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Abstract Propagation and exchange of electrical

signals between neurons mainly depend on the con-

trollability of synapses. These electrical signals will

affect the dynamic characteristics of ion channels on

the neuron membrane and the firing activity of neurons

can be changes. Polarization and magnetization of

media exposed to electromagnetic field encode energy

distribution and the neural activities will be changed

greatly. The incorporation of memristors is effective to

estimate the energy effect from the physical field on

neurons. In this work, a charge-controlled memristor

(CCM) and a magnetic flux-controlled memristor

(MFCF) are connected in parallel to a FitzHugh–

Nagumo (FHN) neural circuit for building a new

neural circuit, which can perceive modulation from

external electric and magnetic fields. Furthermore, the

dynamical equation of the memristive neural circuit

and the field energy of electrical elements are obtained

based on Kirchhoff’s law and Helmholtz’s theorem.

The firing patterns of the memristive neuron and

energy proportion can be controlled when the external

electric and magnetic fields are adjusted. Continuous

energy injection into the memristive channels enables

memristive synapses to become self-adaptive under

energy flow. Noisy disturbance and radiation are

applied to discern the occurrence of coherent reso-

nance in this memristive neuron. The results can be

used to explore the collective behaviors and creation

of heterogeneity in networks in the presence of an

electromagnetic field.

Keywords Neural circuit � Biophysical neuron �
Hamilton energy � Helmholtz’s theorem

1 Introduction

Memristor is regarded as a new type of basic circuit

element, and it is used to describe the relationship

between magnetic flux and charge [1–5]. Memristor is

classified into two kinds, magnetic flux-controlled

memristor (MFCM) [6–10] and charge-controlled

memristor (CCM) [11–15]. Most memristors have

nonlinear characteristics, and then chaotic circuits can

be controlled by connecting the memristor and a few

circuit components. Exploring the chaotic behavior

and generation mechanism of memristor-based
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chaotic systems has important applications in signal

processing and artificial neural networks. By now,

many chaotic systems developed from nonlinear

circuits coupled with memristors have been suggested

and some of them can be used in image encryption

applications. For example, continuous memristive

chaotic systems [16–18], fractional-order memristive

chaotic systems [19–21], discrete memristive chaotic

systems [22–24], image encryption algorithms based

on the memristive chaotic systems [25–30] have been

discussed.

The structure and function of the memristor are

very similar to the biological synapse, and then

synaptic modulation of biological neurons can be

reproduced by some memristors. For instance, Guo

et al. [31] investigated synchronization between

photoelectric neurons with memristive synapse cou-

pling. The creation of a memristive synapse for

reaching energy balance between neurons is

researched in [32], and it explains the physical

mechanism for controllability in the memristive

synapse. In addition, an MFCM is used in neurons

that can estimate the effect of electromagnetic induc-

tion and radiation [33–36]. A CCM applied in neurons

can capture the external electric field [37]. That is, the

involvement of memristor in neural circuits and

memristive function in neural networks can be effec-

tive in neuromorphic computing [38–42]. There are

many researches on memristive neural models in

[43–47].

When a neuron receives external electrical signals,

the membrane potential changes to keep a suitable en-

ergy level, and the inner electromagnetic field distri-

bution are also modified. In addition, the neural coding

process is affected by an external electromagnetic

field, which will affect the firing patterns of neurons.

In fact, the application of an external electromagnetic

field can inject energy into neurons, and the firing

modes can be adjusted synchronously. For biological

neurons, the physical energy is often estimated by

using the average power (product of channel current

and membrane potential) and then the average energy

is approached within a certain transient period. For the

functional neural circuits, the equivalent Hamilton

energy can be obtained in two ways. For example, the

physical field energy is mapped into equivalent

Hamilton energy by applying scale transformation

on the physical variables and parameters for the field

energy function. The exact Hamilton energy function

[48–51] for each functional neuron model can be

obtained by using the Helmholtz’s theorem [52–54].

The neuron acts as an electrically charged body and

the electrical activities are changed when it is

activated by an external stimulus. As a result, changes

in magnetic or electric fields can affect the electrical

activity of neurons, and model approach considering

these physical effects becomes important. From

physical viewpoint, combination of memristive chan-

nels is effective to discern the excitation and regula-

tion from external electromagnetic field by developing

neural circuits composed of MFCM and CCM syn-

chronously. It is worthy of investigating the firing

activities and energy proportion for a neuron under the

external electric and magnetic fields when the energy

flow is calculated physically. Therefore, a neural

circuit connected with a couple of memristors is used

to discern the effect of the external electric field and

magnetic field on the investigation of the firing

patterns and energy proportion. In Sect. 2, the func-

tional neuron model under external electric and

magnetic fields is introduced. The numerical simula-

tions of the memristive neural circuit are carried out in

Sect. 3. In Sect. 4, an open problem is described. The

paper ends with a conclusion in Sect. 5.

2 Model and scheme

The fourth branch of the FHN neural circuit is replaced

by applying a CCM and a MFCM is connected in the

fifth branch, and then a functional neuron model is

obtained. This neuron can perceive external physical

fields, and the schematic diagram of its equivalent

circuit is shown in Fig. 1.

