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Abstract During the release and propagation of

intracellular and extracellular ions, electromagnetic

field is induced accompanying with propagation of

energy flow. The firing mode is dependent on the

energy level, and external energy injection will induce

distinct mode transition. Exact energy function for a

neuron developed from a neural circuit can be

obtained directly by applying scale transformation

for the physical field energy. For generic neuron

models, dimensionless Hamilton energy function can

be obtained by using Helmholtz theorem, and this

energy function can be considered as a specific

Lyapunov function. In this review, approach of energy

function for memristive neuron is discussed by

designing equivalent neural circuit coupled by two

kinds of memristors, which are dependent on the

magnetic flux and charge flux, respectively. A

scheme is suggested to get equivalent energy function

for memristive neuron in the form of map by

introducing a scale parameter. The memristive map

reduced from the memristive neuron can produce

similar attractors and firing modes under applying the

same parameters, and the average Hamilton energy for

the map neuron is decreased because of regulation

from the scale parameter. On the other hand, a

memristive map is replaced by an equivalent memris-

tive oscillator for finding an equivalent Hamilton

energy function according to the Helmholtz theorem.

The energy scheme can be helpful for further inves-

tigating energy property of artificial neurons, maps

and discrete memristors. It also provides evidence that

maps are more suitable for investigating neural

activities than neuron oscillators.

Keywords Hamilton energy � Memristive neuron �
Neural circuit � Memristor

1 Introduction

The occurrence of chaos and chaos in nonlinear

circuits depends on the involvement of electric

components, and one nonlinear component with

nonlinear relation between voltage and channel cur-

rent is required at least. When these circuits are

activated, capacitive energy is shunted to inductive

channels and memristive channels based on memris-

tors [1–5]. A simple nonlinear circuit requires the
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combination and connection to capacitor, inductor,

negative resistor and even external signal source, and

appropriate setting in parameters will develop chaos in

these nonlinear circuits [6–10]. In particular, some

nonlinear circuits can be tamed and improved to

present bursting, spiking patterns, and neural circuits

are obtained to propose equivalent neuron models.

Indeed, piezoelectric ceramic [11], Josephson junction

[12, 13], photocell [14, 15], thermistor [16, 17],

memristor can be connected to some neural circuits for

building reliable neural circuits for further considering

the physical effect during activating neural activities

in biophysical neurons[18–22].

From physical aspect, energy is exchanged and

propagated when biological neurons present different

firing modes and patterns. For nonlinear circuits,

continuous oscillation needs stable energy supply and

shunting between different electric components. The

physical energy in nonlinear circuits can be obtained

by considering the energy in the capacitive, inductive

and memristive channels, and then the physical field

energy can be converted into equivalent dimensionless

energy function [23–25] by applying scale transfor-

mation on the variables and parameters in the field

energy function. On the other hand, suitable Hamilton

energy function can be confirmed in a nonlinear

oscillator by using Helmholtz theorem [26–28].

However, it keeps open for discrete systems and maps

to get energy function, and the involvement of discrete

memristor makes the question become more interest-

ing and worthy of investigation.

In this review, based on a memristive map [29, 30],

a scheme is used to estimate the energy function in

theoretical way. A scale parameter is introduced to

build a equivalent continuous dynamical system for

getting the Hamilton energy function and then the

value for the scale parameter is confirmed by bifur-

cation analysis, which the memristive map has the

same maximal value or phase space with the memris-

tive oscillator. This scheme can be further used to

calculate energy for more maps and energy level will

be switched to control the chaos in maps.

2 Energy in nonlinear circuit and continuous

oscillator

Quiescent biological neurons develop static distribu-

tion of electric field, and themembrane potential keeps

certain constants for keeping propagation balance of

intracellular and extracellular ions. In presence of

external stimulus beyond the threshold, certain firing

mode is triggered to present continuous firing patterns

accompanying with jumping between energy levels.

That is, distinct physical effect becomes distinct and it

can be reproduced in some equivalent neural circuits

by considering the main physical properties. The

capacitive energy can be described by the capacitors

and charge-controlled memristor [31–34], the induc-

tive energy can be mimicked by inductors and

magnetic-flux dependent memristor [35–38], nonlin-

ear resistor in parallel with the inductive channel can

be used to bridge connection to the magnetic field and

electric field. In addition, involvement of constant

voltage sources into the inductive channel or memris-

tive channel is suitable to represent the resting

potentials of ion channels. Biological neurons can

induce electrical field and magnetic field, and ion

channels are important for exchange and propagation

of ions including calcium, potassium and sodium.

