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Abstract Mobile robots equippedwith visual sensors
are widely used in challenging unstructured environ-
ment due to their flexibility. However, dynamic proper-
ties of actuators are generally neglectedwhenmodeling
mobile robots, which may reduce the performance of
the servo controller. In this paper, we present a cautious
model predictive control method for visual servoing of
mobile robots with unknown actuator dynamic proper-
ties. Firstly, an enhanced model constructed by a nom-
inal and an additive Gaussian process (GP) model is
learned on-line, where the GP model is stochastic and
captures dynamic properties of actuators by using the
training data. Furthermore, a stochastic model predic-
tive control (SMPC) formulation is presented for cau-
tious control where the chance constraints of predictive
states are considered to ensure visibility of the feature
point. For solving the SMPC problem, an augmented
deterministic model (ADM) that represents the uncer-
tainty propagation of the stochastic state is presented
to transform the SMPC formulation to a deterministic
model predictive control (DMPC) formulation. Then,
the DMPC problem is solved by employing a modi-
fied iterative linear quadratic regulator (iLQR) with a
Lorentzian ρ-function introduced in the terminal cost
function. Finally, the validity of the proposed method
is validated by several examples.
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1 Introduction

In recent years, mobile robots have always been a
research hotspot in the field of robotics to their flexi-
bility and controllability [1–5]. Visual servoing control
that integrates feedback controlwith visual information
is widely used in mobile robots to control their orienta-
tion and position. By using the rich visual information,
the intelligence of mobile robots can be improved and
their application can be broadened [6–10]. Therefore,
visual servoing control for mobile robots has received
widespread attention from many scholars.

Image-based visual servoing (IBVS) controls the
robot directly at the two-dimensional image plane, and
its concise structure does not require 3D pose estima-
tion in Cartesian coordinate and is insensitive to cam-
era parameter calibration errors. Due to its advantages,
many control approaches have been proposed, such as
sliding mode control (SMC) [11,12], PID control [13]
and adaptive controlmethods [14–16]. However, actual
visual servoing robot systems often have constraints on
velocity, position and field of view (FOV). Due to the
ability to deal with visibility constraints, model pre-
dictive control (MPC) has received widespread atten-
tion [17–20]. In [17] and [18], a robust tube-based
predictive control method is proposed to compensate
for the effects of bounded uncertainties with the con-
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straint state variables, such as servoing error, velocity
and acceleration to stabilize the nominal visual servo-
ing system. In [19], a MPC controller with constraints
on roll and pitch angles is proposed for IBVS of a
quadrotor to guarantee the visibility of feature points.
In [21], a model predictive path integral (MPPI) con-
trol framework is proposed by using path integral (PI)
control theory [22], which does not require the calcu-
lation of gradients and second-order approximations.
In [23,24], a real-time inversion-free control method
based on MPPI is proposed for both IBVS, 3D point
(3DVS) and position-based visual servoing (PBVS),
which has been validated on a 6-DoF Cartesian robot
(namely, Gantry robot) with an eye-in-hand camera.
However, due to only considering the kinematic model
and ignoring the dynamic characteristics of the actu-
ators, their performance may decrease. For example,
it is assumed that the actual velocity can immediately
track the desired velocity of the servo controller output,
which is impractical. Thus, it is necessary to establish
a velocity deviation model and incorporate it into the
design of the servo controller to accurately reflect the
difference between the desired velocity and the actual
velocity.

In general, there are two main approaches to deal
with the modeling problem. One is mechanism model-
ingmethod. For instance, a linearmodel has been estab-
lished in [25] for a visual servo task of tendon-driven
continuum robots by using the depth camera data. In
[26], based on the MPC and IBVS framework, a full
model of the continuum robot is derived to improve
the control robustness of the system uncertainties, per-
ceived noise and modeling error. But it is difficult to
write accurate mathematical expressions for objects
with complex mechanisms. The another one is black
box modeling method witch uses the input–output data
to construct a sufficiently accurate model for predic-
tion, such as neural network model [27,28] or a fuzzy
model [29]. However, these methods are difficult to
evaluate the quality of the model on-line. The Gaus-
sian process [30] (GP) is a nonparametric modeling
approach based on a Bayesian framework [31]. Due
to its limited prior knowledge [32] and the ability to
directly provides model uncertainty [33], it is used to
model various systems, such as race cars [34], manipu-
lators [35] and quadcopters [36]. GP models is usually
included into the MPC framework, which is termed as
GP-based model predictive control (GPMPC). Since
the velocitymodel of a vehicle is built byGP, aGPMPC

method is proposed in [37] for path tracking problem
of vehicles, and the performance is better than MPC
method. In [38], a GPMPC method is employed in a
time-varying system to dealwith prediction uncertainty
where the uncertainty is converted into constraints for
safe operation.However, the performance index used in
[37] and [38] are deterministic even though the GPR-
based model is stochastic, which does not fully uti-
lize the model information. In [32], the performance
index of GPMPC is set as the expected value of the
accumulated quadratic stage cost. This kind of perfor-
mance index leads to a cautious control where the state
area with less prediction uncertainty is more preferred.
In [39], GPMPC incorporated with risk-sensitive cost
is presented. Different with cautious control proposed
in [32], the controller is encouraged to explore the
unknown state area at a reasonable level to learn a better
model, which improves the control performance. The
stability of GPMPC is proved in [40].

Summarized by the above discussion, a GPMPC
method is proposed for awheeledmobile robot (WMR)
to deal with the IBVS task under unknown actuator
dynamic properties. Moreover, the orientation angle
control is also considered to track the target pose of the
WMR. The main contributions are shown as follows:

1) A GP-enhanced model instead of a pure GP model
is learned on-line by constructing a nominal and a
GP model. The nominal model improves the con-
trol performance in the state area which stays away
from the training data set, and the GP model cap-
tures actuators’ dynamic properties which can lead
to differences between the nominal model and the
real model.

2) To guarantee the visibility of the feature point,
the chance constraints of the feature point’s image
coordinates are proposed and combined into the
stochastic GPMPC formulation.

