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Abstract The rectilinear motion of a chain of iden-
tical bodies in a viscous medium with a quadratic law
of resistance is considered.Neighboring bodies interact
with each other. There are no restrictions on the magni-
tude of the interaction forces. Motions are constructed
in which each of the bodies of the system shifts by the
same specified distance, provided that the velocities of
each of the bodies of the system coincide at the ini-
tial and final moments of time. In particular, the case
where the system is at rest at the initial moment of time
is considered. In the case where the velocity of the cen-
ter of mass of the system at the initial moment of time
is not equal to zero, a motion is constructed in which
the velocity of each of the bodies is piecewise constant
and the velocity of the center of mass of the system is
constant. This motion is optimized under the condition
that the velocity of each of the bodies is bounded. The
obtained results can be used to control a locomotion
system of several bodies moving in a viscous medium
by means of changing its configuration.
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1 Introduction

Systems consisting of several interacting bodies can
move in the environment by changing their configura-
tion while the points of contact of bodies with the envi-
ronment remain unchanged. This distinguishes such
systems from traditional mobile systems, for example,
wheeled or walking ones. The principle of motion of
systems with a variable configuration is that under the
action of internal forces of interaction between bodies,
their velocities change and, accordingly, the resistance
forces of the medium change. These resistance forces
are external to the system and affect the motion of the
system as a whole. Therefore, by controlling the inter-
nal forces of the interaction between bodies, it is pos-
sible to control the motion of the system as a whole.
The examples of locomotion systems, that move due
to the change of their configurations, are capsule sys-
tems, snake-like multilink systems, worm-like systems
of several interacting bodies. Such systems with vari-
able configuration canmodel themotionof snakes, eels,
frogs,worms. The issues of biomechanics ofworm-like
and serpentine motions of living beings are covered in
the books [1,2]. Systems with variable configuration
also model robotic systems, corresponding mathemat-
ical models are considered in the monographs [3,4].

The rectilinear motion of a system of several inter-
acting bodies was studied in [5–23]. The control was
determined either by specifying the forces of interac-
tion between the bodies of the system, or by specifying
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the law of change in the relative positions of bodies,
the bodies were modeled by point masses. Motion in
a viscous medium or on a plane with dry friction was
considered. The motions of the system were studied,
in which its configuration changes periodically. The
problems of optimal control and optimization of the
motion of the system were solved in order to maximize
its average speed of motion or minimize friction losses.

The simplest locomotion system moving due the
change of its configuration consists of two interacting
bodies. The case where each of these two bodies inter-
acts with the media was studied in [5–10,24–27]. The
papers [5–9] studied the rectilinear motion of such a
system along a horizontal rough plane in the presence
of dry friction forces. In [5], friction was considered
isotropic, and the distance between the bodies varied
according to a given periodic law. A condition was
found for this law, in which the system moves along
a straight line over time. In [6], the force of interaction
between bodies was defined by a piecewise constant
periodic function of time. It was assumed that the fric-
tion is isotropic, and the distance between the bodies
varies within specified limits. The parameters of the
system and the control law that maximize the average
speed of the system were found. In the paper [7], it
was assumed that the friction between one body and
a plane is isotropic, while the friction between another
body and a plane is anisotropic. It was assumed that the
relative velocity of the bodies is a piecewise constant
function of time, and the distance between the bod-
ies varies within specified limits. The system param-
eters were optimized in order to maximize the aver-
age speed of the system and minimize friction losses.
In the paper [8], the problem of optimal control of a
system of two bodies was solved in order to move it
along a straight line for a given distance in the short-
est time. In particular, the problem was solved under
an additional condition prohibiting the reverse motion
of bodies. Under this condition, a minimum of friction
losses in the system is also achieved. The paper [10]
considered the rectilinear motion of a system of two
bodies in media with dry or viscous frictions. It was
assumed that the friction force is much less than the
force of interaction between the bodies. For a system
described by averaged equations ofmotion, a necessary
and sufficient condition for the system to move along
a straight line was obtained in the case where the resis-
tance of the medium is described by a power law. In
the case of dry friction, it is established that the system

can advance along a straight line if and only if the sum
of the lengths of the time intervals on which the dis-
tance between the bodies increases is not equal to the
sum of the lengths of the time intervals on which the
distance between the bodies decreases. Papers [24,25]
considered the motion of two interacting magnetizable
bodies subjected to an alternating magnetic field in a
viscous media. The motion of two interacting bodies
along a line of maximum slope on an inclined rough
plane was investigated in [26] under the assumption
that the friction coefficient is small. Two-dimensional
motion of two interacting bodies on an inclined rough
plane was studied in [27]. It was proved, that the sys-
tem can be brought to an arbitrarily small vicinity of
any given position.

Locomotion systems consisting of two interacting
bodies, where one of the bodies does not interact with
a medium (capsule systems) are widely studied [28–
57]. Such systems has potential applications in pipeline
inspection, drug delivery, capsule endoscopy [50–57].
Capsule systems moving rectilinearly along a rough
plane due to a rotation of an internal mass were consid-
ered in [28–30]. Papers [31,32] considered the motion
of a capsule system controlled by a motion of an inter-
nal inverted pendulum. In papers [46,47], a capsule
systemmoved along a horizontal line on a rough plane,
while an internal mass moved along an inclined line.
Most of the papers on capsule systems considered the
case where an internal mass moved along a line paral-
lel to a line of motion of the capsule [33–45,48–57].
Various capsule designs and different excitations of an
internal mass were studied. In papers [48–57], an inner
mass of a capsule interacted with the capsule and was
subjected to an external force. Dynamics of a capsule
system was investigated in the cases where it moved
in viscous media [41–45] or along a surface with dry
friction [37–40], various optimization problems were
solved [33,41,42,48,53]. The stability of the motion
was studied for viscous [11,45] and dry [12] friction.