Therefore, a capacitor and its output voltage are used

to mimic the electric field and membrane potential,

inductor and its channel current can describe the

magnetic field and the transmembrane current. Addi-

tive memristors are used to estimate the physical field

effect and special property of ion channels, such as

detecting external field and self-adaption and control-

lability. In Fig. 1, a simple neural circuit is built by

connecting one capacitor, two different kinds of

memristors, one nonlinear resistor with cubic relation

between channel current and across voltage, and

Fig. 1 Memristive neural circuit coupled by memristors. C, L,
M1, M2, and NR describe capacitor, inductor, magnetic flux-

dependent memristor, charge-controlled memristor, nonlinear

resistor, respectively. Constant E denotes reverse potential, is
represents external forcing current, the output voltage for

capacitor is v
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external stimulus can be time-varying or sampled from

specific signal source within specific frequency band.

In Fig. 1, three different constant voltage sources

are introduced to mimic the effect of reverse voltage in

these ion channels. The involvement of NR is used to

describe the nonlinear relation of energy flow between

capacitive and inductive field. The channel current

across the two memristors and nonlinear resistor is

respectively estimated,

iNR ¼ � 1

q
v� 1

2

v2

V0

� 1

3

v3

V2
0

� �
;

iM1 ¼ MðuÞðv� E1Þ ¼ ðaþ 3bu2Þðv� E1Þ;
iM2 ¼

ðv� E2Þ
WðqÞ ¼ ðcþ dq2Þðv� E2Þ;

8>>>><
>>>>:

ð1Þ

where the physical parameters (q, V0), (a, b), (c, d) are

relative to the material properties of the NR, M1 and

M2, respectively. The parameters (q, V0) can be

discerned from the i-v (current and voltage across the

nonlinear resistor) curve when the nonlinear resistor is

connected to a simple circuit. u and q describe the

magnetic flux and charges across the two kinds of

memristors. v and iL measure the voltage across the

capacitor and channel current across the inductor.

Furthermore, the field energy in each electric compo-

nent, and the total energy function are respectively

calculated by

WC ¼ 1

2
Cv2; WL ¼ 1

2
Li2L;

WM1 ¼
1

2
LMi

2
M1 ¼

1

2
uiM1 ¼

1

2
ðaþ 3bu2Þðv� E1Þu;

WM2 ¼
1

2
CMv

2
M2 ¼

1

2
qvm2 ¼

1

2
ðv� E2Þq;

W ¼ 1

2
Cv2 þ 1

2
Li2L þ

1

2
ðaþ 3bu2Þðv� E1Þuþ 1

2
ðv� E2Þq;

8>>>>>>>>>><
>>>>>>>>>>:

ð2Þ

An equivalent Hamilton energy function H in

dimensionless form can be obtained by

H ¼ W

CV2
0

¼ 1

CV2
0

1

2
Cv2 þ 1

2
Li2L þ

1

2
ðaþ 3bu2Þðv� E1Þuþ 1

2
ðv� E2Þq

� �

¼ W

W0

¼ 1

2
x2 þ 1

2a
y2 þ 1

2
ða0 þ b0z2Þðx� e1Þzþ

1

2
ðx� e2Þw;

ð3Þ

As a result, any changes of the variables and

memristive parameters will trigger shift of energy

level, and energy is shunted between capacitive,

inductive and memristive types. The normalized

parameters and dimensionless variables for physical

variables and intrinsic parameters are defined by

x ¼ v

V0

; y ¼ qiL
V0

; z ¼ u
qCV0

; w ¼ q

CV0

; s ¼ t

qC
;

a ¼ q2C
L

; n ¼ R

q
;

a0 ¼ qa; b0 ¼ 3bq3C2V2
0 ;W0 ¼ CV2

0 ; e ¼
E

V0

;

e1 ¼
E1

V0

; e2 ¼
E2

V0

;

8>>>>>>>>>>><
>>>>>>>>>>>:

ð4Þ

According to Eq. (3), the neuron shows jump

between energy levels when the electric activities

are switched from periodical, spiking, bursting to

chaotic patterns. The memristive oscillator regulates

its energy value close to certain energy level in

presenting sole firing mode. In presence of multiple

firing modes, energy level is switched with time.

