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Abstract A double Hopf bifurcation analysis is per-
formed for the rolling of a low-freeboard ship model
controlled with an active U-tube anti-roll tank (ART).
We consider a single-degree-of-freedom system with
nonlinear damping and restoring functions. TheART is
modeled as a proportional-gain controller. A constant
delay term is included in the controller since a finite
amount of time is required to pump the fluid inside the
ART from one container to the other. We perform a
linear stability analysis to determine the critical con-
trol gain and delay corresponding to the double Hopf
bifurcation point. We confirm the existence of the dou-
ble Hopf bifurcation by finding slopes and roots of the
characteristic equation of the linearized delay differen-
tial equation with the critical parameters. We use the
method of multiple scales to obtain slow-flow equa-
tions at the double Hopf bifurcation, which are then
used to identify six qualitatively distinct sets of fixed
points. Our analysis reveals that one of these regions
has a stable zero equilibrium, another has a stable limit
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cycle with amplitude smaller than the capsizing angle,
and the remaining regions have no safe fixed points.
These qualitative observations are validated numeri-
cally. Study of the control of ship roll motion is impor-
tant to avoid dynamic instability and capsizing.

Keywords Anti-roll tank · Delay differential equa-
tion · Double Hopf bifurcation · Method of multiple
scales · Ship roll dynamics

1 Introduction

Ships navigating rough seas experience several types of
wave-induced excitations, which can lead to dynamic
instabilities andhigh-amplitude rolling.The rollmotion
of a ship is less damped than the pitch and yawmotions
[1]; in extreme cases, roll excitation can result in
capsizing. Furthermore, rolling can cause seasickness,
impede crew performance, and damage equipment on
naval vessels. It is critical to study and understand the
dynamics, stability, and control of ship roll motion to
mitigate these adverse effects.

Instabilities in a ship’s roll motion can be induced
by two mechanisms: direct excitation and parametric
excitation. Direct excitation occurs whenwaves collide
with the port side or starboard side of a ship and can
be caused by both beam waves (waves that are approx-
imately perpendicular to the ship’s heading direction)
and obliquewaves. If the frequency of suchwaves coin-
cides with the ship’s roll natural frequency, direct reso-
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nance will occur, leading to high-amplitude rolling. To
minimize direct excitation in a beam sea, ships are typi-
cally navigated perpendicular to waves, thereby result-
ing in a head sea or following sea. However, this strat-
egy leads to excitation of the ship’s pitchmotion, which
may induce parametric excitation.

Parametric excitation of the roll motion can arise
from the inherent coupling between a ship’s pitch and
roll dynamics, from the shapeof the hull, due to the ratio
of the pitch and roll frequencies, and when the ship
encounters a head sea or following sea whose wave-
length is similar to the length of the ship [2]. Direct
excitation of the pitchmotion is caused by head and fol-
lowing waves (waves that are directed toward the bow
and stern of the ship, respectively) as well as oblique
waves. If the frequency of the pitch motion becomes
twice the natural frequency of the roll motion, the ship
experiences parametric resonance and, consequently,
indirect roll excitation.

The frequency of roll excitation can be adjusted by
altering the speed and heading of the ship. However,
the speed and amplitude of the ocean waves cannot
be controlled, and there are limitations to the rate and
range of adjustments that can be made to ship speed. A
more reliable strategy is to use active control methods
such as bilge keels, fins, rudders, gyroscopic stabiliz-
ers, and U-tube anti-roll tanks (ARTs) [3]. ARTs have
two key advantages over other control strategies. First,
ARTs are not affected by the ship’s forward speed,mak-
ing them appropriate for use even when the vessel is
moored, such as during loading and unloading opera-
tions. Second, the performance of an ART is indepen-
dent of the natural frequency of either the ship or the
tank.

Anti-roll tanks can be either passive or actively con-
trolled. A passive ART functions like a tuned mass–
damper system. In contrast, an actively controlled ART
pumps air between tanks on the port side and starboard
side of the ship to displace water, moving it from one
tank to the other, thereby generating torques that coun-

teract the roll motion (Fig. 1). In general, time delays
occur in this correction-torque control system due to
the time required to displace water from one ART tank
to the other, the inertia of large impeller blades and link-
ages in the pump, and the measurement and process-
ing time of the roll-sensing unit. The transfer of fluid
between tanks affects the restoring arm of the vessel
through weight redistribution as well as the roll damp-
ing due to friction losses from fluid flow. As a result,
ARTs can be modeled as proportional–derivative (PD)
feedback control systems with time delay. Although
an ART’s hydraulics exhibit nonlinear behavior, an
actively controlled ART can be operated using a simple
linear proportional or PD controller [4,5].

