

metric excitation, the system’s vibrations can be

amplified or unamplified by controlling the phase

and frequency of the parametric excitation [20–23].

Rahn and Mote proposed a method to obtain a control

signal from state variables such as displacement and

velocity, where a parametric control signal is chosen

to be the product of the displacement and velocity

x tð Þ _x tð Þ [24]. Senapati et al. employed a similar

strategy to design the stiffness-switching condition

and to reduce the vibrations [25]. Chechurin et al. used

parametric feedback for fast stabilization of the system

[26]. In the proposed scheme, sgn d
dt x tð Þð Þ2
� �

is

chosen to be a signal, which controls the length of

the pendulum. Pumhossel et al., tried a different

approach, where the controller is designed such that

the control force is proportional to the negative axial

velocity of the tip of the beam [27]. The axial velocity

of the tip of the beam is found to be proportional to

x tð Þ _x tð Þ, where x tð Þ is the lateral displacement. The

optimal parametric control law for the vibration

control of a system subjected to random excitations

is of the form Rsgn x tð Þ _x tð Þð Þ, where R is a constant

[28]. Chang et al. considered the parametric control

term as a weighted sum of x2 tð Þ, x tð Þ _x tð Þ, and _x2 tð Þ to
control the vibrations of the system subjected to both

direct and parametric random excitations [29].

There are mainly two ways to improve the system

damping, viz., by adding a control force out of phase

with the velocity or by varying the system parameters,

of which the first method has been studied in detail

using a generalized resonant control [15]. In the

present paper, the system damping is improved by

varying the system parameter (here, displacement of

the base of a cantilever beam). The primary objective

of this study is to design a control law such that the

resultant force, due to parameter variation, is purely

dissipative while vibrating at the resonance. The

control law is formulated as a nonlinear function of the

state variables of a second-order filter fed back with

the measured acceleration signal of the structure.

If the steady-state displacement signal is of form

x ¼ a1 sin Xtð Þ, the types of controller used in [24–29]
generate the control signal (u1), which, after expanded

as a Fourier series, possesses a 2X component with

zero phase, i.e., u1 ¼ a2 sin 2Xtð Þ þ 4X; 6X::: termsð Þ.
Thus, the force on the system due to parametric

excitation is of the form u1x ¼ a1a2
2
cos Xtð Þ
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þ 3X; 5X; ::: termsð Þ, of which the first term, depend-

ing on the sign of the control gain, is in anti-phase with

the velocity, thereby producing a positive damping

effect. But, this type of control also introduces higher

harmonics that might not be necessary, and hence the

energy spilled in the higher harmonics is not utilized.

In this paper, the control law is designed such that the

higher harmonics have low energy density compared

to the first harmonic term of the control force, u1x.

2 Mathematical model

A cantilever beam with a bluff body of mass m at the

tip is considered as a vibrating system. The base of the

beam can move in both transverse and axial directions,

as shown in Fig. 1. The beam can be excited due to the

axial motion of the base, the transverse motion of the

beam and/or due to the air flowing over the bluff body.

The non-dimensional equation of motion of a can-

tilever beam vibrating around the first mode and

actively controlled by the parametric feedback is given

as (see ‘‘Appendix A’’ for detailed derivation)

1þ c1x
2

� �
€xþ f1 þ f2x

2
� �

_xþ 1þ c1 _x
2

� �
xþ c3x

3

¼ k2 F2 þ u1ð Þxþ F1;

ð1aÞ

where ci i ¼ 1; 2; 3ð Þ are nonlinearity parameters that

depend on the mode shape function of the beam and fi
denote the non-dimensional damping parameters. F1

and F2 are the excitation forces comprising direct and

parametric terms, respectively. The direct excitation

F1 comprises harmonic, superharmonic and subhar-

monic terms. The parametric excitation F2 consists of

principal and superharmonic terms. Thus,

F1 ¼ f1 cos Xt þ /1ð Þ þ f3 cos 3Xt þ /3ð Þ

þ f1=3 cos
X
3
t þ /1=3

� �
ð1bÞ

F2 ¼ f2 cos 2Xtð Þ þ f4 cos 4Xt þ /4ð Þ ð1cÞ

The flow-induced self-excited vibrations can be

studied by selecting negative linear damping, i.e.

f1\0 and positive nonlinear damping, i.e. f2 [ 0.

The control input is considered to be a function of

the state variables of a resonant filter

u1 ¼ g z; _zð Þ; ð1dÞ

where z is the state variable of a second-order filter fed

back with the measured acceleration signal of the

structure, i.e.,

€zþ 2ffXf _zþ X2
f z ¼ €x: ð1eÞ

There are two distinct advantages of using the filter.

First, it attenuates the high-frequency noise of the

measured signal. Second, the filter frequency can be

tuned appropriately to the target mode in an MDOF

system.

2.1 Design of the controller

The primary objective here is to design the control

input, i.e. the function g z; _zð Þ such that the control

force is purely dissipative. So, the control input, g z; _zð Þ

Fig. 1 A schematic model of a cantilever beam vibrating due to direct, parametric, and self-excitations
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should be chosen so that the phase difference between

the dominant harmonic component of the control force

k2u1x maintains a 180� phase difference with the

velocity, i.e. �k2u1x is in phase with the velocity.

Let the system response, at the steady state, be

dominated by a single frequency and, thus, can be

approximated as x ¼ a sin Xt þ að Þ. Therefore, the

desired function g z; _zð Þ must be of the form,

u1 ¼ g z; _zð Þ ¼ cot Xt þ að Þ ð1fÞ

Now, if the filter frequency Xf is tuned to X, the
state variables of the filter equation are of the form,

z ¼ b cos Xt þ að Þ and _z ¼ �bX sin Xt þ að Þ. Thus,

the objective has been simplified to generate a

cotangent curve using sine and cosine curves. One

can use the Fourier series expansion to generate the

approximate cotangent signal, but it is difficult to

generate the high-frequency components separately

using only the state variables of the filter. In this paper,

the following approximation is used

u1¼k
Xn
i¼1

ci cos Xtþað Þð Þ2i�1
sgn sin Xtþað Þð Þ; ð2aÞ

where the coefficients ci’s are obtained by using the

least square algorithm to minimize the error between

the approximate polynomial and the desired shape of

the signal. (Detailed explanation is given in ‘‘Appen-

dix C’’). The desired and approximate shape of the

control signal is shown in Fig. 2a. From Fig. 2b, one

observes that the term -ux is almost everywhere in

phase with the velocity, except at some time instances,

particularly near the maximum velocity. However, the

interval of mismatch can be reduced by increasing the

order of approximation n.

But the above approximation requires the cosine

signal of unit amplitude. To obtain the signal with zero

phase shift and unit amplitude from the filter variable

z, the following equations are proposed (details are

given in ‘‘Appendix D’’),

y ¼ k11z ð2bÞ

dk11
dt

¼ ka
1

2
� k11zð Þ2

� �
ð2cÞ

Therefore, the system given in Eq. (1) with the

proposed controller can be written as

1þ c1x
2

� �
€xþ f1 þ f2x

2
� �

_xþ 1þ c1 _x
2

� �
xþ c3x

3

¼ k2 F2 þ ku1ð Þxþ F1

ð3aÞ

€zþ 2ffXf _zþ X2
f z ¼ €x ð3bÞ

dk11
dt

¼ ka
1

2
� k11zð Þ2

� �
ð3cÞ

y ¼ k11z ð3dÞ

u1 ¼
Xn
i¼1

ciy
2i�1sgn _zð Þ ð3eÞ

Fig. 2 a Exact and

approximate control signal.

b Comparison between -ux
and velocity signal
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While designing the control law,Xf was assumed to

be tuned to X. In the case of resonance, the system

vibrates at a frequency close to the natural frequency,

i.e.X� 1. The sensitivity of the phase due to the filter

at Xf ¼ X can be controlled by varying the filter

damping, as shown in Fig. 3. For the controller to

work as expected, higher values of filter damping can

be selected to maintain the phase due to the filter being

as close as possible to p=2 for a wide range of

frequencies.