3) To solve the stochastic GPMPC problem, an aug-
mented deterministic model (ADM) that represents
the uncertainty propagation of the state is proposed
to transform the stochastic MPC (SMPC) formu-
lation to a deterministic model predictive control
(DMPC) formulation which is solved by iterative
linear quadratic regulator (iLQR).

4) Due to the static servo error that exists when using
iLQR, a Lorentzian ρ-function is introduced into
the terminal cost to replace the common quadratic
terminal cost.
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Fig. 1 Visual servoing system for a WMR

2 Model description

2.1 GP-enhanced model

The considered visual servoing system for a WMR
is shown in Fig. 1, where OwXwYwZw, OcXcYcZc

and Or XrYr Zr represent the world coordinate, cam-
era coordinate and robot coordinate, respectively.
[
vr wr

]T
denote the linear velocity and angular veloc-

ity of theWMR, and
[
vc wc

]T
denote the linear veloc-

ity and angular velocity of the camera. An identity
matrix is created by setting the rotation matrix between
the robot coordinates and the camera coordinates; we
can obtain
[
vr wr

]T = [
vc wc

]T
(1)

The camera coordinates and image coordinates are
shown in Fig. 2 where (xi , yi ) and (xc, yc, zc) are the
positions of the feature point in the image coordinates
and camera coordinates, respectively. The relationship
between these two coordinates can be described by the
camera projection model as follows

xi = xc/zc
yi = yc/zc

(2)

[
ẋi
ẏi

]
=
[
xi/zc − (1 + x2i

)

yi/zc −xi yi

] [
vc
wc

]
(3)

In this paper, yc is a constant since the height of the
camera and the feature point are fixed. Thus, (3) can be
rewritten as (4) to remove the depth information
[
ẋi
ẏi

]
=
[
xi yi/yc − (1 + x2i

)

y2i /yc −xi yi

] [
vc
wc

]
(4)

By substituting (1) into (4), we obtain
[
ẋi
ẏi

]
=
[
xi yi/yc − (1 + x2i

)

y2i /yc −xi yi

] [
vr
wr

]
(5)

Fig. 2 Projection relations of the image frame and the camera
frame

Moreover, the orientation angle θ̇ = wr is also intro-
duced into (5) as follows

⎡

⎣
ẋi
ẏi
θ̇

⎤

⎦ =
⎡

⎣
xi yi/yc − (1 + x2i

)

y2i /yc −xi yi
0 1

⎤

⎦
[

vr
wr

]
(6)

To use MPC method, (6) is discretized as follows

⎡

⎣
xi,k+1
yi,k+1
θk+1

⎤

⎦ =
⎡

⎣
xi,k
yi,k
θk

⎤

⎦+ T

⎡

⎢
⎣
xi,k yi,k/yc −

(
1 + x2i,k

)

y2i,k/yc −xi,k yi,k
0 1

⎤

⎥
⎦

×
[

vr,k
wr,k

]
(7)

where T and k are the sampling time and the time index.

However, the desired velocity
[
vr,d wr,d

]T
is the

output of the visual servo controller in practical and

the real velocity
[
vr wr

]T
is not directly controllable.

Thus, the velocity model that represents the relation-

ship between
[
vr,d wr,d

]T
and

[
vr wr

]T
should also

be considered to design an efficient visual servo con-
troller. Generally, the velocity model is

[
vr,k wr,k

]T = f
(
vr,k−1, wr,k−1, vr,d,k, wr,d,k

)
(8)

In this paper, (8) is written as follows

[
vr,k
wr,k

]
=
[

vr,d,k

wr,d,k

]
+g (vr,k−1, wr,k−1, vr,d,k, wr,d,k

)

(9)

By combining (9) and (7), we have the following
augmented model
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[
xi,k+1 yi,k+1 θk+1 vr,k wr,k

]T

= m
(
xi,k , yi,k , θk , vr,d,k , wr,d,k

)

+h
(
xi,k , yi,k , θk , vr,k−1, wr,k−1, vr,d,k , wr,d,k

)+ εk

(10)

where

m
(
xi,k, yi,k, θk, vr,d,k, wr,d,k

) =

⎡

⎢⎢⎢⎢
⎣

xi,k
yi,k
θk
0
0

⎤

⎥⎥⎥⎥
⎦

+T

⎡

⎢⎢⎢⎢⎢
⎣

xi,k yi,k/yc −
(
1 + x2i,k

)

y2i,k/yc −xi,k yi,k
0 1

1/T 0
0 1/T

⎤

⎥⎥⎥⎥⎥
⎦

[
vr,d,k

wr,d,k

]

(11)

is a nominal model which is usually directly used to
design a servo controller in most works, and

h
(
xi,k, yi,k, θk, vr,k, wr,k, vr,d,k, wr,d,k

)

= T

⎡

⎢⎢⎢
⎢⎢
⎣

xi,k yi,k/yc −
(
1 + x2i,k

)

y2i,k/yc −xi,k yi,k
0 1

1/T 0
0 1/T

⎤

⎥⎥⎥
⎥⎥
⎦

g
(
vr,k−1, wr,k−1, vr,d,k, wr,d,k

)

(12)

is an additive model which contain the information
about dynamic properties of WMR’s actuators. More-
over, we also consider the i.i.d process noise εk ∼
N (0,Σε) with Σε = diag

((
σ 1

ε

)2
, . . . ,

(
σ 5

ε

)2)
. The

GP method is employed in this paper to approx-
imate the function h, and thus, (10) is named as
the GP-enhanced model. For convenience, we define
ok = [

xi,k+1 yi,k+1 θk+1 vr,k wr,k
]T

and uk =
[
vr,d,k wr,d,k

]T
as the state and input of the GP-

enhanced model at time index k, respectively.

2.2 GP modeling

The Gaussian process regression (GPR) method can
use the previously collected data set to describe the
additive model h. More concretely, five independent
GPmodels are built where eachmodel is corresponding
to an output dimension of h.

At time index k, the state ok has been observed and
the value h (ok, uk) is expected to be inferred. Labels
of the data set for i th model are set as follows

−→y i
k−1=

[
(o2 − m1)

i . . .
(
o j+1 − m j

)i
. . . (ok − mk−1)

i
]T

(13)

where o j and m j denote the value of the state and
output of the nominal model at time index j , respec-
tively.