External stimulus can inject energy flux and external

electromagnetic field can change the energy shunting

between the capacitive and inductive channels, and it

explains the mode transition in excitable media under

continuous polarization and magnetization.

The circuit equation for Fig. 1 can be obtained as

follows

C
dv

dt
¼ is � iL � iM1 � iM2 � iNR;

L
diL
dt

¼ vþ E � RiL;

du
dt

¼ v� E1;

dq

dt
¼ iM2 ¼ ðcþ dq2Þðv� E2Þ;

8>>>>>>>>>><
>>>>>>>>>>:

ð5Þ

Indeed, the dynamics of the neuron with double

memristive channels can be described by equivalent

and dimensionless form as follows

dx

ds
¼ i0s � y� ða0 þ b0z2Þðx� e1Þ

� ðc0 þ d0w2Þðx� e2Þ þ x� 1

2
x2 � 1

3
x3;

dy

ds
¼ aðx� nyþ eÞ;

dz

ds
¼ x� e1;

dw

ds
¼ ðc0 þ d0w2Þðx� e2Þ;

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð6Þ

By applying and taming the normalized parameters

and external forcing current, the firing mode and

patterns in the memristive oscillator in Eq. (6) can be
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controlled effectively. From Eq. (5) to Eq. (6), scale

transformation Eq. (4) is required, and additive scale

transformation is used as follows

i0s ¼
qis
V0

; n ¼ q
R
; e ¼ E

V0

; c0 ¼ qc; d0 ¼ qdC2V2
0 ;

ð7Þ

The neural circuit contains magnetic field and

electric field energy, and its dynamics can be replaced

by equivalent vector form. According to the Helm-

holtz theorem [39, 40], the solution for the Hamilton

energyH of generic nonlinear oscillator in vector form

and its derivative of time meets the criterion as follows

dX

ds
¼ FcðXÞ þ FdðXÞ; X � Rn;

rHTFcðXÞ ¼ 0;

rHTFdðXÞ ¼
dH

ds
;

8>>><
>>>:

ð8Þ

The physical field is composed of gradient term

Fd(X) and curl field term Fc(X), which corresponds to

the electric field in the capacitor and magnetic field in

inductor of nonlinear circuit, respectively. By the way,

the memristive system in Eq. (6) is updated for getting

suitable Hamilton energy function, see appendix. An

identical energy function as the form in Eq. (3) can be

obtained to confirm the reliability of this scheme. The

memristive oscillator in Eq. (6) can be approached by

discrete form with suitable time step, which is

considered as scale parameter e, and it is defined by

xnþ1 ¼ xn þ e i0ns � yn � ða0 þ b0z2nÞðxn � e1Þ
�

�ðc0 þ d0w2
nÞðxn � e2Þ þ xn �

1

2
x2n �

1

3
x2n

�
;

ynþ1 ¼ yn þ eaðxn � nyn þ eÞ;
znþ1 ¼ zn þ eðxn � e1Þ;
wnþ1 ¼ wn þ eðc0 þ d0w2

nÞðxn � e2Þ;

8>>>>>>>>><
>>>>>>>>>:

ð9Þ

In addition, the energy function in discrete form is

updated as follows

Hn ¼ e
1

2
x2n þ

1

2a
y2n þ

1

2
ða0 þ b0z2nÞðxn � e1Þzn þ

1

2
ðxn � e2Þwn

� �
;

ð10Þ

The scale parameter e has similar role as the time

step to discretize memristive oscillator presenting in

differential equations into a simple map, and its value

can be detected by matching the maximal value for

variable x in Eq. (6) and xn in Eq. (9). That is, all the

corresponding parameters are selected the same value,

and the scale parameter e is changed carefully until the
two systems cover the same region and maximal value

in the phase space. That is, introducing suitable value

for the scale parameter e, the memristive oscillator in

Eq. (6) and memristive map in Eq. (9) should have the

same dynamical properties including attractors, attrac-

tion domain, maximal Lyapunov exponent and same

size of phase portrait. When it is considered as a

memristive neuron, both of them can present complete

spiking, bursting and even chaotic patterns. In this

way, the energy function in Eq. (10) with suit-

able value for e can measure the energy level for

memristive neuron in the form of map. In particular,

the memristive map will keep low energy level than

thememristive oscillator because the scale parameter e
is often selected with low value (e\ 1). In practical

way, memristive map requires low energy than

memristive oscillator in signal processing and show-

ing the same dynamical properties. It is important to

clarify the approach of energy for some maps by

developing equivalent oscillator model so that Helm-

holtz theorem can be applied for theoretical analysis

and prediction for the energy function under periodic

stimulus is
0 = I0 ? Acos(xs).