Systems consisting of three or more interacting bod-
ies were studied in [13–19]. It was shown that with lin-
ear resistance, such systems (as well as systems con-
sisting of two bodies) cannotmove along a straight line,
namely, when the distance between the bodies of the
system is bounded, the center of mass of the system
remains in a bounded area [13]. For the power law of
medium resistance and for dry friction, the motion of a
system of several bodies along a straight line was stud-
ied in [14]. It was assumed that the resistance forces of
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the medium are small in comparison with the forces of
interaction acting between bodies, and the configura-
tion of the system changes in waves, so that the rela-
tive motion of each pair of neighboring bodies repeats
the relative motion of the nearest pair of bodies with
a constant delay. For the averaged system of equations
of motion, conditions are obtained that allow the sys-
tem to start motion from a state of rest and to carry out
a motion in which the velocity of the center of mass
tends to a constant value. In the case where the system
consists of three bodies and the distance between the
bodies varies according to some piecewise linear law,
themotion of the system is studied in detail. In [15], the
motion of a system of three bodies along a straight line
in amediumwith quadratic resistancewas investigated.
The case was studied in which one of the bodies of the
system does not change the direction of its motion,
and the other two move cyclically forward and back-
ward, and the resistance of themedium for these bodies
is anisotropic. Dynamics of three-body system, where
distances between the bodies change according to a pre-
scribed law, along a line with dry anisotropic friction
was studied in [58]. Rectilinear motion of a system of
several capsules connected by passive springs and con-
trolled by motions of internal bodies was investigated
in [59], both viscous and dry friction resistances were
considered. The motion of the system of several inter-
acting bodies upward an inclined linewith dry isotropic
friction was investigated in [60], conditions allowing
such a motion were obtained. In [16], the stability of
motion of a system consisting of several interacting
bodies with periodically changing configuration was
studied for the case of viscous resistance.

A system consisting of several identical interacting
bodies is studied in the current paper as well as in
[17,18]. In [17], the motion of several identical bod-
ies along a straight line with dry friction was consid-
ered. The problem of optimal control of the systemwas
solved in order to maximize its shift in a fixed time. It
was assumed that all bodies have zero velocities and
the same positions at the beginning and at the end of
the motion. There were no restrictions on the forces
of interaction between bodies. The non-uniqueness of
the optimal solution was shown and an optimal solu-
tion was constructed in which the distance between any
two bodies does not exceed a given value over the entire
interval of motion.

The rectilinear motion of several identical interact-
ing bodies in media with piecewise linear and piece-
wise quadratic resistance was investigated in [18]. This
paper is the closest to the current research. In [18],
it was assumed that the momentum of the system is
not zero at the initial moment of time. A motion was
constructed that allows the system to be shifted along
a straight line by a given distance, provided that the
velocity of each of the bodies at the beginning and at
the end of themotion is the same. The forces of interac-
tion between bodies were assumed to be unbounded. In
the proposed algorithm, the intervals of free motion of
bodies alternated with moments of time in which the
momentum of the system was instantly redistributed
between the bodies. At each interval of free motion
of bodies, one of the bodies moved backward, and
all the others moved forward with the equal velocity.
The paper did not consider the problem to arrange the
motion of the system in the case where the system is at
rest at the initial moment of time.

In the current paper, we consider the rectilinear
motion of a system of several identical interacting bod-
ies in a medium with quadratic friction. This system is
a model of a robotic locomotion system that moves
in a viscous medium due to changes in its configura-
tion. The locomotion systems with variable configura-
tion do not have wheels, screws or tracks and may be
applied for transport or inspection purposes in vulner-
able or aggressive media, in cramped spaces, cracks
or crevices. A locomotion system consisting of several
bodies that move rectilinearly due to changes in its con-
figuration in a resistive media can be constructed with
the use of prismatic joints connecting the neighboring
bodies and can be controlled by actuators. An example
of such design is a prototype of a system consisting of
three bodies constructed in [19] with the use of energy
chains and twoDCmotors. The novelty of our research,
is that, in comparison with [18], we solve the problem
of moving the system to a given distance between two
states of rest. Moreover, we propose new algorithm for
the motion of the system, such that the velocity of the
center ofmass of the system is constant and the velocity
of each of the bodies is piecewise constant throughout
the entire motion. This algorithm of motion is opti-
mized in order to maximize the velocity of the center
of mass under the constraint on the velocity of each of
the bodies.
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Fig. 1 Example of mechanical system, N = 3

2 Problem statement

The rectilinear motion of a system of N , N ≥ 3, iden-
tical interacting bodies Ai , i = 1, . . . , N , in a medium
with quadratic friction is considered, see Fig. 1. Inter-
action forces act between each pair of adjacent bodies
Ai , Ai+1. The bodies are modeled as point masses. The
influence of these forces leads to a change in the veloc-
ities of the bodies, so that the resistance forces of the
medium acting on the bodies change. These forces are
external to the system. Thus, by controlling the forces
of interaction between bodies, which are internal to the
system, it is possible to control the motion of the sys-
tem as a whole. We will construct such control forces
of interaction allowing to shift the system by the pre-
scribed distance so that its configuration and the veloc-
ities of all bodies are the same at the beginning and at
the end of the motion. Such a motion can be continued
periodically allowing tomove the system arbitrarily far.

Denote the force acting from the body Ai+1 on
the body Ai by Fi , i = 1, . . . , N − 1. It is assumed
that the magnitudes of the interaction forces Fi are
not bounded. The mass of each of the bodies Ai ,
i = 1, . . . , N , is equal to m. Denote by xi the coor-
dinates of the bodies Ai on the line of their motion,
and by vi the velocities of these bodies. The equations
of motion of the system of bodies along the straight
horizontal line have the form

ẋi = vi , i = 1, . . . , N , (1)

mv̇1 = F1+ R(v1),

mv̇i = Fi − Fi−1+ R(vi ), i = 2, . . . , N − 1,
mv̇N = −FN−1+ R(vN ),

(2)

where the forces of quadratic resistance of the medium
R(vi ) are determined by the relation

R(vi ) = −cvi |vi |, i = 1, . . . , N . (3)

We assume that at the initial time instant t = 0 all the
bodies are at the origin. That is, the following equalities
are valid:

xi (0) = 0, vi (0) = v0i , i = 1, . . . , N . (4)

The assumption that the coordinates of all bodies are
equal to zero at the initial time instant does not limit the
generality. If xi (0) �= 0, then by replacing the variable
x̃i = xi − xi (0), with respect to which the equations of
motion (1), (2) are invariant, the equality x̃i (0) = 0 is
achieved.