(
o j+1 − m j

)i represents the i th dimension of
the

(
o j+1 − m j

)
. Features for each GP model are the

same and defined as

Zk−1 = [
z1 . . . z j . . . zk−1

]T
(14)

where z j =
[
oTj uTj

]T
. The relationship between

labels and features is as follows

yij = (
o j+1 − m j

)i = hi
(
z j
)+ εij (15)

where εij represents i th dimension of the ε j , and

εij ∼ N
(
0,
(
σ i

ε

)2)
. By using the GPR method,

⇀

h
i

=
[
hi (z1) . . . hi (zk−1)

]T
is assumed to satisfy a multi-

variate Gaussian distribution as

⇀
h
i
∼ N

⎛

⎜
⎜
⎝

⎡

⎢
⎢
⎣

βi (z1)
.
.
.

βi (zk−1
)

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎣

ϕi (z1, z1) . . . ϕi (z1, z1)
.
.
.

. . .
.
.
.

ϕi
(
zk−1, z1

)
. . . ϕi

(
zk−1, zk−1

)

⎤

⎥
⎥
⎦

⎞

⎟
⎟
⎠

(16)

where ϕi (·, ·) is the kernel function and β i (·) is the
mean function of the GPR method. The mean func-
tion can be arbitrarily set. For convenience, we set
β i (·) = 0.Thekernel function should bedesigned such

that Φ i
k−1 =

⎡

⎢
⎣

ϕi (z1, z1) . . . ϕi (z1, z1)
...

. . .
...

ϕi (zk−1, z1) . . . ϕi (zk−1, zk−1)

⎤

⎥
⎦ is

positive semidefinite or positive definite. Here, the ker-
nel function is set as

ϕi (za, zb) =
(
σ i
s

)2
e− 1

2 (za−zb)T Λi (za−zb) (17)

where Λi and
((

σ i
s

)2
,Λi

)
are the diagonal matrix and

the hyper parameters of the GPR [30], respectively.
That can be decided by maximizing the log-likelihood
function given by
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log p

(
−→y i

k−1|Zk−1,
(
σ i
s

)2
,Λi

)

= −1

2

(−→y i
k−1

)T(
Φ i

k−1 +
(
σ i

ε

)2
I

)−1−→y i
k−1

−1

2
log

∣∣∣∣∣

(
Φ i

k−1 +
(
σ i

ε

)2
I

)−1
∣∣∣∣∣
− 7

2
log (2π)

(18)

After determining the hyperparameters, the joint dis-
tribution of hi (zk) and

−→y i
k−1 is shown as follows

[ −→y i
k−1

hi (zk)

] ∣∣∣
∣Zk−1,

(
σ i
s

)2
,Λi ∼

N

⎛

⎝−→
0 ,

⎡

⎣
Φ i

k−1 + (
σ i

ε

)2
I −→ϕ i

(−→ϕ i
)T

ϕi (zk, zk)

⎤

⎦

⎞

⎠ (19)

where −→ϕ i = [
ϕi (z1, zk) . . . ϕi (zk−1, zk)

]T
. Apply-

ing the conditional Gaussian rules [30], the posterior
distribution of hi (zk) can be obtained as

hi (zk)

∣∣∣∣Zk−1,
(
σ i
s

)2
,Λi ,

−→y i
k−1 ∼

N

(
μi
h,k,

(
σ i
h,k

)2)
(20)

where

μi
h,k =

(−→ϕ i
)T(

Φ i
k−1 +

(
σ i

ε

)2
I

)−1−→y i
k−1 (21)

(
σ i
h,k

)2 = ϕi (zk, zk)

−
(−→ϕ i

)T(
Φ i

k−1 +
(
σ i

ε

)2
I

)−1−→ϕ i (22)

Then, the posterior distribution of h (zk) which is
expected to be inferred can be computed as follows
[30]

h (zk)

∣
∣∣∣Zk−1,

(
σ i
s

)2
,Λi ,

−→y i
k−1,i=1,...,5 ∼

N
(
μh,k,Σh,k

)
(23)

where

μh,k = [
μ1
h,k μ2

h,k μ3
h,k μ4

h,k μ5
h,k

]
,Σh,k

= diag

(
(
σ 1
h,k

)2
,
(
σ 2
h,k

)2
,
(
σ 3
h,k

)2
,
(
σ 4
h,k

)2
,
(
σ 5
h,k

)2)
.

Based on the posterior distribution of h (zk), the dis-
tribution of ok+1 can be easily derived as

ok+1 ∼ N
(
μo,k+1,Σo,k+1

)
(24)

where

μo,k+1 = mk + μh,k (25)

Σo,k+1 = Σh,k + Σε (26)

3 MPC controller design

With the GP-enhanced model, the MPC problem is
exactly nonlinear and stochastic, which is given as fol-
lows

min
Uk

J=E

[
k+M−1∑

t=k

l (ot , ut ) + l f (ok+M )

]

(27a)

s.t. ∀i = 1, . . . , 5, ∀ j = 1, 2 and ∀t = k, . . . ,

k + M − 1 :

p (ot+1|ok, uk) ∼ N
(
μo,t+1,Σo,t+1

)
(27b)

u j
t ≥ u j

min (27c)

u j
t ≤ u j

max (27d)

p
(
oit+1 ≥ oimin|ok, uk

)
≥ c (27e)

p
(
oit+1 ≤ oimax|ok, uk

)
≥ c (27f)

whereUk = [
uk . . . uk+M−1

]T
is the control sequence

which is need to be searched, the stage cost function
l (ot , ut ) is defined as a quadratic function l (ot , ut ) =
‖ot − o∗‖Q + ‖ut‖R and the terminal cost function is
defined as follows

l f (ok+M ) = ηd2 + λ log
(
d2 + α

)
(28)

where d2 = ‖ok+M − o∗‖Q and o∗ is the target state,
and the Lorentzian ρ-function log

(
d2 + α

)
is intro-

duced into the terminal cost function to encourage accu-
racy placement into the o∗, which is shown in Fig. 3
(Assuming η = λ = 1).

