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Abstract Amemory-free formulation is proposed for
determining the non-stationary stochastic response of
fractional single-degree-of-freedom nonlinear/
hysteretic dynamic systems subjected to combined
periodic and non-stationary stochastic excitations. This
is achieved by decomposing the system response in a
periodic and a zero-mean stochastic component, while
utilizing the memory-free formulation to treat the frac-
tional derivative terms. Specifically, first, the response
decomposition leads to a system of coupled differ-
ential sub-equations of fractional order governing the
deterministic and the stochastic response components.
Then, invoking the memory-free formulation, the cou-
pled systemof equations is transformed into a systemof
deterministic and stochastic differential equations with
integer-order derivatives. Next, a statistical lineariza-
tion method-based framework is proposed for treating
the stochastic sub-equation. This leads to the deter-
mination of the equivalent linear stochastic dynamic
system, as well as of the related Lyapunov differen-
tial equation. Finally, the Lyapunov differential equa-
tion and the deterministic sub-equation with integer-
order derivative are solved simultaneously using stan-
dard numerical algorithms. The applicability and accu-
racy of the proposed semi-analytical method is demon-
strated by pertinent numerical examples.
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1 Introduction

Extensive research has been focused in recent decades
on fractional derivative-based modeling of systems in
diverse scientific fields, such as physics, appliedmathe-
matics and economics [1–4]. In engineering, fractional
calculus has been widely used to model the viscoelas-
tic behavior of materials [5–8], since fractional deriva-
tive modeling necessitates the use of fewer parameters
to achieve better curve fitting of the experimental data
both in time and frequency domain. This aspect enables
the fractional derivative-based models to capture more
efficiently the frequency-dependent force–deformation
relationships of viscoelastic/viscous dampers/isolators
used for response mitigation of mechanical/structural
systems [5,9]. In this regard, theoretical frameworks
developed for stochastic response analyses of nonlinear
systems with standard derivatives have been extended
to account for corresponding systems endowed with
fractional derivative elements [10,11]. Further, meth-
ods such as stochastic averaging [12,13] and statis-
tical linearization [14–19], as well as path integral-
based methods [20,21] have been used successfully for
stochastic response determination of fractional-order
nonlinear systems. Moreover, based on the orthogo-
nality of the harmonic function and the generalized
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harmonic wavelets, a Galerkin method for estimating
stationary and non-stationary response spectra of frac-
tional nonlinear systems has been recently developed
[22,23].

Clearly, the inherent non-local nature of fractional
derivatives potentially leads to computational expen-
sive numerical schemes for determining the system
response, e.g., of order O(N 2), where N denotes
the number of discrete time steps, especially in long
time simulation. In this regard, various solution frame-
works have been proposed for improving the compu-
tational efficiency of such schemes. These include, for
instance, a fixed memory principle [1] and a nested
mesh method [24], which can be used to reduce the
computational cost to the order of O(N log N ). Fur-
ther, a non-classical memory-free formulation (MFF)
was proposed in [25] to transform a system of frac-
tional differential equations with order 0 < q < 1
into a system of ordinary differential equations, fur-
ther reducing in this way the computational cost to the
order of O(N ); see also [26] and [27] for extensions of
the method to account, respectively, for systems with
fractional-order 1 < q < 2 and with arbitrary non-
integer fractional order. Considering the importance of
theMFF for performing deterministic system analyses,
pertinent MFF-based solution frameworks have been
proposed to account for the stochastic response analysis
of fractional dynamic systems (e.g., [28,29]). Recently,
a novel approach that combines the MFF method with
the Wiener path integral technique has been proposed
for solving the joint response distribution of fractional-
order single-degree-of-freedom systems [30]. An alter-
native approach, by assuming Gaussian response, has
been developed that combines the MFF method with
the statistical linearization technique, resulting in sig-
nificant reduction of computational costs [31,32].

In general, modeling the system excitation as a
combined periodic and stochastic action resembles the
externally applied load to diverse engineering problems
and finds applications such as determining the station-
ary and non-stationary response of systems spanning
from energy-harvesting devices [21,33–35], to slender
structures [36,37]. Indicative research on the station-
ary stochastic response determination of an integer-
/fractional-order nonlinear/hysteretic system subjected
to combined excitations can be found in [30,38–43],
and references therein. In addition, considering that
the non-stationary excitation potentially includes sta-
tistical information of significant importance, a sta-

tistical linearization method for determining the non-
stationary stochastic response of integer-order nonlin-
ear systems subjected to combined excitations has been
recently proposed in [44]. In this regard, adopting the
MFF to treat the derivative terms of fractional order,
the method in [44] is extended herein to account for
SDOF fractional systems. Specifically, considering that
the system response is decomposed into a periodic and
a stochastic component leads to a system of coupled
fractional-order differential equations governing each
one of the components. Then, utilizing the MFF, the
fractional-order differential equations are transformed
into two (deterministic and stochastic) sets of state-
space nonlinear equations [25]. The state-space nonlin-
ear stochastic differential equations (SDEs) are treated
by resorting to the statistical linearizationmethod. This
leads to a matrix Lyapunov differential equation gov-
erning the non-stationary variance/co-variance of the
stochastic response vector. Finally, the non-stationary
response of the system is determined by jointly treat-
ing the state-space deterministic differential equations
and the Lyapunov equations. Two numerical examples
are used to demonstrate the applicability and the accu-
racy of the proposed semi-analytical method. These
pertain to a Duffing and a Bouc–Wen hysteretic non-
linear oscillators, both endowed with fractional deriva-
tive elements and subjected to combined stochastic and
periodic excitations. The obtained results are also com-
pared with pertinent Monte Carlo simulation (MCS)-
based estimates.