Here, we outline the existing literature in the area
of ship dynamics. We first discuss general studies car-
ried out in this field, then restrict our attention to stud-
ies that consider active control for ship stabilization
with specific focus on studies exploring ARTs. In the
mid-1980s, Nayfeh and Khdeir [6,7] performed pio-
neering work in which they modeled a rolling ship as a
single-degree-of-freedomnonlinear dynamical system,
demonstrating the existence of chaoswhen the shipwas
subjected to beamwaves. Spyrou and Thompson [8,9],
Ibrahim andGrace [10], andNeves [11] have published
comprehensive reviews of the literature on ship motion
dynamics.

Strategies to control the rolling of ships have been
explored for many years. In 1935, Minorsky [4]
analyzed the active control of ship rolling, includ-
ing nonlinear damping and linear restoring moments.
Minorsky proposed a control law based on the rate
of rolling and its effect on roll damping, noting the
importance of delay but ignoring higher-order terms in
the delayed control function. In recent years, numerous
studies have assessed the effects of passive and active
ARTs on a ship’s roll motion [12,13] and the coupled
roll, pitch, and heave motions [14,15]. In 2001, Abdel
Gawad et al. [16] studied the application of a single pas-
sive U-tube ART to control the roll motion of a ship.

Fig. 1 A ship equipped
with an actively controlled
anti-roll tank. The pump
(“P”) pumps air between
tanks to displace water
(block arrows) and generate
corrective torques (curved
arrows)
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This work includes a comprehensive review of the lit-
erature on the development of ARTs. In 2009,Marzouk
and Nayfeh [5] investigated an active U-tube ART con-
trolled by a PD control law. They concluded that, com-
pared to a passive ART, an active ART is superior in
terms of roll reduction, size, weight, and responsive-
ness to parametric rolling. Moaleji and Greig [17] pro-
posed an active U-tube ART that employs an adaptive
inverse model as its controller.

The effect of feedback delays has been well doc-
umented and is an active topic of investigation [18].
Spyrou studied the effect of heading and yaw rate feed-
back delays on the performance of a course-keeping
controller [19]. However, there is limited work on the
effect of delays in control systems employing active
U-tube ARTs to stabilize ship roll dynamics. Shaik
et al. [20] analyzed the roll dynamics of a ship con-
trolled by an active U-tube ART with delayed feed-
back. A detailed parametric study was performed and
the controller parameters that providemaximumdamp-
ing were determined. Two key findings were reported.
First, derivative feedback is detrimental to the stabil-
ity of ship roll motion. Hence, a proportional-feedback
control law was studied, and it was shown to be capa-
ble of preventing a ship from capsizing when using
the optimal gain and time delay. Second, they demon-
strated the existence of Hopf bifurcation boundaries
and double Hopf bifurcation points in the parameter
space of time delay and proportional-control gain.

Hopf bifurcation points in ship roll models corre-
spond to large-amplitude rollmotion,which can exceed
capsizing roll angles in some cases. Thus, it is crucial to
understand the behavior of the system at theHopf bifur-
cation points. Although Shaik et al. [20] studied single
Hopf bifurcation points in detail, the system response
near double Hopf bifurcation points was not explored.
In the present study, we extend this work and perform
a detailed double Hopf bifurcation analysis.

Double Hopf bifurcations have been investigated
in the nonlinear dynamics literature in various math-
ematical models, using many techniques. In models
comprising nonlinear ordinary differential equations
(ODEs), the method of multiple scales (MMS) was
employed by Yu [21]. In models governed by par-
tial differential equations (PDEs), the MMS method
has been employed [22,23] as well as center mani-
fold reductions and normal form theory [24,25]. These
methods have also been used successfully for systems
of delay differential equations (DDEs), with appropri-

ate modifications. On this topic, we refer the reader to
studies that have used center manifold reductions [26–
29], normal form theory (bypassing the centermanifold
reductions) [30–33], and the MMS method (bypass-
ing the center manifold reductions and normal forms)
[20,34–36].

Our formulation can be briefly summarized as fol-
lows. First, we model a low-freeboard ship undergo-
ing rolling motion as a single-degree-of-freedom sys-
tem. The system model includes nonlinear damping
and restoring functions and an actively controlled ART
with delayed feedback. The ART is modeled using two
parameters: control function gain and time delay. After
defining the system equations, we perform a stability
analysis to demonstrate the existence of double Hopf
bifurcation points. Finally, we investigate the system’s
response near the first double Hopf bifurcation point
using slow-flow equations, which are obtained via the
MMS method.

The remainder of the paper is organized as fol-
lows. In Sects. 2, 3, and 4, we demonstrate the exis-
tence of the first double Hopf bifurcation point using
three techniques. In Sect. 2, we perform a linear stabil-
ity analysis and demonstrate existence graphically. In
Sects. 3 and 4, we demonstrate existence analytically
and through calculation of eigenvalues, respectively.
In Sect. 5, the slow-flow equations are obtained using
the MMS method at the first double Hopf bifurcation
point; phase portraits and a fixed-point analysis are pre-
sented. In Sect. 6, the qualitative behavior of the phase
portraits is validated numerically. Finally, conclusions
are presented in Sect. 7.

