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Abstract In this study, we apply a new “Inverse
(G ′/G)-Expansion Method” for extracting novel soli-
ton solutions in the context of the (2+ 1)-dimensional
generalizedBenjamin–Ono (gBO) equation. Using this
newly approach, we successfully reveal a variety of
new exact soliton solutions for the gBO equation.
These soliton solutions have important applications in
diversefields like optical fiber communications, plasma
physics, and condensed matter physics. To provide a
clear visual grasp and illustrate the characteristics of
these soliton solutions, we utilize 3-dimensional plots
and contour plots. These visualizations allowus to thor-
oughly observe and analyze different structures, such
as 1-peakon, 2-peakons, 3-peakons, multi-peakons, 1-
lump, 2-lumps, 3-lumps, multi-lumps, 1-soliton, 2-
solitons, 3-solitons, periodicmulti-solitons and solitary
waves. Peakons maintain sharp peaks during propa-
gation, lumps are compact and resist spreading, and
solitons travel long distances without changing shape.
Along with that, these solitary waves reveal complex
wave dynamics in diverse systems, providing deep
insights into nonlinear phenomena. These findings sig-
nificantly advance our comprehension of the (2 + 1)-
dimensional generalizedBenjamin–Ono equation. Fur-
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thermore, they showcase the effectiveness of the inno-
vative Inverse (G ′/G)-expansion method in extracting
exact soliton solutions. To enhance the robustness of
our findings, we have incorporated a visual representa-
tion depicting solitarywaves in the ocean. Furthermore,
multi-peakons, lumps, and other soliton solutions are
present in a variety of physical engineering and nonlin-
ear science disciplines, including soliton theory, ocean
engineering, optical fibers, nonlinear dynamics, and
others.

Keywords Nonlinear evolution equation · (G’/G)-
Expansion method · Analytical solutions · Solitary
waves · Physical applications

1 Introduction

The study of nonlinear partial differential equations
(NLPDEs) is pivotal to explore complex nonlinear phe-
nomena across several physical disciplines such as
condensed matter physics, plasma physics and solid
state physics etc. Over the years, significant advance-
ments have been achieved in the study of these equa-
tions. In the domain of literature, various computational
methods have been developed to explore the charac-
teristics of solutions. Some of the well-known meth-
ods include the extended direct algebraic method [1],(
G ′
G , 1

G

)
-expansion technique [2], Bilinearmethod [3],

the reductive perturbation technique [4], sub-ordinary
differential equations method [5], the exp-function
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method [6], Painlevé test [7,8], Discrete singular con-
volution differential quadrature algorithm [9], Bilinear
neural network method [10–15] the generalized expo-
nential rational function method [16,17], the Hirota
bilinear method [18–20], the generalized Riccati equa-
tion mapping method [21]. Remarkably, the Darboux
transformations methods [22], Lie symmetry method
[23,24] and the Weierstrass elliptic function method
[25] have been widely utilized. These techniques are
utilized to explore a wide range of solutions, including
bright solitons, dark solitons, peaks, and more, which
appear in nonlinear optics, are special waves that keeps
their shape as they move because they carefully bal-
ance dispersion and nonlinearity [26,27]. Bright soli-
tons, known for their intense peaks, are created when
the material self-focuses due to its nonlinearity. While
dark solitons, which have areas of reduced intensity,
form because the material self-spreads, countering the
tendency to spread out [28].

The (2+1)-dimensional generalizedBenjamin–Ono
equation [29] plays a crucial role in the study of internal
waves within deep stratified fluids. It is represented as:

uxxxx+c1utt+c2uxt + c3uxy + c4(u
2)xx = 0, (1)

where c1, c2, c3 and c4 signifying arbitrary constants.
The gBO equation finds wide-ranging applications in
various scientific disciplines. In optical fiber communi-
cations, it helps in modeling and analyzing wave prop-
agation phenomena, aiding the design and optimization
of communication systems. In plasma physics, the gBO
equation contributes to understanding wave dynamics
in plasma environments, crucial for fusion research and
space physics. Moreover, in condensed matter physics,
this equation has utility in describing certain types of
wave behavior in materials, aiding the comprehension
of complex physical processes. The versatility of the
gBO equation makes it an indispensable tool for tack-
ling challenges in diverse fields of study.

Furthermore, by taking particular value of the
involved coefficients of the gBO equation, we have
some other important NLPDEs.