3 Nonlinear analysis

In this section, the method of multiple time scales [30]

is employed to obtain the approximate system

response. Towards this end, Eqs. (3a) and (3b) are

recast as,

€xþ X2x ¼e r1x� c1x
2 €x� f1 þ f2x

2
� �

_x
�

�c3x
3 � c1 _x

2xþ u1k2xþ Fw

�
þ Fs;

ð4aÞ

where Fs and Fw are strong and weak excitations,

Fs¼
f3
2
exp i3Xtþi/3ð Þþ

f1=3

2
exp i

X
3
tþi/1=3

� �
ð4bÞ

Fw ¼ f2
2
exp i2Xtð Þ þ f4

2
exp i4Xt þ i/4ð Þ þ cc

� �
k2x

þ f 1
2
exp iXt þ i/1ð Þ þ cc

� �

ð4cÞ

€zþ X2z ¼ e r2z� 2ffXf _zþ e€x
� �

; ð4dÞ

and

dk11
dt

¼ e ka
1

2
� k11zð Þ2

� �� �
ð4eÞ

where fi ¼ efi, ci ¼ eci, k2 ¼ ek2, er1 ¼ X2 � 1,

eff ¼ ff , ee ¼ 1, er2 ¼ X2 � X2
f and eka ¼ ka with e

as a small parameter. Let, s ¼ t and T ¼ et be two-

time scales. Thus, the solutions of Eqs. (4a), (4d) and

(4e) can be expressed as.

x ¼ x0 s; Tð Þ þ ex1 s; Tð Þ þ O e2
� �

ð5aÞ

z ¼ z0 s; Tð Þ þ ez1 s; Tð Þ þ O e2
� �

ð5bÞ

k11 ¼ k110 s; Tð Þ þ ek111 s; Tð Þ þ O e2
� �

ð5cÞ

It is assumed that the ka is chosen to be a small

value such that the variation of the parameter k11 is

slow. Therefore it can be assumed that k11 ¼ k11 Tð Þ.
Equation (5c) can be rewritten as

k11 ¼ k110 Tð Þ þ ek111 Tð Þ þ O e2
� �

ð5dÞ

Substituting the Eqs. (5a), (5b) in Eqs. (4a), (4b)

and equating the coefficients of e0, yields

D2
sx0þX2x0¼

f3
2
exp i3Xtþi/3ð Þ

þ
f1=3

2
exp i

X
3
tþi/1=3

� �
þcc ð6aÞ

D2
sz0 þ X2z0 ¼ 0 ð6bÞ

Solutions of Eqs. (6a) and (6b) are written, respec-

tively as

x0¼
a1;1
2
exp iXsþia1ð Þþa1;3

2
exp i3Xsþi/3ð Þ

þ
a1;1=3

2
exp i

X
3
sþi/1=3

� �
þcc ð7aÞ

Fig. 3 Effect of filter damping on the sensitivity of the filter

phase
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a1;3 ¼ � f3

8X2
ð7bÞ

a1;1=3 ¼
9f1=3

8X2
ð7cÞ

z0 ¼
a2;1
2

exp iXsþ ia2ð Þ þ cc ð7dÞ

where a1;1, a2;1, a1, a2 are functions of T .
Substituting the Eqs. (5d) and (5b) in Eqs. (4e) and

equating the coefficients of e1, yields

ok110
oT

¼ ka
1

2
� k11z0ð Þ2

� �
ð7eÞ

Substituting Eq. (7d) in (7e) and averaging over a

period of 2p
X one obtains

ok110
oT

¼ ka
2
ð1� k211a

2
21Þ ð7fÞ

At the steady state, Eq. (7f) yields k11a2 ¼ 1, i.e.,

the amplitude of the signal y used in Eq. (3c) is unity.

Hence, one can write y ¼ cos Xsþ a2ð Þ. Now,

employing the Fourier series approximation, the

following expression is obtained

Xn
i¼1

ciy
2i�1sgn _zð Þx0�c0a1;1cos Xtþ2a2�a1ð Þ

¼c0a1;1
2

exp i Xtþ2a2�a1ð Þð Þþccð Þ

ð7gÞ

Substituting Eqs. (7a–d,g) in Eq. (4a–b), eliminat-

ing the secular terms and separating the real and

imaginary terms, one obtains the following slow-flow

equations

ea02;1¼� 1

2X
a2;1XXf ffþ

1

2
a1;1X

2sin a1�a2ð Þ
� �

ð8cÞ

ea01;1¼� 1

2X

f1
2
sin a1�/1ð Þ

� �
þ1

8
a31;1Xf2�a31;1=3c3sin a1�3/1=3

� �� �
þ 1

24
a31;1=3Xf2cos a1�3/1=3

� �

þ1

4
a1;3f4k2sin a1þ/3�/4ð Þ�3

8
a21;1a1;3c3sin 3a1�/3ð Þþ 1

36
a31;1=3c1X

2sin a1�3/1=3

� �

þ1

4
a1;1a

2
1;3Xf2þ

1

4
a1;1a

2
1;1=3Xf2þ

1

4
a1;3f2k2sin a1�/3ð Þþ1

4
a1;1f2k2sin 2a1ð Þþ1

2
a1;1Xf1

þ3

4
a21;1a1;3c1X

2sin 3a1�/3ð Þ�1

2
a1;1c0kk2cos 2a1�2a2ð Þþ1

8
a21;1a1;3Xf2cos 3a1�/3ð Þ

0
BBBBBBBBBB@

1
CCCCCCCCCCA

ð8aÞ

ea01¼� 1

2a1;1X

1

2
a1;1X

2�3

8
a31;1c3�

1

2
a1;1þ

1

2
f1cos a1�/1ð Þþ1

4
a31;1c1X

2�1

8
a31;1=3c3cos a1�3/1=3

� �

�3

4
a1;1a

2
1;3c3�

3

4
a1;1a

2
1;1=3c3�

1

24
a31;1=3Xf2sin a1�3/1=3

� �
�3

8
a21;1a1;3c3cos 3a1�/3ð Þ

þ 1

36
a31;1=3c1X

2cos a1�3/1=3

� �
þ1

4
a1;3f2k2cos a1�/3ð Þþ1

4
a1;1f2k2cos 2a1ð Þ

þ5

2
a1;1a

2
1;3c1X

2þ 5

18
a1;1a

2
1;1=3c1X

2þ1

4
a1;3f4k2cos a1þ/3�/4ð Þ

þ3

4
a21;1a1;3c1X

2cos 3a1�/3ð Þþ1

2
a1;1c0kk2sin 2a1�2a2ð Þ�1

8
a21;1a1;3Xf2sin 3a1�/3ð Þ

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

ð8bÞ
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ea02;1¼
1

4a2;1X
a2;1 X2

f �X2
� �

þa1;1X
2cos a1�a2ð Þ

� �
ð8dÞ

Applying the steady-state conditions i.e., a01 ¼
a02 ¼ a0 ¼ a02 ¼ 0 in Eqs. (8a–d) yields

Ajðai; aiÞ ¼ 0; ð8eÞ

for j = 1,..,4 and i = 1,2

Solving Eqs. (8e), one obtains the steady-state

response of the system. The stability of the steady-

state solutions is determined by the eigenvalues of the

Jacobian (J) of the slow-flow Eqs. (8a–d).

J ¼

oa01;1
oa1;1

oa01;1
oa1

oa01;1
oa2;1

oa01;1
oa2

oa02
oa1;1

oa02
oa1

oa01
oa2;1

oa02
oa2

oa02;1
oa1;1

oa02;1
oa1

oa02;1
oa2;1

oa02;1
oa2

oa02
oa1;1

oa02
oa1

oa02
oa2;1

oa02
oa2

2
666666666664

3
777777777775

ð9Þ

4 Numerical results

In this section, different possible nonlinear resonant

conditions are considered and the efficacy of the

controller is demonstrated for each individual case.