It should be noted that the performance index (27a)
is an expected value, which is different with tradi-
tional MPC problem. Thus, the expected values of the
l (ot , ut ) and l f (ok+M ) need to be derived. However,
accurate closed forms of these expected values cannot
be obtained. Thus, the second-order Taylor expansion
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Fig. 3 Shape of the terminal cost function

technique can be used to approximate the expected val-
ues as

E [l (ot , ut )] = ∫
p (ot )l (ot , ut ) dot

≈ ∫
p (ot )

(∥
∥μo,t − o∗∥∥

Q + (
ot − μo,t

)T ∂l(ot ,ut )
∂ot

∣
∣ot=μo,t

+ 1
2

(
ot − μo,t

)T ∂2l(ot ,ut )
∂ot 2

∣
∣ot=μo,t

× (
ot − μo,t

))
dot

+‖ut‖R = ∥∥μo,t − o∗∥∥
Q + 0 + tr

( 1
2

∫
p (ot )

× (
ot − μo,t

) (
ot − μo,t

)T
dot

∂2l(ot ,ut )
∂ot 2

∣∣ot=μo,t

)+ ‖ut‖R

= ∥∥μo,t − o∗∥∥
Q + tr

(
Σo,t Q

)+ ‖ut‖R

(29)

E
[
l f (ok+M )

] = ∫
p (ok+M )l f (ok+M ) dok+M

≈ ∫
p (ok+M )

(∥
∥μo,k+M − o∗∥∥

Q + (
ok+M − μo,k+M

)T

× ∂l f (ok+M )

∂ok+M

∣
∣ok+M=μo,k+M

+ 1
2

(
ok+M − μo,k+M

)T ∂2l(ok+M )

∂ok+M
2

∣∣ok+M=μo,k+M

× (
ok+M − μo,k+M

))
dok+M

= ημd2,k+M + λ log
(
μd2,k+M + α

)+ tr
(
Σo,t B

)

(30)

where

μd2,k+M = ∥∥μo,k+M − o∗∥∥
Q (31)

B = ηQ + λ

(
1

μd2,k+M + α
Q − 2

(
μd2,k+M + α

)2

Q
(
μo,k+M − o∗) (μo,k+M − o∗)T Q

)
(32)

when Q is a weighted matrix with Q ≥ 0, and the sec-
ond part of (29) can be represented as tr

(
Σo,t Q

) =
Σ

(1,1)
o,t Q(1,1) + . . .+Σ

(5,5)
o,t Q(5,5), which penalizes the

predicted state with large variances. Thus, the GPMPC
controller with such stage cost function prefers the pre-
dicted state area with less uncertainty and behaves cau-
tiously.

However, since the model (27b) and constraints
(27e) and (27f) are stochastic, the optimization problem
(27) is computationally intractable. Thus, several tech-
niques are presented in the remainder of this section to
transform (27) into a tractable optimization problem.

3.1 Uncertainty propagation

In this subsection, the specific form of μo,t+1 and
Σo,t+1 in the stochastic model (27b) is derived. How-
ever, for long-term prediction,

(
μo,k+2,Σo,k+2

)
, . . . ,(

μo,k+M ,Σo,k+M
)
should also be computed, which

are more complex compared with computation for(
μo,k+1,Σo,k+1

)
since features zk+1, . . . , zk+M−1 for

prediction are stochastic variables.
Only the derivation of

(
μo,k+2,Σo,k+2

)
is presented

here since the method to derive other mean–variance
pairs is similar. The feature zk+1 is a variable which
satisfies a Gaussian distribution as

zk+1 ∼ N
(
μz,k+1,Σz,k+1

)

= N

([
μo,k+1

uk+1

]
,

[
Σo,k+1 05×2

02×5 02×2

])
(33)

where
(
μo,k+1,Σo,k+1

)
can be computed based on (25)

and (26).Under the circumstance of the uncertain input,
μo,k+2 can be computed as

μo,k+2 = Ezk+1,hk+1

[
ok+2

]

= ∫∫
p (zk+1) p (hk+1|zk+1) (mk+1 + hk+1 + εk+1)

dzk+1dhk+1

= ∫ p (zk+1)mk+1dzk+1+
∫∫

p (zk+1) p (hk+1|zk+1)

hk+1dzk+1dhk+1

= ∫
p (zk+1)mk+1dzk+1 + ∫

p (zk+1)μh,k+1dzk+1

≈ mk+1
(
μz,k+1

)+ μh,k+1
(
μz,k+1

)

(34)

where the final approximate equation is obtained by
using the first-order Taylor expansion of mk+1 and
μh,k+1 around μz,k+1. Although an accurate solution
of
∫
p (zk+1)μh,k+1dzk+1 can be computed as in [41],

the Taylor expansion approximation is used to simplify
calculation. Covariance matrix can be obtained based
on the above approximated mean value as

Σz,k+1

=Ezk+1,hk+1

[(
ok+2−μo,k+2

) (
ok+2−μo,k+2

)T ]
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= Ezk+1,hk+1

⎡

⎢
⎢⎢
⎢
⎣

⎛

⎜
⎜⎜
⎜
⎝

(
∂mk+1

∂zk+1

∣∣zk+1=μz,k+1

) (
zk+1 − μz,k+1

)

︸ ︷︷ ︸
Δmk+1

+ hk+1−μh,k+1
(
μz,k+1

)

︸ ︷︷ ︸
Δhk+1

+εk+1

⎞

⎟
⎟
⎠

(
Δmk+1 + Δhk+1 + εk+1

)T ]

=
∫

Δmk+1ΔmT
k+1 p

(
zk+1

)
dzk+1

+
∫∫

Δmk+1Δhk+1
T p

(
zk+1

)
p
(
hk+1|zk+1

)

× dzk+1dhk+1

+
∫∫

Δhk+1ΔmT
k+1 p

(
zk+1

)
p
(
hk+1|zk+1

)

× dzk+1dhk+1

+
∫∫

Δhk+1Δhk+1
T p

(
zk+1

)
p
(
hk+1|zk+1

)

dzk+1dhk+1 + Σε (35)