1. When c1 = 1
β
, c2 = 0, c3 = γ c1 and c4 = αc1,

along with the equation of line y = x , then Eq. (1)
transformed into the Boussinesq equation [30]:

uxxxx + 1

β
utt + γ

β
uxx + α

β
(u2)xx = 0. (2)

2. When c1 = 1
β
, c2 = 0, c3 = 0 and c4 = α

β
,

then Eq. (1) converted into the (1+ 1)-dimensional

Benjamin–Ono equation [31]:

uxxxx + 1

β
utt + α

β
(u2)xx = 0. (3)

In recent time, many researchers have tackled the
gBO equation, employing a variety of techniques, as
follows: Roudenko et al. [32] conducted a comprehen-
sive analysis of the generalized Benjamin–Ono equa-
tion within the domain of real number line. They
applied Petviashvili’s iteration method to numeri-
cally illustrate the solutions. Moreover, their work
involved an exploration of how these solutions behaved
under different decay rates, with a specific emphasis
on the L2−supercritical gBO equation. Simtrakankul
et al. [33] applied the improved generalized Tanh–
Coth method to study the (2 + 1)-dimensional exten-
sion of the Benjamin–Ono equation with time-varying
coefficients. Through this approach, they successfully
derived solitary wave solutions, encompassing both
single and combined solitons.Within their research,Ma
et al. [29] tackled the (2 + 1)-dimensional Benjamin–
Ono equation, utilizing a combination of methods such
as the bilinear method, test function, improved Tanh–
Coth method and improved Tan–Cot method. Their
investigation extended to the exploration of lump solu-
tions, breather solitons, and various soliton solutions.
Inspired by the above literature review,we have explore

the gBO equation via the “Inverse
(
G ′
G

)
-expansion

method.”
This article is structured into multiple sections, each

dedicated to providing a comprehensive exploration
of the application of the Inverse (G ′/G)-expansion
method to the gBO equation and its consequences.

• In Sect. 1, we investigated the historical founda-
tion of the gBO equation, offering valuable context
to underscore its importance within the domain of
nonlinear partial differential equations.

• Within Sect. 2, we provide a fundamental steps of
the “Inverse (G ′/G)-expansion method,” illustrat-
ing its step by step procedure for attaining exact
solutions to the NLPDE.

• Moving to Sect. 3, we explain how we used the
Inverse (G ′/G)-expansion method to address the
solutions of the gBO equation. This method helps
us to find new and interesting solutions to the main
problem.We then analyzed these solutions in detail
by presenting them graphically, which allowed us
to clearly see their behavior in waves.
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• In Sect. 4, wemake a connection between ourmath-
ematical findings and real-world situations. This
makes our research more useful in real life because
it helps us understand how it connects to things we
already know, it become more valuable and mean-
ingful.

• Furthermore, in Sect. 5, we illustrate the graphi-
cal behavior of the attained solutions under various
parameter choices in the acceptable range space.
This visual analysis provide deeper into the com-
plexities of nonlinear wave phenomena.

• In Sect. 6, we summarize our research study by giv-
ing a clear conclusion. We highlight the important
things made using the Inverse (G ′/G)-expansion
method on the gBO equation.

2 Inverse
(
G′
G

)
-expansion method

In this section, we present an overview of the Inverse(
G ′
G

)
-expansion method, a powerful method to extract

the exact solutions to nonlinear partial differential
equations (NLPDEs) spanning multiple disciplines
such as engineering, physics, and mathematics.

• The NLPDE can be expressed as:

P(u, ux , uy, ut , uxx , uyy, utt , uxt , . . . ) = 0, (4)

where u = u(x, y, t) represents the wave ampli-
tude and P denote a polynomial function that
involves a range of partial derivatives of u concern-
ing its independent variables x , y and t .

• Consider a solution that takes a form of traveling
wave:

u(x, y, t) = Q(η), (5)

where η = αx + βy + γ t . The constants α, β and
γ are arbitrary.

• Upon inserting the assumed solution into the
NLPDE, it simplify into an ordinary differential
equation (ODE). The ODE can be expressed as:

N (Q(η), Q′(η), Q′′(η), . . . ) = 0, (6)

where Q′ = dQ
dη

, represents the first derivative,

Q′′ = d2Q
dη2

, represents the second derivative and so
on.

• In order to tackle the ODE (6), we introduce a trial
solution Q(η) that takes the form of a series expan-

sion that depend on the ratio
(
G ′(η)
G(η)

)
in the follow-

ing manner:

Q(η) = R0 +
N∑
i=1

Ri

(
G ′(η)

G(η)

)i

+
N∑
i=1

Si
(
G ′(η)

G(η)

)−i

. (7)

Here, Ri and Si (0 ≤ i ≤ N ) denotes undeter-
mined constants thatwill be established later.More-
over, the function G(η) is a solution to the Riccati
equation:

G ′(η) = aG(η)2 + bG(η) + c, (8)

where the constants a, b, and c are arbitrary.
• On putting the trial solution Q(η) into the ODE (6)
and equating the highest-order derivative termwith
the nonlinear term, we establish a system of alge-
braic equations governing the values of the arbitrary
constantsRi , Si , a, b, and c. Solving this system of
algebraic equations allow us to determine the spe-
cific values for these arbitrary constants, and as a
result, we obtain the exact solution to the original
NLPDE.

• Following these outlined steps, the Inverse
(
G ′
G

)
-

expansion method represents a systematic and
highly efficient approach for deducing exact solu-
tions for a diverse array of NLPDEs. This method
proves to be a valuable tool for researchers work-
ing in various scientific and engineering domain
(Fig. 1).