The channel current across the CCM in Fig. 1 can

be described by

iM ¼ dq

dt
¼ dq

du
du
dt

¼ dq

du
V ¼ k1ðaþ 3bq2Þ � k2q

V

� �
V

¼ k1Vðaþ 3bq2Þ � k2q;

ð1Þ

where gains (k1, k2) are relative to the intrinsic

physical property of CCM, which can capture energy

from the external electric field. The fifth branch is

realized by using an MFCM [55], and the induction

current across the memristor with memductanceW(u)
can be estimated as follows

123

21918 F. Yang et al.



iW ¼ k3WðuÞV ¼ k3uV;

du
dt

¼ k tanhðuÞ � cuþ dV ;

8<
: ð2Þ

where k3, k, c and d are relative to the material

property of this memristor. According to Kirchhoff’s

law, the dynamics of the memristive circuit presented

in Fig. 1 can be described by

C
dV

dt
¼ VS � V

Rs
� iL � k1Vðaþ 3bq2Þ þ k2q� k3uV ;

L
diL
dt

¼ V � RiL þ E;

dq

dt
¼ k1ðaþ 3bq2ÞV � k2q;

du
dt

¼ k tanhðuÞ � cuþ dV ;

8>>>>>>>>><
>>>>>>>>>:

ð3Þ

To obtain a dimensionless neuron model and

further nonlinear analysis, the scale transformation

for the variables and parameters in Eq. (3) are applied

as follows

x ¼ V

E
; y ¼ RiL

E
; s ¼ t

RC
; c ¼ R2C

L
; z ¼ q

CE
;w ¼ u

RCE
; n ¼ R

Rs
; g ¼ k2RC;

us ¼
VsR

RsE
; a0 ¼ aR;b0 ¼ 3bRC2E2; l ¼ k3R

2CE; c0 ¼ cRC; k0 ¼ kRC;

8>><
>>:

ð4Þ

Indeed, the memristive neuron under an external

field in the equivalent form can be described by

dx

ds
¼ �nx� yþ us � k1ða0 þ b0z2Þxþ gz� lwx;

dy

ds
¼ cðxþ 1� yÞ;

dz

ds
¼ k1xða0 þ b0z2Þ � gzþ Eext;

dw

ds
¼ k0 tanhðwÞ � c0wþ dxþ uext;

8>>>>>>>><
>>>>>>>>:

ð5Þ

where us denotes an external stimulus, Eext and uext

describe the equivalent modulation from the external

electric field and magnetic field on the memristive

neuron. Setting the left-hand side of (5) as 0, it can be

easily found that there is no any equilibrium point

existing in such the memristive neuron model.

Because of no equilibrium point available, the mem-

ristive neuron model is a special nonlinear dynamical

system owning the specific hidden attractors.

Furthermore, Fig. 2 depicts an enhanced neural

circuit built by adding two memristive devices as the

fifth and sixth branches of the FHN neural circuit to

mimic the effect of the magnetic and electric fields.

In Fig. 2, the fourth branch uses a nonlinear resistor

RN [56–58], and its current is estimated as follows

iN ¼ � 1

q
V � V3

3V2
0

� �
; ð6Þ

where q and V0 are resistance and cutoff voltage. iM
and iW are estimated in Eqs. (1–2), according to the

well-known Kirchhoff’s law, the memristive neural

circuit presented in Fig. 2 can be described by

C
dV

dt
¼ VS � V

Rs
� iL � iN � k1Vðaþ 3bq2Þ þ k2q� k3uV ;

L
diL
dt

¼ V � RiL þ E;

dq

dt
¼ k1ðaþ 3bq2ÞV � k2q;

du
dt

¼ k tanhðuÞ � cuþ dV ;

8>>>>>>>>><
>>>>>>>>>:

ð7Þ

The physical variables and parameters in Eq. (7)

are replaced with dimensionless variables

x ¼ V

V0

; y ¼ qiL
V0

; z ¼ q

CV0

; w ¼ u
qCV0

; s ¼ t

qC
; g ¼ k2qC; a

0 ¼ aq; b0 ¼ 3bqC2V2
0 ;

c0 ¼ cqC; k0 ¼ kqC; a ¼ E

V0

; b ¼ R

q
; c ¼ q2C

L
; n ¼ q

Rs
; us ¼

Vsq
RsV0

; l ¼ k3q
2CV0;

8>><
>>:

ð8Þ

As a result, a dimensionless memristive neuron can

be presented in an improved form

Fig. 1 Schematic diagram for memristive neural circuit. Vs

denotes an adjustable voltage source, R and Rs are two linear

resistors, C and L denote capacitor and induction coil, E is a

constant voltage source, M(q) and W(u) represent memory

resistance for CCM and memory conductance for MFCM
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dx

ds
¼ ð1� nÞx� y� 1

3
x3 þ us � k1ða0 þ b0z2Þxþ gz� lxw;

dy

ds
¼ cðxþ a� byÞ;

dz

ds
¼ k1xða0 þ b0z2Þ � gzþ Eext;

dw

ds
¼ k0 tanhðwÞ � c0wþ dxþ uext;

8>>>>>>>><
>>>>>>>>:

ð9Þ

where us is an external stimulus, Eext and uext describe

the equivalent radiation from the external electric field

and magnetic field on the memristive neuron by

regulating the channel variables. Setting the left-hand

side of (9) as 0, it can be easily found that there is no

any equilibrium point existing in such the memristive

neuron model. Because of no equilibrium point

available, the memristive neuron model is a special

nonlinear dynamical system owning the specific

hidden attractors.

The physical energy in the neural circuit presented

in (Figs. 1, 2) mainly keeps in capacitor C, induction

coil L, two kinds of memristors including MFCM and

CCM, and it is estimated by

W ¼ WC þWL þWM þWW ¼ 1

2
CV2 þ 1

2
Li2L þ

1

2
CMV

2
M þ 1

2
LMi

2
W ;

WM ¼ 1

2
CMV

2
M ¼ 1

2
qVM ¼ 1

2
qV ;

WW ¼ 1

2
LMi

2
W ¼ 1

2
u � iW ¼ 1

2
k3u

2V ;

H ¼ W

CE2
¼ HC þ HL þ HM þ HW ¼ 1

2
x2 þ y2

2c
þ 1

2
xzþ 1

2
lw2x;

8>>>>>>>><
>>>>>>>>:

ð10Þ

In fact, a CCM is considered an equivalent capac-

itor with capacitance CM and the MFCM is considered

an equivalent inductor with inductance LM. Therefore,

the inner energy is described by equivalent electric

field energy and magnetic field energy, respectively.