2 Linear stability analysis

We consider the single-degree-of-freedom system used
by Shaik et al. [20] to model the rolling of a ship in a
calm sea. The governing equation for the roll angleφ(t)
is

φ̈(t) + ω2
0φ(t) + 2μ̂1φ̇(t) + μ̂3φ̇

3(t) + α̂3φ
3(t)

+ α̂5φ
5(t) + kpφ(t − τ) = 0, (1)

where ω0 is the roll natural frequency, μ̂1 and μ̂3 are
the linear and cubic damping coefficients, α̂3 and α̂5 are
coefficients of the restoring function, and kpφ(t − τ)

is the delayed proportional control function represent-
ing the effect of an anti-roll tank. In Eq. (1), the
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restoring moment is represented by an odd polyno-
mial in φ as K (φ) = ω2

0φ + α̂3φ
3 + α̂5φ

5, with coef-
ficients obtained from experimental data. In general,
the damping moment may be represented as D(φ̇) =
2μ̂1φ̇ + μ̂3

∣
∣φ̇

∣
∣ φ̇, comprising a linear term in φ̇ due to

viscous damping and a quadratic term due to frictional
resistance and eddies around bilge keels and sharp bilge
corners [37]. However, Dalzell [37] determined that the
mixed linear-plus-quadratic roll dampingmodel can be
reasonably approximated by a mixed linear-plus-cubic
model, namely D(φ̇) = 2μ̂1φ̇ + μ̂3φ̇

3, which we have
used in Eq. (1).

To investigate the linear stability of the system
around the trivial fixed point φ = 0, hereafter denoted
φ̄, we substitute φ(t) = r(t) + φ̄ into Eq. (1) to obtain

r̈(t) + ω2
0r(t) + 2μ̂1ṙ(t) + μ̂3ṙ

3(t) + α̂3r
3(t)

+ α̂5r
5(t) + kpr(t − τ) = 0. (2)

Retaining only the linear terms in r(t) in Eq. (2), we
obtain

r̈(t) + ω2
0r(t) + 2μ̂1ṙ(t) + kpr(t − τ) = 0. (3)

Substituting r(t) = βeλt into Eq. (3) produces the fol-
lowing characteristic equation:

D
(

λ, kp, τ
) = λ2 + 2μ̂1λ + ω2

0 + kpe
−λτ = 0, (4)

where λ, β ∈ C. Equation (4) is a transcendental equa-
tion andpossesses infinitelymany roots, knownas char-
acteristic exponents. To obtain the Hopf bifurcation
boundary, we substitute λ = jωcr into Eq. (4):

D
(

ωcr , kp, τ
) = − ω2

cr + 2 jμ̂1ωcr + ω2
0

+ kpe
− jωcr τ = 0. (5)

(Note that, if jωcr is a root of the characteristic equa-
tion, then so is its complex conjugate − jωcr .) Using
Euler’s formula e− jωcr τ = cos (ωcrτ) − j sin (ωcrτ),
we separate D

(

ωcr , kp, τ
)

into its real and imaginary
parts to obtain the following real-valued equations:

R
(

ωcr , kp, τ
) = kp cos (ωcrτ) − ω2

cr + ω2
0

= 0, (6a)

C
(

ωcr , kp, τ
) = 2μ̂1ωcr − kp sin (ωcrτ) = 0. (6b)

Table 1 Parameters used in numerical analysis of low-freeboard
model (obtained from Shaik et al. [20])

Parameter Value

Coefficients of damping function

Linear (μ̂1) 0.0855 s−1

Cubic (μ̂3) 0.108 s

Coefficients of restoring function

Linear (ω0) 5.229 s−1

Cubic (α̂3) −1.699119ω2
0 s

−2

Quintic (α̂5) 0.63297ω2
0 s

−2

Critical roll angle (φcr ) 0.48 rad

We solve Eqs. (6a) and (6b) to obtain the following
linear stability boundary in the space of kp and τ :

kp =
√

4μ̂2
1ω

2
cr + (

ω2
cr − ω2

0

)2
, (7a)

τ = 2

ωcr

[

nπ + arctan

(

kp − ω2
cr + ω2

0

2μ̂1ωcr

)]

,

n = 0, 1, 2, . . . . (7b)

Equations (7a) and (7b) represent a family of curves
called the stability lobes, where n is the lobe number.