3 Application of the inverse
(
G′
G

)
-expansion

method

In this section, our motive is to apply the Inverse (G
′

G )-
expansion method to address the exact solutions of the
gBO equation (1). Initially, we start with the transfor-
mation expressed as:

u(x, y, t) = Q(η), with η = αx + βy + γ t. (9)

Making use of this transformation, the gBO Eq. (1)
converted into the following equation

α4Q(4)(η) + Q′′(η)
(
αβc3 + αc2γ + c1γ

2
)

+2α2c4
(
Q(η)Q′′(η) + Q′(η)2

)
= 0. (10)
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Fig. 1 Diagram summarizing the key findings and concepts in
this article

Next, to determine the termination point of the series
form solution (7), we are balancing the terms Q(4)(η)

and Q(η)Q′′(η) in Eq. (10) by the homogeneous bal-
ancing principle. By this procedure, we get that N = 2,
which means that our trial solution can be written as

Q(η) = R0 + R1

(
G ′(η)

G(η)

)
+ R2

(
G ′(η)

G(η)

)2

+S1

(
G ′(η)

G(η)

)−1

+ S2

(
G ′(η)

G(η)

)−2

. (11)

Utilizing the expression (11) into Eq. (10), and subse-
quently set the factor associated with G(η) to zero, we
obtain a set of algebraic equations. Solving this sys-
tem provides us some set of constraints, which play
a crucial role in determining the specific form of the
exact solutions to the gBO equation. These constraints
ensure the compatibility of the trial solution (11) and
the transformation (9) with the gBO equation, resulting
in valid solutions for the given problem.

3.1 Analytical solutions for the gBO equation

First set of solutions

R1 = −bR2;S1 = 0;S2 = 0;
c3 = −α4b2R2 − αγ c2R2 − γ 2c1R2 + 12α4R0

αβR2
;

c4 = −6α2

R2
; c = 0.

Case (i): investigating solutions when� = b2−4ac >

0 provided ab �= 0

The solutions for the ODE described in Eq. (10) are
acquired as follows:

Q(η) = ebη(
ebη + 1

)2
(
2R0(cosh(bη) + 1) − b2R2

)
, (12)

Q(η) =
ebη

(
2R0

(√−b2 − b sinh(bη)
)

+ (−b2
)3/2 R2

)

2
√−b2ebη + b

(−e2bη
) + b

,

(13)

Q(η) = M + 1

4
b2R2csch

2
(
bη

2

)
. (14)

Under the transformation (9),we determine the solu-
tions of the gBO equation in the following manner:

u(x, y, t)=R0−1

4
b2R2sech

2
(
1

2
b(αx+βy+γ t)

)
,

(15)

u(x, y, t) = R0 +
(−b2

)3/2 R2

2
(√−b2 − b sinh(b(αx + βy + γ t))

) ,

(16)

u(x, y, t)=R0+1

4
b2R2csch

2
(
1

2
b(αx+βy+γ t)

)
.

(17)

Case (ii): investigating solutionswhen� = b2−4ac <

0 provided ab �= 0

The solutions for the ODE described in Eq. (10) are
acquired as follows:
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Q(η) = exp(bη)

(exp(bη) − 1)2

(
b2R2 + 2R0(cosh(bη) − 1)

)
,

(18)

Q(η) = exp(bη)

(exp(bη) + 1)2

(
2R0(cosh(bη) + 1) − b2R2

)
.

(19)

Consequently, the solutions for the gBO equation
subject to the transformation (9) are as follows:

u(x, y, t) = exp(b(αx + βy + γ t))

(exp(b(αx + βy + γ t)) − 1)2

×
(
b2R2+2R0(cosh(b(αx+βy+γ t))−1)

)
,

(20)

u(x, y, t) = exp(b(αx + βy + γ t))

(exp(b(αx + βy + γ t)) + 1)2

×
(
2R0(cosh(b(αx + βy+γ t))+1)−b2R2

)
.

(21)

Second set of solutions

R1 = 0;R2 = 0;S2 = −S1
(
b2 − 4ac

)

2b
;

c3 = 16aα4c − 4α4b2 − αγ c2 − γ 2c1
αβ

; c4 = 0.

(22)
Case (i): investigating solutions when� = b2−4ac >

0 provided ab �= 0

The solutions for the ODE described in Eq. (10) are
acquired as follows:

Q(η) = R0 −
2S1 cosh4

(
1
2η

√
�

) (√
� tanh

(
1
2η

√
�

)
+ b

)2

b (�)
+

2S1 cosh2
(
1
2η

√
�

) (√
� tanh

(
1
2η

√
�

)
+ b

)

�
, (23)

Q(η) = R0 −
2S1 sinh4

(
1
2η

√
�

) (√
� coth

(
1
2η

√
�

)
+ b

)2

b (�)
−

2S1 sinh2
(
1
2η

√
�

) (√
� coth

(
1
2η

√
�

)
+ b

)

�
, (24)