For the memristive neuron, the Hamilton energy H is

made of four parts, and any energy release or injection

will induce changes in energy proportion between

these channels. The energy proportion for each

channel to total energy H is estimated by

p1 ¼
HC

H
; p2 ¼

HL

H
; p3 ¼

HM

H

����
����; p4 ¼ HW

H

����
���� ð11Þ

From a physical viewpoint, external noisy electro-

magnetic radiation can inject energy into the biolog-

ical neurons and neural circuits. According to Eq. (5)

or Eq. (9), external radiation can modulate the phys-

ical flows across the two memristive channels, and the

memristive currents are changed to shunt the energy

propagation. Therefore, the membrane potential and

output voltage from the capacitor of the neural circuit

will be regulated to present different firing modes. In

fact, continuous energy injection and accumulation

may induce shape deformation of the cell, and the

memristive channel will also be modified with

parameter shift for preventing possible damage and

safe energy savage. That is, the memristive parameter

will show a certain shift when the inner field energy in

the memristive channel is beyond a certain proportion

value. In this case, we consider the memristive gains

(k1, l) show certain shift when external electric field

and magnetic field are injected to change the energy

proportion (|HM/HC|, |HW/HL|) as follows

dk1
ds

¼ r1 � k1# e1 �
HM

HC

����
����

� �
;

dl
ds

¼ r2 � l# e2 �
HW

HL

����
����

� �
;

#ðgÞ ¼ 1; g� 0;#ðgÞ ¼ 0; g\0;
0\e1\1; 0\e2\1;

8>>>>>><
>>>>>>:

ð12Þ

where the gains (r1, r2) control the growth of

memristive parameters (k1, l), which shows contin-

uous growth when the energy proportion (|HM/HC|,

Fig. 2 Schematic diagram

for memristive neural

circuit. RN represents a

nonlinear resistor with cubic

relation for the current and

voltage
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|HW/HL|) for the memristive channel is below a

certain threshold (e1, e2). On the other hand, the

memristive gains can also be adjusted adaptively when

its energy level is beyond certain threshold. As a

result, the Hamilton energy for this memristive neuron

will be changed directly until the parameters (k1, l)
reaches a saturation value. That is, most of the

captured energy by this memristive channel is shunted

to other channels, and the memristive current is

controlled before reaching a saturation value in the

presence of external field disturbance.

3 Results and discussion

In this section, the numerical solutions for the neuron

model defined in (Eq. (5), Eq. (9), Eq. (12)) are

obtained by using the four-order Runge–Kutta algo-

rithm. The time step is selected at h = 0.01, the

parameters for the model presented in Eq. (5) are

selected as n = 0.5, c = 0.5, l = 0.1, g = 0.1, d = 0.1,

k1 = 0.1, a� = 0.1, b� = 0.01, c� = 0.2, k� = 0.01,

Eext = 0, uext = 0, the initial values are fixed at (0.2,

0.1, 0.01, 0.01), and external stimulus is selected as

us = Asin(xs). At first, the angular frequency in the

external stimulus is fixed at x = 0.8, the bifurcation

diagram by adjusting amplitude is displayed in

Fig. 3a. By using the same parameters and initial

values, the amplitude is selected as A = 0.6, and the

bifurcation diagram by changing angular frequency is

calculated in Fig. 3b. The Largest Lyapunov exponent

(LLE) are calculated in Fig. 3c, d.

Figure 3 confirmed that firing patterns in the

memristive neuron present distinct periods, and it

seldom shows bursting and chaotic firing patterns

because the cubic term is missing. That is, the

nonlinear resistor is essential for neural circuits to

induce (bursting, spiking, chaotic) firing activities.

Furthermore, the parameters and initial values are kept

as above, the amplitudes are selected as A = 0.1 and

A = 0.6, firing patterns and energy proportion for the

memristive neural circuit are calculated in Figs. 4 and

5.

It is found that the neuron presents in periodic

modes when capacitive field energy occupies a distinct

percentage more than other electric elements. It is

Fig. 3 Bifurcation diagram

and LLE for the neuron in

Eq. (5) by changing the

external forcing current. a,
c x = 0.8; b, d A = 0.6.

xpeak represents the maximal

value of membrane potential

x

Fig. 4 Firing modes for the

memristive neuron in

Eq. (5) under different

intensities at x = 0.8.

a A = 0.1; b A = 0.6
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interesting to investigate the effect of external electric

and magnetic fields on the firing activity of the

memristive neuron and the energy proportion of each

electric component. The parameters and initial values

keep the same as above, the external stimulus

us = 0.6sin(0.8s). The bifurcation diagram and LLE

by changing the external magnetic field uext and the

external electric field Eext are plotted in Fig. 6.

It is confirmed that the memristive neural circuit

shows periodic states by adding an external electric

field or magnetic field. In addition, firing patterns and

energy proportion are shown in Figs. 7 and 8.

Figures 7 and 8 show that neuron keeps periodic

firing patterns even if disturbance from the electric

field or magnetic field is considered, and the capacitive

energy is larger than inductive field energy. It is

interesting to investigate the same case when the cubic

Fig. 5 Energy proportion for the memristive neuron. a A = 0.1; b A = 0.6. Energy proportion (p1, p2, p3, p4) is calculated within 1000
time units and angular frequency x = 0.8

Fig. 6 Bifurcation diagram

and LLE for the neuron

presented in Eq. (5) by

activating the external

electric field or magnetic

field. a uext = 0; b Eext = 0;

c uext = 0.5; d Eext = 0.5.