For the numerical analysis that follows, we use the
parameter values used in the low-freeboard model of
Wright and Marshfield [38]. The values of the system
parameters related to the damping and restoring func-
tions are given in Table 1. The critical roll angle φcr

given in Table 1 is defined as the roll angle associated
with themaximum restoringmoment K (φ) before cap-
sizing. The critical roll angle can be obtained by plot-
ting K (φ) vs. φ, as shown in Fig. 2 for the parameters
given in Table 1. (This curve is also known as the GZ
curve.)

The stability boundaries of the system for lobes n =
0 and n = 1 are shown in Fig. 3. Similar lobes can
be evaluated for n ≥ 2; however, the present analysis
concerns the first double Hopf bifurcation point, which
occurs at the intersection of the lobes corresponding to
n = 0 and n = 1. Hence, we focus on only these two
lobes. (Note that, to plot the stability boundary, we vary
the independent parameter ωcr between a very small
positive number and a very large number.) Hereafter,
we refer to the values of the delay and the proportional
gain at the first double Hopf bifurcation point as the
“critical parameters” for brevity, and denote them as
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Fig. 2 The restoring function K (φ) vs. roll angle φ for the low-
freeboard model. K (φ) reaches a maximum at the critical roll
angle φcr

Fig. 3 Linear stability chart near the double Hopf bifurcation
point in the parameter space of

(

τ, kp
)

. The critical parameters
are (τcr , kcr ) = (0.9475, 17.0998). The shaded region indicates
stable zero equilibrium

τcr and kcr , respectively. From Fig. 3, their values are

(τcr , kcr ) = (0.9475, 17.0998) , (8)

and the corresponding frequencies are

ω1 = 3.2811 and ω2 = 6.7023, (9)

for lobes n = 0 and n = 1, respectively.

3 Analytical demonstration of existence of double
Hopf bifurcation

In this section, we demonstrate the existence of the
double Hopf bifurcation point analytically by comput-
ing the crossing velocities of the eigenvalues of Eq. (3)
at the critical parameters. As mentioned earlier, at the
stability boundary, the eigenvalues λ cross the imag-
inary axis of the complex plane. Mathematically, this

means�
(

∂λ

∂kp

)

�= 0 and�
(

∂λ

∂τ

)

�= 0, where�(·) is
the real part of a complex number [39,40]. We obtain
the partial derivatives ∂λ/∂kp and ∂λ/∂τ from implicit
differentiation of Eq. (4):

∂λ

∂kp
= − ∂D

∂kp

(
∂D

∂λ

)−1

= −e−λτ

2λ + 2μ̂1 − τkpe−λτ
,

(10a)

∂λ

∂τ
= −∂D

∂τ

(
∂D

∂λ

)−1

= kpλe−λτ

2λ + 2μ̂1 − τkpe−λτ
.

(10b)

Substituting λ = jωi and e− jωi τ = cos (ωiτ) −
j sin (ωiτ) into Eqs. (10a) and (10b), we obtain the
following expressions for the real parts of the slopes:

γ1i = �
(

∂λ

∂kp

)∣
∣
∣
∣
λ= jωi

=
[

τ
(

ω2
0 − ω2

i

)2 + 4τ μ̂2
1 + 2μ̂1

(

ω2
0 + ω2

i

) ]/

[

kpτ
2
((

ω2
0 − ω2

i

)2 + 4μ̂2
1

)

+ 4kpμ̂1τ
(

ω2
0

+ ω2
i

) + 4kp
(

μ̂2
1 + ω2

i

) ]

, (11a)

γ2i = �
(

∂λ

∂τ

)∣
∣
∣
∣
λ= jωi

=
[

2ω2
i

(

ω2
i − ω2

0 + 2μ̂2
1

) ]/

[

τ 2
(

ω2
0 − ω2

i

)2 + 4τ 2μ̂2
1 + 4μ̂1τ

(

ω2
0 + ω2

i

)

+ 4
(

μ̂2
1 + ω2

i

) ]

, (11b)

where the index i ∈ {1, 2} corresponds to the critical
frequencies ω1 and ω2 at the double Hopf bifurcation
point. We define a square matrix

� =
[

γ11 γ12
γ21 γ22

]

, (12)

whose determinant must be nonzero for the existence
of a double Hopf bifurcation at the critical point [41].
Using the parameters kp = 17.0998, τ = 0.9475,
ω1 = 3.2811, and ω2 = 6.7023, � at the critical point
is evaluated as follows:

� =
[

0.0521 0.0363
−1.1557 3.2934

]

, (13)

and det(�) = 0.2135, proving the existence of the
double Hopf bifurcation point.
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4 Demonstration of existence of double Hopf
bifurcation via eigenvalue computation

In this section, we demonstrate the occurrence of a dou-
ble Hopf bifurcation point through direct computation.
Specifically, we show that two pairs of purely imagi-
nary complex-conjugate eigenvalues exist at the double
Hopf bifurcation point and that the eigenvalues cross
the imaginary axis upon perturbing kp and τ around
that point. Because Eq. (4) is transcendental, we use a
combination of spectral Tau [42] andNewton–Raphson
methods to compute its roots.

