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Abstract The dynamic learning issue from adap-
tive neural control for a class of discrete-time strict-
feedback nonlinear systems is the main topic of this
paper. Different from the traditional control schemes,
a new auxiliary error estimator is constructed in this
paper to promote the solution of weight convergence.
Subsequently, a new weight updating law is designed
based on the estimation error rather than the conven-
tional tracking error. Based on the variable substitution
framework, a new adaptive neural control strategy is
constructed to assure the stability of the considered
system, neural accurate approximation of unknown
dynamics as well as the exponential convergence of
neural weights. Such convergent weights are shown
and stored as constants, i.e., experience knowledge.
In light of the experience knowledge, a static learning
control strategy is constructed. Such a control strategy
avoids time consumption caused by updating weights,
facilitates the transient control performance and lessens
space complexity. Simulations are fulfilled to demon-
strate the availability of the presented strategy.
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1 Introduction

Nowadays, neural network (NN) is extensively adopted
to tackle unknown dynamics on account of its omnipo-
tent approximation and learning capabilities [1–3].And
adaptive neural control (ANC) is established for a
major category of nonlinear systems satisfying match-
ing conditions bymeans of the adaptive technology [4–
7]. These schemes are effectively developed to more
common nonlinear systems with different structures
[9–14], including pure feedback and strict feedback,
by employing the backstepping method [8]. Moreover,
ANC has been also successfully applied to various
industrial systems [15–18]. Notice that ANC is moti-
vated from the learning ability of human beings. As
such, ANC should have the ability: acquiring expe-
rience knowledge of a changing environment, then
reusing the experience knowledge to facilitate their
work efficiency [19]. However, theANCmethodsmen-
tioned above pay little attention to neural learning abil-
ity, thereby still requiring to online training neural net-
works for similar control objectives. The major cause
lies in the great challenge on the testification of the per-
sistent excitation (PE) condition for closed-loop non-
linear systems. Hereafter, the neural learning issue was
gradually developed as reinforcement learning [20–
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22] and adaptive dynamic programming [23–25], in
which the PE condition is often presupposed to be met.
To remove this restriction, a dynamic learning (DL)
approach has been presented in [26] to accomplish the
neural learning ability for closed-loop unknown system
dynamics based on any recurrent reference orbit. This
method has been extensively developed in theory [27–
31] and practical engineering applications [32–34].

Compared to plentiful results of the aforemen-
tioned nonlinear systems in continuous-time form,
the discrete-time (DT) counterpart is relatively few
even though digital technology has been generally
applied in industrial production [35–40]. Themain rea-
son lies in the following challenges: (1) The differ-
ence of the DT Lyapunov function is nonlinear, which
makes the stability analysis more severe; (2) the con-
troller design may encounter noncausal problems for
the strict-feedback form, and (3) the existing frame-
work and stability results cannot achieve the expe-
rience knowledge learning of unknown dynamics in
the system. Some exclusive efforts have been made
to solve these challenges [41–45]. To be more spe-
cific, for strict-feedback nonlinear systems (SFNSs)
in DT case, an n-step predictor technology has been
cleverly proposed in [41] to work out tracking control.
Such a technology has been further developed to pure-
feedback systems [42,43] and multiinput-multioutput
systems [44]. Based on a useful stability result of lin-
ear time-varying (LTV) systems in DT case subject to
time delays, a novel DL strategy has been established in
[46] to accomplish the learning control for DT SFNSs.
It is worth pointing out that the n-step forward predictor
technology brings about the n-step delay that exists in
the NN weight updating law, which would lead to the
complex weight storage, and the difficult knowledge
reuse. Subsequently, a new ANC framework was pro-
posed in [45] to avoid the time delay ofweight updating
laws by the variable substitution, instead of the n-step
predictor. Unfortunately, this new framework cannot be
directly used to solve neural DL because of the huge
challenge on the exponentially convergent verification
of neural weights. Particularly, unlike the continuous-
time case, it is very difficult for DT SFNSs to construct
the weight estimate error system as LTV system with-
out delays, not to mention the exponential convergence
of such a LTV system.