The remaining work is to compute integrals. The
first integral can be computed as
∫

Δmk+1ΔmT
k+1 p (zk+1) dzk+1

=
(

∂mk+1
∂zk+1

∣∣zk+1=μz,k+1

) ∫
p (zk+1)

(
zk+1 − μz,k+1

) (
zk+1 − μz,k+1

)T

dzk+1

(
∂mk+1
∂zk+1

∣∣zk+1=μz,k+1

)T

=
(

∂mk+1
∂zk+1

∣
∣zk+1=μz,k+1

)
Σz,k+1

(
∂mk+1
∂zk+1

∣
∣zk+1=μz,k+1

)T

(36)

The value of the second integral can be obtained as

∫∫
Δmk+1Δhk+1

T p
(
zk+1

)
p
(
hk+1|zk+1

)
dzk+1dhk+1

= ∫
p
(
zk+1

)
Δmk+1

∫
p
(
hk+1|zk+1

)
(
hk+1 − μh,k+1

(
μz,k+1

))T dhk+1dzk+1
= ∫ p

(
zk+1

)
Δmk+1

(
μh,k+1−μh,k+1

(
μz,k+1

))
dzk+1

≈ 0

(37)

where the final approximate equation is obtained
by using the first-order Taylor expansion of Δmk+1(
μh,k+1 − μh,k+1

(
μz,k+1

))
around μz,k+1. The value

of the third integral which can be derived by using the
same method as the second integral is also zero. The
fourth integral can be computed as

∫∫
Δhk+1Δhk+1

T p
(
zk+1

)
p
(
hk+1|zk+1

)
dzk+1dhk+1

= ∫ p
(
zk+1

) ∫
p
(
hk+1|zk+1

)
Δhk+1Δhk+1

T dhk+1dzk+1
≈ ∫

p
(
zk+1

) ∫
p
(
hk+1|zk+1

)
hk+1h

T
k+1dhk+1dzk+1

−μh,k+1
(
μz,k+1

)
μT

h,k+1

(
μz,k+1

)

= ∫
p
(
zk+1

) (
Σh,k+1 + μh,k+1μ

T
h,k+1

)
dzk+1

−μh,k+1
(
μz,k+1

)
μT

h,k+1

(
μz,k+1

)

≈ Σh,k+1
(
μz,k+1

)

(38)

where the second approximate equation and the
final approximate equation are obtained by using the
first-order Taylor expansion of μh,k+1 and Σh,k+1 +
μh,k+1μ

T
h,k+1

around μz,k+1, respectively. Thus, based
on (35)-(38), the approximated covariance matrix is as
follows

Σo,k+2 ≈
(

∂mk+1
∂zk+1

∣∣zk+1=μz,k+1

)

Σz,k+1

(
∂mk+1
∂zk+1

∣∣zk+1=μz,k+1

)T + Σh,k+1
(
μz,k+1

)

+Σε

(39)

where

μz,k+1 = [
μo,k+1 uk+1

]T

Σz,k+1 =
[

Σo,k+1 05×2

02×5 02×2

]
(40)

It can be found that (25) and (26) are special forms
for (34) and (39), respectively, by setting zk = μz,k

and Σz,k = 05×5.
Although the distribution of ok+2 is not exactly

Gaussian, it is approximated into a Gaussian distribu-
tion by using the derived

(
μo,k+2,Σo,k+2

)
. Then, the

chance constraints (27e) and (27f) can be transformed
into a more tractable formulation by using the quantile
function of Gaussian distribution. In this paper, c is set
as 0.95, which lead to the following constraints

oit+1 − 2Σ(i,i)
o,t+1 ≥ oimin

oit+1 + 2Σ(i,i)
o,t+1 ≤ oimax

(41)

for all t = k, . . . , k + M − 1 and i = 1, 2, 3, 4, 5.

3.2 Tractable MPC design

In this subsection, the intractable SMPC formulation
is transformed to a tractable DMPC formulation by
designing an ADM based on the derivations in subsec-
tion 3.1, and a modified iLQG approach is proposed to
deal with the DMPC problem.
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The state of the ADM at time index t is defined as

st =
[
μT
o,t vec

(
Lo,t

)T
]T

(42)

where Lo,t = [
l1 . . . l5

]
is a lower triangular matrix

which is obtained by using Cholesky decomposition of

Σo,t , and vec
(
Lo,t

) = [
lT1 . . . lT5

]T
.

Remark 1 We set Lo,k = −→
0 since Σo,k = 05×5, and

for t = k+1, . . . k+M , Lo,t can be obtained by using
Cholesky decomposition ofΣo,t sinceΣo,t is a positive
definite matrix.

The ADM is represented by st+1 = F (st , ut )which
can be easily derived by using (34) and (39). Under the
DMPC formulation, the expected value of the ls (ot , ut )
and l f (ok+M ) can be transformed as

l (st , ut ) =E [l (ot , ut )]==∥∥st − s∗∥∥
Q1

+‖ut‖R

(43)

and

l f (sk+M ) = E
[
l f (ok+M )

] = ∥∥sk+M − s∗∥∥
Q2

+λ log
(∥∥sk+M − s∗∥∥

Q3
+ α

)
(44)

,

where s∗ =
[
(o∗)T ,

−→
0

T
]T

∈ R30, Q1 = diag
⎛

⎝Q, . . . , Q︸ ︷︷ ︸
6

⎞

⎠ ∈ R30×30,

Q2 = diag

⎛

⎝Q, B, . . . B︸ ︷︷ ︸
5

⎞

⎠,

Q3 = dig

⎛

⎝Q, 05×5, . . . 05×5︸ ︷︷ ︸
5

⎞

⎠. Constraints in (41)

are equivalent to

sTt+1e
i − 2

(
Lo,t LT

o,t

)(i,i) ≥ simin

sTt+1e
i + 2

(
Lo,t LT

o,t

)(i,i) ≤ simax

(45)

for i = 1, . . . , 5, where ei is the i th column vector of
an identity matrix. Then, the DMPC problem is given
as follows

min
Uk

Jk =
k+M−1∑

t=k

l (st , ut ) + l f (sk+M ) (46a)

s.t. ∀i = 1, . . . , 5,∀ j = 1, 2and∀t = k, . . . , k

+M − 1

st+1 = F (st , ut ) (46b)

u j
t ≥ u j

min (46c)

u j
t ≤ u j

max (46d)

sTt+1e
i − 2

(
Lo,t L

T
o,t

)(i,i) ≥ simin (46e)

sTt+1e
i + 2

(
Lo,t L

T
o,t

)(i,i) ≤ simax (46f)