To use the spectral Taumethod, we first write Eq. (3)
as a pair of first-order differential equations in state
variables r(t) = [r(t), ṙ(t)]T:

ṙ(t) = B1r(t) + B2r(t − τ), (14a)

r(t) = γ (t), t ∈ [−τ, 0), (14b)

where B1 =
[

0 1
−ω2

0 −2μ̂1

]

, B2 =
[

0 0
−kp 0

]

, and γ (t)

is the history function. We then introduce a time shift
in r(t):

r(t + s) = y(s, t), s ∈ [−τ, 0). (15)

Due to this transformation, the initial-value problem
expressed by Eq. (14) is transformed into the following
boundary-value problem:

∂ y(s, t)
∂t

= ∂ y(s, t)
∂s

, (16a)

∂ y(s, t)
∂t

∣
∣
∣
∣
s=0

= B1 y(0, t) + B2 y(−τ, t), (16b)

y(s, 0) = γ (s), s ∈ [−τ, 0). (16c)

We assume a solution for Eq. (16a) of the following
form:

yi (s, t) =
∞
∑

j=1

� j (s)zi j (t), i = 1, 2, (17)

where � j (s) are appropriate basis functions (see
Appendix A) and zi j (t) are time-dependent coordi-
nates. We retain N terms in the expansion:

yi (s, t) = �T(s)zi (t), (18)

where � and zi are column vectors of dimension N .
Accordingly, y(s, t) can be written as

y(s, t) = �T(s)η(t), (19)

where � = diag (�(s),�(s)) ∈ R
2N×2 and η =

[z1(t), z2(t)]T ∈ R
2N×1. We substitute Eq. (19) into

Eq. (16a) to obtain

�T(s)η̇(t) = (

�′(s)
)T

η(t), (20)

where η̇(t) = dη(t)

dt
and �′(s) = d�(s)

ds
. We pre-

multiply both sides of Eq. (20) by �(s) and integrate
over the domain s ∈ [−τ, 0) to obtain the following set
of ODEs:

W η̇(t) = Qη(t), (21)

whereW = diag
(

W (1),W (2)
)

, Q = diag
(

Q(1), Q(2)),
and

W (i) =
∫ 0

−τ

�(s)�(s)Tds, (22a)

Q(i) =
∫ 0

−τ

�(s)
(

� ′(s)
)T

ds, i = 1, 2. (22b)

The boundary conditions are obtained by substituting
Eq. (19) into Eq. (16b):

�T(0)η̇(t) = B1�
T(0)η(t) + B2�

T(−τ)η(t). (23)

Equations (21) and (23) comprise a system of 2N +
2 linear scalar equations in 2N variables—an over-
determined system.We remove the N th and2N th equa-
tions fromEq. (21) and replace themwith Eq. (23). The
resulting set of equations can be written as

Mη̇(t) = Kη(t). (24)

Finally, we re-write Eq. (24) as

η̇(t) = Gη(t), (25)

where G = M−1K . Equation (25) is a system of linear
first-order differential equations; hence, the rightmost
eigenvalues of G determine the stability of the zero
equilibrium.

Figure 4 illustrates the evolution of the real part of
the rightmost eigenvalues of G as kp varies with τ =
τcr fixed, and as τ varies with kp = kcr fixed. We note
two observations in Fig. 4a, for both n = 0 and n = 1:
(1) at the critical point

(

τ, kp
) = (0.9475, 17.0998),

the real part of λ is zero; and (2) as kp varies with τ

held fixed, the real part of λ changes sign. Analogous
observations are noted in Fig. 4b. We conclude that the
critical point discussed above is a double Hopf bifur-
cation point.
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Fig. 4 Evolution of the real
part of the rightmost
characteristic roots near the
critical point a with kp
where τ = τcr is fixed, and
b with τ where kp = kcr is
fixed, for N = 20

To verify the correctness of our approach, we com-
pute the slopes of the curves plotted in Fig. 4 and
arrange them in the following matrix:

�1 =
[

0.0524 0.0365
−1.1535 3.2872

]

. (26)

We see that �1 ≈ � (Eq. (13)), confirming agreement
with our previous analysis.

5 Slow-flow equations at the double Hopf
bifurcation point

Slow-flow equations are used to approximate systems
of ordinary or delay differential equations governing
mechanical systems. In general, slow-flow equations
are first-order ODEs, thus determining fixed points and
performing stability analyses are simplified. In this
section, we derive slow-flow equations for Eq. (2) at
the double Hopf bifurcation point. Usually, slow-flow
equations at aHopf bifurcation point are obtained using
the method of center manifold reduction [43,44] or the
method ofmultiple scales (MMS) [35,36]. For the anal-
ysis that follows, we use MMS.