Inspired by the above discussion, this paper is to
develop a new yet effective technology to handle the
DL issue of SFNSs in DT form. To achieve such an

objective, we construct a new auxiliary error estima-
tor in this paper, and then a novel weight updating law
is constructed based on the variable substitution frame-
work. The developed approach can ensure the expected
control performance and the exponential convergence
ofweight estimates. Specially, every convergentweight
can be stored as a constant, which is easily stored and
reused.As a result, the presented learning strategy facil-
itates the transient tracking performance and reduces
the time/space complexity. To further clarify, the fol-
lowing contributions are listed:

(1) A new auxiliary error estimator is subtly designed
to estimate the system tracking error by the constant
characteristic of the ideal value of the estimated
weight;

(2) A novel neural weight update law is constructed
by the estimator error, instead of the traditional
tracking error, which not only avoids time delay
[16,41,42,46,50], but also guarantees everyweight
converges exponentially to its unique ideal value;

(3) A novel learning controller is designed based on the
simple storage and usage rules of the converged
weights, which achieves the good control perfor-
mance with small overshoot, fast convergence and
little computation burden.

The rest of the paper is organized as follows. Sec-
tion2 gives the problem formulation and preliminaries.
In Sect. 3, a novel dynamic learning control strategy is
designed for a class of DT SFNSs by a new error esti-
mator, which guarantee the closed-loop stability, the
exponential convergence of estimated NN weights and
the precise identification of unknown system dynam-
ics. And then, the learning constant weights are stored
and reused to design a static neural learning controller,
which achieves the improved tracking control perfor-
mance with less space complexity, better transient per-
formance and less energy consumption. These advan-
tages are illustrated in Sect. 4 by a simulation compar-
ison. The conclusions are shown in Sect. 5.

Notation: General notations are used throughout this
paper. The estimated variable is denoted by ˆ(·), and the
estimation error is denoted by ˜(·). Im denotes them×m
identity matrix. Them-dimensional Euclidean space is
denoted by Rm . The recurrent orbit being made up of
ϒ(k) is represented by ϕ(ϒ(k)).
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2 Problem formulation

Consider the DT SFNSs as follows:
⎧
⎪⎨

⎪⎩

χi (k + 1) = fi (χ̄i (k)) + gi (χ̄i (k))χi+1(k)

χn(k + 1) = fn(χ̄n(k)) + gn(χ̄n(k))u(k)

y(k) = χ1(k)

(1)

where i = 1, 2, . . . , n − 1, y(k) ∈ R, χ̄ j (k) =
[χ1(k), . . . , χ j (k)]T ∈ R j and u(k) ∈ R represent,
severally, system output, state and input, f j (χ̄ j (k)) ∈
R represent the unknown smooth nonlinear functions,
and g j (χ̄ j (k)) ∈ R stand for the known smooth func-
tions, in which j = 1, 2, . . . , n.

Assumption 1 [41] gi (χ̄i (k)) satisfies 0 < g
i

≤
|gi (χ̄i (k))| ≤ gi , in which g

i
and gi are two constants

with i = 1, 2, . . . , n.
Ourmain control objective is to construct a novelDL

control strategy for DT SFNSs (1) with Assumption
1 such that: (1) the output signal y(k) can trace the
recurrent tracking trajectory yd(k); (2) NNweights can
converge to their optimal values which is independent
of the time sequence; (3) the converged weights can
be easily expressed and reused for the amelioration of
tracking control performance.

2.1 RBF NNs

2.1.1 Omnipotent approximation ability

Radial basis function (RBF) NNs [47] are adopted to
tackle the unknown function �(ϒ(k)) as

�(ϒ(k))=W ∗T�(ϒ(k)) + ε(ϒ(k)),∀ϒ(k) ∈ �ϒ

(2)

in which m > 1 stands for NN node number,
�ϒ denotes a compact set, W ∗ ∈ Rm stands for
the desired weight vector, the DT NN input vec-
tor is denoted by ϒ(k) ⊂ Rq . ε(ϒ(k)) denotes the
approximation error which satisfies |ε(ϒ(k))|≤ ε∗, in
which ε∗ > 0 denotes a tiny constant. �(ϒ(k)) =
[�1(ϒ(k)),�2(ϒ(k)), . . . ,�m(ϒ(k))]T ∈ Rm stands
for the activation function vector with �i (ϒ(k)) =
exp[−(ϒ(k) − νi )

T (ϒ(k) − νi )/

2
i ], where 
i and

νi = [νi1, νi2, . . . , νiq ]T are, respectively, the width
and the center of NN.

2.1.2 Localized approximation ability

Reference [26] shows that theRBFNNowns the capac-
ity of localized approximation. Particularly, for each
recurrent signal ϒ(k) ∈ �ϒ , by employing the neu-
rons near ϒ(k), we have

�(ϒ(k)) = W ∗T
ξ �ξ (ϒ(k)) + εξ (ϒ(k)) (3)

where W ∗
ξ ∈ Rmξ with mξ < m stand for neural

weights closing to the recurrent orbit ϕ(ϒ(k))which is
composed of NN inputs ϒ(k), the corresponding acti-
vation function and approximation error are, respec-
tively, �ξ(ϒ(k)) = [�1ξ (ϒ(k)), . . . ,� jξ (ϒ(k))]T ∈
Rmξ , and εξ (ϒ(k)). Due to the localized approximation
ability, the term |εξ (ϒ(k))| is also arbitrarily small.