Q(η) = R0 − S1 (�)
(√−�

(
tan

(
η
√−�

) − sec
(
η
√−�

)) − b
)2

2b (−�)
(√−� sec2

(
η
√−�

) − √−� tan
(
η
√−�

)
sec

(
η
√−�

))2

+ S1
(√−�

(
tan

(
η
√−�

) − sec
(
η
√−�

)) − b
)

√−�
(√−� sec2

(
η
√−�

) − √−� tan
(
η
√−�

)
sec

(
η
√−�

)) . (25)

Under the transformation (9),we determine the solu-
tions of the gBO equation in the following manner:

u(x, y, t) = R0 − acS1

b3 − 4abc

−
bS1

√
� sinh

(
2
√

�(αx + βy + γ t)
)

2
(
b3 − 4abc

)

−
b2S1 cosh

(
2
√

�(αx + βy + γ t)
)

2
(
b3 − 4abc

)

+
acS1 cosh

(
2
√

�(αx + βy + γ t)
)

b3 − 4abc

+ b2S1

2
(
b3 − 4abc

) , (26)

u(x, y, t) = R0 −
2S1 sinh4

(
1
2

√
�(αx + βy + γ t)

) (√
� coth

(
1
2

√
�(αx + βy + γ t)

)
+ b

)2

b (�)

−
2S1 sinh2

(
1
2

√
�(αx + βy + γ t)

) (√
� coth

(
1
2

√
�(αx + βy + γ t)

)
+ b

)

�
, (27)

u(x, y, t) = R0 + S1
(√−�

(
tan

(√−�(αx + βy + γ t)
) − sec

(√−�(αx + βy + γ t)
)) − b

)
√−�

(√−� sec2
(√−�(αx + βy + γ t)

) − √−� tan
(√−�(αx + βy + γ t)

)
sec

(√−�(αx + βy + γ t)
))

(28)

− S1 (�)
(√−�

(
tan

(√−�(αx + βy + γ t)
) − sec

(√−�(αx + βy + γ t)
)) − b

)2

2b (−�)
(√−� sec2

(√−�(αx + βy + γ t)
) − √−� tan

(√−�(αx + βy + γ t)
)
sec

(√−�(αx + βy + γ t)
))2 . (29)
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Case (ii): investigating solutionswhen� = b2−4ac <

0 provided ab �= 0

The solutions for the ODE described in Eq. (10) are
acquired as follows:

Q(η) = R0 − S1 (�)
(√−�

(
tan

( 1
4η

√−�
) − cot

( 1
4η

√−�
)) − 2b

)2

2b (−�)
( 1
4

√−� csc2
( 1
4η

√−�
) + 1

4

√−� sec2
( 1
4η

√−�
))2

+ S1
(√−�

(
tan

( 1
4η

√−�
) − cot

( 1
4η

√−�
)) − 2b

)
√−�

( 1
4

√−� csc2
( 1
4η

√−�
) + 1

4

√−� sec2
( 1
4η

√−�
)) , (30)

Q(η) = R0−2S1 (�) cos4
( 1
2η

√−�
) (√−� tan

( 1
2η

√−�
)−b

)2
b (−�)2

+ 2S1 cos2
( 1
2η

√−�
) (√−� tan

( 1
2η

√−�
) − b

)

−�
.

(31)

Consequently, the solutions for the gBO equation sub-
ject to the transformation (9) are as follows:

u(x, y, t) = R0 −
S1 (�)

(√−�
(
tan

(
1
4
√−�(αx + βy + γ t)

)
− cot

(
1
4
√−�(αx + βy + γ t)

))
− 2b

)2

2b (−�)
(
1
4
√−� csc2

(
1
4
√−�(αx + βy + γ t)

)
+ 1

4
√−� sec2

(
1
4
√−�(αx + βy + γ t)

))2

+
S1

(√−�
(
tan

(
1
4
√−�(αx + βy + γ t)

)
− cot

(
1
4
√−�(αx + βy + γ t)

))
− 2b

)

√−�
(
1
4
√−� csc2

(
1
4
√−�(αx + βy + γ t)

)
+ 1

4
√−� sec2

(
1
4
√−�(αx + βy + γ t)

)) , (32)

u(x, y, t) = R0 −
2S1 (�) cos4

(
1
2
√−�(αx + βy + γ t)

) (√−� tan
(
1
2
√−�(αx + βy + γ t)

)
− b

)2

b (−�)2

+
2S1 cos2

(
1
2
√−�(αx + βy + γ t)

) (√−� tan
(
1
2
√−�(αx + βy + γ t)

)
− b

)

−�
. (33)

Third set of solutions

R0 �= 0;R1 �= 0;R2 �= 0;S1 �= 0;S2 �= 0;α = 0;
β �= 0; γ �= 0; c1 = 0; c2 �= 0; c3 �= 0; c4 �= 0.