We begin by scaling the time in Eq. (2) as t̄ =
(1 + ε) t to introduce a perturbation in the delay
parameter τ near the critical point [36], whereupon we
obtain the following:

r̈(t̄) + ω2
0

(1 + ε)2
r(t̄) + 2μ̂1

1 + ε
ṙ(t̄)

+ (1 + ε) μ̂3ṙ
3(t̄) + 1

(1 + ε)2
(

α̂3r
3(t̄) + α̂5r

5(t̄) + kpr(t̄ − τ̄ )
)

= 0, (27)

where derivatives are taken with respect to t̄ . A delay
of τcr in the t̄ time scale corresponds to a delay of

τcr

1 + ε
in the original time t . Hence, as ε increases,

the delay in the original time scale decreases. For nota-
tional convenience, we drop the bars over t and τ ,
and use ε as a book-keeping parameter. Substituting
kp = kcr + εδ, μ̂3 = εμ3, α̂3 = εα3, α̂5 = εα5,
(1 + ε)−1 = 1−ε+O (

(ε)2
)

, and (1 + ε)−2 =
1− 2ε +O (

(ε)2
)

into Eq. (27), we obtain the fol-
lowing:

r̈(t) + ω2
0r(t) + 2μ̂1ṙ(t) + kcrr(t − τcr )

+ ε
[

μ3ṙ
3(t) + α3r

3(t) + α5r
5(t) + δr(t − τcr )

− 2ω2
0r(t) − 2μ̂1ṙ(t) − 2kcrr(t − τcr )

]

+ O
(

ε2
)

= 0. (28)

For ε = 0, Eq. (28) becomes a linear DDE with
damping; hence, Eq. (28) represents the perturbation
of Eq. (27).

We assume

r(t) = r0(T0, T1) + εr1(T0, T1), (29)

where T0 = t and T1 = εt . Substituting Eq. (29) into
Eq. (28) and equating the coefficients of the first two
powers of ε to zero, we obtain the following:

O
(

ε0
)

:
D2
0r0(T0, T1) + 2μ̂1D0r0(T0, T1) + ω2

0r0(T0, T1)

+ kcrr0(T0 − τcr , T1) = 0, (30a)

O
(

ε1
)

:
D2
0r1(T0, T1) + 2μ̂1D0r1(T0, T1) + ω2

0r1(T0, T1)

+ kcrr1(T0 − τcr , T1) + 2D2
0,1r0(T0, T1)

− 2ω2
0r0(T0, T1) − 2μ̂1D0r0(T0, T1)

− 2kcrr0(T0 − τcr , T1) + 2μ̂1D1r0(T0, T1)
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+ μ3 (D0r0(T0, T1))
3 +α3r

3
0 (T0, T1)+α5r

5
0 (T0, T1)

+ δr0(T0 − τcr , T1) − D0r0(T0 − τcr , T1)

− kcrτcr D1r0(T0 − τcr , T1) = 0, (30b)

where Di = ∂

∂Ti
and Di, j = ∂2

∂Ti∂Tj
. Because we are

considering a double Hopf bifurcation, we assume a
solution to Eq. (30a) of the form

r0(t) = A1(T1) sin(ω1T0) + A2(T1) cos(ω1T0)

+ A3(T1) sin(ω2T0) + A4(T1) cos(ω2T0). (31)

Substituting Eq. (31) into Eq. (30b) yields

D2
0r1(T0, T1) + 2μ̂1D0r1(T0, T1) + ω2

0r1(T0, T1)

+ kcr r1(T0 − τcr , T1) + P1 cos(ω1T0) + P2 sin(ω1T0)

+ P3 cos(ω2T0) + P4 sin(ω2T0) + P5 cos(3ω1T0)

+ P6 sin(3ω1T0) + P7 cos(3ω2T0) + P8 sin(3ω2T0)

+ P9 cos(5ω1T0) + P10 sin(5ω1T0) + P11 cos(5ω2T0)

+ P12 sin(5ω2T0) + P13 cos ((ω1 − 2ω2)T0)

+ P14 sin ((ω1 − 2ω2)T0) + P15 cos ((2ω1 − ω2)T0)

+ P16 sin ((2ω1 − ω2)T0) + P17 cos ((ω1 + 2ω2)T0)

+ P18 sin ((ω1 + 2ω2)T0) + P19 cos ((2ω1 + ω2)T0)

+ P20 sin ((2ω1 + ω2)T0) + P21 cos ((4ω1 + ω2)T0)

+ P22 sin ((4ω1 + ω2)T0) + P23 cos ((ω1 + 4ω2)T0)

+ P24 sin ((ω1 + 4ω2)T0) + P25 cos ((2ω1 + 3ω2)T0)

+ P26 sin ((2ω1 + 3ω2)T0) + P27 cos ((3ω1 + 2ω2)T0)