2.1.3 PE and exponential stability

Definition 1 [48] ADTsequence�(ϒ(k)) is regarded
as PE ifwe canfind positive constants k0, k1 and k2 such
that

k0+k1−1∑

k=k0

�(ϒ(k))�T (ϒ(k)) ≥ k2 I. (4)

Lemma 1 [48] Suppose that the neural input ϒ(k)
maintains in a compact set �ϒ and is recurrent. Then,
�ξ(ϒ(k))meets thePE condition for the recurrent sub-
vector�ξ(ϒ(k)) being made up of the activation func-
tion vector �(ϒ(k)) near ϕ(ϒ(k)).

2.2 Exponential convergence of DT LTV systems

Consider the following DT LTV systems

η(k + 1) = C(k)η(k) + δ(k) (5)

in which the system matrix is denoted by C(k) ∈
Rm×m , the system state is denoted by η(k) ∈ Rm , and
a bounded disturbance is δ(k) ∈ Rm .

Lemma 2 [48] Considering the LTV system in DT
case (5), suppose that C(k) = In − �H(k)HT (k),
HT (k)�H(k) < 2, and ‖δ(k)‖ represents an ade-
quately small value, where H(k) ∈ Rm stands for a
time-varying vector, and � ∈ Rm×m represents a con-
stant positive definite symmetric matrix. η(k) can con-
verge exponentially to a tiny vicinity around origin if
H(k) satisfies the PE condition.

123



21738 M. Wang et al.

Fig. 1 Overall scheme block diagram of the DL control strategy

3 DL control for DT strict-feedback system

AnovelDL control strategywill be designed in this part
for a class of DT SFNSs by using a new error estima-
tor, so that NN weights can exponentially converge to
a tiny vicinity of their desired values, and the unknown
dynamics of the system can be precisely approximated
by experienced neural networks with converged con-
stant weights. To achieve such a goal and avoid the
traditional causality contradiction, this paper firstly
employs the variable substitution framework [45], and
then the error estimator is cleverly designed to guaran-
tee the exponential convergence of NN weights based
on the exponential convergence theory of LTV systems
inDTcase. The overall schemeblock diagram is shown
in Fig. 1.

To begin with, define the following error variables:

zi (k) = χi (k) − τi−1(k), i = 1, 2, . . . , n (6)

where yd(k) ∈ R is the given reference trajectory,
τ0(k) = yd(k), and τi (k) ∈ R stands for the virtual
controller.

Step 1: From (1) and (6), we have

z1(k + 1) = f1(χ̄1(k)) + g1(χ̄1(k))χ2(k) − yd(k + 1)

=g1(χ̄1(k))

[

τ1(k) + z2(k)

+ f1(χ̄1(k)) − yd(k + 1)

g1(χ̄1(k))

]

.

(7)

The virtual controller τ1(k) is constructed as

τ1(k) = ρ1(χ̄1(k)) + yd(k + 1)

ι1(χ̄1(k))
(8)

in which ρ1(χ̄1(k)) = − f1(χ̄1(k))
g1(χ̄1(k))

and ι1(χ̄1(k)) =
g1(χ̄1(k)).

Substituting (8) into (7) yields

z1(k + 1) = g1(χ̄1(k))z2(k). (9)

Step i (2 ≤ i ≤ n − 1): It follows from (1) and (6)
that

zi (k + 1) =gi (χ̄i (k))

[

zi+1(k) + τi (k)

+ fi (χ̄i (k))

gi (χ̄i (k))
− τi−1(k + 1)

gi (χ̄i (k))

]

.

(10)

Based on (1), we get that χi (k + 1) is a nonlinear
function of χ̄i+1(k). Then, define the one-step predictor
as

χi (k + 1)
.= ϑi (χ̄i+1(k)), i = 1, 2, . . . , n − 1. (11)

where ϑi (χ̄i+1(k)) = fi (χ̄i (k)) + gi (χ̄i (k))χi+1(k),
and χ̄i+1(k) = [χ1(k), . . . , χ j (k), χ j+1(k), ]T ∈ R j+1.

To show how to deal with the causal contradiction
issue, the expression of τ1(k+1) is first given. Accord-
ing to (8) and (11), we have

τ1(k + 1) = ρ1(χ̄1(k + 1)) + yd(k + 2)

ι1(χ̄1(k + 1))

= ρ1(ϑ1(χ̄2(k))) + yd(k + 2)

ι1(ϑ1(χ̄2(k)))
.