Setting x = 0.8, A = 0.6.

xpeak represents the maximal

value of membrane potential

x

123

21922 F. Yang et al.



term is considered in this memristive neuron shown in

Eq. (9). In this case, the external stimulus us-
= Asin(xs). The parameters are selected as a = 0.8,

b = 0.7, c = 0.1, n = 0.25, l = 0.01, g = 0.2, d = 0.1,

k1 = 0.01, a� = 0.1, b� = 0.01, c� = 0.1, k� = 0.01,

Eext = uext = 0. The initials are fixed at the same

values (0.2, 0.1, 0.01, 0.01). The bifurcation analysis

and LLE are plotted in Fig. 9.

Due to the nonlinear modulation from the cubic

term on the membrane potential, the memristive

neuron can present a complete mode transition and

keep certain firing patterns (bursting, spiking, peri-

odic, chaotic) when external forcing is changed. In

addition, the firing patterns and the relationship

between frequency (f) and amplitude (A) are calcu-

lated in Fig. 10.

The results illustrate that the memristive neuron

shows four different firing modes, which are depen-

dent on the exciting frequency. The relationship

between frequency and amplitude indicates that

chaotic pattern has a continuous power spectrum,

periodic modes have corresponding spikes. Obvi-

ously, periodic-I pattern has one spike, periodic-II has

two spikes, and periodic-IV has four spikes. Further-

more, the energy proportion of the electric elements is

calculated in Fig. 11 for sole neurons presenting

different firing patterns.

The results confirmed that the neuron will present

periodic (bursting, spiking) firing modes when field

energy in the inductor is larger than that of the other

element. The neural circuit show periodic (I, II, IV) or

chaotic states, when filed energy in the capacitor, is

kept the higher proportion. Furthermore, we explore

the effect of external electric and magnetic fields on

firing activity of memristive neural circuits. The

parameters and initial values are chosen as above,

and the bifurcation diagram and LLE for this neuron is

shown in Fig. 12 by activating the external electric or

magnetic field with different intensities.

From Fig. 12, it is demonstrated that the external

physical field has an important impact on mode

transition in this memristive neuron. Furthermore,

the same case for firing patterns and energy proportion

for this neuron is calculated in (Figs. 13, 14) by taming

the intensity for the external electric and magnetic

field.

The firing patterns become periodic or chaotic

when the external electric field or magnetic field is

activated with different intensities. Furthermore, the

energy proportion of the neuron under the external

electric field or magnetic field is calculated in Fig. 14.

The results in Fig. 14 indicate that memristive

neuron mainly keeps the field energy mainly in

capacitor, and capacitive energy occupies higher a

Fig. 7 Firing modes for the

memristive neuron in

Eq. (5) under the

electromagnetic field.

a Eext = 0.01, uext = 0;

b uext = 0.01, Eext = 0;

c Eext = 0.01, uext = 0.01.

Setting x = 0.8, A = 0.6

Fig. 8 Energy proportion for neural circuit presented in Eq. (5) by adding the external electric field or magnetic field. a Eext = 0.01,

uext = 0; b uext = 0.01, Eext = 0; c Eext = 0.01, uext = 0.01. Energy proportion (p1, p2, p3, p4) is calculated within 1000 time units
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proportion than inductive field energy. In addition, we

explore the case that the external electric and magnetic

field fluctuates in periodic form Eext = A1-

sin(0.8s ? 0.1), uext = A2sin(0.8s ? 0.1). Setting

the same values for parameters as a = 0.8, b = 0.7,

c = 0.1, n = 0.25, l = 0.01, g = 0.2, d = 0.1,

k1 = 0.01, a� = 0.1, b� = 0.01, c� = 0.1, k� = 0.01,

us = 0.6sin(0.8s), and initials are fixed at (0.2, 0.1,

0.01, 0.01). Figure 15 calculated bifurcation diagram

and LLE when the external field is changed.

Similar to the case that the external electric and

magnetic field is kept as constants, the memristive

neuron shows a mode transition from chaotic to

periodic firing patterns, and the firing modes and

energy proportion are shown in Figs. 16 and 17.

From Fig. 17, the neuron prefers to present

(chaotic, periodic) firing patterns when the capacitive

field energy proportion is maintained higher level.

According to the criterion for growth of memristive

parameter presented in Eq. (12), the parameters are

kept as a = 0.8, b = 0.7, c = 0.1, n = 0.25, l = 0.01,

g = 0.2, d = 0.1, a� = 0.1, b� = 0.01, c� = 0.1, k� =

0.01, us = 0.6sin(0.8s), e1 = 0.5, r1 = 0.02, uext = 0,

external disturbance from electric field is applied to

explore the adaptive growth of memristive parameter

for CCM in Fig. 18.

As presented in Fig. 18, the memristive parameter

k1 reach a saturation value within a certain transient

period and the energy proportion is adjusted to

regulate the firing modes in this neuron. Continuous

energy injection and absorption can induce finite

shape deformation and one of the intrinsic parameters

shows finite shift as well. It is interesting to explore the

mode transition when the memristive parameter is

adjusted, and the firing modes for this neuron are

displayed in Fig. 19.

It is confirmed that the chaotic patterns are

suppressed to present periodic modes when the

memristive synapse is controlled adaptively by the

external electric field. The energy level is dependent

on the firing modes, as a result, mode transition

predicts a possible jump between energy levels.

Therefore, the energy proportion for this neuron

showing mode transition is calculated in Fig. 20.

From Fig. 20, when the external electric field is

adjusted, and field energy in mainly kept in capacitive

form because the initial firing mode is switched to

become periodic type. Furthermore, the growth of

memristive parameter c� is considered when the

external magnetic field is changed with uext in Fig. 21.