+ P28 sin ((3ω1 + 2ω2)T0) + P29 cos ((3ω1 − 2ω2)T0)

+ P30 sin ((3ω1 − 2ω2)T0) + P31 cos ((2ω1 − 3ω2)T0)

+ P32 sin ((2ω1 − 3ω2)T0) + P33 cos ((4ω1 − ω2)T0)

+ P34 sin ((4ω1 − ω2)T0) + P35 cos ((ω1 − 4ω2)T0)

+ P36 sin ((ω1 − 4ω2)T0) = 0. (32)

The coefficients P1, P2, P3, and P4 in Eq. (32) cor-
respond to secular terms and therefore, can be equated

to zero, yielding
d Ai (T1)

dT1
for i ∈ {1, 2, 3, 4}. More-

over, for each of the cases ω1 = 3ω2, ω2 = 3ω1,
ω1 = 5ω2, and ω2 = 5ω1, additional secular terms
arise, and must duly considered. For instance, when
ω1 = 3ω2, the coefficients P13 and P14 are added to P3
and P4, respectively. However, for the current analysis,
ω2 = 2.0427ω1 (see Eq. (9)), hence additional secular
terms do not arise in our case. The coefficients Pi have
lengthy expressions; thus, we list only the pertinent
coefficients P1, P2, P3, and P4 in Appendix B.

We equate the coefficients P1, P2, P3, and P4 to zero
and solve the resulting equations to obtain the deriva-

tives
d Ai (T1)

dT1
for i ∈ {1, 2, 3, 4}. These derivatives are

then used to calculate
d Ai

dT0
= ε

d Ai

dT1
+ O

(

ε2
)

, i ∈ {1, 2, 3, 4} . (33)

Next, we introduce polar coordinates and represent Ai

as follows:

A1(T0) = R1(T0) cos (φ1(T0)) , (34a)

A2(T0) = R1(T0) sin (φ1(T0)) , (34b)

A3(T0) = R2(T0) cos (φ2(T0)) , (34c)

A4(T0) = R2(T0) sin (φ2(T0)) . (34d)

Substituting Eqs. (34) into Eq. (31), we obtain

r0(T0) = R1(T0) sin (ω1T0 + φ1(T0))

+ R2(T0) sin (ω2T0 + φ2(T0)) . (35)

Equations (34) are then substituted into Eqs. (33), and

the resulting equations are solved for
dR1

dT0
,
dR2

dT0
,
dφ1

dT0
,

and
dφ2

dT0
to obtain the following slow-flow equations:

dR1

dT0
= R1

H1

(

N11R
4
1 + N12R

4
2 + N13R

2
1R

2
2

+ N14R
2
1 + N15R

2
2 + N16(ε) + N17(εδ)

)

,

(36a)

dR2

dT0
= R2

H2

(

N21R
4
1 + N22R

4
2 + N23R

2
1R

2
2

+ N24R
2
1 + N25R

2
2 + N26(ε) + N27(εδ)

)

,

(36b)

dφ1

dT0
= 1

H1

(

N31R
4
1 + N32R

4
2 + N33R

2
1R

2
2

+ N34R
2
1 + N35R

2
2 + N36(ε) + N37(εδ)

)

,

(36c)

dφ2

dT0
= 1

H2

(

N41R
4
1 + N42R

4
2 + N43R

2
1R

2
2

+ N44R
2
1 + N45R

2
2 + N46(ε) + N47(εδ)

)

.

(36d)

The expressions for the coefficients inEqs. (36) are pro-
vided in Appendix C. We observe that the amplitude
equations (Eqs. (36a) and (36b)) and the phase equa-
tions (Eqs. (36c) and (36d)) are decoupled. Accord-
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ingly, the fixed points can be found using only the
amplitude equations.

For simplicity, we first consider α̂5 = 0, in
which case the quintic amplitude equations (Eqs. (36a)
and (36b)) reduce to cubic equations. It will be shown
later that the nature of the fixed points thus obtained do
not change even when α̂5 is nonzero (though additional
fixed points appear).

5.1 Slow-flow equations without quintic nonlinearity
(α̂5 = 0)

Setting α̂5 = 0 in Eqs. (36a) and (36b) yields

dR1

dt
= R1

(

1.7539R2
1 + 3.1029R2

2 + 1.0952(ε)

+ 0.0521(εδ)
)

, (37a)

dR2

dt
= R2

( − 2.7897R2
1 − 1.9717R2

2 − 3.1200(ε)

+ 0.0363(εδ)
)

. (37b)

The fixed points of Eqs. (37) can be grouped into the
following four categories:

1. Zero equilibrium solution:

R∗
1 = 0, R∗

2 = 0. (38)

2. Hopf bifurcation solution with frequency ω1:

R∗
1 = ±√−0.6244(ε) − 0.0297(εδ), (39a)