(12)

From (12), the problem of causal contradiction can
be avoided by converting the future signal χ1(k + 1)
into a function of yd(k + 2) and χ̄2(k). Subsequently,
by employing recursive design methods, it can be con-
cluded that

τi−1(k + 1) = ρi−1(ϑ̄i−1(χ̄i (k)))

+ yd(k + i)

ιi−1(ϑ̄i−1(χ̄i (k)))

(13)

in which ϑ̄i−1(χ̄i (k)) = [ϑ1(χ̄2(k)), . . . , ϑi−1(χ̄i

(k))]T ∈ Ri−1.
Based on (10) and (13), one can establish the virtual

controller law τi (k) as

τi (k) = ρi (χ̄i (k)) + yd(k + i)

ιi (χ̄i (k))
(14)

where

{
ρi (χ̄i (k)) = − fi (χ̄i (k))

gi (χ̄i (k))
+ ρi−1(ϑ̄i−1(χ̄i (k)))

gi (χ̄i (k))

ιi (χ̄i (k)) =gi (χ̄i (k))ιi−1(ϑ̄i−1(χ̄i (k))).

(15)

By (10) and (14), we have

zi (k + 1) = gi (χ̄i (k))zi+1(k). (16)
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Step n: Using the same analysis, we obtain

zn(k + 1) = gn(χ̄n(k))

×
[
fn(χ̄n(k))

gn(χ̄n(k))
− τn−1(k + 1)

gn(χ̄n(k))
+ u(k)

]

.

(17)

From (6) and (14), we know that zn(k) is unavailable
because τn−1(k) contains an unknown nonlinear func-
tion ρi (χ̄i (k)). To construct an effective neural learning
controller u(k), the following recursive process is used
in this paper by combining (9), (16) and (17)

z1(k + n) = ι(k + n − 1)[F(ϒ(k)) + u(k)] (18)

where ι(k+n−1) = g1(χ̄1(k+n−1))g2(χ̄2(k+n−
2)) · · · gn(χ̄n(k)) ∈ R is the known smooth nonlinear
function, ϒ(k) = [χ1(k), χ2(k), . . . , χn(k), yd(k +
n)]T ∈ Rn+1, and F(ϒ(k)) is defined as

F(ϒ(k)) = −ρn(χ̄n(k)) + yd(k + n)

ιn(χ̄n(k))

in which ρn(χ̄n(k)) = − fn(χ̄n(k))
gn(χ̄n(k))

+ ρn−1(ϑ̄n−1(χ̄n(k)))
gn(χ̄n(k))

,

ιn(χ̄n(k)) = gn(χ̄n(k))ιn−1(ϑ̄n−1(χ̄n(k))). It can be
easily obtained from Assumption 1 that ι(k + n − 1) is
bounded.

Since F(ϒ(k)) is unknown, then by adopting the
RBF NN given in (2), one has

F(ϒ(k)) = W ∗T�(ϒ(k)) + ε(k). (19)

Then, the NN controller is developed as

u(k) = −Ŵ T (k)�(ϒ(k)) (20)

inwhich Ŵ (k) denotes the estimate ofW ∗. Substituting
(20) into (18) yields

z1(k + n)= ι(k + n − 1)[−W̃ T (k)�(ϒ(k)) + ε(k)]
(21)

where W̃ (k) = Ŵ (k) − W ∗, which is the weight esti-
mation error.

It can be seen from (21) that there exists n − 1-step
delay between W̃ (k) and z1(k+n). Such a phenomenon
may cause the delay in the neural weight updating
law, thereby preventing the exponential convergence of
weight estimates. To solve such a problem, a new aux-
iliary error estimator is designed in this paper. Firstly,
error dynamic equation (18) is rewritten as

z1(k + 1) = ι(k)[u(k1) + F(ϒ(k1))] (22)

where k1 = k − n + 1.