2 Mathematical formulation

2.1 Equivalent fractional sub-equations of motion

The governing equation of motion of an SDOF non-
linear system endowed with fractional derivative terms
and subjected to combined periodic and non-stationary
stochastic excitation is given by

mẍ(t) + cDq x(t) + kx(t)

+g(x(t), ẋ(t), ẍ(t)) = F(t) + Q(t), (1)

where x(t) denotes the displacement of the system, and
m, c and k are the mass, damping and stiffness coeffi-
cients. Further, Dq(·) represents the Caputo fractional
derivative defined as [1]

Dq x(t) = 1

�(1 − q)

∫ t

0

ẋ(τ )

(t − τ)q
dτ, (2)
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for fractional-order 0 < q < 1, whereas a dot over
a variable denotes differentiation with respect to time.
g(x(t), ẋ(t), ẍ(t)) is the nonlinear restoring force and

Q(t) = a(t)w(t) (3)

is a uniformly modulated non-stationary Gaussian pro-
cess. In Eq. (3), a(t) represents an amplitude modulat-
ing function and w(t) is a zero-mean stationary white
noise process with constant power spectral density S0.
Further,

F(t) =
N∑
l=1

fl cos(ωl t + θl) (4)

is a deterministic periodic excitation, in which fl rep-
resents the amplitude of the l-th harmonic compo-
nent with frequency ωl and angle phase θl , whereas
N denotes the total number of harmonics.

The non-stationary response x of the system in
Eq. (1) can be written as

x(t) = μx (t) + x̂(t), (5)

where μx is the deterministic response component and
x̂ is the zero-mean stochastic component [42,43]. Next,
differentiating twice with respect to time, as well as
applying the fractional-order differentiation on both
sides of Eq. (5) yields

ẍ(t) = μ̈x (t) + ¨̂x(t), ẋ(t) = μ̇x (t) + ˙̂x(t),
Dq x(t) = Dqμx (t) + Dq x̂(t). (6)

Taking into account the expressions in Eqs. (6), (1)
implies

m
(
μ̈x + ¨̂x

)
+ cDq(μx + x̂) + k(μx + x̂)

+g
(
μx + x̂, μ̇x + ˙̂x, μ̈x + ¨̂x

)
= F(t) + Q(t) (7)

or, equivalently,

mμ̈x + cDq(μx ) + kμx

+E
[
g

(
μx + x̂, μ̇x + ˙̂x, μ̈x + ¨̂x

)]
= F(t), (8)

where E [·] represents the mathematical expectation
operator. Note, that the interchangeability between the
stochastic calculus in the mean squared sense and the
expectation is considered for derivingEq. (8). Subtract-
ing Eq. (8) from Eq. (7) yields the following result:

m ¨̂x + cDq(x̂) + kx̂ + h = Q(t), (9)

where

h = g
(
μx + x̂, μ̇x + ˙̂x, μ̈x + ¨̂x

)

−E
[
g

(
μx + x̂, μ̇x + ˙̂x, μ̈x + ¨̂x

)]
. (10)

In this context, the original equation of motion is
transformed into a set of fractional-order differential
sub-equations, which describe the deterministic and
stochastic response components as depicted in Eqs. (8)
and (9), respectively. Specifically, Eqs. (8) and (9) con-
stitute a set of coupled fractional differential equations
to be solved simultaneously for determining the non-
stationary response of the system. This is attained in
the next section by considering appropriate methods,
whose critical characteristic relates to the proper treat-
ment of the fractional derivative elements.

2.2 Memory-free formulation of fractional derivatives

The numerical evaluation of the fractional derivative
Dq x(t), which is defined as the convolution integral in
Eq. (2), requires knowledge of the non-local informa-
tion of the velocity ẋ(t). Therefore, considering a vari-
able substitution method, Dq x(t) is transformed into
an integral over [0,∞). Specifically, first, the Gamma
function is considered

�(q) =
∫ ∞

0
e−ssq−1ds, (11)

where�(q)�(1−q) = π
sin(πq)

, the fractional derivative
in Eq. (2) is reformulated as follows:

Dq x(t)

= sin(πq)

π

∫ t

0

(∫ ∞

0
e−s

(
s

t − τ

)q ds

s

)
ẋ(τ )dτ.

(12)

Introducing the new variable s = (t − τ)y2, becomes
[45]

Dq x(t)

= 2 sin(πq)

π

∫ ∞

0
y2q−1

(∫ t

0
e−(t−τ)y2 ẋ(τ )dτ

)
dy.

(13)

Further, defining φ(y, t) = y2q−1
(∫ t

0 e
−(t−τ)y2

ẋ(τ )dτ) and b0 = 2 sin(πq)
π

, Eq. (13) is written as

Dq x(t) = b0

∫ ∞

0
φ(y, t)dy. (14)

Finally, differentiating the expression for φ(y, t) once
with respect to time results in the following implication:

φ̇(y, t) = y2q−1 ẋ(t) − y2φ(y, t). (15)
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For an in-depth understanding of the MFF, readers are
encouraged to refer to [25,46–48] for detailed presen-
tations and practical applications.