Similar to the growth of memristive parameter k1,

the memristive parameter l presents a steady state

Fig. 9 Bifurcation diagram and LLE for the memristive neuron in Eq. (9) by adjusting the external stimulus. a, c A [ [0, 2], x = 0.8;

(b, d) x [ [0, 2], A = 0.6
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within certain transient period. In presence of noisy

disturbance from magnetic field, the memristive gain

for MFCM shows slight fluctuation when energy in the

memristive channel is further increased to occupy

more proportion in inductive energy. Mode transition

in neural activities is presented in Fig. 22 for this case.

The chaotic patterns in this memristive neuron are

controlled to present periodic types during the changes

of external magnetic field, which enables adaptive

growth of memristive parameter. Furthermore, energy

proportion for this memristive neuron exposed to

magnetic field is estimated in Fig. 23 considering the

adaptive growth and modulation in the memristive

synapse/channel.

In this case, field energy is mainly kept in the

inductive channel, and there is a slight difference in

the energy proportion of electric components by

applying different types of magnetic fields. Further-

more, the growth of memristive parameters (k1, l) are
calculated in Fig. 24 by applying different types (Eext,

uext), which can estimate the dynamics of this

memristive neuron when both electric field and

magnetic field are applied to control the energy flow.

Evolution of firing patterns and energy proportion for

this neuron are shown in Figs. 25 and 26.

Fig. 10 Firing patterns for the memristive neuron in Eq. (9) at

A = 0.6. a bursting for x = 0.01; b spiking for x = 0.1;

c periodic-I firing for x = 0.32; d periodic-II firing for

x = 0.4; e periodic-IV firing for x = 0.72; f chaotic firing for

x = 0.8. f denotes the frequency and A represents the amplitude
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When two kinds of physical fields are applied,

energy flow can be absorbed from two memristive

channels and the energy is shunted to control the

growth of memristive parameters. It is found that these

memristive parameters can be increased adaptively for

regulating the energy flow in different channels.

Furthermore, changes in the membrane potential are

presented in Fig. 25 for showing the effect of external

fields on mode selection.

The activation and involvement of magnetic field

and electric field synchronously can suppress chaotic

activities and the neuron prefers to keep periodic

oscillation with lower amplitude. In addition, energy

shunting between capacitive and inductive channels is

plotted in Fig. 26.

It is found that energy is mainly kept in inductive

channels and adaptive growth in two memristive

channels are effective to trigger mode transition for

keeping suitable energy level. In fact, external stimuli

can be combination of different periodic signals and

then its equivalent stimulus can be approached by

using filtered signals from chaotic source. It is

interesting to explore the energy distribution of the

neural circuit driven by irregular external electric and

magnetic fields. However, chaotic signals are similar

to random signals; in this case, the output voltage from

PR (Pikovskii-Rabinovich) chaotic system [59] is

selected as the external electric and magnetic fields,

and its dynamics can be estimated by

dx1
ds

¼ y1 � 0:66z1;

dy1
ds

¼ �x1 þ 0:402y1 þ 0:165z1

dz1
ds

¼ 1

0:047
ðx1 þ z1 � z31Þ;

8>>>>><
>>>>>:

; ð13Þ

When the initial values are fixed at (0.1, 0.1, 0.1),

the chaotic attractor and time series for variable x1 and

x2 are presented in Fig. 27.

From Fig. 27, the output values of the chaotic

system are distributed in (-2, 2). To discern the effect

of the irregular electric and magnetic fields on the

firing activities and energy proportion of channels in

memristive circuit, setting Eext = x1 for external

electric field, uext = y1 for magnetic field. The

parameters are selected as a = 0.8, b = 0.7, c = 0.1,

n = 0.25, g = 0.2, d = 0.1, l = 0.01, a� = 0.1, b� =

0.01, c� = 0.1, k� = 0.01, us = 0.6sin(0.8s), the firing
modes are displayed in Fig. 28.

The results in Fig. 28 show that the memristive

neuron presents the periodic firing patters by imposing

the external electric field Eext = x1 without the external

magnetic field uext = y1. While the memristive circuit

shows chaotic firing patterns when the external

magnetic field uext = y1 is activated. In presence of

chaotic form for the external magnetic field and

Fig. 11 Energy proportion for the memristive neuron in Eq. (9)

showing different firing modes. a bursting firing for x = 0.01;

b spiking firing for x = 0.1; c periodic-I firing for x = 0.32;

d periodic-II firing for x = 0.4; e periodic-IV firing for

x = 0.72; f chaotic firing for x = 0.8. Energy proportion (p1,
p2, p3, p4) is calculated within 1000 time unites and A = 0.6
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electric field, the neuron is guided to show chaotic

patterns. Furthermore, the energy proportion in the

neuron under electromagnetic in chaotic form is

calculated in Fig. 29.

It is confirmed in Fig. 29 that field energy mainly

keeps in inductor when chaotic disturbance from the

electric and magnetic fields are imposed on the

neuron. In the nervous system, noise stimulation can

increase the human body’s observation and reflection

of external weak signals under nonlinear resonance.

Coherence resonance refers to the phenomenon that

when the nervous system is subjected to noise, the

intensity of the noise can be carefully adjusted to

induce distinct regular states. To investigate whether

coherence resonance can occur in this memristive

model presented in Eq. (9), for simplicity, the Gaus-

sian white noise is added in the external electric field

and magnetic field respectively. The average of

Gaussian white noise is\ n(s)[ = 0, and the statis-

tical correlation can be represented as\ n(s) n(s’)[

Fig. 12 Bifurcation diagram and LLE for the neuron by adding

different intensities in electric field and magnetic field. a,
e Eext [ [0, 1], uext = 0; b, f uext [ [0, 1], Eext = 0; (c, g)

Eext [ [0, 1], uext = 0.01; d, h uext [ [0, 1], Eext = 0.01. xpeak
represents the maximal value of membrane potential x, A = 0.6,

x = 0.8
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= 2Dd(s-s’) with any noise intensity D. To observe

the generation of coherent resonance phenomenon, the

coefficient of variation (CV) is calculated under

different noise intensities, the approach of CV is

defined as follows

CV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
\T2 [ �\T [ 2

p

\T[
;