Subsequently, design the following error estimator

ẑ1(k + 1) = ι(k)[u(k1) + Ŵ T (k)�(ϒ(k1))]. (23)

Define the estimation error z̃1(k) = ẑ1(k) − z1(k).
From (22) and (23), one has

z̃1(k + 1) = ι(k)[W̃ T (k)�(ϒ(k1)) − ε(k1)]. (24)

It is easily seen from (24), we have canceled the time
delay between z̃1(k + 1) and W̃ (k). Based on the aux-
iliary estimation error, the neural weight updating law
is skillfully constructed as

Ŵ (k + 1) = Ŵ (k) − ��(ϒ(k1))z̃1(k + 1) (25)

where the design parameter � satisfies � = �T > 0,
and λmax(�) = r . Noting that W̃ (k) = Ŵ (k) − W ∗,
one has

W̃ (k + 1) = W̃ (k) − ��(ϒ(k1))z̃1(k + 1). (26)

Remark 1 By using the constant characteristic of the
ideal value of the estimated weight, a new auxiliary
error estimator is subtly designed to estimate the sys-
tem tracking error. Notice that two principles should
be satisfied to achieve the exponential convergence of
NN weights Ŵ (k): (1) the neural weight updating law
is implementable; (2) the error system W̃ (k + 1) can
be converted into LTV system (5) in DT case. It is
observed that zn(k) is unavailable in this paper due
to the unknown virtual control τn−1. Although z1(k)
is available, there is no connection between z1(k) and
W̃ (k). As such, the use of z1(k) cannot derive the LTV
form of the weight estimate error system. To solve such
a difficulty, auxiliary error estimator (23) is cleverly
designed. Subsequently, estimation error system (24) is
designed to construct the relationship between z̃1(k+1)
and W̃ (k). Moreover, since z̃1(k + 1) is available, this
paper creatively uses z̃1(k+1), instead of the traditional
z1(k + 1), to design weight updating law Ŵ (k + 1),
which makes two principles mentioned above be met.
In addition, if we use z̃1(k+1) to design a neuralweight
updating law, each weight component of the estimated
weight vector converges to one value instead of mul-
tiple values. Therefore, the convergent weights can be
easily stored as constant weights.

Theorem 1 Consider the closed-loop system being
made up of SFNSs (1), actual control input (20), error
estimator (23) as well as weight update law (25). Then,
we can prove that: (1) z1(k) converges to the desired
tiny vicinity around origin; (2) the estimated weights
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vector Ŵ (k) converges exponentially to the tiny vicin-
ity of the desired weights vector W ∗; (3) the unknown
dynamics F(ϒ(k)) is precisely approximated by the
constant neural network W̄ T�(ϒ(k)) with the con-
verged weights W̄ expressed by

W̄ = meank∈[ki ,k j ]Ŵ (k) (27)

where meank∈[ki ,k j ]Ŵ (k) = 1
k j−ki+1

∑k j
k=ki

Ŵ (k),

and [ki , k j ] with k j > ki represents a time segment
of steady-state process.

Proof: This proof will be divided into two parts.
The first part will be used to complete the goal (1) of
Theorem 1, and the goals (2) and (3) will be achieved
in the second part.

(1) Let the Lyapunov function as

V (k) = W̃ T (k)�−1W̃ (k) + 1

ῑ
z̃21(k) (28)

inwhich ῑ > 0 is the upper bound of ι(k). Subsequently,
we have

�V (k) = W̃ T (k + 1)�−1W̃ (k + 1) − W̃ T (k)�−1

×W̃ (k) + 1

ῑ
z̃21(k + 1) − 1

ῑ
z̃21(k). (29)

For convenience, let�(k) = �(ϒ(k)). Substituting
(26) into (29), we can get

�V (k) =1

ῑ
z̃21(k + 1) − 1

ῑ
z̃21(k) − 2W̃ T (k)�(k1)z̃1

(k + 1) + �T (k1)��(k1)z̃
2
1(k + 1)

=1

ῑ
z̃21(k + 1) − 2

[ z̃1(k + 1)

ι(k)
+ ε(k1)

]
z̃1

(k + 1) − 1

ῑ
z̃21(k) + �T (k1)��(k1)z̃

2
1(k + 1)

≤ − 1

ῑ
z̃21(k + 1) − 1

ῑ
z̃21(k) − 2ε(k1)z̃1(k + 1)

+ �T (k1)��(k1)z̃
2
1(k + 1).

Based on this fact ‖�(k)‖2 ≤ l [49] and Young’s
inequality, one obtains

�V (k) ≤ − 1

ῑ
z̃21(k + 1) − 1

ῑ
z̃21(k) + r z̃21(k + 1)

ῑ

+ ῑε2(k1)

r
+ rl z̃21(k + 1)

= − 1 − r − rl ῑ

ῑ
z̃21(k + 1) − 1

ῑ
z̃21(k)

+ ῑε2(k1)

r

where r is a positive constant. By selecting r < 1
1+l ῑ

and using |ε(k)| ≤ ε̄ yields

�V (k) ≤ −1

ῑ
z̃21(k) + ῑε̄2

r
. (30)

Formula (30) implies �V (k) ≤ 0, if

|z̃1(k)| >
ῑε̄√
r
. (31)

From (30), it can be seen that for a small constant
μ1 > ῑε̄√

r
, we can find a integer M > 0, so that for

each k > M, |z̃1(k)| < μ1 holds. Further, we have
|z̃1(k + 1)| < μ1 when k > M.