(34)

Case (i): investigating solutions when� = b2−4ac >

0 and ab �= 0

The solutions for the ODE described in Eq. (10) are
acquired as follows:

Q(η) =
R2 (�)2 sech4

(
1
2η

√
�

)

4
(√

� tanh
(
1
2η

√
�

)
+ b

)2

+
4S2 cosh4

(
1
2η

√
�

) (√
� tanh

(
1
2η

√
�

)
+ b

)2

(�)2

+
2S1 cosh2

(
1
2η

√
�

) (√
� tanh

(
1
2η

√
�

)
+ b

)

�

+
R1 (�) sech2

(
1
2η

√
�

)

2
(√

� tanh
(
1
2η

√
�

)
+ b

) + R0, (35)

Q(η) =
R2 (�)2 csch4

(
1
2η

√
�

)

4
(√

� coth
(
1
2η

√
�

)
+ b

)2

+
4S2 sinh4

(
1
2η

√
�

) (√
� coth

(
1
2η

√
�

)
+ b

)2

(�)2

−
2S1 sinh2

(
1
2η

√
�

) (√
� coth

(
1
2η

√
�

)
+ b

)

�

−
R1 (�) csch2

(
1
2η

√
�

)

2
(√

� coth
(
1
2η

√
�

)
+ b

) + R0, (36)
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Q(η) = R2 (−�)
(√−� sec2

(
η
√−�

) − √−� tan
(
η
√−�

)
sec

(
η
√−�

))2
(√−�

(
tan

(
η
√−�

) − sec
(
η
√−�

)) − b
)2

+R1
√−�

(√−� sec2
(
η
√−�

) − √−� tan
(
η
√−�

)
sec

(
η
√−�

))
√−�

(
tan

(
η
√−�

) − sec
(
η
√−�

)) − b

+ S2
(√−�

(
tan

(
η
√−�

) − sec
(
η
√−�

)) − b
)2

(−�)
(√−� sec2

(
η
√−�

) − √−� tan
(
η
√−�

)
sec

(
η
√−�

))2

+ S1
(√−�

(
tan

(
η
√−�

) − sec
(
η
√−�

)) − b
)

√−�
(√−� sec2

(
η
√−�

) − √−� tan
(
η
√−�

)
sec

(
η
√−�

)) + R0. (37)

Therefore, the solutions of the gBO equation under
the transformation (9) are given by

u(x, y, t) =
R2 (�)2 sech4

(
1
2

√
�(βy + γ t)

)

4
(√

� tanh
(
1
2

√
�(βy + γ t)

)
+ b

)2 +
R1 (�) sech2

(
1
2

√
�(βy + γ t)

)

2
(√

� tanh
(
1
2

√
�(βy + γ t)

)
+ b

)

+
4S2 cosh4

(
1
2

√
�(βy + γ t)

) (√
� tanh

(
1
2

√
�(βy + γ t)

)
+ b

)2

(�)2

+
2S1 cosh2

(
1
2

√
�(βy + γ t)

) (√
� tanh

(
1
2

√
�(βy + γ t)

)
+ b

)

�
+ R0, (38)

u(x, y, t) =
R2 (�)2 csch4

(
1
2

√
�(βy + γ t)

)

4
(√

� coth
(
1
2

√
�(βy + γ t)

)
+ b

)2 −
R1 (�) csch2

(
1
2

√
�(βy + γ t)

)

2
(√

� coth
(
1
2

√
�(βy + γ t)

)
+ b

)

+
4S2 sinh4

(
1
2

√
�(βy + γ t)

) (√
� coth

(
1
2

√
�(βy + γ t)

)
+ b

)2

(�)2

−
2S1 sinh2

(
1
2

√
�(βy + γ t)

) (√
� coth

(
1
2

√
�(βy + γ t)

)
+ b

)

�
+ R0, (39)

u(x, y, t) = R1
√−�

(√−� sec2
(√−�(βy + γ t)

) − √−� tan
(√−�(βy + γ t)

)
sec

(√−�(βy + γ t)
))

√−�
(
tan

(√−�(βy + γ t)
) − sec

(√−�(βy + γ t)
)) − b

+ R2 (−�)
(√−� sec2

(√−�(βy + γ t)
) − √−� tan

(√−�(βy + γ t)
)
sec

(√−�(βy + γ t)
))2

(√−�
(
tan

(√−�(βy + γ t)
) − sec

(√−�(βy + γ t)
)) − b

)2

+ S1
(√−�

(
tan

(√−�(βy + γ t)
) − sec

(√−�(βy + γ t)
)) − b

)
√−�

(√−� sec2
(√−�(βy + γ t)

) − √−� tan
(√−�(βy + γ t)

)
sec

(√−�(βy + γ t)
))

+ S2
(√−�

(
tan

(√−�(βy + γ t)
) − sec

(√−�(βy + γ t)
)) − b

)2

(−�)
(√−� sec2

(√−�(βy + γ t)
) − √−� tan

(√−�(βy + γ t)
)
sec

(√−�(βy + γ t)
))2 + R0.