We study the motions in which the system moves
over a given distance L , provided that the configuration
of the system and the velocities of each of the bodies is
the same at the beginning and at the end of the motion:

xi (T ) = L , i = 1, . . . , N , (5)

vi (T ) = vi (0), i = 1, . . . , N , (6)

where T is the time of the motion, which is not set in
advance, and L > 0. Let us formulate the following
problem.

Problem 1 Find the motion of the system of bodies
defined by the relations (1–4) and satisfying the condi-
tions (5), (6).

Denote by x and v the coordinate and the velocity
of the center of mass of the system:

x = 1

N

N∑

i=1

xi , v = 1

N

N∑

i=1

vi . (7)

The motion of the center of mass obeys the relations

ẋ = v, Nmv̇ =
N∑

i=1

R(vi ). (8)

We assume that the interaction forces Fi are not
bounded, allowing instantaneous changes in the veloci-
ties of the bodies of the system. Let in the neighborhood
(t̃ − σ, t̃ + σ) of some time instant t̃ these forces are
given as follows: Fi (t) = biδ(t − t̃) + fi (t), where
δ(t) is the Dirac delta function, fi (t) are bounded on
[t̃ − σ, t̃ + σ ] and are continuous on the segments
[t̃ − σ, t̂) and (t̃, t̃ + σ ]. Integrating the equations of
motion (2) on the segment (t̃−σ, t̃+σ)with σ tending
to zero, and taking into account the boundness of fi (t)
and R(vi (t)), we get

v1(t̃ + 0) − v1(t̃ − 0) = b1
m

,

vi (t̃ + 0) − vi (t̃ − 0) = bi − bi−1

m
,

vN (t̃ + 0) − vN (t̃ − 0) = −bN−1

m
,

(9)

where i = 2, . . . , N −1. Summing up these equalities,
we obtain that the velocity of the center of mass is
continuous at the time instant t̃ :

v(t̃ + 0) = v(t̃ − 0). (10)
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By choosing the coefficients bi according to the equali-
ties (9), it is possible to arbitrarily change the velocities
of the bodies of the system at time t̃ , provided that the
velocity of the center of mass (7) is continuous in t̃ , that
is, the condition (10) is met. Thus, using the unlimited
in magnitude forces, it is possible to instantly redis-
tribute the momentum of the system between bodies
without changing the velocity of the center of mass.
Further in the paper, we are using this possibility to
control the system.

3 Motion with a constant velocity of the center of
mass

Suppose that the velocity of the center of mass of the
system is positive at some time instant t0, v(t0) = v∗ >

0. In this case, we construct such amotion of the system
in which the velocity of the center of mass is constant
throughout the entire time of motion, v(t) ≡ v∗, t ≥
t0, and the velocity of each of the bodies is piecewise
constant. Let the velocities of bodies on the interval
[t0, t1) are set by relations

vi (t) ≡ ai , i = 1, . . . , N , t ∈ [t0, t1), (11)

so that, the following equality is fulfilled:

1

N

N∑

i=1

ai = v∗. (12)

We are going to indicate what conditions the values ai
must satisfy and how to choose the forces of interac-
tion between bodies in order to realize a motion with
constant velocities (11) on the interval [t0, t1). At a con-
stant velocity of the center of mass, by virtue of (8), on
the interval [t0, t1) the sum of the resistance forces of
the medium acting on the bodies is zero:
N∑

i=1

R(vi (t)) ≡ 0.

Therefore, taking into account (3) and (11), the values
ai must satisfy the relation
N∑

i=1

ai |ai | = 0. (13)

At that, the motion with constant velocities (11) is real-
ized when the forces of interaction are defined as fol-
lows:

Fi = −
i∑

j=1

R(v j ) =
i∑

j=1

ca j |a j |, (14)

where i = 1, . . . , N − 1.
The velocities ai satisfying the equalities (12) and

(13) can be chosen in various ways for N ≥ 3. For
example, we can assume that one of the bodies moves
backward, and all the others move forward with equal
velocities, so that,

a1 = − N√
N − 1 − 1

v∗,

ai = N√
N − 1(

√
N − 1 − 1)

v∗, i = 2, . . . , N .

Note that the equalities (12) and (13) under the condi-
tion v∗ > 0 are incompatible for N = 1 or N = 2.

Let us define the motion of the system in which the
velocities of all bodies are constant on time intervals
(tk, tk+1), k = 0, . . . , N−1, and change cyclically, that
is, the velocity of the body Ai at each subsequent time
interval is equal to the velocity of the body Ai+1 on
the previous interval. At that, the velocity of the center
of mass is the same for all intervals. At the points tk ,
k = 1, . . . , N − 1, the velocities of the bodies of the
system change instantly.

The motion of bodies on the interval [t0, t1) is
defined by the formula (11). The velocities of the bod-
ies of the system over the interval (t1, t2) are set as
follows:
vi (t) ≡ ai+1, i = 1, . . . , N − 1, t ∈ (t1, t2),
vN (t) ≡ a1, t ∈ (t1, t2).

(15)

Sets of values of velocities of bodies on intervals (t0, t1)
and (t1, t2) coincide, while the velocity of the body Ai

on the interval (t1, t2) is equal to the velocity of the
body Ai+1 on the interval (t0, t1), i = 1, . . . , N − 1,
and the velocity of the body AN on the interval (t1, t2)
is equal to the velocity of the body A1 on the interval
(t0, t1). The values of the velocities of the bodies given
by the relations (15) satisfy (12) and (13), therefore,
such a motion of the system on the interval (t1, t2) is
also a motion with a constant velocity of the center of
mass v∗. It is realized by defining internal forces in
accordance with (14) up to the renumbering of bodies.
The velocities of the bodies of the system at time t1
instantly change from vi (t1 − 0) = ai to vi (t1 + 0) =
ai+1 due to the redistribution of momentum. Such a
redistribution is possible because at time instant t̃ = t1
equality (10) is fulfilled.