According to (24), we have that W̃ T (k)�(k1) =
z̃1(k+1)

ι(k) + ε(k1). Because ι(k) is bounded, there is a
small constant μ2 = O2(ε̄), so that for each k > M,
|W̃ T (k)�(k1)| < μ2, i.e., |W̃ T (k + n)�(k)| < μ2)
holds.

By (26), we can get

W̃ (k + n) =W̃ (k + n − 1) − ��(k)z̃1(k + n)

=W̃ (k) − �

n∑

i=1

�(k − n + i)z̃1(k + i).

(32)

When k > M, W̃ (k + n) is in the close vicinity of
W̃ (k), because |z̃1(k)| < μ1, for ∀k > M, where n
is a finite real number. Then, according to |W̃ T (k +
n)�(k)| < μ2,∀k > M and (21), we know that there
is a tiny constant μ3 = O3(ε̄), so that for k > M,
|z1(k + n)| < μ3. Hence, z1(k) converges to a tiny
vicinity of origin.

Based on (9), one has z2(k+n−1) = 1
g1(χ̄1(k+n−1))

z1(k + n). Noting that g1(χ̄1(k + n − 1)) is bounded,
there exists a small constant μ4 = O4(ε̄), so that for
each k > M, |z2(k + n − 1)| < μ4 holds. As a result,
z2(k) is tiny small. Similarly, on the basis of (16), it is
easy to conclude that zi (k), i = 3, . . . , n, is also tiny
small.

(2) In light of Theorem 1, z1(k) at time M is
extremely small. Since yd(k) is recurrent and z1(k) =
χ1(k) − yd(k), it is obvious that χ1(k) is recurrent. By
(1), one has χ2(k) = χ1(k+1)− f1(χ̄1(k))

g1(χ̄1(k))
, which indicates

that χ2(k) is recurrent. In the same way, from (1), it is
not difficult to deduce that for k > M, χi (k) are also
recurrent signals with i = 1, 2, . . . , n.

ϕ(ϒ(k)) is the trajectory ofNN input variablesϒ(k)
starting from time M. From Lemma 1, the recurrent
sub-vector�ξ(ϒ(k))meets the PE condition along the
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recurrent orbit ϕ(ϒ(k)). Moreover, in light of (26), we
get

W̃ξ (k + 1) = Aξ (k)W̃ξ (k) + δξ (k) (33)

where

Aξ (k) = Iξ − �ι(k)�ξ (k1)�
T
ξ (k1),

δξ (k) = �ι(k)STξ (k1)εξ (k1)

By choosing an appropriate parameter matrix �, we
have ι(k)�ξ (k1)��ξ

T (k1) < 2Iξ holds. Combining
the small perturbation δξ (k) and the PE condition of
�ξ(k1), we can prove from Lemma 2 that W̃ξ (k) expo-
nentially converges to a tinyvicinity aroundorigin.This
means that along ϕ(ϒ(k)), Ŵξ (k) can converge expo-
nentially to a tiny vicinity of the desiredweightW ∗. On
the other hand, theweight estimates Ŵξ̄ (k) distant from
the recurrent trajectory, remain nearly unchanged due
to the smaller value �ξ̄ (k). As such, when we select

the initial values Ŵ (0) = · · · = Ŵ (n) = 0, the weight
estimates Ŵξ̄ (k)will remain at zero.Basedon the above
analysis, every weight estimate can converge to a con-
stant, which is expressed as

W̄ = meank∈[ki ,k j ]Ŵ (k) (34)

where [ki , k j ], k j > ki > M denotes the time quantum
after the transient process.

Subsequently, along ϕ(ϒ(k)), we can obtain

F(ϒ(k)) = Ŵ T (k)�(ϒ(k)) + ε1(k)

= W̄ T�(ϒ(k)) + ε2(k) (35)

where |ε2(k)| < ε is very small.

Remark 2 It should be pointed out that the traditional
n-step predictor scheme is widely employed in the
existing results [16,41,42,46,50] to convert system
(1) into the n-step predictor system. Such a method
results in weight updating law with n-step delays, i.e.,
Ŵ (k+1) = Ŵ (k−n+1)−��(ϒ(k − n + 1))z1(k+
1), which may make Ŵ (k) converge to multiple dif-
ferent values based on time sequence, and further
increases the difficulty of knowledge storage and
reuse [46]. To solve this problem, the auxiliary error
estimator ẑ1(k + 1) in (23) is designed by replac-
ing Ŵ T (k1)�(ϒ(k1)) with Ŵ T (k)�(ϒ(k1)). Subse-
quently, the weight updating law Ŵ (k + 1) in (25) is
designed on the basis of the estimation error z̃1(k + 1)
instead of the traditional tracking error z1(k+1), which
is free from time delay. Based on the newweight updat-
ing law, it is easy to verify from Lemma 2 that Ŵ (k)

converges to a constant value W̄ , which reduces the
space complexity and simplifies knowledge reuse.