To simplify the DMPC problem, constraints (46c) -
(46f) are softened the performance index by introduc-
ing several barrier functions as

J ′
k = Jk +

k+M−1∑

t=k

lbs (st+1) + lbu (ut ) (47)

where

lbs (st+1) =
5∑

i=1
b1r

(
sTt+1e

i + 2
(
Lo,t LT

o,t

)(i,i) − simax

+b2r
(
simin − sTt+1e

i + 2
(
Lo,t LT

o,t

)(i,i)))
(48)

lbu (ut ) =
2∑

j=1

b3r
(
u j
t − u j

max

)
+ b4r

(
u j
min − u j

t

)
(49)

r (∗) =
{
0, ∗ ≤ 0
∗, ∗ ≥ 0

(50)

To facilitate the subsequent introduction of iLQR
method, J ′

k is rewritten as

J ′
k = l ′ (st , ut ) + l ′f (sk+M ) (51)

where

l ′ (st , ut ) = l (st , ut ) + lbs (st ) + lbu (ut ) (52)

l ′f (sk+M ) = l f (sk+M ) + lbs (sk+M ) (53)

With the above settings, the consideredDMPCprob-
lem is simplified as

min
Uk

J ′
k =

k+M−1∑

t=k

l ′ (st , ut ) + l ′ f (sk+M ) (54a)

s.t. st+1 = F (st , ut ) (54b)

The iLQR [42] approach is employed to address
the above DMPC issue through trajectory optimiza-
tion. The value function of xt is defined as cost-to-go,
and written as

V (xt ) = min
Ut

k+M−1∑

t=k

l ′ (st , ut ) + l ′ f (sk+M ) (55)

where Ut = [
ut . . . ut+M−1

]
. The value function of

xk+M is set as V (xk+M ) = l ′f (sk+M ). Then, the iLQR
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can performminimization sequentially on a single con-
trol unit rather than minimizing over the entire control
sequence by proceeding backward in time as

V (xt ) = min
ut

l ′ (st , ut ) + V (st+1) = min
ut

l ′ (st , ut )

+V (F (st , ut )) (56)

To solve the above minimization problem, the Q
function is defined as a perturbation function around
the current state–input pair as

Q (δst , δut ) = l ′ (st + δst , ut + δut ) − l ′ (st , ut )
+V (F (st + δst , ut + δut )) − V (F (st , ut ))

(57)

The minimization problem (56) is then transformed
to find an optimal δu∗

t that minimizes Q (δst , δut ).
Function Q (δst , δut ) can expand to a second order as

Q (δst , δut ) ≈ 1

2

⎡

⎣
1

δst
δut

⎤

⎦

T ⎡

⎣
0 QT

st QT
ut

Qst Qst st Qst ut
Qut Qut st Qut ut

⎤

⎦

⎡

⎣
1

δst
δut

⎤

⎦

(58)

where

Qst = l ′st + FT
st Vst+1 (59a)

Qut = l ′ut + FT
ut Vst+1 (59b)

Qst st = l ′st st + FT
st Vst+1st+1Fst + Vst+1Fst st (59c)

Qutut = l ′ut ut + FT
ut Vst+1st+1Fut + Vst+1Futut (59d)

Qut st = l ′ut st + FT
ut Vst+1st+1Fst + Vst+1Fut st (59e)

The last terms in (59c), (59d) and (59e) are ignored
in iLQR for reducing calculation burden. Minimizing
(58) with respected to δut , we obtain

δu∗
t = −Q−1

ut ut

(
Qut + Qut st δst

) = kt + Ktδst (60)

where kt = −Q−1
ut ut Qut and Kt = −Q−1

ut ut Qut st . Sub-
stituting (60) into (58), we have

Vst = Qst − Qut Q
−1
ut ut Qut st (61)

Vst st = Qst st−Qstut Q
−1
ut ut Qut st (62)

which can be used to compute kt−1 and Kt−1. Recur-
sively computing ((kk+M−1, Kk+M−1) , . . . , (kk, Kk))

constitutes a backward pass. Once the backward pass
is completed, a forward pass is used to obtain a new
trajectory as

ŝk = sk
ût = ut + kt + Kt

(
ŝt − st

)

ŝt+1 = F
(
ŝt , ût

) (63)

By iteratively performing backward pass and for-

ward pass, an optimal U∗
k = [

u∗
k . . . u∗

k+M−1

]T
can

be obtained, and the first control unit u∗
k is applied to the

WMR. The specific algorithm for designing GPMPC
controller is summarized as algorithm 1.

Algorithm 1: GPMPC controller design

for k = 1, 2, · · · do
Observing the state sk ;
if k �= 1 then

Updating the GP model by minimizing (18);
end
Initializing a preliminary control sequence uk ;
Initializing a trajectory (sk , uk , · · · , sk+M );
for c f = 1, · · · ,C do

Executing a backward pass according to (59)- (62);
Executing a forward pass according to (63);

end

Computing the U∗
k = [

u∗
k . . . u∗

k+M−1

]T
;

Applying the u∗
k to the WMR

end

4 Simulation

In this section, the validity of the proposed GPMPC
approach will be verified by numerical simulations.
The simulation example runs in Python environment.
The computer used is configuredwithAMD-R74800H
CPU, 2.90 GHz and 16.0 GB running memory. Specif-
ically, two comparison simulations are performed to
verify the efficacy of the GP-enhanced model and
the Lorentzian ρ-function, respectively. The velocity
model in simulations is set as

vr,k = vr,k−1 + 0.5 × (
vr,d,k − vr,k−1

)

wr,k = wr,k−1 + 0.5 × (
wr,d,k − wr,k−1

) (64)

It means that the real velocity of the robot only steps
forward to the desired velocity but cannot arrive at the
desired velocity. Other parameters are shown in Table
1.