Similarly, the velocities of the bodies of the system
are set on all intervals (tk, tk+1), k = 0, . . . N − 1 by

vi (t)≡ai+k, i=1, . . . , N−k, t ∈(tk, tk+1),

vi (t)≡ai−N+k, i ∈[N−k+1, N ], t ∈(tk, tk+1).
(16)
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The sets of values of the velocities of bodies on all
intervals (tk, tk+1), k = 0, . . . N − 1 are the same.
The center of mass of the system moves at the constant
velocity v∗ on all these intervals. Themotion is realized
by selecting the internal forces specified according to
(14) up to the corresponding renumbering of bodies.
The velocities of the bodies of the system at time points
tk , k = 1, . . . N −1, instantly change from vi (tk −0) to
vi (tk + 0) due to the redistribution of the momentum.
At the moment of time tN , due to the redistribution of
momentum, the velocities of all bodies instantly change
so that the velocity of the body Ai becomes equal to
ai , i = 1, . . . N . Thus, on the time interval [t0, tN ], the
motion of the system with the constant velocity of the
center of mass v∗ and piecewise constant velocities of
bodies is constructed. It is such that

vi (tN ) = vi (0), i = 1, . . . N . (17)

Let us calculate the shift li = xi (tN )−xi (t0) of each
of the bodies Ai over the time interval [t0, tN ]. Denote
the durations of the intervals [tk−1, tk] as τk :

τk = tk − tk−1, k = 1, . . . , N .

Since the velocities of bodies on the interval [t0, tN ]
are given by the relations (16), we have

li =
N−i+1∑

k=1

ai+k−1τk +
N∑

k=N−i+2

ak−N+i−1τk . (18)

We construct a motion in which the displacements
of all bodies over the interval [t0, tN ] are the same. For
that, let us put the durations of all intervals [tk−1, tk]
equal to the same value,

τk = τ, k = 1, . . . , N ,

where

τ = (tN − t0)/N . (19)

In this case, the time instants tk are calculated as

tk = t0 + τk, k = 0, . . . , N , (20)

and the shifts li of all bodies over the interval [t0, tN ]
are the same:

li = l =
N∑

k=1

akτ, i = 1, . . . , N . (21)

Taking into account (12) and (19), the formula (21)
takes the form

l = v∗(tN − t0). (22)

Thus, on the time interval [t0, tN ], the motion of the
system with the constant velocity of the center of mass
v∗ and piecewise constant velocities of bodies is con-
structed. The shift of each of the bodies of the system
over this interval is equal to l. The velocities of each
of the bodies at the initial and at the terminal moments
of time are the same. Note that such a motion can be
periodically continued over the interval [t0,∞) so that
the velocities vi (t) will be periodic functions with a
period equal to tN − t0.

Figures 2, 3 show the motion of the system with the
piecewise constant velocities of each body andwith the
constant velocity of the center of mass. The number of
bodies N is equal to 3, the mass of each body is 1kg,
c = 0.1 kg/m, t0 = 0s, the value of tN is 10 s, the time
of motion is equal to 20s. The initial positions of the
bodies are: x1(0) = 0 m, x2(0) = 3 m, x3(0) = 15 m,
the initial velocities are: v1(0) = −√

5 m/s, v2(0) =
1 m/s, x3(0) = 2 m/s. The velocities of the bodies
v1(t), v2(t), and v3(t) are represented in the Fig. 2a–
c correspondingly. Figure3 shows the coordinates of
the bodies (blue lines) and the position of the center of
mass of the system (the red line).

Fig. 2 Themotionof the systemconsisting of N = 3bodieswith
a constant velocity of the center of mass. Velocities of the bodies
v1(t), v2(t), and v3(t) are shown in figures a, b, and c. Velocities

are piecewise constant and change cyclically on [0s, 10s], here,
t0 = 0s, t1 = 10/3 s, t2 = 20/3 s, tN = t3 = 10s. Themotion defined
at [t0, tN ] is repeated so that the total time of motion is 20 s
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Motion of a system of interacting bodies 279

Fig. 3 Coordinates of the bodies in the motion with a constant
velocity of the center ofmass. The system consists of N = 3 bod-
ies. Coordinates of the bodies x1(t), x2(t), and x3(t) are shown
by blue lines, the coordinate of the center of mass x(t) is shown
by the red line. The velocities of the bodies are shown in Fig. 2

4 Solution of problem 1

4.1 Solution for the case v(0) > 0

Using the results from the previous section, we obtain a
solution to Problem 1 in the case where the velocity of
the center of mass of the system at the initial moment
of time is positive, v(0) > 0. Let us put

t0 = 0, tN = L

v(0)
. (23)

The motion defined by (16), (19), (20), (23) is the solu-
tion of Problem 1 on the interval [0, T ], where T = tN .
The conditions (5) and (6) are met for such a motion
due to the relations (22) and (17). In the constructed
motion, the velocities of all bodies are piecewise con-
stant, and the velocity of the center of mass is constant
and equal to v∗ = v(0).

4.2 Solution for the case v(0) = 0

Now we find a solution to Problem 1 in the case where
the velocity of the center of mass is zero, v(0) = 0. In
particular, this condition is satisfied if all bodies are sta-
tionary at the initial moment of time. Due to the instan-
taneous redistribution ofmomentum, any problemwith
v(0) = 0 can be reduced to the problem where all bod-
ies are initially at rest. Thus, without loss of generality,
we assume that all bodies are at rest at the beginning of
the motion: vi (0) = 0, i = 1, . . . , N . We construct the
solution to Problem 1 for L > 0. The motion that is the
solution to Problem 1 consists of three stages. At the

first stage, the bodies are instantly given initial veloci-
ties, and then they move for a while without interacting
with each other. At the second stage, the velocity of the
center of mass of the system is constant, and each of
the bodies moves with a piecewise constant velocity.
At the beginning of the third stage, the velocities of the
bodies change instantly, then the bodies move without
interacting with each other, and at the end they stop
instantly.