4.1 Principal parametric resonance

fi ¼ 0; i 6¼ 2; f1 [ 0ð Þ

For pure principal parametric excitation, Eq. 8e can be

recast as

a1;1 f1X�c0kk2cos2hð Þþ1

4
f2Xa

2
1;1

� �
¼a1;1 �1

2
f2k2sin2a1

� �

ð10aÞ

a1;1 1�X2þkc0k2sin2h
� �

þ1

4
3c3�2c1X

2
� �

a21;1

� �

¼a1;1
1

2
f2k2cos2a1

� � ð10bÞ

a2;1 ¼
a1;1X

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

f � X2
� �2

þ 2ffXfX
� �2

r ð10cÞ

a2 � a1 ¼ h ¼ tan�1 2ffXfX

X2 � X2
f

 !
ð10dÞ

Simplifying the Eqs. (10a–10d), one obtains a

polynomial equation

d2a
4
1;1 þ d1a

2
1;1 þ d0

� �
a21;1 ¼ 0; ð11aÞ

d2a
4
1;1 þ d1a

2
1;1 þ d0 ¼ 0 ð11bÞ

where

d2 ¼
1

16
f2Xð Þ2þ 2c1X

2 � 3c3
� �2� �

d1¼
1

2
f1X�kk2c0cos2hð Þf2X� 2c1X

2�3c3
� ��

1�X2þk1k2c0sin2h
� ��

d0¼ f1Xð Þ2þ X2�1
� �2�2kk2c0 X2�1

� �
sin2h

�

þf1Xcos2hÞþ kk2c0ð Þ2� f2k2
2

� �2

Solving Eq. (11b), one obtains the amplitude of the

system response a1;1 for the chosen control parameters

and oscillation frequency X. Other unknowns, such as
a2;1, a1 and a2 can be obtained from Eqs. (10a-10d). It

can be observed that Eq. (11a) possess a trivial

solution a1;1 ¼ 0 indicating the static equilibrium as

one of the steady-state solutions of the system.

Equation (11b) may have either 0, 1, or 2 real roots

depending on the parameter values. Thus, a value of

the control gain exists, k beyond which Eq. (11b) does

not have a real root implying complete suppression of

vibration (i.e., stable static equilibrium). To ensure the

nonexistence of any real root, the coefficients of the

polynomial (11b) must satisfy one of the following

criteria.

Case I: d21 � 4d0d2\0.

Case II: d1 [ 0 and d0 [ 0.

Figure 4a depicts the regions of the number of roots of

the polynomial (11) in k versus X plane. It can be

observed that there exists a minimum value of k above

which there exists no real solution, and hence com-

plete suppression of vibration can be achieved.

Figure 4b illustrates the analytical frequency

response plot (obtained from Eq. (11)). The analytical

results are verified by the numerical simulations.
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At X ¼ 1 and Xf ¼ 1, the expression d0 [ 0 yields

the following threshold value of the control gain above

which the parametric resonance is completely

suppressed

k[
�f1 þ f2k2

2

k2c0
ð12Þ

For an uncontrolled system, the threshold value of

parametric excitation amplitude above which the

parametric resonance can be observed is obtained as

f2ð Þcritical¼
2f1
k2

ð13Þ

Thus, the threshold value of the control gain, k

given by Eq. (12), is valid provided f2 [ f2ð Þcritical,
i.e., the control gain must be positive k[ 0ð Þ.

Figure 5 shows the system response time-history

plot for uncontrolled and controlled cases.

4.2 Direct excitation

4.2.1 Primary resonance fi ¼ 0; i 6¼ 1; f1 [ 0ð Þ

For pure primary resonance, one recasts Eq. (8e) as

f1X� k1k2c0 cos 2hð Þa1;1 þ
1

4
f2Xa

3
1;1

¼ f1 sin /� a1ð Þ ð14aÞ

k1k2c0 sin 2a2 � 2a1ð Þ þ 1� X2
� �

a1;1

� 2

4
c1X

2 � 3

4
c3

� �
a31;1

¼ f1 cos /� a1ð Þ ð14bÞ

a2;1 ¼
a1;1X

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

f � X2
� �2

þ 2ffXfX
� �2

r ð14cÞ

Fig. 4 Effect of control gain on the frequency response of the system k ¼ 0 (black), k ¼ 0:002 (blue), k ¼ 0:004 (red). f1 ¼ 0:01,
f2 ¼ 1, c1 ¼ 2:9053, c3 ¼ 0:8174, k2 ¼ 1:1575, f2 ¼ 0:025, ka ¼ 1, ff ¼ 1, Xf ¼ 1, n ¼ 10

Fig. 5 Time history plot of the uncontrolled and controlled system response (Simulation) f1 ¼ 0:01, f2 ¼ 1, c1 ¼ 2:9053, c3 ¼ 0:8174,
k2 ¼ 1:1575, f2 ¼ 0:025, ka ¼ 2, ff ¼ 1, Xf ¼ 1, n ¼ 10
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a2 � a1 ¼ h ¼ tan�1 2ffXfX

X2 � X2
f

 !
ð14dÞ

Simplifying Eqs. (14a-d), yields the following

polynomial equation

e3y
3 þ e2y

2 þ e1yþ e0 ¼ 0; ð15Þ

where

e3 ¼
1

16
f2Xð Þ2þ 2c1X

2 � 3c3
� �2� �

e2¼
1

2
f2X

� �
f1X�k1k2c0cos 2a2�2a1ð Þð Þ

� c1X
2�3

2
c3

� �
k1k2c0sin 2a2�2a1ð Þþ1�X2
� �

e1¼ k1k2c0sin 2a2�2a1ð Þþ1�X2
� �2

þ f1X�k1k2c0cos 2a2�2a1ð Þð Þ2

e0 ¼ �f 21

and y ¼ a21;1.
Analytical frequency response plots obtained from

Eq. (15) are shown in Fig. 6 for different gain values,

k and the results are verified by numerical simulations.

Clearly, the proposed controller can significantly

reduce the resonant vibrations of a directly excited

system.

4.2.2 1/3 Subharmonic resonance

fi ¼ 0; i 6¼ 1=3; f1 [ 0ð Þ

For this case, Eq. (8e) yields

1

4
f2Xa

2
1;1þ

1

2
f2Xa

2
1;3 þ f1X� c0kk2 cos 2h

� �

¼ � 1

4
a1;1a1;3Xf2 cos 3a1 � /3ð Þ

þ 3

4
c3 � 2c1X

2
� �

a1;1a1;3 sin 3a1 � /3ð Þ

ð16aÞ

3

4
�c3þ2c1X

2
� �

a21;1þ X2�1
� �

�3

2
a21;3c3þ

5

2
a21;3c1X

2�c0kk2sin2h

� �

¼3

4
c3�2c1X

2
� �

a1;1a1;3cos 3a1�/3ð Þþ1

4
a1;1a1;3Xf2sin 3a1�/3ð Þ

ð16bÞ

a2;1 ¼
a1;1X

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

f � X2
� �2

þ 2ffXfX
� �2

r ð16cÞ

a2 � a1 ¼ h ¼ tan�1 2ffXfX

X2 � X2
f

 !
ð16dÞ

Simplifying the Eqs. (14a–d), a quadratic equation

is obtained as follows:

g2y
2 þ g1yþ g0 ¼ 0; ð17Þ

where

g2 ¼
1

4
f2X

� �2

þ 3

4
�c3 þ 2c1X

2
� �� �2

;

g1¼2
1

4
f2X

� �
1

2
f2Xa

2
13þf1X�c0kk2cos2h

� �

� 3

4
c3�2c1X

2
� �

a13

� �2

� 1

4
a13Xf2

� �2

þ3

2
�c3þ2c1X

2
� �

X2�1
� �

�3

2
a213c3þ

5

2
a213c1X

2�c0kk2sin2h

� �
;

g0¼ X2�1
� �

�3

2
a213c3þ

5

2
a213c1X

2�c0kk2sin2h

� �2

þ 1

2
f2Xa

2
13þf1X�c0kk2cos2h

� �2
Fig. 6 Effect of gain on the frequency response plots of the

system subjected to direct excitation. f1 ¼ 0:01, f2 ¼ 1,

c1 ¼ 2:9053, c3 ¼ 0:8174, k2 ¼ 1:1575, f2 ¼ 0, ka ¼ 2,

ff ¼ 1, Xf ¼ 1, n ¼ 10
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and y ¼ a21;1.
Equation (17) possess at least one positive real root

if, g1\0 and 4g1g2\g21. Figure 7 shows the region of

stable 1/3 subharmonic resonance in f3 versusX plane,

where the stability boundaries are defined by the

equation g21 � 4g0g2 ¼ 0. Figure 8 shows the effect of

excitation and control gain on the system response. It

can be observed that the size of the Isola decreases

with the decreasing excitation amplitude, f3, and the

increasing control gain, k, and vice versa. Thus, it is

apparent from Figs. 7 and 8 that the proposed control

can completely eliminate subharmonic resonance

provided the gain is selected above a critical value.