It is interesting to discuss the scheme for energy

approach for Eqs. (6) and (9) by setting the same group

of parameters as a = 0.01, b = 0.01, c = 0.01,

d = 0.01, e = 0.05, e1 = 0.05, e2 = 0.06, a = 1.21;

n = 0.15, A = 1.0, I0 = 0.9, and same initials setting

are selected for the variables (x, y, z, w) = (xn, yn, zn,

wn) = (0.2, 0.1, 0.01, 0.01). The bifurcation analysis

and average energy are plotted in Fig. 2.

The firing mode, profile of attractors and average

energy of the memristive neuron will be controlled by

external stimulus with changing the angular fre-

quency. To confirm the consistence and similarity of

attractors and firing patterns between the memristive

neuron and map, scale parameter is adjusted to track

the maximal value for membrane potential and

average energy in Fig. 3.

From Fig. 3, the memristive neuron in Eq. (6) can

be reproduced the same firing patterns and attractors in

the memristive map in Eq. (9) by setting suitable value

for scale parameter e. The energy level and firing mode

in the neuron in Eq. (6) are dependent on the angular

frequency of external stimulus. From Eqs. (3)–(10),

the discrete neuron is endowed with scale parameter e,
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as a result, its average energy\Hn[ becomes less

than\H[ because e\ 1. Therefore, it is suitable to

reproduce similar firing patterns and attractors of

nonlinear oscillators in some equivalent maps by

setting appropriate value for the scale parameter when

they are selected with the same parameters. Particu-

larly, the energy level in the equivalent map is

decreased greatly than the memristive oscillator. In a

word, scale parameter can be introduced into the

discrete energy function for the equivalent map

reduced from the memristive oscillator with the same

parameters setting. It is important to calculate the

energy function for a memristive map by developing

similar memristive oscillator, and then the energy

function will be discretized by removing the scale

parameter directly.

3 Energy descriptions in memristive map

From dynamical viewpoint, discrete systems and maps

can be considered as discretized forms for continuous

dynamical systems by applying Euler algorithm

approach with suitable time step. For a generic

dynamical system expressed by differential equations,

dx

ds
¼ f ðx; y; zÞ ;

dy

ds
¼ gðx; y; zÞ ;

dz

ds
¼ hðx; y; zÞ ;

8>>>>>><
>>>>>>:

ð11Þ

Its equivalent discrete form is obtained by

xnþ1 ¼ xn þ ef ðxn; yn; znÞ ;
ynþ1 ¼ yn þ egðxn; yn; znÞ ;
znþ1 ¼ zn þ ehðxn; yn; znÞ ;

8><
>: ð12Þ

where the parameter e denotes the time scale, Eq. (12)

will match with Eq. (11) in dynamical characteristic

by setting suitable values for e. Based on Helmholtz

theorem, the Hamilton energy function for dynamical

systems similar to Eq. (11) can be obtained theoret-

ically. From Eq. (3), the continuous energy function is

dependent on some intrinsic parameters and all the

variables in the memristive system, and any changes in

the firing patterns will induce fluctuations in the

energy levels. For discrete systems, energy function

becomes discrete as well. Indeed, appropriate scale

parameter with time can be applied to convert discrete

systems into equivalent continuous system for obtain-

ing energy function.

xnþ1 ¼ Fðxn; yn; znÞ ;

ynþ1 ¼ Gðxn; yn; znÞ ;

znþ1 ¼ Wðxn; yn; znÞ ;

8>><
>>:

)

1

e
½xnþ1 � xn� ¼

1

e
½Fðxn; yn; znÞ � xn� ;

1

e
½ynþ1 � yn� ¼

1

e
½Gðxn; yn; znÞ � yn� ;

1

e
½znþ1 � zn� ¼

1

e
½Wðxn; yn; znÞ � zn� ;

8>>>>>><
>>>>>>:

)

dx

ds
¼ 1

e
½Fðx; y; zÞ � x� ;

dy

ds
¼ 1

e
½Gðx; y; zÞ � y� ;

dz

ds
¼ 1

e
½Wðx; y; zÞ � z� ;

8>>>>>>><
>>>>>>>:

ð13Þ

According to the criterion in Eq. (8), the Hamilton

energy for the discrete system in Eq. (13) can be

expressed in generic form

H ¼ Hðe; x; y; zÞ ;
Hn ¼ Hðxn; yn; znÞ ;

(
ð14Þ

Fig. 2 Bifurcation of ISI (interspike interval) from membrane potential, xmax = x(max) for maximal value of membrane potential, and

average Hamilton energy\H[with changing frequency x in Eq. (6)
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For a memristive map developed from Hénon map,

xnþ1 ¼ 1þ byn � ax2n � ðaþ 3bu2
nÞxn;

ynþ1 ¼ xn;
unþ1 ¼ un þ cxn;

8<
: ð15Þ

By introducing appropriate scale parameter, it

obtains equivalent memristive oscillator as follows

dx

ds
¼ 1

e
1þ by� ax2 � ðaþ 1þ 3bu2Þx
� �

;

dy

ds
¼ 1

e
ðx� yÞ;

du
ds

¼ c

e
x;

8>>>>><
>>>>>:

ð16Þ

From dynamical viewpoint, appropriate setting for

the scale parameter in Eq. (16) will reproduce similar

dynamical characteristic as in Eq. (15) under setting

the same parameters. In practical way, appropriate

Fig. 3 Different attractors for the memristive neuron/map in

Eqs. (6) and (9) under suitable scale parameter e, and the average
energy\Hn[ and xn(max) in memristive discrete neuron via

scale parameter e. For a burstingx = 0.035, e = 0.104; b spiking
x = 0.53, e = 0.29; c periodic x = 1.0, e = 0.0013; d chaotic

x = 2.9, e = 0.5

123

21908 Y. Guo et al.



electric components can be combined to reproduce

similar signals in the analog circuit by applying

suitable physical parameters for these potential elec-

tric components. Based on the Helmholtz theorem, the

energy function for Eq. (16) can be defined and

obtained in theoretical way. It can be expressed in the

vector form containing two kinds of physical fields as

follows

_x

_y

_u

0
BB@

1
CCA ¼Fc þ Fd ¼

� by

e
� bc

2e
ðaþ 3bu2Þx

x

e
� 1

e
bbu3

cx

e
þ buy

ex
þ bc

2e
ðauþ bu3Þ

0
BBBBBBB@

1
CCCCCCCA

þ

1

e
½1þ 2by � ax2 � ðaþ 1þ 3bu2Þxþ bc

2
ðaþ 3bu2Þx�

� y

e
þ 1

e
bbu3

� buy
ex

� bc

2e
ðauþ bu3Þ

0
BBBBBBB@

1
CCCCCCCA

¼

0 � b � bc

b 0 � bu
x

bc
bu
x

0

0
BBBBB@

1
CCCCCA

x

eb
þ 1

2e
ðau þ bu3Þ

y

e
x

2e
ðaþ 3bu2Þ

0
BBBBBB@

1
CCCCCCA

þ

A11 0 0

0 A22 0

0 0 A33

0
BB@

1
CCA

x

eb
þ 1

2e
ðauþ bu3Þ

y

e
x

2e
ðaþ 3bu2Þ

0
BBBBBB@

1
CCCCCCA

;

ð17Þ

The coefficient for the matrix in Eq. (17) is defined

by

A11 ¼
1� ax2 � ðaþ 1þ 3bu2Þxþ bc

2
ðaþ 3bu2Þx

1
b xþ 1

2
ðauþ bu3Þ ;

A22 ¼
�yþ bu3

y
; A33 ¼

� 2buy
x � bcðauþ bu3Þ
ðaþ 3bu2Þx ;

8>>><
>>>:

ð18Þ

The solution for Hamilton energy function can be

suggested as follows

H ¼ 1

e
½ 1
2b

x2 þ 1

2
y2 þ 1

2
ðauþ bu3Þx�; ð19Þ

As a result, the discrete energy function for Eq. (15)

is updated by

Hn ¼ H1 þ H2 þ HM

¼ 1

2b
x2n þ

1

2
y2n þ

1

2
ðaun þ bu3

nÞxn; ð20Þ

Compared to Eq. (15), and additive scale parameter e
is introduced into Eq. (16), bifurcation analysis can be