(40)
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Case (ii): investigating solutionswhen� = b2−4ac <

0, provided ab �= 0

The solutions for the ODE described in Eq. (10) are
acquired as follows:

Q(η) = R2 (−�)
( 1
4

√−� csc2
( 1
4η

√−�
) + 1

4

√−� sec2
( 1
4η

√−�
))2

(√−�
(
tan

( 1
4η

√−�
) − cot

( 1
4η

√−�
)) − 2b

)2 + R1
√−�

( 1
4

√−� csc2
( 1
4η

√−�
) + 1

4

√−� sec2
( 1
4η

√−�
))

√−�
(
tan

( 1
4η

√−�
) − cot

( 1
4η

√−�
)) − 2b

+ S2
(√−�

(
tan

( 1
4η

√−�
) − cot

( 1
4η

√−�
)) − 2b

)2

(−�)
( 1
4

√−� csc2
( 1
4η

√−�
) + 1

4

√−� sec2
( 1
4η

√−�
))2 + S1

(√−�
(
tan

( 1
4η

√−�
) − cot

( 1
4η

√−�
)) − 2b

)
√−�

( 1
4

√−� csc2
( 1
4η

√−�
) + 1

4

√−� sec2
( 1
4η

√−�
)) + R0,

(41)

Q(η) = R2 (−�)2 sec4
( 1
2η

√−�
)

4
(√−� tan

( 1
2η

√−�
) − b

)2

+ R1 (−�) sec2
( 1
2η

√−�
)

2
(√−� tan

( 1
2η

√−�
) − b

)

+ 4S2 cos4
( 1
2η

√−�
) (√−� tan

( 1
2η

√−�
) − b

)2
(−�)2

+ 2S1 cos2
( 1
2η

√−�
) (√−� tan

( 1
2η

√−�
) − b

)

−�

+ R0. (42)

Consequently, the solutions for the gBO equation sub-
ject to the transformation (9) are as follows:

u(x, y, t) = R2 (−�)
( 1
4

√−� csc2
( 1
4

√−�(βy + γ t)
) + 1

4

√−� sec2
( 1
4

√−�(βy + γ t)
))2

(√−�
(
tan

( 1
4

√−�(βy + γ t)
) − cot

( 1
4

√−�(βy + γ t)
)) − 2b

)2

+ R1
√−�

( 1
4

√−� csc2
( 1
4

√−�(βy + γ t)
) + 1

4

√−� sec2
( 1
4

√−�(βy + γ t)
))

√−�
(
tan

( 1
4

√−�(βy + γ t)
) − cot

( 1
4

√−�(βy + γ t)
)) − 2b

+ S2
(√−�

(
tan

( 1
4

√−�(βy + γ t)
) − cot

( 1
4

√−�(βy + γ t)
)) − 2b

)2

(−�)
( 1
4

√−� csc2
( 1
4

√−�(βy + γ t)
) + 1

4

√−� sec2
( 1
4

√−�(βy + γ t)
))2

+ S1
(√−�

(
tan

( 1
4

√−�(βy + γ t)
) − cot

( 1
4

√−�(βy + γ t)
)) − 2b

)
√−�

( 1
4

√−� csc2
( 1
4

√−�(βy + γ t)
) + 1

4

√−� sec2
( 1
4

√−�(βy + γ t)
)) + R0, (43)

u(x, y, t) = R2 (−�)2 sec4
( 1
2

√−�(βy + γ t)
)

4
(√−� tan

( 1
2

√−�(βy + γ t)
) − b

)2 + R1 (−�) sec2
( 1
2

√−�(βy + γ t)
)

2
(√−� tan

( 1
2

√−�(βy + γ t)
) − b

)

+ 4S2 cos4
( 1
2

√−�(βy + γ t)
) (√−� tan

( 1
2

√−�(βy + γ t)
) − b

)2
(−�)2

+ 2S1 cos2
( 1
2

√−�(βy + γ t)
) (√−� tan

( 1
2

√−�(βy + γ t)
) − b

)

−�
+ R0. (44)

4 Bridging the gap: exploring the practical
applications of mathematical discoveries

In this section, our focus is to bridge the gap between
mathematical findings and their relevance to real-world

phenomena. Using both 3D and contour plots, we pro-
vide a visual insight into the absolute nature of the
solution (33). The visualizations vividly illustrate the
presence of solitary waves, a phenomenon with signif-
icant implications. We have included an image illus-
trating solitary waves in an oceanic context, directly
relating to a contour plot. This emphasizes the practical
applicability of our findings to real-world phenomena,
highlighting the clear connection between our mathe-
matical discoveries and observed occurrences.
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Fig. 2 Dynamic evolution of 1-peakon, 1-lump and 1-soliton for the solution (15) through 3D and contour plots

5 Graphical overview and interpretations

In this section, we analyze the derived solutions of the
gBO equation graphically. For the deeper understand-
ing of these solutions, we discuss the graphics by care-
ful selection of the involved parameters within a suit-
able range space. We examine the real part of the solu-
tion to gain insights into how the solutions change and
behave along the real axis, imaginary part to under-
stand the patterns and characteristics exhibited along
the imaginary axis, and the absolute value (magnitude)
to identify regions of high or low magnitude, shedding
light on the overall behaviour and stability of the solu-
tions.