4.2.3 Simultaneous primary and 1/3 subharmonic

resonance fi ¼ 0; i 6¼ 1; 3f g; f1 [ 0ð Þ

For this case, Eqs. (8e) yields four nonlinear algebraic

equations that cannot be simplified to polynomial

form. Hence, the equations are solved using the

method of continuation. The results thus obtained are

shown in Fig. 9 and verified by numerical simulations.

Figure 9a shows the effect of f3 on the frequency

response of a directly excited system. The superhar-

monic excitation amplifies the system response due to

subharmonic resonance. Though the proposed con-

troller is designed for controlling the vibrations with a

single frequency, it works effectively in the case of the

system vibrating at two frequencies with one dominant

frequency, as shown in Fig. 9b.

4.2.4 Simultaneous Primary and 3/1 superharmonic

resonance fi ¼ 0; i 6¼ 1; 1=3f g; f1 [ 0ð Þ

Equations (8e) is solved, and the effects of the

excitation amplitude and the control gain are shown

in Fig. 10a, b, respectively. The subharmonic excita-

tion, f1/3, tends to amplify the system response due to

superharmonic resonance. In this case, the system

response consists of two frequency components.

Though the control input u is designed for a system

dominated by a single frequency close to the natural

frequency, the proposed controller can control the

system response. Due to the same reason, the

mismatch between the analytical and simulation

results can be observed in Fig. 10b at lower amplitude

levels (where the X component is not dominating).
Fig. 7 Effect of gain on the stability region of 1/3 subharmonic

resonance

Fig. 8 Effect of a excitation
amplitude, f3, and b control

gain, k on the amplitude

versus frequency cure.

f1 ¼ 0:01, f2 ¼ 1,

c1 ¼ 2:9053, c3 ¼ 0:8174,
k2 ¼ 1:1575, f2 ¼ 0,

ka ¼ 30, ff ¼ 1, Xf ¼ 1,

n ¼ 1
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4.3 Self-excited resonance fi ¼ 0; f1\0ð Þ

In this section, the vibration control of a self-excited

system using the proposed controller is investigated.

The self-excitation dynamics can be modeled by

incorporating negative linear damping f1 and positive

nonlinear damping f2. Substituting the steady state

conditions in Eq. (8e) yields

a2;1 ¼
a1;1X

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

f � X2
� �2

þ 2ffXfX
� �2

r ð18aÞ

a2 � a1 ¼ h ¼ tan�1 2ffXfX

X2 � X2
f

 !
ð18bÞ

a21;1 ¼
4 �f1Xþ k1k2c0 cos 2hð Þ

f2X
ð18cÞ

and

X7
i¼0

biX
i ¼ 0; ð18dÞ

where

b0 ¼ �3c0c3kk2X
4
f

b1 ¼ 3c3X
4
f f1 � X4

f f2

b2 ¼ 2c0c1kk2X
4
f þ 4c0kk2f2X

3
f ff þ 12c0c3kk2X

2
f f

2
f

þ 6c0c3kk2X
2
f

b3 ¼ 2X2
f f2 þ X4

f f2 � 2c1X
4
f f1 � 6c3X

2
f f1 � 4X2

f f2f
2
f

þ 12c3X
2
f f1f

2
f

b4 ¼ �8c0c1kk2X
2
f f

2
f � 4c0c1kk2X

2
f � 4c0kk2f2Xf ff

� 3c0c3kk2

Fig. 10 Effect of a 3/1

excitation amplitude f1=3,

k ¼ 0 and, b control gain k,
f1=3 ¼ 0:2, on the frequency

response of the system.

f1 ¼ 0:01, f2 ¼ 1,

c1 ¼ 2:9053, c3 ¼ 0:8174,
k2 ¼ 1:1575, f1 ¼ 0:01,
/1 ¼ 0, /1=3 ¼ 1:5708,

ka ¼ 1, ff ¼ 1, Xf ¼ 1,

n ¼ 1

Fig. 9 Effect of a excitation
amplitude, f3 and b control

gain, k, on the frequency

response of the system.

f1 ¼ 0:01, f2 ¼ 1,

c1 ¼ 2:9053, c3 ¼ 0:8174,
k2 ¼ 1:1575, f1 ¼ 0:01,
ka ¼ 1, ff ¼ 1, Xf ¼ 1,

n ¼ 1
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b5 ¼ 4X2
f f2f

2
f þ 3c3f1 � 2X2

f f2 þ 4c1X
2
f f1 � f2

� 8c1X
2
f f1f

2
f

b6 ¼ 2c0c1kk2

b7 ¼ f2 � 2c1f1

Solving the Eqs. (18a–d), one obtains the frequency

X and amplitude a1 of the system at the steady state.

The variations of the frequency and amplitude of

oscillations with gain are plotted in Fig. 11a. It can be

observed that the self-excited oscillations can be

suppressed by selecting the gain above some threshold

value, kthr given by

kthr ¼
�f1
k2c0

ð20Þ

Figure 11b shows the simulated response of the

system with and without control.

4.4 Simultaneous direct and parametric

resonances

4.4.1 Primary and 1/2 parametric resonance

fi ¼ 0; i 6¼ 1; 2f g; f1 [ 0ð Þ

Figure 12 shows the frequency response of the system

for different amplitudes of parametric excitation, f2
and phase of the direct excitation, /1. It can be

observed from Fig. 12a that a loop appears in the

frequency response curve when the amplitude of the

parametric excitation exceeds the critical value

Fig. 11 a Variation of frequency and amplitude of a self-excited system with varying gain b Simulated response of a self-excited

system with and without control. f1 ¼ �0:01, f2 ¼ 1, c1 ¼ 2:9053, c3 ¼ 0:8174, k2 ¼ 1:1575, f2 ¼ 0, ka ¼ 1, ff ¼ 1, Xf ¼ 1, n ¼ 10

Fig. 12 Effect of a
Amplitude of parametric

excitation and b phase of the

direct excitation on the

frequency response of the

uncontrolled system.

f1 ¼ 0:01, f2 ¼ 1,

f1 ¼ 0:001, c1 ¼ 2:9053,
c3 ¼ 0:8174, k2 ¼ 1:1575
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f2ð Þcritical¼
2f1
k2

(here 0.0173). The existence of the loop

also depends on the phase of the direct excitation, /1

as shown in Fig. 12b

Figure 13 shows the effectiveness of the proposed

controller for suppressing the vibrations of the system

subjected to both direct and parametric excitations.

Evidently, the loop in the frequency response curve

disappears beyond a threshold value of the control

gain, k (Here, the threshold value of control gain is

calculated from Eq. (14) as 0.0073).

4.4.2 Simultaneous 1/2 parametric and 1/3 direct

subharmonic resonance

fi ¼ 0; i 6¼ 2; 3f g; f1 [ 0ð Þ

Figure 14a shows the frequency response of the

system under simultaneous 1/3-rd subharmonic and

1/2 parametric resonance without control. The forma-

tion of isolated resonance is apparent in the frequency

response plot. The effectiveness of the control in

suppressing the resonance amplitude is evident from

Fig. 14b.

4.4.3 Simultaneous 1/2 parametric and 3/1 direct

superharmonic resonance

fi ¼ 0; i 6¼ 2; 1=3f g; f1 [ 0ð Þ

Figure 15 shows the frequency response of the system

under simultaneous 3/1 superharmonic and 1/2 para-

metric resonance with and without control. The

effectiveness of the control is evident from these

figures.

4.4.4 1/3 Direct and 1/4 parametric subharmonic

resonance fi ¼ 0; i 6¼ 3; 4f g; f1 [ 0ð Þ

Figure 16 shows the effect of amplitude, f4, and phase,

/4 of 4:1 parametric excitation on the system

subjected to weak 1:1 direct excitation, f1 and strong

3:1 direct excitation, f3. It can be observed that phase

/4 can either amplify or de-amplify the system

response. The proposed controller can suppress the

subharmonic resonances and their combinations as

shown in Fig. 17.