At the first stage, at the initial moment of time t = 0,
we redistribute the zero momentum of the system as
follows:
v1(0) = −(N − 1)p,
vi (0) = p, i = 2, . . . , N ,

(24)

where p > 0. Next, let each of the bodies move freely
for a certain time interval, without interacting with the
other bodies and experiencing only the resistance of the
medium. At that, the following equations are fulfilled:

m
d

dt
v1 = cv21,

m
d

dt
vi = −cv2i , i = 2, . . . , N .

(25)

The solutions to equations (25) with initial conditions
(24) are the functions

v1(t) = − 1
c

m
t + 1

(N − 1)p

,

v2(t) = 1
c

m
t + 1

p

,

vi (t) = v2(t), i = 3, . . . , N .

(26)

On the interval of free motion, the velocities of all bod-
ies, except the first one, are the same. Using (26), it can
be shown that the ratio of the velocity modulus of the
first body to the velocity of any other body tends to 1
over time:

lim
t→∞

|v1(t)|
v2(t)

= 1.

At the initial moment of time, this ratio is at least 2,
since N ≥ 3:
|v1(0)|
v2(0)

= N − 1 ≥ 2.

Therefore, there is such a moment of time t0 when this
ratio is equal to

√
N − 1,

|v1(t0)|
v2(t0)

= √
N − 1.
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It follows from the formulas (26) that

t0 = m

cp
√
N − 1

. (27)

At time instant t0, the velocities of the bodies are equal
to

v1(t0) = −p
N − 1√
N − 1 + 1

,

vi (t0) = p

√
N − 1√

N − 1 + 1
, i = 2, . . . , N .

(28)

and the coordinates of the bodies are determined as
follows:

x1(t0) = −m

c
ln(

√
N − 1 + 1),

xi (t0) = m

c
ln

(
1√

N − 1
+ 1

)
, i = 2, . . . , N .

(29)

Note that the shifts of bodies at the first stage of motion
do not depend on p, that is, on the values of the veloc-
ities that we gave to the bodies at the beginning of the
motion. The velocity of the center ofmass of the system
is positive and equal to

v(t0) = p
N − 1

N

√
N − 1 − 1√
N − 1 + 1

. (30)

At the moment of time t = t0, the first stage of the
motion ends.

At the second stage, we are constructing the motion
of the system with a constant velocity of the center of
mass and with piecewise constant velocities of each
of the bodies. Motion with a constant velocity of the
center of mass of the system and with the values of the
velocities of bodies from the set A = {a1, . . . , aN } is
described in the previous section. Let us put the values
ai equal to the velocities of the bodies Ai at the end of
the first stage of motion,

ai = vi (t0), i = 1, . . . , N ,

where vi (t0) are defined by the formulas (28). By virtue
of these formulas we have:

a1 = −a
√
N − 1, ai = a, i = 2, . . . , N , (31)

where

a = p

√
N − 1√

N − 1 + 1
,

that is, all ai , i = 2, . . . , N are equal to each other.
Such ai satisfy the relation (13), so the motion of the
system of bodies defined by formulas (16) is possible.

In this motion, the velocity of the center of mass v(t)
is constant and equal to v(t0), where v(t0) is defined
by the equality (30). Throughout the second stage, one
of the bodies, in turn, moves backwards, and all the
others move forward at the same velocity. The shift of
the bodies of the system at the second stage is deter-
mined by the relations (18). Taking into account (31),
the relations (18) take the following form:

li = a1τi + a
∑

k �=i

τk, i = 1, . . . , N . (32)

We are considering such a motion in which the first
body shifts by a distance of l1, and all the others shift
by the same distance li ,

li = l, i = 2, . . . , N . (33)

Solving the system (32) with respect to τi under the
condition (33), we get

τ1 = l1(
√
N − 1 − (N − 2)) + l(N − 1)√

N − 1(N − 2)a
, (34)

τi = τ = l1 + l
√
N − 1√

N − 1(N − 2)a
, i = 2 . . . , N . (35)

Since τ1 and τ are the durations of time intervals, the
displacements of the bodies l1, l must be such that the
following condition is met:

τ1 ≥ 0, τ ≥ 0. (36)

The values of l1 and l will be indicated later, after
describing the motion during the third stage. The sec-
ond stage of the motion ends at the moment of time

tN = t0 + τ1 + (N − 1)τ.

At the beginningof the third stage,we instantly redis-
tribute the momentum of the system, giving the bodies
the velocities

v1(tN+) = (N − 1)a,

vi (tN+) = − a√
N − 1

, i = 2, . . . , N .

During the time interval [tN , T ], the bodies move with-
out interacting with each other. At time tN , the ratio of
the velocity modules of the bodies is equal to
∣∣∣∣
v1(tN + 0)

vi (tN + 0)

∣∣∣∣ = (N − 1)
√
N − 1, i = 2, . . . , N .

As shown earlier, this ratio tends to 1. Let us choose as
T a moment in time such that∣∣∣∣
v1(T − 0)

vi (T − 0)

∣∣∣∣ = N − 1, i = 2, . . . , N .
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At that, v1(T ) = −(N − 1)vi (T ), i = 1, . . . , N . At
time T , the momentum of the system is zero, so by
redistributing it between bodies, you can instantly stop
all bodies so that

vi (T ) = 0, i = 1, . . . , N .

Thus, the motion is constructed that transfers the sys-
tem between two states of rest, vi (0) = vi (T ) = 0,
i = 1, . . . , N , that is, the condition (6) of Problem 1
is met. In order to move the system to the given dis-
tance L , xi (T ) = L , i = 1, . . . , N , that is, to satisfy
the condition (5), it is necessary to select the values of
the shifts of the bodies l1 and l at the second stage of
motion.