\T [ ¼ 1

N

XN
i¼1

Ti; \T2 [ ¼ 1

N

XN
i¼1

T2
i ;

Ti ¼ ti � ti�1 ;

8>>>><
>>>>:

ð14Þ

where ti is time of the ith pulse, Ti denotes the ith

interspike interval, N represents total number of action

potentials produced by neuron in a given time. The

Fig. 13 Firing modes for the neuron in Eq. (9) in the presence

of the external electric field or magnetic field. a chaotic firing for
Eext = 0.01, uext = 0; b periodic firing for Eext = 0.05, uext = 0;

c chaotic firing for Eext = 0, uext = 0.01; d periodic firing for

Eext = 0, uext = 0.4; e chaotic firing for Eext = 0.01, uext = 0.01;

f periodic firing for Eext = 0.01, uext = 0.4. Setting A = 0.6,

x = 0.8

Fig. 14 The energy proportion for the neuron in Eq. (9) when

the external electric field or magnetic field is changed. a chaotic
firing for Eext = 0.01, uext = 0; b periodic firing for Eext = 0.05,

uext = 0; c chaotic firing for Eext = 0, uext = 0.01; d periodic

firing for Eext = 0, uext = 0.4; e chaotic firing for Eext = 0.01,

uext = 0.01; f periodic firing for Eext = 0.01, uext = 0.4. Energy

proportion (p1, p2, p3, p4) is calculated within 1000 time units,

A = 0.6, x = 0.8
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parameters and initial values are kept as above, the CV

is calculated by applying different noise intensities,

and the results are depicted in Fig. 30.

From Fig. 30, the CV can detect smallest value

when the intensity of noisy field is adjusted carefully,

and the memristive neuron can generate coherent

resonance phenomenon and prefer to show regular

firing patterns.

In a summary, the firing activities of the neuron will

be changed under the effect of the external electric

field or magnetic field, and the physical field energy is

also changed because of external energy injection. The

memristive channel and synapse can control its

biophysical property adaptively. Neurons show (burst-

ing, spiking) firing modes when field energy is mainly

kept in the inductor. Neurons can present (periodic,

chaotic) firing patterns when field energy is kept in

capacitor. The involvement of MFCM and CCM can

enhance the ability of neural circuit to discern external

physical effect and the artificial synapses and mem-

ristive channels become more controllable.

Fig. 15 The bifurcation diagram and LLE by adjusting the amplitude of the external field at us = 0.6sin (0.8s). For a, e A1 [ [0, 5],

uext = 0; b, f A2 [ [0, 6], Eext = 0; c, g A1 [ [0, 5], A2 = 0.6; d, h A2 [ [0, 6], A1 = 0.6
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4 Open problems

Above all, the physical effect is described by using

independent channels, which energy flow for magnetic

field and electric field is considered in different

channels. In fact, memristive channel has certain

dependence of the induced current associated with

magnetic field. Therefore, a CCM is used to connect

the inductor of the neural circuit and additive mem-

ristive channel is also supplied to estimate the energy

exchange in the neural circuit in Fig. 31.

The channel current across the CCM and MFCM

can be described by the same form in Eq. (1), Eq. (2),

respectively. The same nonlinear resistor defined in

Eq. (6) is also applied to shunt energy between

capacitive and inductive field. The dynamics for the

neural circuit in Fig. 31 can be described by

C
dV

dt
¼ VS � V

Rs
� iL � iN � k3uV;

L
diL
dt

¼ V � iL
k1ðaþ 3bq2Þ þ E;

dq

dt
¼ iL;

du
dt

¼ k tanhðuÞ � cuþ dV ;

8>>>>>>>>><
>>>>>>>>>:

ð15Þ

Fig. 16 The firing modes

for the neuron in Eq. (9) by

applying the external

electric and magnetic field

in periodic form at

us = 0.6sin (0.8s).
a A1 = 0.5, uext = 0;

b A1 = 0.9, uext = 0;

c Eext = 0, A2 = 0.5;

d Eext = 0, A2 = 4;

e A1 = 0.6, A2 = 0.6;

f A1 = 0.9, A2 = 0.6

Fig. 17 The energy proportion for the neuron in Eq. (9) by

applying the external electric and magnetic field in periodic

form. a A1 = 0.5, uext = 0; b A1 = 0.9, uext = 0; c Eext = 0,

A2 = 0.5; d Eext = 0, A2 = 4; e A1 = 0.6, A2 = 0.6; f A1 = 0.9,

A2 = 0.6. Energy proportion (p1, p2, p3, p4) is calculated within

1000 time unites and us = 0.6sin (0.8s)
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Similar scale transformation for physical variables

in Eq. (15) is applied as follows

x ¼ V

V0

; y ¼ qiL
V0

; z ¼ q

CV0

;w ¼ u
qCV0

; s ¼ t

qC
; a0 ¼ aq; b0 ¼ 3bqC2V2

0 ;

c0 ¼ cqC; k0 ¼ kqC; a ¼ E

V0

; c ¼ q2C
L

; n ¼ q
Rs

; us ¼
Vsq
RsV0

; l ¼ k3q
2CV0;

8>><
>>:

ð16Þ

As a result, a new memristive neuron is updated as

follows

Fig. 18 The growth of the memristive parameter k1 for the

neuron exposed to the external electric field Eext. a Eext = 0.1;

b Eext = 0.6sin (0.8s ? 0.1); c Noisy Eext with intensity 0.1.