Clearly, Eqs. (14) and (15) do not comprise any
information about the “past” of the system or, equiv-
alently, no information about the “memory” of ẋ(t) is
required. Therefore, Eqs. (14) and (15) represent aMFF
corresponding to the fractional derivative definition in
the Caputo sense. To solve the memory-free equations
numerically, one could approximate the improper inte-
gral in Eq. (14) at arbitrarily assigned discrete points
yi , i = 1, 2, . . . , n. For instance, using the trape-
zoidal rule [29], Eq. (15) can be cast into a state space
form evaluated at yi . Then, the resulting n first-order
state-space equations can be solved by adopting any
standard numerical method with relevant initial condi-
tions. However, the implementation of this numerical
scheme for the MFF is rather computationally expen-
sive, especially since a large number of discrete yi ’s are
required for such a scheme to converge. Nevertheless,
extensions of the Gaussian quadrature method, such
as the Gauss–Laguerre or the Gauss–Jacob quadra-
ture formulation, can be used to reduce the associated
computational cost; see also section “Gauss–Laguerre
quadrature-based approximation.”

Therefore, considering Eq. (14), the MFF for the
fractional derivatives of the deterministic and the
stochastic components of the response (see Eq. 5), is
given by

Dqμx (t) = b0

∫ ∞

0
φ1(y, t)dy,

Dq x̂(t) = b0

∫ ∞

0
φ2(y, t)dy, (16)

where the functions φ1 and φ2 are defined as

φ1(y, t) = y2q−1
(∫ t

0
e−(t−τ)y2 μ̇x (τ )dτ

)
,

φ2(y, t) = y2q−1
(∫ t

0
e−(t−τ)y2 ˙̂x(τ )dτ

)
. (17)

Then, taking into account the expressions in Eqs. (16),
(8) and (9) imply

mμ̈x + cb0

∫ ∞

0
φ1(y, t)dy + kμx + E [g(x, ẋ, ẍ)]

= F(t) (18)

and

m ¨̂x + cb0

∫ ∞

0
φ2(y, t)dy + kx̂ + h = Q(t), (19)

respectively. The functions φ1 and φ2 in Eqs. (18) and
(19) satisfy (15), i.e.,

φ̇1(y, t) = y2q−1μ̇x (t) − y2φ1(y, t),

φ̇2(y, t) = y2q−1 ˙̂x(t) − y2φ2(y, t), (20)

and considering Eq. (17), their initial conditions are
given by φ1(y, 0) = φ2(y, 0) = 0.

Since the evaluation of the fractional-order deriva-
tives depends only on local information of μ̇x (t) and
˙̂x (t), Eqs. (18) and (19) in conjunction with Eq. (20)
represent aMFF of nonlinear/hysteretic SDOF systems
endowed with fractional derivative elements defined in
the Caputo sense and subjected to combined excita-
tions. Specifically, Eqs. (18–20) define a system of cou-
pled deterministic and stochastic state-space differen-
tial equations to be solved simultaneously for determin-
ing the system response. This is attained in the ensuing
analysis by utilizing appropriate numerical methods.
For instance, a brute-force solutionwhich requires sam-
ple responses of the state-space differential equations,
is obtained by applying the MCS method. As men-
tioned previously, the improper integrals in Eqs. (18)
and (19) can be approximated at arbitrarily assigned
discrete points yi , i = 1, 2, . . . , n, by using the trape-
zoidal rule. Then, after casting Eqs. (18–20) into a state
space form, any standard numerical scheme can be uti-
lized to solve the resulting n+ 2 first-order state-space
equations. However, this approach is rather computa-
tionally expensive, since a large number of discrete yi ’s
is needed for the method to converge.

2.3 Gauss–Laguerre quadrature-based approximation

In this section, an efficient numerical scheme is pro-
posed for approximating the integral in Eq. (18). This
is attained by resorting to the Gauss–Laguerre quadra-
ture formula
∫ ∞

0
f (y, t)dy ≈

n∑
i=1

wi e
yi f (yi , t), (21)

where wi and yi , i = 1, 2, . . . , n, denote, respectively,
the Laguerre weights and nodes, and f is an arbitrary
function. Note that the discrete points yi used herein
are no more arbitrarily chosen.

In this regard, using Eqs. (18), (20) and (21), the
deterministic fractional sub-equation of motion shown
in Eq. (8) is cast into the state space form
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ṗ1 = p2, (22)

ṗ2 = F(t)

m
− kp1

m
− E [g]

m

−cb0
m

n∑
i=1

wi e
yi φ1(yi , t), (23)

φ̇1(yi , t) = y2q−1
i μ̇x (t) − y2i φ1(yi , t), (24)

for i = 1, 2, . . . , n, where p = [
p1 p2

]T = [
μx μ̇x

]T
.

Note that E[g(x, ẋ, ẍ)] in Eq. (23) depends on the
unknown joint probability density function of x̂, ˙̂x and
¨̂x . However, for certain forms of the nonlinear func-
tion g(x, ẋ, ẍ) and also by considering the Gaussian
assumption for the system response [49], a closed-form
expression of E[g(x, ẋ, ẍ)] is found in terms of the
deterministic component and the second moment of
stochastic response component; see also in the section
“Numerical examples” for the form of the nonlinear
function g(x, ẋ, ẍ) in case of theDuffing and theBouc–
Wen hysteretic nonlinear oscillators.