Fig. 13 Effect of control gain on the frequency response of the

system. f1 ¼; 0:01, f2 ¼ 1, c1 ¼ 2:9053, c3 ¼ 0:8174,
k2 ¼ 1:1575, f1 ¼ 0:001, /1 ¼ �p=4, f2 ¼ 0:03, f3 ¼ 0,

ka ¼ 1, ff ¼ 1, Xf ¼ 1, n ¼ 10

Fig. 14 Effect of a f3, k ¼ 0

and b control gain k, f3 ¼
0:075 on the frequency

response of the system.

f1=3 ¼ 0, f1 ¼ 0:01, f2 ¼ 1,

c1 ¼ 2:9053, c3 ¼ 0:8174,
k2 ¼ 1:1575, f1 ¼ 0,

f2 ¼ 0:1, f3 ¼ 0:075, f4 ¼ 0,

f1=3 ¼ 0, /1 ¼ 0, /3 ¼ 0,

/4 ¼ 0, /1=3 ¼ 0, ka ¼ 1,

ff ¼ 1, Xf ¼ 1,n ¼ 1
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4.5 Simultaneous primary, principal parametric

and self-excited resonance

fi ¼ 0; i 6¼ 1; 2f g; f1\0ð Þ

The frequency response of the uncontrolled self-

excited system subjected to both direct and parametric

excitation is shown in Fig. 18. One observes a loop in

the resonance plot. Such a system exhibits quasiperi-

odic response at frequencies away from the natural

frequency due to secondary Hopf bifurcation (Nei-

mer–Sacker bifurcation). It is evident that increasing

the control gain progressively eliminates Hopf

bifurcation and hence the quasiperiodic oscillation as

well as the loop in the resonance plot. The amplitude

of oscillation can be reduced by a substantial margin

by increasing the control gain. Figure 19 shows the

time history of the system response with and without

control.

4.6 Controlling chaos

fi ¼ 0; i 6¼ 1; 1=3; 3; 4f g; f1\0ð Þ

It is well known that a chaotic response is possible in

the system considered here. In the present section, an

Fig. 15 Effect of a f1=3, k ¼
0 and b control gain k, f1=3 ¼
0:08 on the frequency

response of the system.

f1 ¼ 0:01, f2 ¼ 1,

c1 ¼ 2:9053, c3 ¼ 0:8174,
k2 ¼ 1:1575, f1 ¼ 0,

f2 ¼ 0:1, f3 ¼ 0, f4 ¼ 0,

/1 ¼ 0, /3 ¼ 0, /4 ¼ 0,

/1=3 ¼ 0, ka ¼ 1, ff ¼ 1,

Xf ¼ 1, n ¼ 1

Fig. 16 Effect of a amplitude and b phase of the 4:1 superharmonic excitation on the frequency response of the uncontrolled system.

Simulation results are marked by *. f1 ¼ 0:01, f2 ¼ 1, c1 ¼ 2:9053, c3 ¼ 0:8174, k2 ¼ 1:1575, f1 ¼ 0:001, f3 ¼ 0:1, f4 ¼ 0:2
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example is presented to demonstrate that the proposed

controller can eliminate chaotic responses. To this

end, a self-excited system with low nonlinear damping

subjected to simultaneous 1/3 subharmonic, 3/1

superharmonic, primary, and 1/4 parametric subhar-

monic resonance is considered. Figure 20 depicts the

frequency response of the uncontrolled system and the

bifurcation points on it. It is evident from the

bifurcation diagram shown in Fig. 21a that the

uncontrolled system exhibits chaotic response at low

and high frequencies around the resonance. It is further

corroborated by the time history, phase portrait, FFT,

and Poincare map of the system, for X ¼
0:85; 0:925; 1 shown in Fig. 21b–d.

Figure 22 shows the response of the system with

the proposed controller (k ¼ 0:05). It can be observed

that the proposed controller can suppress the chaotic

behaviour of the system and establish the periodicity

in the system response, which can also be verified from

Fig. 23 depicting the variation of the maximum

Lyapunov exponent (calculated using the LET toolbox

[31]) with the control gain. Apparently, there exists a

threshold value of the gain, k above which the

maximum Lyapunov exponent is zero signifying the

periodic system response.

4.7 Adaptive control

In the previous sections, the ratio of filter frequency to

the system’s natural frequency is considered to be

unity, i.e. filter frequency is set to the natural

frequency of the system around which the system

tends to oscillate. In case of an unknown natural

frequency, Xf cannot be set to unity, and the filter is

mistuned. To remove the dependence of filter fre-

quency on the system parameter, one can tune it to the

frequency of oscillation. This can be done manually.

In order to tune the filter adaptively, the following

adaptation law is used (The working principle of this

equation is explained in ‘‘Appendix B’’).

dXf

dt
¼ kbsgn zð Þ sgn €xð Þ � sgn _zð Þð Þ ð20Þ

Fig. 17 Effect of control gain on the frequency response of the

system. f1 ¼ 0:01, f2 ¼ 1, c1 ¼ 2:9053, c3 ¼ 0:8174,
k2 ¼ 1:1575, f1 ¼ 0:001, f3 ¼ 0:1, f4 ¼ 0:2, ka ¼ 10, ff ¼ 1,

Xf ¼ 1, n ¼ 1

Fig. 18 Effect of gain on the Analytical (solid line) and

Simulated (*) frequency response plots of the system subjected

to both direct and parametric excitation. SN: saddle node

bifurcation, HB: Hopf bifurcation, f1 ¼ �0:001, f2 ¼ 1,

c1 ¼ 2:9053, c3 ¼ 0:8174, k2 ¼ 1:1575, f2 ¼ 0:02, ka ¼ 1,

ff ¼ 1, Xf ¼ 1, n ¼ 10
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Figure 24 shows the time history of the system

response as well as the output of the adaptation

Eq. (20) and the control signal. It can be observed that

a mistuned filter might amplify the existing vibrations.

The proposed adaptive control successfully tunes the

filter frequency and hence, achieves vibration

reduction.

5 Experimental results

An axially excited stainless steel cantilever beam

(30 cm 9 2.5 cm 9 0.5 cm) with a tip mass

(* 80 g, including the mass of accelerometers) is

used as a test setup for the experiment, as shown in

Fig. 25. The components used for the experiment and

Fig. 19 Time history of the

system response. The

controller is switched on at

t ¼ 1000. f1 ¼ �0:001,
f2 ¼ 1, c1 ¼ 2:9053,
c3 ¼ 0:8174, k2 ¼ 1:1575,
f2 ¼ 0:02, ka ¼ 1, ff ¼ 1,

Xf ¼ 1, n ¼ 10,

X ¼ 0:9812

Fig. 20 a Frequency response of the uncontrolled self-excited

system subjected to 1:3 direct subharmonic, 3:1 direct super-

harmonic, primary and 1:4 parametric subharmonic excitations

and b zoomed-in view of the plot showing the boxed are in the

plot (a). SN: saddle node bifurcation. HB: Hopf

bifurcation.f1 ¼ �0:01, f2 ¼ 0:2, c1 ¼ 2:9053, c3 ¼ 0:8174,
k2 ¼ 1:1575, f1 ¼ 0:01, f2 ¼ 0, f3 ¼ 0:05, f4 ¼ 0:1, f1=3 ¼ 0:1,

/1 ¼ 0, /3 ¼ 0, /4 ¼ 0, /1=3 ¼ 0
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their specifications are given in Table 1. The actuator

shown in Fig. 25 is used for excitation and control, i.e.,

the signal fed to the actuator consists of excitation and

control signals.