Setting us = 0.6sin (0.8s), e1 = 0.5, r1 = 0.02, uext = 0 and

initial value for k1 = 0.01

Fig. 19 The firing modes in the memristive neuron with adaptive growth in parameter Eext. a Eext = 0.1; b Eext = 0.6sin (0.8s ? 0.1);

c Noisy Eext with intensity 0.1. Setting us = 0.6sin (0.8s), e1 = 0.5, r1 = 0.02, uext = 0, and initial value for k1 = 0.01

Fig. 20 The energy proportion for the neuron with growth of

the memristive parameter under electric field Eext. a Eext = 0.1;

b Eext = 0.6sin (0.8s ? 0.1); cNoisy Eextwith intensity 0.1. The

initial values are fixed at (0.2, 0.1, 0.01, 0.01, 0.01). Energy

proportion (p1, p2, p3, p4) is calculated within 1000 time unites,

and us = 0.6sin (0.8s), e1 = 0.5, r1 = 0.02, uext = 0, initial value

for k1 = 0.01
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Fig. 21 Growth of memristive parameter l when external magnetic field is disturbed with uext. a uext = 0.01; b uext = 0.6sin

(0.8s ? 0.1); c Noisy uext with intensity 0.1. Setting us = 0.6sin (0.8s), e2 = 0.5, r2 = 0.02, Eext = 0, and initial value for l = 0.01

Fig. 22 Firing modes for neuron with growth of memristive parameter under magnetic field uext. a uext = 0.01; b uext = 0.6sin

(0.8s ? 0.1); c Noisy uext with intensity 0.1. Setting us = 0.6sin (0.8s), e2 = 0.5, r2 = 0.02, Eext = 0, and initial value for l = 0.01

Fig. 23 Energy proportion for neuron with growth of memris-

tive parameter under magnetic field uext. a uext = 0.01; b uext-

= 0.6sin (0.8s ? 0.1); c Noisy uext with intensity 0.1. Energy

proportion (p1, p2, p3, p4) is calculated within 2000 time unites,

us = 0.6sin (0.8s), e2 = 0.5, r2 = 0.02, Eext = 0, and initial value

for l = 0.01
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Fig. 24 Growth of memristive parameters (k1, l) by applying

different types (Eext,uext) for electromagnetic field. a Eext = 0.1,

uext = 0.01; c Eext = uext = 0.6sin (0.8s ? 0.1). Setting

us = 0.6sin (0.8s), e1 = 0.5, e2 = 0.2 r1 = 0.01, r2 = 0.02 and

initial values k1 = 0.01, l = 0.1

Fig. 25 Firing modes for neuron under electromagnetic field

(Eext, uext). a uext = 0.01, Eext = 0.1; b uext = 0.6sin

(0.8s ? 0.1), Eext = 0.1sin (0.8s ? 0.1); c Noisy uext and Eext

are selected with intensity 0.1. Setting us = 0.6sin (0.8s),
e1 = 0.5, e2 = 0.2 r1 = 0.01, r2 = 0.02 and initial values

k1 = 0.01, l = 0.1

Fig. 26 Energy proportion for neuron under electromagnetic

field (Eext, uext). a uext = 0.01, Eext = 0.1; b uext = 0.6sin

(0.8s ? 0.1), Eext = 0.1sin (0.8s ? 0.1); c Noisy uext and Eext

are selected with intensity 0.1. Setting us = 0.6sin (0.8s),

e1 = 0.5, e2 = 0.2 r1 = 0.01, r2 = 0.02 and initial values

k1 = 0.01, l = 0.1. Energy proportion (p1, p2, p3, p4) is

calculated within 1000 time unites
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dx

ds
¼ ð1� nÞx� y� 1

3
x3 þ us � lxw;

dy

ds
¼ cðxþ a� y

k1ða0 þ b0z2ÞÞ;
dz

ds
¼ yþ Eext;

dw

ds
¼ k0 tanhðwÞ � c0wþ dxþ uext;

8>>>>>>>>><
>>>>>>>>>:

ð17Þ

where us is an external voltage source, Eext and uext

describe the equivalent radiation from external electric

field and magnetic field on the memristive neuron.

These intrinsic parameters and external stimuli can be

adjusted to find mode transition, stochastic resonance

and energy dependence on firing mode even noisy

disturbance is applied.

Indeed, the obtained biophysical neuron considers

the energy effect from both the electric field and

magnetic field, and the energy level is well addressed.

In the presence of the distinct firing mode, the energy

level becomes stable. Under multiple firing modes,

different firing patterns are coexistent with each other

and switch between different energy levels are

triggered. In particular, the energy function is obtained

in a theoretical way. This neuron model can be further

Fig. 27 Phase portrait and time series. a attractor phase in x1–y1 space; b time series for the variable x1; c time series for the variable y1.
The initial values are fixed at (0.1, 0.1, 0.1)

Fig. 28 Firing modes for

memristive neuron in

Eq. (9) by imposing

irregular external electric

and magnetic fields.

a uext = 0, Eext = x1;
b uext = y1, Eext = 0;

c uext = y1, Eext = x1

Fig. 29 Energy proportion for neuron in Eq. (9) excited by irregular external electric and magnetic fields. a uext = 0, Eext = x1;
b uext = y1, Eext = 0; c uext = y1, Eext = x1. Energy proportion (p1, p2, p3, p4) is calculated within 1000 time unites
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used to explore the collective patterns and energy

distribution in neural networks, and then the role of

energy balance can be further understood [60–63].

5 Conclusions

A memristive neural circuit sensitive to the electric

and magnetic fields is proposed and its energy

characteristic is discussed. The field energy of this

neural circuit is estimated by using the Hamilton

energy based on the famous Helmholtz’s theorem. The

electrical activities and field energy distribution of the

memristive neural circuit under the different types of

the external electric and magnetic fields are analyzed

in detail. The numerical results illustrate that neuron

show (bursting, spiking) firing modes when field

energy mainly keeps in the inductor. It prefers to keep

(periodic, chaotic) firing patterns when capacitive field

energy maintains a higher level. Energy injection and

accommodation can induce shape deformation accom-

panied by a shift in memristive channels, the neuron

shows mixed firing patterns, and the field energy

mainly depends on the activation of the inductor. In

addition, the neuron model is in (periodic, chaotic)

firing states when the external electric and magnetic

field are imposed with irregular signal sources.