Further, additional relationships between the
unknowns are needed to supplement the underde-
termined system of ordinary differential equations
(ODEs) shown in Eqs. (22–24). These are obtained by
considering pertinent approximate expressions for the
stochastic sub-equations shown in Eqs. (19) and (20).
In particular, the utilization of the Gauss–Laguerre
quadrature formula presented in Eq. (21), in combi-
nation with Eqs. (19) and (20), results in the following
set of approximate stochastic differential equations.

m ¨̂x (t) + cb0

n∑
i=1

wi e
yi φ2 (yi , t) + kx̂ (t) + h

= Q (t) , (25)

where

φ̇2 (yi , t) = y2q−1
i

˙̂x (t) − y2i φ2 (yi , t) ,

i = 1, 2, . . . , n. (26)

2.4 Statistical linearization for the approximate
stochastic differential equations

The statistical linearization is one of the most versatile
techniques of random vibration theory for determining
the response statistics of nonlinear systems [49,50].
In this section, considering Eqs. (25) and (26), a sta-
tistical linearization-based framework is developed to
determine the standard deviation of the non-stationary
system response.

In this regard, the equivalent linear system of Eq.
(25) is written as

(m + me) ¨̂x + cb0

n∑
i=1

wi e
yi φ2(yi , t)

+ce ˙̂x + (k + ke)x̂ = Q(t), (27)

where

me = E

[
∂h

∂ ¨̂x
]

, ce = E

[
∂h

∂ ˙̂x
]

, ke = E

[
∂h

∂ x̂

]
(28)

denote, respectively, the equivalent linear mass, damp-
ing and stiffness coefficients, and h is defined in
Eq. (10). Next, Eqs. (26) and (27) are written in the
state space form

q̇(t) = Gq(t) + Q, (29)

where

q = [
x̂ ˙̂x φ2(y1, t) · · · φ2(yn, t)

]T
,

Q =
[
0 Q(t)

m+me
· · · 0

]T
(30)

and

G =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
− k+ke

m+me
− ce

m+me
− a1cb0

m+me
· · · − ancb0

m+me

0 y2q−1
1 −y21 · · · 0

...
...

...
. . .

...

0 y2q−1
n 0 · · · −y2n

⎤
⎥⎥⎥⎥⎥⎥⎦

, (31)

with ai = wi eyi . The Lyapunov equation associated
withEq. (29) for determining the non-stationary covari-
ance matrix is given by

v̇ = GvT + vGT + 	, (32)

where v is the covariance matrix of q, and 	 denotes a
(n + 2) × (n + 2) matrix whose elements are defined
by

θi j =
{

2πa2(t)S0
(m+me)2

, i = j = 2

0 , otherwise
. (33)

2.5 Mechanization of the semi-analytical technique

To further elucidate the preceding development, the
mechanization of the semi-analytical technique is con-
cisely described in this section. First, note that adopt-
ing the Gauss–Laguerre quadrature approximation of
Eq. (21) to treat the deterministic sub-equation leads to
an underdetermined system of n + 2 nonlinear ODEs
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(see Eqs. 22–24). Nevertheless, the Gauss–Laguerre
quadrature approximation of the MFF adopted to treat
the stochastic sub-equation leads to additional n + 2
nonlinear ODEs (see Eqs. 25–26). For the solution of
the system of equations, the proposed semi-analytical
technique involves the following steps:

1. Determine the expectation of the nonlinear term
E[g(x, ẋ, ẍ)] in Eq. (23). Then, obtain the approx-
imate MFF of the deterministic sub-equations in
Eqs. (22–24).

2. Determine the equivalent linear parameters me, ce
and ke of Eq. (28). Substitute me, ce and ke into
Eqs. (31) and (33) to obtain the coefficient matrix
G and the non-homogeneous matrix 	. Then, con-
struct the Lyapunov equation in Eq. (32).

3. Solve Eqs. (32) and (22–24) simultaneously by
applying any standard numerical scheme, such as
theRunge–Kuttamethod, to obtain the deterministic
response and the variance/covariance of the stochas-
tic response.

3 Numerical examples

In this section, the applicability of the proposedmethod
is demonstrated by considering a Duffing and a Bouc–
Wen hysteretic nonlinear oscillators, both endowed
with fractional derivative elements and subjected to
combined stochastic and periodic excitations.

3.1 Duffing oscillator with fractional derivative terms

The equation ofmotion of aDuffing oscillator endowed
with fractional derivative elements and subjected to
combined periodic and non-stationary stochastic exci-
tations is given by

mẍ + cDq x(t) + kx(1 + εx2) = F(t) + Q(t), (34)

where g(x(t), ẋ(t), ẍ(t)) = εkx3 is the nonlinear
restoring force, with ε > 0 denoting the nonlinear-
ity magnitude. Further, without loss of generality, the
periodic excitation is considered as a monochromatic
function, i.e., F(t) = F0 sin(ω0t). The non-stationary
stochastic excitation is written in a separable form as
shown in Eq. (3), with a modulating function

a(t) = H(exp(−μ1t) − exp(−μ2t)), (35)

where the constant H represents the intensity of
the modulating function, and μ1, μ2 are parameters
accounting for its ascent/descent rate.