The control signal and the output of Eq. (3e), i.e.

k11 is shown in Fig. 26. The shape of the control signal

matches with the simulated control signal as shown in

Fig. 2. Figure 27 shows the output of Eq. (3d), which

is supposed to be a unit amplitude signal with zero

phase shift. From Figs. 26 and 27, it can be concluded

that the equations designed in this article for getting a

unit amplitude signal with zero phase shift and for

Fig. 21 a Frequency response and Bifurcation diagram (black

for the backward sweep and blue for the forward sweep), time

history, FFT, Phase portrait and Poincare map at X ¼ 0:825
(red, b), X ¼ 0:925 (magenta, c) and X ¼ 1 (cyan, d) of an

uncontrolled system. f1 ¼ �0:01, f2 ¼ 0:2, c1 ¼ 2:9053,
c3 ¼ 0:8174, k2 ¼ 1:1575, f1 ¼ 0:01, f2 ¼ 0, f3 ¼ 0:05,
f4 ¼ 0:1, f1=3 ¼ 0:1, /1 ¼ 0, /3 ¼ 0, /4 ¼ 0, /1=3 ¼ 0,

ka ¼ 1, ff ¼ 1, Xf ¼ 1, n ¼ 1, k ¼ 0
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obtaining an approximated cotangent wave from a

cosine wave fulfill the objective.

The output of Eq. (3e) and (3c) are shown in

Fig. 28 for both uncontrolled and controlled systems.

Whereas Fig. 29 shows the recorded system response

(acc) during the experiment. The controller is switched

on at t � 750 s. It can be observed that the proposed

control fully suppresses the parametric resonance.

Figure 30 shows the frequency response of the

system with and without control. The experimental

Fig. 22 a Frequency response and Bifurcation diagram(black),

time history, FFT, Phase portrait and Poincare map atX ¼ 0:825
(red, b), X ¼ 0:925 (magenta, c) and X ¼ 1 (cyan, d) of the
system with controller. f1 ¼ �0:01, f2 ¼ 0:2, c1 ¼ 2:9053,

c3 ¼ 0:8174, k2 ¼ 1:1575, f1 ¼ 0:01, f2 ¼ 0, f3 ¼ 0:05,
f4 ¼ 0:1, f1=3 ¼ 0:1, /1 ¼ 0, /3 ¼ 0, /4 ¼ 0, /1=3 ¼ 0,

ka ¼ 1, ff ¼ 1, Xf ¼ 1, n ¼ 1, k ¼ 0:05
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results are in close agreement with the analytical and

simulation results shown in Fig. 4.

6 Conclusions

In this paper, a novel Resonant Parametric Feedback

Controller (RPFC) is proposed to improve the sys-

tem’s damping via parametric variations and suppress

various nonlinear resonances and chaos in a cantilever

beam. The cantilever beam is subjected to 1:1 direct

excitation, 1:3 subharmonic direct excitation, 3:1

super harmonic direct excitation, 1:2 parametric

excitation, 1:4 subharmonic parametric excitation,

and self-excitation. The controller consists of a linear

second-order filter with acceleration feedback and a

novel control law which is a nonlinear function of the

state variables of the filter. The effectiveness of the

proposed controller is studied for the following cases.

1. Principal parametric resonance

2. Direct resonances—primary, 1/3 subharmonic and

3/1 superharmonic.

3. Self-excited systems

Fig. 23 Variation of maximum Lyapunov exponent with

increasing gain. f1 ¼ �0:01, f2 ¼ 0:2, c1 ¼ 2:9053,
c3 ¼ 0:8174, k2 ¼ 1:1575, f1 ¼ 0:01, f2 ¼ 0, f3 ¼ 0:05,
f4 ¼ 0:1, f1=3 ¼ 0:1, /1 ¼ 0, /3 ¼ 0, /4 ¼ 0, /1=3 ¼ 0,

ka ¼ 1, ff ¼ 1, Xf ¼ 1, n ¼ 1, X ¼ 0:9

Fig. 24 Time history of the

system response x, filter
frequency Xf , and control

signal u1. The control is
switched on at t ¼ 1000

with a mistuned filter

Xf ¼ 0:6
� �

. The adaptive

control is activated at

t ¼ 2000, f1 ¼ �0:01,
f2 ¼ 1, c1 ¼ 2:9053,
c3 ¼ 0:8174, k2 ¼ 1:1575,
f1 ¼ 0:01, f2 ¼ 0:1,
f3 ¼ 0:05, f4 ¼ 0:05,
f1=3 ¼ 0, /1 ¼ 0, /3 ¼ 0,

/4 ¼ 0, /1=3 ¼ 0, ka ¼ 1,

ff ¼ 1, n ¼ 10
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Fig. 25 Experimental setup

Table 1 List of equipment

and their uses
Equipment Model Use

Accelerometers ADXL335 (MEMS) Feedback

PCB Piezotronics(Piezoelectric) Real time monitoring

Microcontroller TI C2000-F28379D Signal processing and data logging

Analyzer B&K pulse PC card front end Real-time FFT

Power amplifier B&K type 2719 Power amplification of the control signal

Fig. 26 The output of

Eq. (3e) and control signal

at a steady state.

(Experimental) n ¼ 10
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4. Various combinations of simultaneous direct and

parametric and self-excited resonances.

From the analytical solutions and the numerical

simulations, it is concluded that the proposed

Fig. 27 Output of Eq. (3d). (Experimental). The controller is

activated at t � 750 s. n ¼ 10

Fig. 28 Variation of k11 and
control signal with time

(Experimental). The

controller is activated at t �
750 s. n ¼ 10

Fig. 29 System response (Experimental). The controller is activated at t � 750 s. n ¼ 10

Fig. 30 Experimental frequency response of the system
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controller suppresses the nonlinear resonances and

eliminates the quasiperiodic and chaotic behaviour

from the system. The results for suppression of the

principal parametric resonance are verified by

experiments.

Further, a novel adaptation law is proposed to deal

with the uncertainties in the system’s natural fre-

quency. The proposed adaptation law tunes the filter

frequency such that the phase difference between the

dominating harmonic component of the input signal

and the filter output is p=2. From simulation results, it

can be observed that a mistuned controller can amplify

the system response. Introducing the adaptation law

achieves a reduction in the amplitude of the system

response.
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Appendix A

Derivation of the governing equation of a cantilever

beam vibrating due to the axial and transverse motion

of the base.

List of variables used:

w Transverse deflection of the beam

u Axial deflection of the beam

s Coordinate along the length of the beam

q Density of the beam

A Cross section area of the beam

L Length of the cantilever beam

m Tip mass

xe Axial displacement of base/support

ye Transverse displacement of base/support

vs Normalized mode shape of the beam

v Time dependent scaling factor

xn First mode of the beam

Strain energy

U ¼ 1

2

Z l

0

Z

A

Ez2j2dAds; ðA:1Þ

where z is the distance from the neutral axis, and j is

the curvature. Assuming that the beam is inextensible

j ¼ o

os
aðs; tÞ

¼ wð2;0Þðs; tÞ þ 1

2
wð2;0Þðs; tÞwð1;0Þðs; tÞ2 þ � � �

ðA:2Þ

where w s; tð Þ is the transverse displacement at a

distance s from the fixed end and w i;jð Þ s; tð Þ ¼ oi

osi
o jw
ot j

� �

Substituting Eq. (A2) in Eq. (A1) and neglecting the

higher order terms,

U¼1

2

Z l

0

Z

A

Ez2 wð2;0Þðs;tÞ
h i2

þ wð2;0Þðs;tÞwð1;0Þðs;tÞ
h i2� �

dAds

ðA:3Þ

U ¼ 1

2

Z l

0

EI wð2;0Þðs; tÞ
h i2

ds

þ 1

2

Z l

0

EI wð1;0Þðs; tÞwð2;0Þðs; tÞ
h i2

ds ðA:4Þ

Applying the variational operator,

dU¼
Z L

0

EI wð2;0Þðs;tÞ 1þ wð1;0Þðs;tÞ
� �2� �	 


dwð2;0Þðs;tÞds

þ
Z l

0

EI wð1;0Þðs;tÞ wð2;0Þðs;tÞ
� �2

dwð1;0Þðs;tÞ
	 


ds

ðA:5Þ

Integrating by parts one obtains
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Inextensibility constraint

1þ u 1;0ð Þ s; tð Þ
� �2

þw 1;0ð Þ s; tð Þ2¼ 1

C¼
Z L

0

k
2

1� 1þu 1;0ð Þ s;tð Þ
� �2

�w 1;0ð Þ s;tð Þ2
� �

ds;