Furthermore, the coherent resonance of the memris-

tive neuron can be induced by selecting the appropri-

ate noise intensity for the external field. This result is

helpful to investigate the collective behaviors in the

different networks under the external electric and

magnetic fields.
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Appendix A: Approach of energy proportion

in memristive neuron model

p1 ¼
R T

0
1
2
x2dsR T

0
1
2
x2 þ 1

2c
y2

� 	
dsþ

R T

0
1
2
xzds

��� ���þ R T

0
1
2
lw2xds

��� ���
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i¼1
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x2i
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i¼1
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2
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PN
i¼1

1
2c y

2
i þ

PN
i¼1

1
2
xizi

����
����þ PN

i¼1

1
2
lw2

i xi

����
����
;

p2 ¼
R T

0
1
2c y

2dsR T

0
1
2
x2 þ 1

2c y
2

� 	
dsþ

R T

0
1
2
xzds

��� ���þ R T

0
1
2
lw2xds

��� ���

�

PN
i¼1

1
2c
y2i

PN
i¼1

1
2
x2i þ

PN
i¼1

1
2c
y2i þ

PN
i¼1

1
2
xizi

����
����þ PN

i¼1

1
2
lw2

i xi

����
����
;

p3 ¼

R T

0
1
2
xzds

��� ���
R T

0
1
2
x2 þ 1

2c y
2

� 	
dsþ

R T

0
1
2
xzds

��� ���þ R T

0
1
2
lw2xds

��� ���

�

PN
i¼1

1
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����þ PN
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1
2
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i xi

����
����
;

p4 ¼

R T

0
1
2
lw2xds

��� ���
R T

0
1
2
x2 þ 1

2c y
2

� 	
dsþ

R T

0
1
2
xzds

��� ���þ R T

0
1
2
lw2xds

��� ���

�

PN
i¼1

1
2
lw2

i xi

����
����

PN
i¼1

1
2
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PN
i¼1

1
2c y

2
i þ

PN
i¼1

1
2
xizi

����
����þ PN

i¼1

1
2
lw2

i xi

����
����
;

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð18Þ

Appendix B: The proof of the Hamilton energy

for the memristive neuron by applying a Helmholtz

theorem

The memristive neuron model in Eq. (5) is rewritten

with equivalent form as follows

_x

_y

_z

_w

0
BBBBB@

1
CCCCCA

¼

us � nx� y� k1xða0 þ b0z2Þ þ gz� lwx

cðxþ 1� yÞ

k1xða0 þ b0z2Þ � gzþ Eext

k0 tanhðwÞ � c0wþ dxþ uext

0
BBBBB@

1
CCCCCA

¼ Fc þ Fd

¼

� y� 1

2
k1a

0x� dlwx

cx

k1a
0x

dxþ a1 þ
1

2x
wyþ a2

0
BBBBBBBB@

1
CCCCCCCCA

þ

us � nx� k1xb
0z2 þ gzþ 3

2
k1a

0x� lwxþ dlwx

cð1� yÞ

k1b
0xz2 � gz þ Eext

k0 tanhðwÞ � c0wþ uext � a1 �
1

2x
wy� a2

0
BBBBBBBB@

1
CCCCCCCCA

¼

0 �c �k1a0 �d

c 0 � cz

x
� cw

2x

k1a0
cz

x
0 �a2

d
cw

2x
a2 0

0
BBBBBB@

1
CCCCCCA

xþ z

2
þ lw2

2
y

c
x

2

lwx

0
BBBBBBBBB@

1
CCCCCCCCCA

þ

a11 0 0 0

0 c2
1

y
� 1

� �
0 0

0 0 2k1b
0z2 � 2

x
gzþ 2

x
Eext 0

0 0 0 a44

0
BBBBBB@

1
CCCCCCA

xþ z

2
þ lw2

2
y

c
x

2

lwx

0
BBBBBBBBB@

1
CCCCCCCCCA
;

ð19Þ

a1 ¼ d
1

2
zþ 1

2
lw2

� �
;

a2 ¼
k1a0 1

2
zþ 1

2
lw2

� 	
þ wy

x

2lw
;

a11 ¼
2ðus � nx� k1xb

0z2 þ gzþ 3
2
k1a0x� lwxþ dlwxÞ

2xþ zþ lw2
;

a44 ¼
k0 tanhðwÞ � c0wþ uext � a1 � 1

2x wy� a2

lwx

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð20Þ

According to the Helmholtz theorem, the dimen-

sionless Hamilton energy H for the neuron model

meets the following criterion.
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rHTFcðx; y; z;wÞ ¼ 0; rHTFdðx; y; z;wÞ ¼
dH

ds
;

ð21Þ

Therefore, the energy function can be an exact

solution for the formula as follows

�y� 1

2
k1a

0x� dlwx

� �
oH

ox
þ ðcxÞ oH

oy
þ ðk1a0xÞ

oH

oz

þ dxþ a1 þ
wy

2x
þ a2


 � oH

ow
¼ 0;

ð22Þ

According to Eq. (21), an solution is obtained to

match the Hamilton energy function as follows

H ¼ 1

2
x2 þ y2

2c
þ 1

2
xzþ 1

2
lw2x; ð23Þ

That is, the energy function for the memristive

neuron can be confirmed and changes in the param-

eters (c, l) have direct impact on the energy value, and

firing mode in electric activities is regulated

synchronously.
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