In Fig. 2, we examine the 3D and contour pat-
terns of the solution (15). Here, subgraph (a) repre-
sent 1-peakon for real component at b = 5;α =
2;β = 5i; γ = i;R0 = 1;R2 = 2; where x ∈
[−0.07, 0.07], y ∈ [−0.2, 0.1], subgraph (b) shows
the 1-lump soliton for the imaginary component at
b = 1;α = 3;β = 7i; γ = 9i;R0 = 0.2;R2 = 0.3;
where x ∈ [−2, 2], y ∈ [−3,−2.3], subgraph (c)
illustrate the single-soliton for the absolute value at
b = 1.2;α = 4i;β = 2; γ = 22i;R0 = 1.2;R2 =
0.6; where x ∈ [−1, 1], y ∈ [−1, 1], subgraph (d)
shows the corresponding contour plot of the real com-
ponent in the interval {x,−0.2, 0.2}, {y,−0.15, 0.01},
subgraph (e) represents the corresponding contour plot

of the imaginary component in the interval {x,−2, 2},
{y,−3,−2.3}, subgraph (f) represents the correspond-
ing contour plot of the absolute value in the interval
{x,−0.8, 1}, {y,−1.5, 1.5}.

In Fig. 3, we explore 3D and contour patterns
of the solution (16). Here, subgraph (a) represent 2-
peakons for real component at b = 1;α = 2.7;β =
3i; γ = 19i;R0 = 0.2;R2 = 0.3; where x ∈
[−1, 1], y ∈ [−2.8, 1.9], subgraph (b) shows the 2-
lumps soliton for the imaginary component at b =
1;α = 2.7;β = 3i; γ = 19i;R0 = 0.2;R2 = 0.3;
where x ∈ [−1, 1], y ∈ [−2.8, 1.9], subgraph (c)
illustrate the doubly-soliton for the absolute value at
b = 1;α = 2.7;β = 3i; γ = 19i;R0 = 0.2;R2 =
0.3; where x ∈ [−1, 1], y ∈ [−2, 1.9], subgraph (d)
shows the corresponding contour plot of the real com-
ponent in the interval {x,−1.2, 1.2}, {y,−2.8, 1.9},
subgraph (e) represents the corresponding contour plot
of the imaginary component in the interval {x,−1, 1},
{y,−2, 1.9}, subgraph (f) represents the correspond-
ing contour plot of the absolute value in the interval
{x,−1, 1}, {y,−2, 1.9}.

In Fig. 4, we focus on 3D and contour patterns
of the solution (17). Here, subgraph (a) represent 3-
peakons for real component at b = 1;α = 2;β =
3i; γ = 19i;R0 = 0.3;R2 = 0.4; where x ∈
[−1.5, 1.5], y ∈ [−2.8, 2.3], subgraph (b) shows the
3-lumps soliton for the imaginary component at b =
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Fig. 3 Dynamic evolution of 2-peakons, 2-lumps and 2-solitons for the solution (16) through 3D and contour plots

Fig. 4 Dynamic evolution of 3-peakons, 3-lumps and 3-solitons for the solution (17) through 3D and contour plots

1;α = 2;β = 3i; γ = 19i;R0 = 0.3;R2 =
0.4; where x ∈ [−1.5, 1.5], y ∈ [−2.8, 2.3], sub-
graph (c) illustrate the triple-soliton for the absolute
value at b = 1;α = 2;β = 4i; γ = 19i;R0 =
0.3;R2 = 0.4; where x ∈ [−1.7, 1.7], y ∈ [−1, 3.4],
subgraph (d) shows the corresponding contour plot
of the real component in the interval {x,−2, 2},
{y,−2.8, 2.8}, subgraph (e) represents the correspond-

ing contour plot of the imaginary component in the
interval {x,−1.5, 1.5}, {y,−3, 2.8}, subgraph (f) rep-
resents the corresponding contour plot of the absolute
value in the interval {x,−2, 2}, {y,−2.3, 2}.

In Fig. 5, we analyze the 3D and contour pat-
terns of the solution (20). Here, subgraph (a) repre-
sent multi-peakons for real component at b = 5;α =
2.7;β = 5i; γ = 5i;R0 = 2;R2 = 3; where
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Fig. 5 Dynamic evolution of multi-peakons, multi-lumps and multi-solitons for the solution (20) through 3D and contour plots

Fig. 6 Dynamic evolution of multi-peakons, multi-lumps and multi-solitons patterns for the solution (21) through 3D and contour plots

x ∈ [−1, 1], y ∈ [−1, 1], subgraph (b) shows the
multi-lumps soliton for the imaginary component at
b = 5;α = 2.7;β = 5i; γ = 5i;R0 = 2;R2 = 3;
where x ∈ [−1, 1], y ∈ [−1, 1], subgraph (c) illus-
trate the multi-soliton for the absolute value at b =
5;α = 2.7;β = 5i; γ = 5i;R0 = 2;R2 = 3; where
x ∈ [−1, 1], y ∈ [−1, 1], subgraph (d) shows the cor-
responding contour plot of the real component in the

interval {x,−1, 1}, {y,−0.5, 0.5}, subgraph (e) repre-
sents the corresponding contour plot of the imaginary
component in the interval {x,−0.5, 0.5}, {y,−0.7, 0.7},
subgraph (f) represents the corresponding contour plot
of the absolute value in the interval {x,−1, 1}, {y,−1, 1}.