ðA:7Þ

where k is a Lagrange multiplier. Applying variational

operator to the Eq. (A7) and integrating by parts

yields,

dC¼ �k 1þu 1;0ð Þ s;tð Þ
� �

du s;tð Þþw 1;0ð Þ s;tð Þdw s;tð Þ
� �h iL

0

þ
Z L

0

k 1þu 1;0ð Þ s;tð Þ
� �� �0

du s;tð Þ
�

þ kw 2;0ð Þ s;tð Þþk0w 1;0ð Þ s;tð Þ
� �

dw s;tð Þ
�
ds

ðA:8Þ

Kinetic energy

T ¼ 1

2
m

Z L

0

_xe þ _u½ �2þ _ye þ _w½ �2
� �

d� s� Lð Þds

þ 1

2
qA
Z L

0

_xe þ _u½ �2þ _ye þ _w½ �2
� �

ds;

ðA:9Þ

where d� is the Dirac delta function. Applying a

variational operator to Eq. (A9) and integrating by

parts, one obtains Eq.(A12)

Z t2

t1

dTdt¼�m

Z t2

t1

Z L

0

€uþ€xe½ �duþ €wþ€ye½ �dwð Þd� s�Lð Þdsdt

�qA
Z t2

t1

Z L

0

€uþ€xe½ �duþ €wþ€ye½ �dwð Þdsdt

ðA:10Þ

Hamilton’s principle

d
Z t2

t1

T � U þ Vð Þ þ Cð Þdt ¼ 0 ðA:11Þ

Substituting Eq. (A6), (A8), and (A10) in eq. (A11)

one obtains Eq. (A12)

Boundary conditions

From Eq. (A12) following boundary conditions are

obtained.

At s ¼ 0

w 1;0ð Þ 0; tð Þ ¼ 0 ðA:13Þ

u 0; tð Þ ¼ 0 ðA:14Þ

w 0; tð Þ ¼ 0 ðA:15Þ

At s ¼ L

w 2;0ð Þ L; tð Þ ¼ 0 ðA:16Þ

dU ¼ EI

wð2;0Þðs; tÞ 1þ wð1;0Þðs; tÞ
� �2� �

dwð1;0Þðs; tÞ
� �L

0

� wð3;0Þðs; tÞ 1þ wð1;0Þðs; tÞ
� �2� �

þ wð1;0Þðs; tÞ wð2;0Þðs; tÞ
� �2� �

dwðs; tÞ
� �L

0

þ
Z L

0

wð4;0Þðs; tÞ 1þ wð1;0Þðs; tÞ
� �2� �

þ wð2;0Þðs; tÞ
� �3

þ4wð1;0Þðs; tÞwð2;0Þðs; tÞwð3;0Þðs; tÞ

0
B@

1
CAdwðs; tÞds

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

ðA:6Þ
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k ¼ � m €uþ €xeð Þ
1þ u 1;0ð Þ s; tð Þ ðA:17Þ

EIwð3;0Þðs;tÞ¼ m

1þ wð1;0Þðs;tÞð Þ2

€wþ€yeð Þ� €uþ€xeð Þ w 1;0ð Þ s;tð Þ
1þu 1;0ð Þ s;tð Þ

� �� �

ðA:18Þ

Equations of motion

From Eq. (A12) following equations of motion are

obtained

�qA €uþ €xeð Þ þ k 1þ u0ð Þð Þ0¼ 0 ðA:19Þ

�qA €wþ€yeð Þþ kw0ð Þ0

�EI
wð4;0Þðs;tÞ 1þ wð1;0Þðs;tÞ

� �2� �
þ wð2;0Þðs;tÞ
� �3

þ4wð1;0Þðs;tÞwð2;0Þðs;tÞwð3;0Þðs;tÞ

0
B@

1
CA¼0

ðA:20Þ

From Eq. (A19)

k 1þ u0ð Þ ¼
Z s

0

qA €uþ €xeð Þdsþ c tð Þ ðA:21Þ

From Eqs. (A17) and (A21)

c tð Þ ¼ � m €uþ €xeð Þ þ
Z s

0

qA €uþ €xeð Þds
	 


s¼L

ðA:22Þ

From Eq. (A21) and (A22) the Lagrange multiplier

is obtained as

k ¼ �1

1þ u0
m €uþ €xeð Þs¼LþqA

Z L

s

€uþ €xeð Þds
� �

ðA:23Þ

Substituting Eq. (A23) and u ¼
R s
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� w02

p�

�1Þds �
R s
0

�w02=2ð Þds in Eq. (A20), following equa-
tion is obtained

qA €wþ€yeð Þþ 1�2w02ð Þw00

1�w02ð Þ3=2

m
o2

ot2

Z s

0

�w02=2
� �

ds

� �
þ€xe

� �

s¼L

þqA
Z L

s

o2

ot2

Z s

0

�w02=2
� �

ds

� �
þ€xe

� �
ds

0
BBBB@

1
CCCCA

0
BBBB@

1
CCCCA

�qA
w0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�w02

p o2

ot2

Z s

0

�w02=2
� �

ds

� �
þ€xe

� �

þEI
wð4;0Þðs;tÞ 1þ wð1;0Þðs;tÞ

� �2� �
þ wð2;0Þðs;tÞ
� �3

þ4wð1;0Þðs;tÞwð2;0Þðs;tÞwð3;0Þðs;tÞ

0
B@

1
CA¼0

ðA:24Þ

Using Binomial expansion Eq. (A24) can be

simplified to the following equation

Z t2

t1

dT�dUþdCð Þdt¼�m

Z t2

t1

€uþ€xe½ �duþ €wþ€ye½ �dwð Þs¼Ldt

�qA
Z t2

t1

Z L

0

€uþ€xe½ �duþ €wþ€ye½ �dwð Þdsdt

�
Z t2

t1

EI

wð2;0Þðs;tÞ 1þ wð1;0Þðs;tÞ
� �2� �	 


dwð1;0Þðs;tÞ
� �L

0

� wð3;0Þðs;tÞ 1þ wð1;0Þðs;tÞ
� �2� �

þwð1;0Þðs;tÞ wð2;0Þðs;tÞ
� �2	 


dwðs;tÞ
� �L

0

þ
Z L

0

wð4;0Þðs;tÞ 1þ wð1;0Þðs;tÞ
� �2� �

þ wð2;0Þðs;tÞ
� �3

þ4wð1;0Þðs;tÞwð2;0Þðs;tÞwð3;0Þðs;tÞ

2
664

3
775dwðs;tÞds

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

dt

�
Z t2

t1

k 1þu 1;0ð Þ s;tð Þ
� �

du s;tð Þþw 1;0ð Þ s;tð Þdw s;tð Þ
� �h iL

0
dt

þ
Z t2

t1

Z L

0

k 1þu 1;0ð Þ s;tð Þ
� �� �0

du s;tð Þþ kw 1;0ð Þ s;tð Þ
� �0

dw s;tð Þ
� �

dsdt

ðA:12Þ
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Neglecting the higher order terms,

qA €wþ€yeð Þþw00
m

o2

ot2

Z L

0

�w02=2
� �

ds

� �
þ€xe

� �

þqA
Z L

s

o2

ot2

Z s

0

�w02=2
� �

ds

� �
þ€xe

� �
ds

0
BBBB@

1
CCCCA

�qAw0 o2

ot2

Z s

0

�w02=2
� �

ds

� �
þ€xe

� �

þEI
wð4;0Þðs;tÞ 1þ wð1;0Þðs;tÞ

� �2� �
þ wð2;0Þðs;tÞ
� �3

þ4wð1;0Þðs;tÞwð2;0Þðs;tÞwð3;0Þðs;tÞ

0
B@

1
CA¼0

ðA:26Þ

Separating the variables assuming that the beam

vibrates around the first mode

w s; tð Þ ¼ vs sð Þv tð Þ ðA:27Þ

where vs is the mode shape function at first mode.

Substituting the above equation in Eq. (A.26)

qAvs €vþ v v€vþ _v2
� �

�mvs2

Z L

0

v2s1ds

� ��

þqAvs1

Z s

0

v2s1ds

� �
� qAvs2

Z L

s

Z s

0

v2s1dsds

�

þ mvs2 þ qA vs2 L� sð Þ � vs1ð Þð Þv€xe þ qA€ye

þ EIvvs4 þ EIv3 vs4v
2
s1 þ v3s2 þ 4vs1vs2vs3

� �
¼ R

ðA:28Þ

where R is the residual.