By adopting the trained RBF NN W̄ T�(ϒ(k)), we
can develop the following static neural controller

u(k) = −W̄ T�(ϒ(k)). (36)

Controller (36) is employed to obtain the elevated
tracking performance for the similar tracking objective.

Corollary 1 Consider the closed-loop system being
made up of SFNSs (1) and actual control input (36)
constructed using the constant weights shown in (34).
The tracking error can converge to the expected tiny
vicinity around origin for the similar reference trajec-
tory yd(k).

Proof: Let the Lyapunov function as:

V1(k) = 1

ῑ2
z21(k) (37)

By (22), (35), and (36), we get

�V1(k) = 1

ῑ2
z21(k + 1) − 1

ῑ2
z21(k)

= − 1

ῑ2
z21(k) + 1

ῑ2
ι2(k)ε22(k1)

≤ − 1

ῑ2
z21(k) + ε2. (38)

From (38), it can be seen that for a small constant
μ5 > ε

ῑ
, there exists a positive integer K1, so that for

any k > K1, |z1(k)| < μ5 holds. As a result, it is easy
to demonstrate that z1(k) converges to a tiny vicinity
around origin.

Remark 3 It is should be pointed out that the variable
substitution approach has been put forward in [45] to
tackle the causality contradiction. By combining this
approach and a new auxiliary error estimator, a novel
weight updating law is constructed in our paper to
guarantee the exponential convergence of NN weights.
Compared with the existing result [45], the proposed
scheme can fulfil knowledge acquirement and storage
of NN weights and reuse the stored constant weights
for the high-performance control with less space com-
plexity, better transient performance and less energy
consumption.

4 Simulation study

Consider the following DT SFNS [45]:

χ1(k + 1) =g1(χ1(k))χ2(k) + f1(χ1(k))

χ2(k + 1) =g2(χ̄2(k))u(k) + f2(χ̄2(k))
(39)
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Table 1 Comparisons between PLC in [46] and the new LC

Simulation comparison MAE Computation time

LC 0.0125 3.0051s

PLC with correct time series 0.0209 5.3536s

PLC with incorrect time series 0.0221 5.5273s

“MAE” represents the mean absolute error

where f1(χ1(k))= χ2
1 (k)

χ2
1 (k)+1

, f2(χ̄2(k))= 0.2χ1(k)−0.6χ2(k)
1+χ2

1 (k)+χ2
2 (k)

+ χ2(k), g1(χ1(k)) = 0.2 sin(χ1(k)) + 0.5, and
g2(χ̄2(k)) = 0.8 cos(χ1(k)) + 1 with χ̄2(k) = [χ1(k),
χ2(k)]T .

The tracking trajectory yd(k) is derived from the
following Henon system shown in (40):

χd,1(k + 1) =χd,2(k)

χd,2(k + 1) =1.4p − χ2
d,2(k)

p
+ 0.3χd,1(k)

(40)

where yd(k) = χd,1(k), and p = 1.
First, in the simulation, select initial states and

design parameters as follows: χ̄2(0) = [χ1(0), χ2(0)]T
= [0, 0]T , χd(0) = [χd,1(0), χd,2(0)]T = [0, 0]T ,
Ŵ (0) = 0,� = 0.3I .Moreover, the center νi is equally
spaced over [−2.1, 2.1]× [−7, 4.5] ×[−2.1, 2.1], and
the correspondingwidths 
i = [0.375, 0.625, 0.375]T ,
the number of nodes is 5400. Besides, W̄ is designed
as W̄ = 1

100

∑5000
k=4901 Ŵ (k). Simulation results are dis-

played in Figs. 2, 3, 4, 5, 6, and 7. The tracking error
is exhibited in Fig. 2 by using ANC strategy (20). Fig-
ures3 and 4 display the recurrent feature of χ2(k) and
the boundedness of controller u(k), respectively. Fig-
ure5 shows that Ŵ (k) indeed converges exponentially
to a tiny vicinity of their desired value. From Fig. 6,
we know that the RBF NN can accurately approximate
F(ϒ(k)). The simulation comparison of tracking per-
formance is given inFig. 7 betweenANC(20) and static
neural control (SNC) (36). By Fig. 7, we can see that
the transient tracking performance is vastly improved
by employing the stored experience weights W̄ .