Denote the shifts of the bodies Ai at the third stage
by �xi , �xi = xi (T ) − xi (tN ), i = 1, . . . , N . For
the values �xi , explicit formulas can be written out,
similar to the formulas (29) for the shifts of bodies at
the first stage ofmotion. Since all bodies except the first
one move the same way at the first and third stages, we
have xi (t0) = x2(t0) and �xi = �x2, i = 3, . . . , N .
The values �xi as well as xi (t0) depend only on m,
c, and N . The shifts of the bodies at the second stage
l1 and l, which solve Problem 1, are found from the
equalities

x1(t0) + l1 + �x1 = L ,

x2(t0) + l + �x2 = L .
(37)

For the found values l1 and l, it is necessary to check
that the corresponding durations τ1, τ , defined by (34),
(35) are non-negative (36). We prove that this is true
for sufficiently large values of L . Indeed, in this case
the inequalities l1 > 0, l > 0 are valid, that results in
τ > 0 by virtue of (35). Let us rewrite the numerator

of the right part of the formula (34) as

l1(
√
N − 1 + 1) + (l − l1)(N − 1).

This expression is positive, since the first term is pos-
itive and arbitrarily large for large L , and the second
is bonded in virtue of the formulas (37). This proves
the inequality τ1 > 0 for a sufficiently large value of
L . Therefore, there is such L∗ that Problem 1 has a
solution for all L ≥ L∗. For this case, the algorithm
for constructing the solution to this problem has been
presented.

Suppose now that L < L∗. In this case, first solve
Problem 1 for the value L̃ = 2L∗. At the end of this
motion, all bodies are at rest and are at the point with
the coordinate x = 2L∗. Then we solve Problem 1 for
the value L̂ = L − 2L∗, that is, we shift the system by
the distance |L − 2L∗| in the negative direction of the
x axis. It is possible because |L − 2L∗| > L∗.

Thus, the solution of Problem 1 is constructed in the
case where v(0) = 0.

Fugures 4, 5 illustrate the solution of Problem 1 in
the case N = 3, m = 1kg, c = 0.1 kg/m, L = 5m. At
the initial moment of time, vi (0) = 0m/s, x1(0) = 0m,
x2(0) = 3m, x3(0) = 25m. Here, the value of p (see
formula 24) is chosen to be equal to 10m/s.

Note that in the case where v(0) = 0, the time of
motion T can be arbitrarily small. Indeed, when the
value of p increases infinitely, the time t0 of motion at
the first stage (27) tends to zero as well as the time of
motion at the third stage; and the velocity of the center
of mass v at the second stage of motion defined by
(30) tends to infinity. This result is obtained here for
the quadratic resistance, in contrary to the case of dry

Fig. 4 Velocities vi (t) of the bodies in the motion that solves
Problem 1 in the case where the system is at rest at the initial
time instant, vi (0) = 0. The system consists of N = 3 bodies.
At the first stage of motion, the velocity of the center of mass

v(t) increases. At the second stage, v(t) is constant, while vi (t)
are piecewise constant. At the third stage, v(t) decreases until
the whole system is at rest, vi (T ) = 0
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Fig. 5 Coordinates of the bodies xi (t) (blue lines) solving Prob-
lem 1 in the case where v(0) = 0, N = 3. The position of the
center of mass x(t) is shown by the red line. The velocities of
the bodies are shown in Fig. 4

friction, in which the time optimal control problem for
the considered system was solved [17].

5 Optimization of motion with a constant velocity
of the center of mass

The motion with the constant velocity of the center of
mass of the system proposed in Sect. 3 is an important
part of the solution of Problem 1. Let us consider the
problem of optimizing such a motion.

Consider the motion with piecewise constant veloc-
ities of the bodies of the system, given by the formulas
(16) and (20), under the condition of the equality (13).
In this motion, the velocity of the center of mass v∗
is constant and is determined by the relation (12). We
impose a limit on the velocity of each of the bodies:

|ai | ≤ V, i = 1, . . . , N . (38)

We look for such a motion of the system at which the
velocity of the center of mass v∗ is maximal:

v∗ = 1

N

N∑

i=1

ai → max . (39)

Thus, in order to maximize the velocity of the center
of mass of the system, it is necessary to maximize the
functional (39) under the conditions (13) and (38).

Problem 2 Find the set of velocitiesA = {a1, . . . , an}
satisfying the conditions (13), (38) and maximizing the
functional (39).

Lemma 1 If the set of velocities A = {a1, . . . , aN } is
optimal, that is, it solves Problem 2, then there are no
zero velocities in it, and all positive velocities are the
same.

Proof Let the velocities of bodies with numbers from
the set I+ be non-negative, ai ≥ 0, i ∈ I+, the amount
of such bodies is equal to N+ = |I+|. The velocities
of the other bodies are negative, ai < 0, i ∈ I− =
{1, . . . , N }\I+. Suppose that not all values ai , i ∈ I+
are the same.We specify a newset of velocities inwhich
all non-negative velocities are the same and positive:

ãi =

√√√√
∑
i∈I+

a2i

N+ , i ∈ I+,

ãi = ai , i ∈ I−.

Such velocities ãi still satisfy the conditions (13),
(38), and the value of the functional (39) increases
with new values of velocities, ãi , v∗(a1, . . . , aN ) <

v∗(ã1, . . . , ãN ). Actually,

v∗(ã1, . . . , ãN ) − v∗(a1, . . . , aN ) =
=

√
N+
N

√∑

i∈I+
a2i − 1

N

∑

i∈I+
ai > 0.