Only the first two dimensions of the state are con-
strained since visibility constraints are considered. The
input constraints are handled by applying a saturation
function to the U∗

k that derived by iLQR method, and
thus, b3 and b4 are set as 0.

To highlight the importance of model learning, we
first compare the simulation results of the proposed
GPMPC and the traditional MPC (T-MPC) that only
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Table 1 Parameters used in
the simulation

Parameters Values

o0
[
0.5 [pixels] 0.1 [pixels] 0 0 0

]T

o∗ [−0.5 [pixels] 0.35 [pixels] π/6 [rad] 0 0
]T

Q diag (1, 3, 0.5, 0, 0)

R diag (0.01, 0.01)

T 0.05 [s]
M 20

iLQR iterative times C 2

Σε diag (0.001, 0.001, 0.001, 0.001, 0.001)

(η, λ, α) (1, 1, 0.001)

(b1, b2, b3, b4) (100, 100, 0, 0)

omax
[
0.58 [pixels] 0.38 [pixels] ∼ ∼ ∼ ]T

omin
[−0.58 [pixels] 0 [pixels] ∼ ∼ ∼ ]T

umax
[
1 [m / sec] 0.5 [rad / sec] ]T

umin
[−1 [m/sec] −0.5 [rad / sec] ]T

Fig. 4 Comparison results of theGPMPC and T-MPC. aMoving trajectories of the feature point in the image frame. bMoving trajectory
of the camera in the world frame
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(a) (b)

Fig. 5 Computing details of theT-MPCcontroller and theGPMPCcontroller. aComputing details of theT-MPCcontroller.bComputing
details of the GPMPC controller

Fig. 6 Comparison results of the GPMPC controller and Q-GPMPC

uses the nominal model (11), which is shown in Fig. 4.
Solid circles in Fig. 4a and b represent the end posi-
tion of the feature point and the camera. The symbol
‘+’ represents the desired position and the dashed box
denotes the visibility constraints. It is evident that with
the control ofGPMPCand theT-MPC, the feature point
can all arrive the desired position. However, the FOV
of the feature point will be lost when the WMR is con-
trolled by T-MPC, which is reflected in Fig. 4a that the
blue trajectory is sometimes outside the dashed box. In
real applications, this issue may cause the failure of the
visual servoing task.

To further analyze reasons for this issue, we record
the computing details of the GPMPC controller and the

T-MPC controller, as shown in Fig. 5. The prediction
horizon lines (blue dashed lines) represent the horizon
state trajectories (HSJs) predicted by the optimal con-
trol sequence and current model (the nominal model
for T-MPC and the GP-enhanced model for GPMPC),
and the real horizon lines (red dashed lines) represent
the real horizon state trajectories (RHSJs) predicted by
the optimal control sequence and the real model. Fig-
ure5a shows that visibility constraints are sometimes
violated, especially in the Y-axis of the image frame
under the control of the T-MPC. This is caused by
the model error between the nominal model and the
real model. At step 102, although HSJs do not vio-
late visibility constraints, the RHSJs do because the
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Fig. 7 Detailed control information of the Q-GPMPC and GPMPC

Fig. 8 Environment of the
experiment

optimal control lists are derived based on the nom-
inal model. Therefore, with the model error, visibil-
ity constraints are not guaranteed to be satisfied. For
GPMPC, the additive GPmodel can effectively capture
differences between the nominal model and the real
model, and thus, the GP-enhanced model is accurate
enough to derive proper optimal control lists. HSJs for
GPMPCare stochastic, shown inFig. 5b,where shadow
areas represent the 95% predictive confidence region.

It can be seen that RHSJs are close to the mean tra-
jectories, which reflects the fact that the GP-enhanced
model resembles the real model. Moreover, the predic-
tion variance that represents the prediction uncertainty
gradually decreases with the duration of on-line model
learning. Thus, the visibility constraints are satisfied by
using the GPMPC method.

In what follows, the effectiveness of the Lorentzian
ρ-function is shown by comparing the control results
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Fig. 9 Motion trajectories of the feature point in the image frame. amotion trajectories of GPMPC. bMotion trajectories of O-GPMPC.
c Motion trajectories of T-MPC. d Motion trajectories of Q-GPMPC

of the GPMPC and the quadratic GPMPC (Q-GPMPC)
that uses the quadratic terminal cost function designed
as l f (ok+M ) = d2. Figure6 illustrates the compar-
ison results with the control of the Q-GPMPC. It
can be seen that Q-GPMPC has relatively large static
errors when the system is stable in the θ , xi and yi
directions, which are 0.038 [rad], 0.022 [pixels] and
0.01 [pixels], respectively. In contrast, the static errors
of GPMPC are much minor, which are 0.002 [rad],
0.002 [pixels], and 0.004 [pixels], respectively. This
issue is caused by the shape of the quadratic cost func-
tion, i.e., the gradient is nearly zero when d is near 0
(when o is near o∗). Thus, the optimizer outputs the
near-zero control list when the error is small, leading
to the static error. In contrast, the Lorentzianρ-function
has a concave shape as d is close to 0,which encourages
precise control.

Figure7 shows the detailed control information.
From Fig. 7a, the control inputs to the Q-GPMPC dis-
appear at step 60 even though the servo error still
exists. Figure7b shows that the WMR finally stops
near the desiredposition.Differentwith theQ-GPMPC,
the control inputs of GPMPC do not disappear when
WMR is near the desired position. However, the con-

trol inputs become more complex, gradually driving
the WMR to the desired position by alternating for-
ward and backward movements. The basic condition
for producing these alternatingmotions is that the value
function has obvious differences in the region near the
desired position, which is consistent with the shape of
the Lorentzian ρ-function.

The average control periods of the T-MPC and
GPMPC are 0.046 [sec] and 0.080 [sec], respectively.
Thus, as the above analyses, the proposed GPMPC
method is effective to address the visual servoing task
for the WMR with unknown velocity model and visi-
bility constraints.