Next, invoking the Gaussian response assumption,
which is often used in the application of the statistical
linearization for estimating the statistical moments of
nonlinear systems [49], yields

E[g(x, ẋ, ẍ)] = εk(3μxσ
2
x̂ + μ3

x ), (36)

and thus, the equivalent linear parameters defined in
Eq. (28) become

me = 0, ce = 0, ke = 3εk
(
σ 2
x̂ + μ2

x

)
. (37)

Then, theMFF state-space approximation for the deter-
ministic fractional sub-equation is constructed by sub-
stituting Eqs. (36) into (22–24). The coefficient matrix
G and the non-homogeneousmatrix	 in the Lyapunov
equation are calculated by substituting, respectively,
Eqs. (37) and (35) into (31) and (33). Finally, follow-
ing closely the steps described in the section “Mecha-
nization of the semi-analytical technique,” the response
history of the deterministic response componentμx and
the standard deviation of the stochastic response com-
ponent v11 = σx are obtained.

3.1.1 System response under typical parameters

The following sets of parameters are considered for
the numerical implementation:m = 1, c = 0.4, k = 1,
ε = 0.1, q = 0.5 for the system; F0 = 1, ω0 = 1
for the deterministic excitation; and H = 1, μ1 = 0.1,
μ2 = 0.2, S0 = 0.4/π for the random excitation. Fur-
ther, the Laguerre node points n = 2, n = 4 and n = 8
are used for Eq. (21), whereas comparisons with perti-
nent MCS data (10, 000 samples) are used to verify the
accuracy of the proposedmethod. Specifically, the sam-
ples of the stochastic excitation used in theMonteCarlo
simulation are generated by multiplying the modulat-
ing function a(t) in Eq. (35) by white noise samples
synthesized using the spectral representation method
[51].

Comparing the results for the system response
shown in Fig. 1a and b verifies the accuracy of the
proposed method for the resonant situation (ω0 =
ωn = 1), where ωn is the natural frequency of the
corresponding linear oscillator. Specifically, the deter-
ministic response component and the standard devi-
ation of the stochastic response component obtained
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Fig. 1 Displacement of the fractional Duffing oscillator in
Eq. (34) subjected to combined harmonic and stochastic exci-
tations: (a) deterministic component and (b) standard deviation

of the stochastic component; comparisons with MCS-based esti-
mates (10, 000 samples)

by the proposed method are in satisfactory agree-
ment with the corresponding MCS-based estimates.
Besides, the accuracy of the method improves with
an increasing value of n. In this regard, the accuracy
attained for the deterministic response is high even
when n = 2, whereas further increasing the value of
n barely improves the accuracy of the results. On the
contrary, for the stochastic component standard devia-
tion, the value of n affects significantly the accuracy of
the results obtained by the proposed method. Finally,
Fig. 1b shows that the standard deviation obtained by
considering that n = 8 agrees perfectly well with the
MCS data, which clearly exhibits non-stationarity due
to the suddenly applied loading, modulating function
and coupling effect with the harmonic excitation.

3.1.2 System response parametric analysis

The applicability of the proposedmethod under various
parameters is further investigated in this section. For
convenience in comparisons, the time-averagemodulus
(TAM) of the deterministic response is defined as

P = 1

T

∫ T

0

√
μ2
x (t)dt, (38)

where T denotes time duration. Further, the time-
averaged standard deviation (TASTD) of the stochastic
response component is defined as

σ̄ = 1

T

∫ T

0
σ(t)dt. (39)

The variation of the TAM of the deterministic response
and the TASTD of the stochastic response versus vary-
ing nonlinear strength, harmonic excitation amplitude
and frequency, and randomexcitation intensity is inves-
tigated in the following. For each case under considera-
tion, all parameters remain the same as those used in the
section “System response under typical parameters,”
besides the one considered as a varying parameter.

In this regard, first, the applicability of the proposed
method for a Duffing oscillator with different levels
of nonlinearity is investigated. Figure2a and b shows,
respectively, the TAM of the deterministic response
and the TASTD of the stochastic response with vary-
ing nonlinearity. It is observed that the accuracy of the
proposed method improves with an increasing value of
n. Specifically, Fig. 2a shows that for the TAM, the
proposed method yields results with quite high accu-
racy even when n = 2, whereas further increasing the
value of n barely improves the accuracy of the method.
To the contrary, for the TASTD, the proposed method
demonstrates a satisfactory degree of accuracy until
n = 8. Further, both the TAM and the TASTD decrease
with increasing the nonlinearity magnitude. Overall,
the agreement of the results obtained by the proposed
methodwith theMCSdata suggests that themethod can
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Fig. 2 Fractional Duffing oscillator in Eq. (34) subjected to
combined harmonic and stochastic excitations: (a) TAM of the
deterministic response and (b) TASTD of the stochastic response
versus nonlinearity; (c) TAM of the deterministic response and

(d) TASTD of the stochastic response versus the deterministic
excitation amplitude; comparisons with MCS-based estimates
(10, 000 samples)

be readily applied to systems exhibiting strong nonlin-
earities.