applied to detect the region for ewhen other parameters

are fixed the same setting for the memristive map in

Eq. (15). Three terms includingH1,H2 andHMmark the

capacitive, inductive energy and memristive energy,

respectively. To cover the same phase space, the

parameter e is changed from 0.001 to a finite threshold,

and the maximal value (xmax) for the variable x is

selected to match the maximal value xmax(n) and then

the suitable value for parameter ewill be confirmed. By

taming the value for the scale parameter e, the dynamics

of thememristivemap inEq. (15)will be reproduced by

memristive oscillator in Eq. (16) completely by show-

ing the same attractor, sampled time series, maximal

Lyapunov exponent, size of phase portrait in the phase

space. In simple way, both the continuous and discrete

systems have the same maximal value for the first

variables, and it can be confirmed via bifurcation

analysis with changing the parameter e carefully. As a
result, the energy function in Eq. (19) with exact

parameter e will address the energy property for the

memristive map in Eq. (15) well.

In fact, there are three terms for energy sources kept in

certain channels or components, and theoscillatory state is

dependenton theenergy shuntingbetween these channels.

Any changes of parameters in Eq. (15) will modify the

oscillatory mode and the energy level in Eq. (20) will be

adjusted synchronously. As a result, energy ration

between the three terms will be adjusted when oscillation

is changed. The energy ratio is defined in

p1 ¼
H1

Hn
¼

1

2b
x2n

1

2b
x2n þ

1

2
y2n þ

1

2
ðaun þ bu3

nÞxn
;

p2 ¼
H2

Hn
¼

1

2
y2n

1

2b
x2n þ

1

2
y2n þ

1

2
ðaun þ bu3

nÞxn
;

p3 ¼
HM

Hn
¼

1

2
ðaun þ bu3

nÞxn
1

2b
x2n þ

1

2
y2n þ

1

2
ðaun þ bu3

nÞxn
;

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð21Þ

In fact, H1 and H2 can present capacitive and

inductive energy, and the ratioH1:H2 is also effective to

predict mode transition in the oscillatory states. Similar

energy proportion P1=H1/H, P2 = (H2?HM)//H can be
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defined to estimate the regulation on dynamics from

capacitive and inductive energy, respectively. From the

memristive map in Eq. (15) and memristive oscillator

in Eq. (16), parameters can be adjusted to trigger

periodic or chaotic behaviors. The involvement of scale

parameter into energy function in Eq. (19) can increase

the energy level directly during the conversion from

memristive map to nonlinear oscillator. In Fig. 4,

parameters are selected to develop chaotic attractors in

the memristive map, and the same parameters and

suitable scale parameter are endowed to mimic the

oscillatory characteristic in the memristive map. The

scale parameter is also adjusted to track the evolution

of the average energy and maximal value for the

variable x in the memristive oscillator in Eq. (16) as

well.

Two chaotic rings are formed in the phase space for

the memristive map, while chaotic attractors are

induced in the memristive oscillator in Eq. (16) by

taming the scale parameter e=0.0073. The maximal

value for the memristive map and memristive oscil-

lator has similar oscillation, while their average

energy has distinct diversity because of the involve-

ment of scale parameter. Indeed, the scale parameter is

adjusted carefully but the maximal values still show

some difference even they can present similar oscil-

latory characteristic with time. It indicates that the

memristive oscillator has no bridge to potential

equivalent nonlinear circuits.

On the other hand, the same parameters setting for

memristive map in Eq. (15) and memristive oscillator

in Eq. (16) can be applied, the scale parameter e can be
adjusted to keep them in same energy level as H=Hn

synchronously even they can present different attrac-

tors and firing patterns. In fact, the weight for each

energy term is crucial for selecting the firing patterns

and mode, and the introduction of scale parameter e
seldom changes the energy proportion among the

capacitive, inductive and memristive energy terms. In

this way, most of the maps can be updated with

equivalent oscillators, which the corresponding

Hamilton energy functions are obtained by using

Helmholtz theorem, the suitable energy function for

the maps can be obtained by removing the scale

parameters for the Hamilton energy function for the

nonlinear oscillators. In Fig. 5, the scale parameter is

adjusted to keep the memristive map and memristive

oscillator with the same energy level by changing the

scale parameter carefully and parameters for the two

memristive systems are different.