5 Experiments

In this section, a corresponding experiment of WMR
visual servoing point stabilization is designed to con-
firm the effectiveness of the GPMPC method in practi-
cal applications. The experimental equipment includes
a turtlebot2 mobile robot, a Realsense D435 USB cam-
era, a high-precision gyroscope and a computer with
an i7-12700H CPU and RTX-3060 GPU. The cam-
era frame rate of the camera is set to a frame rate
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Fig. 10 Motion trajectories in the image frame. aMotion trajectory of GPMPC. bMotion trajectory of O-GPMPC. cMotion trajectory
of T-MPC. d Motion trajectory of Q-GPMPC

of 30 (FPS), and the resolution is set 640x480 pix-
els, with the internal parameters ( f x, f y, cu, cv) =
(−607.5,−606.2, 325.5, 243.8). The gyroscope angle
accuracy is 0.1 degrees. The experiment is conducted
in the environment shown in Fig. 8. In the exper-
iment, four corner points of the AprilTag marker
were selected as visual servoing image features used
by the Visual Servoing Platform (ViSP) [43]. A tol-
erance area is set (

∣∣exi
∣∣ < 0.01 [pixels], ∣∣eyi

∣∣ <

0.01 [pixels], |eθ | < 0.035 [rad]), which means that
the servo task is assumed to be completed only when
all three conditions are met simultaneously. It should
be noted that some experimental parameters are dif-
ferent from simulation parameters are set as o0 =
[
0.5 [pixels] 0.07 [pixels] −π/6 [rad] 0 0

]T
, o∗ =

[−0.15 [pixels] 0.2 [pixels] 0 0 0
]T
, Q = diag

(0.1, 0.4, 0.05, 0, 0), R = diag (0.003, 0.003),omax =[
0.58 [pixels] 0.26 [pixels] ∼ ∼ ∼ ]T , omin =

[−0.38 [pixels] 0 [pixels] ∼ ∼ ∼ ]T , umax =
[
0.2 [m/ sec] 0.2 [rad/ sec] ]T , umin =
[−0.2 [m/ sec] −0.2 [rad/ sec] ]T .

To clearly show the model uncertainty, we have
added experiment tests on a roadwith randombumps to
verify the effectiveness of the proposed method under
environmental uncertainty. For the sake of clarity, we
use O-GPMPC to represent GPMPC experiments con-
ducted in a randomly bumpy environment. The exper-
iment results of GPMPC, O-GPMPC, T-MPC and Q-
GPMPC are shown in Figs. 9, 10, 11 and 12. In Fig. 9,
the blue symbol ‘+’ represents the initial position, the
red symbol ‘+’ represents the desired position, and
the black symbol ‘+’ represents the final position. In
Fig. 10, the solid circles represent the desired positions
of the corresponding trajectories, and the dashed box
denotes the visibility constraints. To keep it brief, only
the root mean square error of the camera features is
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Fig. 11 Comparison results of GPMPC, O-GPMPC, T-MPC and Q-GPMPC

displayed in Fig. 11 instead of showing all errors of
the camera features [26]. When the system stabilize
and reach the desired position, it can be clearly seen
that the motion trajectory of T-MPC in subgraph (c)
of Figs. 9, 10 is closer to the constraint boundary than
GPMPC in subgraph (a) of Fig. 9, 10. It can be seen
that the constraint performance of GPMPC is better
than T-MPC. The results of GPMPC are similar to the
simulations. Figure11 shows thatQ-GPMPChas a rela-
tively large static error. In contrast, the GPMPC control
method with the addition of the Lorentzian ρ-function
has a smaller static error. Specifically, the θ and mean
square error values of Q-GPMPC are 0.025 [pixels]
and −0.086 [rad]. On the other hand, GPMPC shows
better performancewith θ andmean square error values
of 0.004 [pixels] and−0.016 [rad]. It can be indicated
that Q-GPMPC has poorer performance compared to
GPMPC.Under the bumpy environment, feature points
undergo significant fluctuations in the FOV. The sub-
graph (b) results of Fig. 9, 10 and Fig. 11 demonstrate
that the proposed GPMPC controller can successfully
move theWMR to the desired position in a bumpy envi-

ronment. However, there is oscillation present during
the movement. It infers that the proposed method is
robust to the uncertainty of the environment. Figure12
shows the commanded and actual velocities for those
controlmethods. TheLorentzianρ-function can reduce
static errors effectively. However, it can also cause
oscillations in WMR when approaching the desired
posture. This result is consistent with the simulation
results. It can be seen that subgraphs (g) and (h) in
Fig. 12 shows persistent small oscillations of the com-
manded and actual velocity around the desired point.
These oscillations are caused by the large static error of
Q-GPMPC. Therefore, we only analyzed the first 800
steps of data using the Q-GPMPC method.

The experiment shows that the proposed GPMPC
method effectively handles model uncertainty, reduces
static errors, and overcomes visibility constraints in
WMR visual servoing tasks. Furthermore, it demon-
strates robustness to environmental uncertainties.

123



21794 H. Zhu et al.

Fig. 12 Command and real velocities in experiments

6 Conclusion and future works

This paper proposes a GPMPC approach to deal with
the issue of IBVS in WMR with unknown actuator
dynamics. Firstly, a stochastic GP-enhanced model is
learned on-line to approximate the real model using the
GP method. Then, an SMPC formulation is presented
where chance constraints of the state is considered to
ensure visibility of the feature point.Moreover, theTay-
lor expansion techniques is utilized to approximate the
uncertainty propagation when performing the multi-
step forward state prediction. Based on the approxi-
mation results, the SMPC problem is transformed as
a DMPC problem which is solved by iLQG. Finally,
we give two comparison simulations and experiments
to verify the validity of the proposed GPMPC method.
Notice that iLQG-basedMPC requires derivative infor-
mation and Taylor expansion approximation. In con-
trast, the MPPI control framework, which does not
require the calculation of gradients and second-order
approximations, can be easily applied to the real sys-
tem in real time. In future work, we will use the MPPI

strategy to improve the model predictive control algo-
rithm and verify it effectiveness on the actual robot.
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