Next, the influence of the harmonic excitation ampli-
tude on the applicability of the proposed method is
investigated. Figure2c and d shows, respectively, the
TAM of the deterministic response and the TASTD of
the stochastic response, with varying harmonic exci-
tation amplitude. Clearly, the TAM and the TASTD
obtained by the proposed method are in satisfactory
agreementwith theMCSdata, demonstrating the appli-

cability of the proposed method when a varying har-
monic excitation amplitude is considered. Further, it is
seen that with increasing the value of n, the TASTD
converges to the MCS-based estimate faster than the
TAM does. Finally, it is clear that with increasing the
deterministic excitation frequency, the TAM increases,
whereas the TASTD decreases, which indicates a cou-
pling effect between the deterministic and the stochas-
tic components.
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Fig. 3 Fractional Duffing oscillator in Eq. (34) subjected to
combined harmonic and stochastic excitations: (a) TAM of the
deterministic response and (b) TASTD of the stochastic response
versus harmonic excitation frequency; (c) TAM of the determin-

istic response and (d) TASTD of the stochastic response ver-
sus stochastic excitation strength; comparisons with MCS-based
estimates (10, 000 samples)

Further, the influence of the harmonic excitation fre-
quency on the applicability of the proposed method
is examined. Figure3a and b shows the TAM and
the TASTD versus the harmonic excitation frequency
curves of the considered fractional Duffing oscillator
subjected to combined excitation. It is readily seen that
the TAM and the TASTD obtained by the proposed
method are in reasonable agreement with the corre-
sponding MCS data, which demonstrates that the pro-
posed method can be applied for different harmonic
excitation frequencies. Moreover, increasing the value

of n improves rapidly the accuracy of the method,
especially for the TASTD of the stochastic response.
Next, note that the amplitude–frequency curve shown
in Fig. 3a exhibits an asymmetry peak around ω0 =
1.3, which is reasonable since the curve is similar to
the amplitude–frequency curve of a hardening Duff-
ing oscillator subjected to harmonic excitation only.
Finally, the harmonic excitation frequency has a signifi-
cant influence on theTASTDof the stochastic response,
whose peak value around the resonant frequency ω0 =
1.3 is 2-3 times as the values at lower or higher frequen-
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cies. This indicates a strong coupling effect between the
deterministic and the stochastic components.

Finally, the influence of the stochastic excitation
strength S0, which varies from 10−4 to 102, is inves-
tigated in the context of the applicability of the pro-
posed method. Figure3c and d shows, respectively, the
TAM of the deterministic response and the TASTD
of the stochastic response of the system with vary-
ing stochastic excitation strength. The agreement of
the results obtained by the proposed method and rel-
evant MCS data improves with an increasing value of
n, demonstrating that the proposed method operates
satisfactory well for different levels of stochastic exci-
tation strength. Specifically, the TAM remains almost
the same when 0 < S0 < 1 and then decreases dra-
matically when S0 > 1, whereas the TASTD increases
rapidly within the entire interval of values considered
for S0.

3.2 Bouc–Wen hysteretic oscillator with fractional
derivative terms

In general, models of polynomial nonlinearity can-
not completely characterize the hysteretic behavior of
materials/components/structures under large deforma-
tion. This is due to the hysteretic behavior, which often
leads to a force–deformation relationship depending on
the entire loading history. In this regard, a Bouc–Wen
hysteretic nonlinear oscillator endowed with fractional
derivative terms and subjected to combined stochastic
and periodic excitations is considered in this example.
The system governing equations of motion are written
as

mẍ(t) + cDq x(t) + εkx(t) + (1 − ε)kz(t)

= Q(t) + F(t), (40)

ż(t) = gz(ẋ, z), (41)

where ε denotes the rigidity ratio. As an archetypal hys-
tereticmodel, theBouc–Wenhystereticmodel captured
by the equation [52]

ż(t) = ẋ(A − |z|n (γ sgn(ẋ) sgn(z) + β)) (42)

is used herein for illustration, where A, n, γ and β

are theBouc–Wenhysteretic parameters controlling the
shape of the hysteresis loops. In particular, when n = 1,
Eq. (42) becomes

ż(t) = Aẋ − γ z |ẋ | − β ẋ |z| . (43)

Further, considering that y = [
x z

]T
, Eqs. (40) and

(43) are recast in the matrix form

mÿ + cDqy + ky + g(y, ẏ, ÿ) = F(t) + Q(t), (44)

where the parameter matrices are given by

m =
[
m 0
0 0

]
, c =

[
c 0
0 0

]
, k =

[
εk (1 − ε)k
0 0

]
,

(45)

the vector of the system nonlinearity has the form

g =
[

0
ż − Aẋ + γ z |ẋ | + β ẋ |z|

]
, (46)

and the deterministic and stochastic excitation vectors
are

F(t) =
[
F(t)
0

]
, Q(t) =

[
Q(t)
0

]
. (47)

Note that, although in this case the equation gov-
erning the motion of the fractional oscillator, i.e.,
Eq. (44), is given in a matrix form, the solution treat-
ment proposed in the section “Mechanization of the
semi-analytical technique” is readily applied to obtain
the non-stationary response of the considered hys-
teretic system under combined excitations. Specifi-
cally, Eq. (46) yields

E[g] =
[

0
μż − Aμẋ + γE[z |ẋ |] + β[ẋ |z|]

]
, (48)

where

E[z |ẋ |] = erf

(
μẋ√
2σẋ

)
(ρzẋσzσẋ + μzμẋ )

+
√

2

π
μzσẋ exp

(
− μ2

ẋ

2σ 2
ẋ

)
(49)

and

E[ẋ |z|] = erf

(
μz√
2σz

)
(ρẋ zσxσz + μẋμz)

+
√

2

π
μẋσz exp

(
− μ2

z

2σ 2
z

)
, (50)

with erf(·) denoting the error function.Assuming, next,
that the external excitations F(t) and Q(t) have the
same form with the corresponding excitations consid-
ered in the case of the Duffing oscillator (see section
“Duffing oscillator with fractional derivative terms”),
and adopting the MFF Gauss–Laguerre approximation
of Eqs. (21), (22–24) reduce to
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ṗ1 = p3, (51)