When the memristive map and memristive oscilla-

tor are endowed with different parameters setting,

appropriate selection of scale parameter can ensure

two memristive systems keep the same energy level

and same oscillatory state. In fact, the Hamilton

Fig. 4 a Attractor in memristive map in Eq. (15); b average

energy\H[ and xmax versus with scale parameter e; c chaotic
attractor in Eq. (16) at e = 0.0073. Equations (15) and (16)

select the same parameters as b = 1.0, a = 0.05, a = 0, b = 0,

c = 0.1; initials (x, y, u) = (xn, yn, un) = (0.02, 0.01, 0.01)
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energy function is a kind of Lyapunov function and

restricts the cooperation between different variables of

the system. For physical oscillators converted from

nonlinear circuits, the sole Hamilton energy is derived

from the field energy including inductive, capacitive

and memristive components. The weight for each term

of the energy function is decided by the normalized

parameters after scale transformation for all physical

variables and parameters. As a result, these weights

are more important in the energy function than the

scale parameter. From a nonlinear oscillator to a map,

continuous energy function is replaced by discrete

energy function with suitable scale parameter. From a

map to a continuous oscillator, the weight for each

energy term can be confirmed and energy function for

the map has no scale parameter, but the discrete energy

function is helpful to predict the mode transition

accompanying with shift in energy level.

From physical viewpoint, most of the nonlinear

oscillators in mathematical form can be derived from

equivalent circuit equations and mechanical systems.

The activation and exchange of energy flow are

dominated by the physical properties of physical

elements, which also govern the nonlinear terms in the

dynamical equations and mathematical models. For

most of the nonlinear circuits, the field energy can be

obtained by summing the energy in each electric

component, and they can be converted into dimen-

sionless energy function after scale transformation.

For generic nonlinear oscillators, the application of

Helmholtz theorem provides help to get the Hamilton

energy function, which is considered as a kind of

Lyapunov function, and specific terms for energy

terms means special electric components should be

used in this circuit. Memristor is a functional electric

competent, and its memristive properties throw lights

for activating self-adaptive property of nonlinear

terms in the physical systems and network, and energy

flow can be controlled in adaptive way in presence of

external field. As a result, the involvement of mem-

ristive term into dynamical systems can explain the

self-controllability and adaption greatly [41–43].

Energy characteristic of nervous and neural circuits

is very important [44], and physical energy in neural

Fig. 5 Attractors in Eqs. (15) and (16) with the same energy

level, average energy\H[ and xmax versus under different

value for e. For a chaotic map, b = 0.002, e = 0.0204,

b’ = 0.154; b periodic map, b = 0.08, e = 0.02109,

b’ = 0.154. Setting b = 0.1, a = 0.62, a = 0.1, b = 0.01,

c = 0.2 in Eq. (15); b’ = 0.102, a’ = 1.725, a’ = 2.05,

b’ = 0.154, c’ = 0.0009 in Eq. (16); same initials (x, y,
u) = (xn, yn, un) = (0.02, 0.01, 0.01). In the figures, xmax-
= x(max), xn(max) denote the maximal value in the sampled

time series for two memristive systems
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circuits can be obtained in theoretical way, which

Helmholtz theorem can confirm its correctness when

the physical energy is converted into dimensionless

Hamilton energy. In experimental way, the transient

performances of the circuit should be considered [45]

in the realization of analog circuits, and so the

reliability of the neural circuits can be verified and

evaluated.

For discrete systems and maps, scale parameter is

introduced to build an equivalent nonlinear oscillator

in the form of ODEs (Ordinary differential equations)

and its energy function also contains the same scale

parameter. Based on the Helmholtz theorem, energy

function for the nonlinear oscillator is obtained and

then it is discretized to denote the energy function

without scale parameter for the map. In the phase

space, the nonlinear oscillator will cover the same

phase size and maximal value as the map when the

scale parameter is adjusted carefully. For some

specific maps defined in mathematical form, there

are some differences in the maximal value for

variables in the map and nonlinear oscillator. Refer-

ring to the energy characteristic of the known electric

components, the generic form of the Hamilton energy

function can be suggested, and scale parameter is

introduced to confirm its exact value when the

nonlinear oscillator model matches with the map in

phase space completely. The scheme can be further

used to explore the formation of defects and hetero-

geneity [46, 47] in discrete networks when energy

function for each node is estimated exactly.

For obtaining exact energy function for generic

maps, equivalent nonlinear oscillators can be designed

by defining appropriate transformation for the param-

eters and discrete variables as follows.

xnþ1 ¼ f ðxn; kÞ )
dy

ds
¼ f ðy; pÞ; y ¼ fy1; y2; � � � ; yn; � � �g;

k ¼ kðp; hÞ; xn ¼ xnðyn; h; pÞ; or
p ¼ pðk; hÞ; yn ¼ ynðxn; h; kÞ; h is time step

8><
>:

ð22Þ

where the map and continuous oscillator has the

same local kinetics but the parameters and variables

have certain relevance, that is, the parameter p differs

from k for presenting the same dyanmics. For

example, the Logistic map can be described by a

Logistic oscillator by using the transformation in

Eq. (22) [48].