In Fig. 6, we presents the graphical view of the
3D and contour patterns of the solution (21). Here,
subgraph (a) represent multi-peakons for real compo-
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Fig. 7 Dynamic evolution of solitary waves for the solution (33) through 3D and contour plots, connecting with solitary waves in
Ocean

nent at b = 8;α = 0.44;β = 5i; γ = 0.5i;R0 =
0.3;R2 = 0.5; where x ∈ [−1, 1], y ∈ [−2, 2],
subgraph (b) shows the multi-lumps soliton for the
imaginary component at b = 8;α = 0.44;β =
5i; γ = 0.5i;R0 = 0.3;R2 = 0.5; where x ∈
[−6, 6], y ∈ [−2, 2], subgraph (c) illustrate the multi-
solitons for the absolute value at b = 8;α = 0.44;β =
5i; γ = 0.5i;R0 = 0.3;R2 = 0.5; where x ∈
[−1, 1], y ∈ [−2, 2], subgraph (d) shows the corre-
sponding contour plot of the real component in the
interval {x,−1, 1}, {y,−0.37, 0.44}, subgraph (e) rep-
resents the corresponding contour plot of the imaginary
component in the interval {x,−1, 1}, {y,−0.37, 0.44},
subgraph (f) represents the corresponding contour
plot of the absolute value in the interval {x,−1, 1},
{y,−0.4, 0.4}.

In Fig. 7, our focus turns to the observation of soli-
tary waves within the context of the absolute value of
the solution (33). Here, 3-dimensional plot is discussed
with the choice of parameters a = 0; b = 5; c =
0;α = 0.44;β = 5i; γ = 0.5i;R0 = 0;S1 = 0.5;
where x ∈ [−0.2, 0.3], y ∈ [−0.37, 0.44] and the con-
tour plot is depicted under the same choice of involved
parameters within the range x ∈ [−0.2, 0.3], y ∈
[−0.3, 0.3]. To illustrate the connection between our
findings and their relevance to real-world phenomena,
we have included an image that captures the solitary
waves in the ocean, as represented by subgraph (c).
This visual representation effectively bridges the gap
between our mathematical findings and practical appli-
cations.

Peakons, lumps, solitons, and solitary waves are fas-
cinating phenomena in the field of nonlinear wave the-
ory. Peakons are unique solitarywaves characterized by

sharp peaks that maintain their shape while propagat-
ing.Lumps are compact, localizedwaves structures that
do not spread out over time and space, often encoun-
tered in certain mathematical models. Solitons are soli-
tarywaves that can travel long distanceswithout chang-
ing their shapeor amplitude due to balance betweendis-
persion and nonlinearity. They arise in various physi-
cal systems, such as water waves and certain nonlinear
equations. On the other hand, solitary waves encom-
pass all these phenomena, including peakons, lumps,
and solitons, and they play a crucial role in understand-
ing wave behavior in complex systems. These concepts
illuminate the profound nature of waves dynamics, and
offering valuable insights in diverse physical systems.

6 Conclusion

In conclusion, we have introduced a new method,
the Inverse

(
G ′
G

)
-expansion method, that helps us to

find solutions for the NLPDEs in a simple polyno-
mial form. Using this method, we have obtained exact
soliton solutions for the gBO equation. These solu-
tions are in various forms like trigonometric function,
hyperbolic function, and exponential function. To bet-
ter understand these solutions, we have created 3D
and contour plots for the real component, imaginary
component and absolute value of solutions given by
Eqs. (15), (16), (17), (20), (21) and (33), which show
patterns like 1-peakon, 1-lump, 1-soliton, 2-peakons,
2-lumps, 2-solitons, 3-peakons, 3-lumps, 3-solitons,
multi-peakons, multi-lumps, multi-solitons, and soli-
tary waves. Peakons, lumps, and solitons each exhibit
unique characteristics. Peakons retain sharp peaks as
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they move, lumps remain compact without spread-
ing, and solutions travels long distances while keeping
their shape. These solitary waves reveal complex wave
dynamics across various systems, offering profound
insights into nonlinear phenomena. These dynamical
representation helps us to see how these solutions
behave with different choice of parameters under the
suitable range space. Additionally, we have connected
our mathematical findings to real-world applications,
making our work relevant and applicable beyond the
area of mathematics.
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