Then, simulation experiments are carried out com-
pared with the existing schemes. For same DT SFNS
(39) and the desired tracking signal in (40), simulation
shows the results of previous learning control (PLC)
scheme, which refers to the literature [46]. Such a sim-
ulation is to exhibit the advantages of the estimator-
based leaning control (LC) scheme proposed in this
paper by comparing it with PLC scheme [46].

4980 4985 4990 4995 5000
Steps

-2

0

2

4

Fig. 2 Tracking performance by using adaptive neural controller

-4 -2 0 2 4

-5

0

5

Fig. 3 System state χ2(k)

0 20 40 60 80 100
Steps

-4

-2

0

2

4

6
u(k)

Fig. 4 System control input u(k)

Fig. 5 Partial NN weights convergence of Ŵ (k)
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4980 4985 4990 4995 5000
Steps

-5

0

5

10

Fig. 6 System dynamics F(ϒ(k)) and RBF NN Ŵ T (k)�(k)

0 5 10 15 20
Steps

-2

0

2

4

6

Fig. 7 Tracking error comparison between ANC and SNC

4990 4992 4994 4996 4998 5000

-0.5

0

0.5

Fig. 8 Partial NN weights convergence of PLC in [46]

4990 4992 4994 4996 4998 5000
-0.2

-0.1

0

0.1

0.2

Fig. 9 Partial NN weights convergence of LC

The constant NN weights are calculated as

W̄PLC,1 = 1
50

∑4999
k1=4991 ŴPLC(k1)

W̄PLC,2 = 1
50

∑5000
k2=4992 ŴPLC(k2)

(41)

where time sequences k1 and k2 are chosen, respec-
tively, as
{
k1|k1 = 4991, 4993, 4995, . . .

}

and
{
k2|k2 = 4992, 4994, 4996, . . .

}
.

In the simulation, choose initial states and design
parameters as follows: χ̄PLC,2(0) = [χPLC,1(0),
χPLC,2(0)]T = [0, 0]T , χd,PLC(0) = [χd,PLC1(0),
χd,PLC2(0)]T = [0, 0]T , ŴPLC(0) = 0, �PLC = 0.2I .
The centers νi, j , j = 1, 2 of NNs are evenly spaced on
[−3, 3] × [−8, 5] × [−3, 3] and [−3, 3] × [−8, 5] ×
[−8, 5]. The corresponding widths are


i, j = [0.625, 0.625, 0.625]T , j = 1

and


i, j = [0.625, 0.625, 1]T , j = 2.

And the numbers of nodes are 5239 and 6851, respec-
tively. Compared to the PLC, it is demonstrated from
Figs. 8 and 9 that in the LC scheme proposed in this
paper, theNNweights converge to a fixed value. For the
same NN weight, the LC scheme only needs to store
one value, while the PLC scheme needs to store two
values. Therefore, LC scheme reduces the overhead of
system storage space, especially when the system order
is higher, the cost saving is more obvious. Moreover,
Table 1 shows that LC scheme reduces the computation
time with smaller mean absolute error.

In addition, the scheme proposed in this paper is
compared with that in the existing work [51]. The sim-
ulation parameters of PLC scheme in [51] are set to be
consistentwith the scheme in this paper, and the simula-
tion results are shown in Fig. 10 and Table 2. Figure10
shows that each weight of the NNweight vector in PLC
scheme [51] converges to two values instead of one.
According to Table 2, although the computation time
of our LC scheme is slightly larger, its mean absolute
error is reduced significantly. Moreover, for the same
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Fig. 10 Partial NN weights convergence of PLC in [51]

Table 2 Comparisons between PLC in [51] and the new LC

Simulation comparison MAE Computation time

LC 0.0125 3.0051s

PLC with correct time series 0.0301 2.2450s

PLC with incorrect time series 0.0310 2.7515s

number of neural nodes, our LC scheme reduces the
system storage space by 50%.

5 Conclusions

A new neural DL approach was proposed for a class
of DT SFNSs in this article. By combining the vari-
able substitution method and the new auxiliary error
dynamic estimator, a novel NN updating law was pro-
posed to guarantee that neural weight estimates expo-
nentially converged to a tiny vicinity of their desired
values, which avoids n-step delays of weight update
and simplifies weight knowledge reuse. The converged
constant weights were stored as experience knowledge
and reemployed to establish a static LC strategy. Such
a controller achieved the improvement of control per-
formance due to the avoidance of online update of NN
weights.
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