After Galerkin projection, the above equation can

be expressed as

ĉ0 €vþ ĉ1 _v2 þ v€v
� �

vþ ĉ2vþ ĉ3v
3 þ k̂2v€xe þ k̂1 €ye ¼ 0

ðA:29Þ

where

ĉ0 ¼ qA
Z L

0

v2s ds

ĉ1 ¼
Z L

0

vs qAvs1

Z s

0

v2s1ds� vs2 m

Z L

0

v2s1ds

��

þqA
Z L

s

Z s

0

v2s1dsds

��
ds

ĉ2 ¼ EI

Z L

0

vsvs4ds

ĉ3 ¼ EI

Z L

0

vs vs4v
2
s1 þ v3s2 þ 4vs1vs2vs3

� �
ds

k̂1 ¼ qA
Z L

0

vsds

k̂2 ¼
Z L

0

mvs2vsdsþ
Z L

0

qAvs vs2 L� sð Þ � vs1ð Þds

The above equation when converted to the non-

dimensional form, gives the following equation

€xþ c1 _x2 þ x€x
� �

xþ xþ c3x
3 ¼ k2F2xþ F1 ðA:30Þ

where v ¼ Lx, s ¼ xnt and xn is the first mode of the

system and is given by, x2
n ¼

ĉ2
ĉ0
¼

EI
R L

0
vsvs4ds

qA
R L

0
v2s ds

¼ EI
qAL4

R 1

0
vpvp4dpR 1

0
v2pdp

qA €wþ €yeð Þ þ 1� 2w02� �
w00 1þ 3

2
w02

� � m
o2

ot2

Z s

0

�w02=2
� �

ds

� �
þ €xe

� �

s¼L

þqA
Z L

s

o2

ot2

Z s

0

�w02=2
� �

ds

� �
þ €xe

� �
ds

0
BBBB@

1
CCCCA

0
BBBB@

1
CCCCA

� qA
w0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� w02

p 1þ 1

2
w02

� �
o2

ot2

Z s

0

�w02=2
� �

ds

� �
þ €xe

� �

þ EI
wð4;0Þðs; tÞ 1þ wð1;0Þðs; tÞ

� �2� �
þ wð2;0Þðs; tÞ
� �3

þ4wð1;0Þðs; tÞwð2;0Þðs; tÞwð3;0Þðs; tÞ

0
B@

1
CA ¼ 0

ðA:25Þ
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where vp is a normalized mode shape and vpi
denotes the ith derivative of vp.

The non-dimensional parameters from Eq. (A28)

can be obtained from the following expressions

c1 ¼ ĉ1
ĉ0
L2 ¼ c11�mrc12

c13

where mr is the ratio of mass at the tip and the total

mass of beam.

c11¼
Z 1

0

vpvp1

Z p

0

v2p1dp

� �
dp�

Z 1

0

vpvp2

Z 1

p

Z p

0

v2p1dp

� �
dp

� �
dp

c12¼
Z 1

0

vpvp2

Z 1

0

v2p1dp

� �
dp

c13¼
Z 1

0

v2pdp

c3 ¼ ĉ3
ĉ2
L2 ¼

R 1

0
vp vp4v

2
p1þv3p2þ4vp1vp2vp3ð ÞdpR 1

0
vpvp4dp

k2 ¼ �L k̂2
ĉ0
¼ k21þk22mr

k23

k21 ¼ �
Z 1

0

vp vp2 1� pð Þ � vp1
� �

dp

k22 ¼ �
Z 1

0

vp2vpdp

k23 ¼
Z 1

0

v2pdp

Appendix B

The objective of introducing the adaptation equation is

to maintain the phase difference between the displace-

ment signal and the control signal at p
2
which results in

improved damping irrespective of the excitation

frequency. The phase difference can be adjusted by

tuning the filter frequency. The product of two

harmonic signals with the same frequency (x, say)
gives a biased signal with 2x frequency. The bias is

directly proportional to the cosine of the phase

difference between the input signals. Using this

property, a first-order differential equation can be

constructed as follows

Fig. 31 Graphical

representation of the

adaptation equation
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dXf

dt
¼ kbxy ðB:1Þ

The rate of convergence for this equation depends

on the amplitudes of the system variable and the

control force. This leads to a slow response of the

adaptation equation for low amplitude vibration

suppression. To make the adaptation law independent

of the amplitudes, a signum function is used, as shown

in Eq. (B.2)

dXf

dt
¼ kbsgn xð Þsgn yð Þ ðB:2Þ

Equtaion (B.2) is shown graphically in Fig. 31. One

can observe that at a steady state, the right-hand side of

the adaption equation gives a square wave which

results in the chattering of filtering frequency. To

remove this chattering, another square wave is added

to the right-hand side of the adaption equation but with

the phase difference of p radians. This secondary

square wave is generated from the already available

state variables of the filter. The modified adaption law

is,

dXf

dt
¼ kb sgn xð Þsgn yð Þ þ sgn yð Þsgn _yð Þð Þ ðB:3Þ

Addition of secondary square wave results in either

positive or negative pulses. Where pulse width is

directly proportional to p
2
� h

� �
as shown in Fig. 31.

This completely removes the chattering in theory and

suppresses the chattering in practice.

For the signal dominated by a single frequency,

sgn xð Þ can be replaced by �sgn €xð Þ. Therefore, the
same adaptation equation can be used for both

displacement and acceleration signals.

dXf

dt
¼ �kbsgn yð Þ sgn €xð Þ � sgn _yð Þð Þ ðB:4Þ

Here, y ¼ z.

dXf

dt
¼ kbsgn zð Þ sgn €xð Þ � sgn _zð Þð Þ ðB:5Þ

Appendix C

Procedure to calculate the coefficients ci in Eqs. (2a)

and (3e).

The approximated function is given by

u ¼
Xn
i¼1

ci cos Xt þ að Þð Þ2i�1
sgn sin Xt þ að Þð Þ ðC:1Þ

The desired function is

u0 ¼ cot Xt þ að Þ ðC:2Þ

Since the polynomial approximation is independent

of X, let X ¼ 1. Further shifting the time in the above

signals, one obtains

u ¼
Xn
i¼1

ci cos tð Þ2i�1
sgn sin tð Þ ðC:3Þ

u0 ¼ cot t ðC:4Þ

Since cot t is a periodic function with a period p, the
error function is defined as

ej ¼
Xn
i¼1

ci cos tj
� �2i�1 � cot tj tj 2 0; pð Þ ðC:5Þ

The above equation contains n variables. In order to

apply the least square optimization method, n linearly

spaced points are selected in the range t 2 0; pð Þ. This
results in n error functions. The above optimization

problem is then solved using the built-in MATLAB

function lsqnonlin.

Appendix D

Consider a harmonic signal z ¼ a2;1 sin Xtð Þ. Squaring
on both sides, one obtains,

z2 ¼
a2;1
� �2

2
1� cos 2Xtð Þð Þ ðD:1Þ

Here, the objective is to find the controlling

equation for a parameter (say k11 [ 0) such that at

steady state k11a2;1 ¼ 1. First, consider the lowest

order of the differential equation. It is clear that the

rate of change of k11 should be proportional to

1� k11a2;1
� �2h i

. So, the differential equation should

look like this,

_k11 ¼ ka1 1� k11a2;1
� �2h i

ðD:2Þ

The problem in employing Eq. (D.2) is that the

amplitude of the signal is unknown. But from

Eq. (D.1) it is clear that the term z2 consists of a bias

and a periodic signal where bias is proportional to the
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square of the amplitude of the signal. One can replace

the term a2;1
� �2

with 2z2. There is a periodic compo-

nent in z2, but the overall change in k11 due to this

component over a time period T ¼ p
X is zero. Therefore

the governing equation for the parameter k11 is

_k11 ¼ ka1 1� 2 k11zð Þ2
� �

ðD:3Þ

Or

_k11 ¼ ka
1

2
� k11zð Þ2

� �
ðD:4Þ
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