The latter inequality is equivalent to the inequality
⎛

⎝
∑

i∈I+
ai

⎞

⎠
2

< N+ ∑

i∈I+
a2i ,

which is a special case of the Cauchy-Bunyakovsky-
Schwarz inequality. This inequality is strict, since not
all ai , i ∈ I+ are the same by assumption. Thus, it is
shown that there are no zero velocities in the optimal
set of velocities, and all positive velocities are the same.
The lemma is proved. ��
Lemma 2 If the set of velocities A = {a1, . . . , aN }
is optimal, that is, solves Problem 2, then all negative
velocities in it are equal to −V .

Proof We assume that the optimal set of velocities
A has a negative velocity ak , ak ∈ A, such that
ak ∈ (−V, 0). At least one of the bodies A j must have
a positive velocity, otherwise the equality (13) is vio-
lated. Thus we have

a j > 0, −V < ak < 0.

We define a new set of velocities Ã = {ã1, . . . , ãN }.
In the set Ã, the velocities of the bodies A j , Ak are
changed to ã j , ãk , such that ã j > 0, ãk = −V or ãk ≥
0. The velocities of the other bodies do not change,
ãi = ai , i �= j, k. Then the condition v∗(Ã) > v∗(A)

is equivalent to

ã j + ãk > a j + ak . (40)
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Since the velocities of all bodies except the velocities of
the bodies A j and Ak do not change and the condition
(13) is met for the set A, this condition is met for the
set Ã if and only if

ã2j − ã2k = a2j − a2k . (41)

The constraint (38) takes the following form:

|ã j | ≤ V, |ãk | ≤ V . (42)

If a j > |ak |, we put
ã j =

√
a2j − a2k , ãk = 0.

If a j < |ak |, we put
ã j =

√
V 2 + a2j − a2k , ãk = −V .

In both cases, the conditions (41) and (42) are met for
the values ã j , ãk . The condition (40) is also satisfied
that guarantees that the functional (39) increases for
Ã. This means that the original set is non-optimal. In
the case where a j = |ak |, in the new set Ã we put
ã j = ãk = 0 without changing ai , i �= j, k. At that, the
value of the functional (39) does not change.According
to Lemma 1, the set Ã is non-optimal, therefore, the
original set A is also non-optimal.

Thus, in all cases, the original set of velocities A

is non-optimal. The obtained contradiction proves the
lemma.

��
Combining the results of Lemmas 1 and 2, we obtain

the following statement.

Proposition 1 In the optimal set of velocities A =
{a1, . . . , aN }, all negative velocities are equal to −V ,
there are no zero velocities, and all positive velocities
are the same.

Using this statement, we indicate the optimal set of
velocities A. Let the bodies Ai , i ∈ I+ have equal
positive velocities, ai = a, i ∈ I+, their number is
equal to N+, N+ = |I+|. The remaining N − N+
bodies have negative velocities equal to −V . Let us
determine the optimal number of N+ bodies moving
with positive velocity. The condition that the sum of
external forces is equal to zero (13) takes the form

(N − N+)V 2 = N+a2. (43)

The condition (38) is written as

a ≤ V . (44)

The expression for the velocity of the center of mass
takes the form

v∗ = −N − N+

N
V + N+

N
a. (45)

Let us obtain the value of a from the equality (43):

a =
√

N − N+
N+ V . (46)

When substituting it into the formula (45), we get

v∗(N+) = −N − N+

N
V +

√
N+(N − N+)

N
V . (47)

The condition (44) is equivalent to the inequality N+ ≥
N
2 . Note that the equality N+ = N

2 is impossible,
because otherwise the numbers of bodies moving for-
ward and backward coincide and a = V resulting in
v� = 0, which contradicts the assumption v� > 0.
Thus, we have

N

2
< N+ < N . (48)

The problem of maximizing v∗ is reduced to finding
the maximum by N+:

N+ +
√
N+(N − N+) → max (49)

for integers N+ from the interval (N/2, N ). Consider
the function

f (x) = x + √
x(N − x) (50)

for real x from the interval (N/2, N ). The function
f (x) increases on the interval ( N2 , N

2 + N
2
√
2
), reaches

a maximum at the point N
2 + N

2
√
2
, and decreases on

the interval ( N2 + N
2
√
2
, N ). Therefore, the solution to

the problem (49) is one of two values: N+
opt = N+

1 or
N+
opt = N+

2 , where

N+
1 =

[
N

2
+ N

2
√
2

]
, N+

2 =
[
N

2
+ N

2
√
2

]
+ 1.

Here, the sign [·] denotes the integer part of a number.
Note that N+

1 > N/2 for all N ≥ 3. For N = 3, . . . , 6
we have N+

2 = N , N+
1 = N − 1. The inequality (48)

for such N+
2 is violated, therefore, N+

opt = N+
1 , that is

N+
opt (N ) = N − 1, N = 3, . . . , 6. (51)

Thus, if the number of bodies in the system is less or
equal to 6, then at optimalmotion only one of the bodies
moves backward with the maximum allowed velocity
−V , and all the others move forward with velocities
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equal to V/
√
N − 1, while the velocity of the center of

mass is equal to

v∗ =
√
N − 1 − 1

N
V .

For N > 6, the inequality (48) is met for both N+
1

and N+
2 . Therefore, one of the values N+

1 or N+
2 cor-

responding to a larger value of (49), should be chosen
as N+

opt , that is,

N+
opt (N ) = argmin( f (N+

1 ), f (N+
2 )), N > 6. (52)

Substituting the maximum point N
2 + N

2
√
2
of the func-

tion (50) into the expression for the average velocity
(47), we get the following estimate of the velocity of
the center of mass:

v∗ < v
sup∗ =

(
1√
2

− 1

2

)
V .

As N increases, the value of v∗(N+
opt ) tends to v

sup
∗ :

lim
N→∞ v∗(N+

opt (N )) = v
sup∗ .

Note that for N = 6, the difference between the value
of the velocity of the center of mass v∗ for an optimal
number of N+ bodies moving to the right and the value
of v

sup∗ is less than 1%,

v
sup∗ − v∗(N+

opt (6))

v
sup∗

< 10−2.