ṗ2 = Ap3 − γE[z |ẋ |] − βE [ẋ |z|] , (52)

ṗ3 = 1

m
(F0 sin(ω0t) − εkp1 − (1 − ε)kp2

−cb0

n∑
i=1

wi e
yi φ1(yi , t)

)
(53)

and

φ̇1(yi , t) = y2q−1
i p3(t) − y2i φ1(yi , t), (54)

where p = [
p1 p2 p3

]T = [
μx μz μẋ

]T
. Further, tak-

ing into account the equivalent linear parameters in
Eq. (28), the corresponding system equivalent linear
matrices are given by

me = 02×2, ce =
[

0 0
−A + γE[z sgn(ẋ)] + βE[|z|] 0

]
,

ke =
[
0 0
0 γE[|ẋ |] + βE[ẋ sgn(z)]

]
, (55)

where

E[z sgn(ẋ)] =
√

2

π
ρzẋσz exp

(
− μ2

ẋ

2σ 2
ẋ

)

+μzerf

(
μẋ√
2σẋ

)
, (56)

E[ẋ sgn(z)] =
√

2

π
ρẋ zσẋ exp

(
− μ2

z

2σ 2
z

)

+μẋerf

(
μz√
2σz

)
, (57)

E(|z|) =
√

2

π
σz exp

(
− u2z
2σ 2

z

)

+uzerf

(
uz√
2σz

)
(58)

and

E(|ẋ |) =
√

2

π
σẋ exp

(
− u2ẋ
2σ 2

ẋ

)
+ uẋerf

(
uẋ√
2σẋ

)
,

(59)

with sgn(·) denoting the signum function. Next, con-
sidering Eqs. (30–31) and (33), Lyapunov equation
Eq. (32) is formulated, where

q = [
x̂ ẑ ˙̂x φ2(y1, t) · · · φ2(yn, t)

]T
,

Q =
[
0 Q(t)

m · · · 0 0
]T

, (60)

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 · · · 0
0 −ke −ce 0 · · · 0

− εk
m

(ε−1)k
m 0 − cb0a1

m · · · − cb0
an

m

0 0 y2α−1
1 −y21 · · · 0

...
...

...
...

. . .
...

0 0 y2α−1
n 0 · · · −y2n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (61)

and

θi j =
{

2πH2(exp(−μ1t)−exp(−μ2t))2S0
m2 , i = j = 3

0, otherwise
.

(62)

Finally, combining Eqs. (32) with (51–54) and also
consideringEqs. (60–62) lead to a systemof differential
equations,which are solved simultaneously by utilizing
a Runge–Kutta numerical scheme.

3.2.1 System response under typical parameters

For the numerical implementation of the proposed
method, a fractional-order Bouc–Wen hystereticmodel
is considered, whose system parameters are m = 1,
c = 0.2, k = 1, ε = 0.5, q = 0.5, whereas A = 1,
n = 1, γ = 0.5, β = 0.5 correspond to the softening
Bouc–Wen parameters. Further, the deterministic exci-
tation parameters are F0 = 1, ω0 = 1, and the non-
stationary stochastic excitation parameters are H = 1,
μ1 = 0.1, μ2 = 0.2 and S0 = 1. Aiming at assessing
the relationship between the number of nodes in the
MFF Gauss–Laguerre approximation and the accuracy
of the proposed method, three separate cases for the
number of nodes are considered in the ensuing analy-
sis, namely, n = 2, n = 4 and n = 8. In addition, MCS
data (10, 000 samples) are used to verify the accuracy
of themethod.The samples of non-stationary stochastic
excitation are generated by using modulated stochas-
tic samples synthesized by the spectral representation
method [51].

The time history of the deterministic response and
the standard deviation of the stochastic response for
the displacement x(t), and the hysteretic displacement
z(t), are shown in Fig. 4a–d, respectively. Clearly, the
results obtained by the proposed method for the system
response agree verywellwith theMCS-based estimates

for the resonant caseω0 = ωn = 1, whereωn =
√

k
m is

the natural frequency of the corresponding linear sys-
tem (ε = 1). Moreover, the accuracy of the method
is improved with increasing the number of nodes in
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Fig. 4 Fractional-order Bouc–Wen nonlinear oscillator in
Eqs. (40) and (41) subjected to combined harmonic and stochas-
tic excitations: (a) deterministic component of the displacement,
and (b) standard deviation of the stochastic component of the

displacement; (c) deterministic component of the hysteretic dis-
placement and (d) standard deviation of the stochastic compo-
nent of the hysteretic displacement; comparisonwithMCS-based
estimates (10, 000 samples)

the Gauss–Laguerre approximation. Further, Fig. 4b
and d shows that due to the coupling effect between
the harmonic and stochastic components, the standard
deviations of stochastic responses exhibit harmonic-
like oscillations, especially in the decaying phase. In
this case, the oscillation amplitude of σẑ is much more
intensive than that of σx̂ .

3.2.2 System response parametric analysis

The applicability of the proposed method for various
sets of parameter values is further examined in the ensu-
ing analysis. Specifically, the TAM of the determinis-
tic response and the TASTD of the stochastic response
defined, respectively, in Eqs. (38) and (39), are com-
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Fig. 5 Fractional-order Bouc–Wen nonlinear oscillator in
Eqs. (40) and (41) subjected to combined harmonic and stochas-
tic excitations: (a) TAM of the deterministic response and (b)
TASTD of the stochastic response versus rigidity ratio; (c) TAM

of the deterministic response and (d) TASTD of the stochastic
component versus the deterministic excitation amplitude; com-
parison with MCS-based estimates (10, 000 samples)

puted for different values of the nonlinear strength, har-
monic excitation amplitude and frequency, and stochas-
tic excitation strength. For each one of the considered
cases, all parameters remain the same as those used in
section “System response under typical parameters,”
besides the varyingparameters under investigation.The
obtained results are compared with pertinentMCS data
(10, 000 samples).