4 Conclusions

In this work, field energy for a memristor-coupled

circuit is defined and its equivalent dimensionless

Hamilton energy for the memristive oscillator is

obtained by applying scale transformation. The

approach of energy function is also confirmed by

using Helmholtz theorem. The memristive oscillator is

reduced into discrete map and its equivalent energy

form is obtained by setting suitable scale parameter.

Keeping the same dynamical characteristics, memris-

tive map shows lower energy level than the memris-

tive oscillator. In addition, a memristive map

developed from Hénon map added with memristive

term is integrated into equivalent continuous oscillator

by introducing suitable scale parameter, and its energy

function is approached in theoretical way. Further-

more, discrete energy function is confirmed to

describe the energy characteristic of the memristive

Hénon map. This scheme can be further used to

estimate the energy function for other discrete systems

even discrete memristor is coupled. That is, maps are

updated with equivalent nonlinear oscillators for

getting theoretical energy function with scale param-

eter, and the generic energy function for the map can

be obtained by removing the scale parameter for the

energy function of its equivalent nonlinear oscillator.
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Appendix

A11 ¼
i0s þ ða0 þ b0z2Þðx� e1Þ � ðc0 þ d0w2Þðx� e2Þ þ x� 1

2
x2 � 1

3
x3 þ 1

2
ðx� e1Þða0 þ 3b0z2Þ þ 1

2
c0ðx� e2Þ

xþ 1

2
ða0zþ b0z3Þ þ 1

2
w

A22 ¼
a2½e� ny� 1

2
ða0zþ b0z3Þ � 1

2
w� 3b0

2a0
z2ðx� e1Þ �

1

2
ðe2 � e1Þ�

y

A33 ¼
�2e1 � ða0zþ b0z3Þ � wþ 2

y

a0

ðx� e1Þða0 þ 3b0z2Þ

A44 ¼
�2c0e2 þ 2d0w2ðx� e2Þ � c0ða0zþ b0z3Þ � c0w� 2y

ðx� e2Þ

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ðA1Þ

_x

_y

_z

_w

0
BBBBB@

1
CCCCCA

¼Fc þ Fd ¼

�y� 1

2
ðx� e1Þða0 þ 3b0z2Þ � 1

2
c0ðx� e2Þ

axþ 1

2
aða0zþ b0z3Þ þ 1

2
awþ 3ab0

2a0
z2ðx� e1Þ þ

1

2
aðe2 � e1Þ

xþ 1

2
ða0zþ b0z3Þ þ 1

2
w� y

a0

c0xþ 1

2
c0a0zþ b0z3Þ þ 1

2
c0wþ y

0
BBBBBBBBBB@

1
CCCCCCCCCCA

þ

i0s þ ða0 þ b0z2Þðx� e1Þ � ðc0 þ d0w2Þðx� e2Þ þ x� 1

2
x2 � 1

3
x3 þ 1

2
ðx� e1Þða0 þ 3b0z2Þ þ 1

2
c0ðx� e2Þ

ae� any� 1

2
aða0zþ b0z3Þ � 1

2
aw� 3ab0

2a0
z2ðx� e1Þ �

1

2
aðe2 � e1Þ

�e1 �
1

2
ða0zþ b0z3Þ � 1

2
wþ y

a0

�c0e2 þ d0w2ðx� e2Þ �
1

2
c0ða0zþ b0z3Þ � 1

2
c0w� y

0
BBBBBBBBBB@

1
CCCCCCCCCCA
;

¼

0 � a � 1 � c0

a 0
a
a0

� a

1 � a
a0

0 0

c0 a 0 0

0
BBBBBBBB@

1
CCCCCCCCA

xþ 1

2
ða0zþ b0z3Þ þ 1

2
w

y

a
1

2
ðx� e1Þða0 þ 3b0z2Þ

1

2
ðx� e2Þ

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

þ

A11 0 0 0

0 A22 0 0
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0
BBBBB@

1
CCCCCA

xþ 1

2
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2
w

y

a
1

2
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1

2
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0
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