As previously was obtained for N = 3, . . . , 6, it can be
shown that for N = 7, 8, 9 we have N+

opt (N ) = N −1,
that is, only one body moves backward in the optimal
motion. If N = 10,we have N+

opt (N ) ∈ {N−1, N−2},
that is, motions with both one and two backward-
moving bodies are optimal. In the case where N ≥ 11,
at least two bodies move backward with velocities −V
in optimal motion. The ratio of the number of bodies
moving forward to the number of bodies moving back-
ward tends to 1

2 + 1
2
√
2
with an increase in the number

of bodies N .
Summarizing the results of the current section, one

can describe the optimal motion of the system by the
following statement.

Proposition 2 In amotion of the system of bodiesmax-
imizing the velocity of the center of mass, N+ = N+

opt

of bodies moves forward, where N+
opt is determined by

the formulas (51), (52). The velocities of all such the

Fig. 6 Coordinates of the bodies xi (t) (blue lines) in the optimal
a and in the non-optimal bmotion. The system consists of N = 5
bodies. The position of the center of mass x(t) is shown by red
lines. The slope of the line x(t) is about two times bigger in the
optimal motion a compared to the non-optimal one b

bodies are the same and are defined by the formula
(46). The remaining N − N+ bodies move backwards
with the velocity −V . In the optimal motion, the veloc-
ity of the center of mass of the system is given by the
formula (47).

Let us illustrate the proposition by considering the
system consisting of N = 5 bodies. Parameters of the
problem are the following: m = 1kg, c = 0.1 kg/m, T
= 30s, tN = 10s, V = 2m/s. At the initial moment
of time, x1(0) = 0m, x2(0) = 2m, x3(0) = 10 m,
x4(0) = 20 m, x5(0) = 30 m. We compare two
motions. In the firstmotion, only one bodymoves back-
ward at eachmoment of time, i.e., a1 = −V , ai = V/2,
i = 2, . . . , 5, and vi (0) = ai . In the second motion,
two bodies move backward at each moment of time,
i.e., a1 = −V , a2 = −V , ai = √

2/3V , i = 3, 4, 5,
and vi (0) = ai . Both these motions satisfy the require-
ments of Proposition 1. Figure6 shows the results of
the simulation of these two motions. The shift of the
center of mass of the system is more than 6m bigger
in the first motion compared to the second one. Thus,
these simulation results are in agreement with Proposi-
tion 2, which asserts that the first considered motion is
the optimal one. To perform this simulation (as well as
to obtain the results presented in Figs. 2, 3, 4 and 5), the
Python script is developed. It firstly sets the controlling
forces defined by (14) and by themotion algorithmused
and then simulates the motion of the system according
to the equations of motion (1), (2). The Gnuplot utility
is used to create Figs. 2–6.
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6 Conclusion and discussion

The current paper examines the dynamics of a system
of identical interacting bodies on a straight line. The
controlling forces are the forces of interaction between
neighboring bodies. There are no restrictions on these
forces, so that an instantaneous change in the values
of the velocities of the bodies of the system is possi-
ble. The resistance force of the medium to the motion
of each body is described by a quadratic function of
velocity. The problem of shifting the system to a given
distance is solved under the conditions that the veloci-
ties of each of the bodies at the beginning and at the end
of the motion are the same, and the relative positions
of the bodies are also the same at these time instants.

A new result is obtained in the case where the
momentum of the system is zero at the initial moment
of time (for example, the system is at rest). A motion
consisting of three stages is constructed. At the first
stage (acceleration), the initial moment of time when
the impulse interaction between the bodies occurs is
followed by the time interval of free motion of the bod-
ies; at the end of this stage, the velocity of the center of
mass becomes positive. At the second stage, the center
of mass of the system moves with constant velocity,
and the bodies move with piecewise constant veloci-
ties. At the third stage, the system is slowed down to
a state of rest. It is shown that this motion consisting
of three stages can be performed in an arbitrary short
time.

In the casewhere themomentum of the system is not
zero at the initial moment of time, a new algorithm of
motion is proposed inwhich the velocity of the center of
mass is constant during the entire motion, the velocity
of each of the bodies is piecewise constant, and the
values of the velocities of the bodies change cyclically.
For such a motion with a constant velocity of the center
of mass and piecewise constant velocities of bodies,
the optimization problem is solved. The velocity of the
center of mass is maximized under the condition that
the velocities of the bodies of the system are bounded.
It is shown that in optimal motion at each time instant,
part of the bodies moves backward at the maximum
possible velocity, the rest ones move forward at the
equal velocities. An upper estimate of the maximum
velocity of the center of mass of the system is found
for all values of the number of bodies that make up the
system.

The motions proposed in the paper can be continued
periodically, so they can be used to construct a control
for a robotic locomotion system of several bodies mov-
ing in a viscous medium by changing its configuration.

In the current problem statement, only rectilinear
motions of the system are possible, while for applica-
tions it is also important to implement planar and spa-
tial motions. Some proposed earlier locomotion sys-
tems that can move on a plane or in space are multi-
link systems, systems having rotors, systems consist-
ing of a hull and moving internal bodies. Our plan is
to investigate planar and spatial motions of a system of
identical bodies some of which interact and are pair-
wise connected by prismatic joints. That is, we want to
study systems similar to the one considered in the cur-
rent paper, but with more complex (not serial) scheme
of connections between bodies, e.g., a triangular or a
pyramid with bodies at vertexes. We plan to find con-
struction of such a system and its gaits that allow to
move the system translationally, rotate it, and bring it
to a prescribed position. One of the possible designs
is as follows. In the case of planar motion, nine bod-
ies are placed at the vertexes, middles of sides and at
the center of a square. Each of the bodies is connected
with all neighboring bodies by prismatic joints. This
system can move translationally parallel to one side of
the square, if we consider the system as three separate
triples of bodies. Each of the triples moves according
to the algorithm proposed in the current paper. After
the full stop, the system can move translationally along
the perpendicular direction. In the similar way, spatial
motion of a system of 27 bodies can be organized. In
our future studies, we plan to propose simpler designs
of such systems, study and optimize their motions.
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