In this regard, Fig. 5a and b shows, respectively, the
TAM of the deterministic response and the TASTD of
the stochastic response, with varying rigidity ratio ε.

Note that the hysteretic system reduces to the corre-
sponding linear system when ε = 1. Clearly, the accu-
racy of the results calculated by the proposed method,
as compared to the MCS-based estimates, improves
with increasing the number of node points n. Further,
both the TAM of the deterministic response and the
TASTD of the stochastic response do not vary mono-
tonically with the rigidity ratio.

Next, the applicability of the proposed method is
investigated in the context of a varying deterministic
excitation amplitude. Note that in this case, the system
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Fig. 6 Fractional-order Bouc–Wen nonlinear oscillator in
Eqs. (40) and (41) subjected to combined harmonic and stochas-
tic excitations: (a) TAM of the deterministic response and (b)
TASTD of the stochastic response versus the deterministic exci-

tation frequency; (c) TAM of the deterministic response and (d)
TASTD of the stochastic response versus the stochastic excita-
tion strength; comparison with MCS-based estimates (10, 000
samples)

reduces to a system subjected to stochastic excitation
only when F0 = 0. Specifically, Fig. 5c shows that
the TAM of the deterministic response increases with
increasing F0, whereas the TASTD of the stochastic
response does not vary monotonically with F0, which
indicates a coupling effect between the deterministic
and the stochastic components. Further, it is seen that
the increasing value of n does not necessarily enhance
the accuracy of the proposed method, especially when
a low level of deterministic excitation amplitude is con-
sidered. Nevertheless, the proposed method exhibits a

satisfactory degree of accuracy, even when n = 2. The
most significant error of the proposed method for the
TASTD when F0 = 0 is less than 10%.

Further, the applicability of the method for differ-
ent harmonic excitation frequencies is examined. Fig-
ure6a shows the TAM versus ω0 curves obtained by
the proposed method and the MCS. Clearly, the TAM
exhibits an asymmetric peak and shares the same fea-
ture as the amplitude–frequency curve of a softening
Bouc–Wen system subjected to harmonic excitation.
Figure6b shows the TASTD versus ω0 curves obtained
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by the proposed method and the MCS. The resonant
interval (around ω0 = 1) of the MCS data exhibits a
skew peak, which is predicted by the proposed method
when n = 8 with a high degree of accuracy. How-
ever, when the excitation frequency is located at the two
ends of the considered frequency intervals, the agree-
ment of the results obtained by the proposed method
and the MCS-based estimates does not improve with
an increasing value of n.

Finally, the applicability of the proposed method is
examined in the context of altering the strength of the
stochastic excitation. This is achieved by considering
that S0 takes values in the interval

[
10−4, 102

]
. The

curves for the TAM of the deterministic response and
the TASTD of the stochastic response with varying S0
are shown in Fig. 6c and d, respectively. Clearly, the
accuracy of the proposed method increases with an
increasing number of nodes n. Further, the TAM of the
deterministic response almost remains the same when
0 < S0 < 1, and then decreases rapidly with increas-
ing values of S0, whereas the TASTD of the stochastic
response increases monotonically with increasing S0.

4 Concluding remarks

A semi-analytical technique has been developed for
determining the non-stationary response of SDOF
nonlinear systems endowed with fractional deriva-
tive elements and subjected to combined periodic and
non-stationary stochastic excitations. This has been
achieved by decomposing the nonlinear equation of
motion into a set of fractional-order nonlinear differ-
ential equations governing the deterministic and the
stochastic response, respectively. Then, combining the
Gauss–Laguerre quadrature with a memory-free for-
mulation for fractional derivatives, the fractional-order
nonlinear differential equations have been approxi-
mated by corresponding nonlinear ODEs and SDEs.
Next, a Lyapunov differential equation corresponding
to the nonlinear SDEs has been obtained by resort-
ing to the statistical linearization method. Finally, the
non-stationary system response has beendeterminedby
solving simultaneously the Lyapunov equation and the
deterministic ODEs. A critical aspect of the proposed
method relates to the number of nodes considered in the
Gauss–Laguerre approximation. Specifically, although
utilizing more Laguerre nodes has been proved to yield
more accurate solutions, as compared to MCS-based

estimates, the method has led to solutions of a satisfac-
tory degree of accuracy even when a relatively small
number of Laguerre nodes have been considered.

The validity of the method has been demonstrated
by pertinent numerical examples, which have shown
its capacity to treat not only fractional SDOF systems
exhibiting nonlinear stiffness of the polynomial type,
but also systems exhibiting hysteretic behavior. Specif-
ically, a Duffing nonlinear oscillator and a Bouc–Wen
hysteretic nonlinear oscillatorwith fractional derivative
terms have been considered. Moreover, a parametric
analysis has demonstrated the applicability of the pro-
posedmethod for awide range of parameter values. The
method can be further extended to systems subjected to
combined periodic and non-stationary stochastic exci-
tation described by non-separable power spectral den-
sities.
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