R∗
2 = 0. (39b)

R∗
1 must be a real number, hence

εδ ≤ −21.0022(ε). (40)

3. Hopf bifurcation solution with frequency ω2:

R∗
1 = 0, (41a)

R∗
2 = ±√−1.5824(ε) + 0.0184(εδ). (41b)

Because R∗
2 is real, we have the following inequal-

ity:

εδ ≥ 85.8457(ε). (42)

4. Quasi-periodic solution with both frequencies ω1

and ω2:

R∗
1 = ±√−1.4470(ε) + 0.0415(εδ), (43a)

Fig. 5 Boundaries delineating six topologically distinct stabil-
ity structures in ε and εδ parameter space. Note that ε and
εδ denote small perturbations in τcr and kcr ; hence, the origin
corresponds to (τcr , kcr )

R∗
2 = ±√

0.4649(ε) − 0.0402(εδ). (43b)

Because R∗
1 and R∗

2 are real, we have

εδ ≥ 34.8890(ε), (44a)

εδ ≤ 11.5517(ε). (44b)

Lines 1, 2, 3, and 4 in Fig. 5 are obtained using
the inequality conditions of Eqs. (40), (42), (44a),
and (44b), respectively. These four lines divide the
parameter space of ε and εδ into six exclusive
regions, which we denote as I-a, II, III, IV, I-b, and V.
Regions I-a and I-b satisfy Eqs. (40) and (42). Region II
satisfies Eq. (42). Region IV satisfies Eq. (40). Region
V satisfies Eqs. (40), (42), and (44). The remaining area
is Region III. Note that ε and εδ denote small pertur-
bations in the delay and proportional gain parameters,
respectively; hence, the origin in Fig. 5 corresponds to
(τcr , kcr ).

For the purpose of demonstration, we choose a rep-
resentative (ε, εδ) point in each region and find the
fixed points R∗

1 and R∗
2 corresponding to it. To com-

ment on the nature of these fixed points, we evaluate
the eigenvalues ξ1 and ξ2 of the Jacobianmatrix at these
points. (This is done by taking the partial derivatives of
the right-hand sides ofEqs. (37a) and (37b)with respect
to R1 and R2.) This analysis is presented in Table 2.
We use the variables �0

0, �
R1
0 , �0

R2
, and �

R1
R2

to repre-
sent, respectively, the zero equilibrium, a Hopf bifur-
cation limit cycle with frequency ω1, a Hopf bifurca-
tion limit cycle with frequencyω2, and a quasi-periodic
solution. We observe from Table 2 that, depending on
the value of (ε, εδ), we obtain saddle points, stable
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Table 2 Fixed points (R∗
1 and R∗

2 ) and the eigenvalues of the
corresponding Jacobian matrices (ξ1 and ξ2) in each region (I-a
to V) without quintic nonlinearity. The labels �0

0 , �
R1
0 , �0

R2
, and

�
R1
R2

represent, respectively, the zero equilibrium, a Hopf bifur-
cation limit cycle with frequency ω1, a Hopf bifurcation limit
cycle with frequency ω2, and a quasi-periodic solution

Label R∗
1 R∗

2 ξ1 ξ2 Nature

Region I-a (ε = −0.02, εδ = 0)

�0
0 0 0 0.0624 −0.0219 Saddle

�
R1
0 ±0.1117 0 0.0438 0.0275 Unstable node

�0
R2

0 ±0.1779 0.0763 −0.1248 Saddle

Region II (ε = −0.005, εδ = 0.5)

�0
0 0 0 0.0338 0.0206 Unstable node

�0
R2

0 ±0.1309 0.0737 −0.0675 Saddle

Region III (ε = 0.02, εδ = 0)

�0
0 0 0 0.0219 −0.0624 Saddle

Region IV (ε = 0.005, εδ = −0.5)

�0
0 0 0 −0.0206 −0.0338 Stable node

�
R1
0 ±0.1084 0 0.0412 −0.0665 Saddle

Region I-b (ε = −0.01, εδ = −0.5)

�0
0 0 0 0.0130 −0.0370 Saddle

�
R1
0 ±0.1450 0 0.0740 −0.0459 Saddle

�0
R2

0 ±0.0813 −0.0165 −0.0260 Stable node

Region V (ε = −0.025, εδ = −0.5)

�0
0 0 0 0.0598 −0.0534 Saddle

�
R1
0 ±0.1746 0 0.1069 −0.0252 Saddle

�0
R2

0 ±0.1742 0.0407 −0.1197 Saddle

�
R1
R2

±0.1242 ±0.0922 0.0103 + 0.0512 j 0.0103 − 0.0512 j Unstable focus

nodes, unstable nodes, and unstable foci. We also see
that Regions I-a and I-b have fixed points of the same
type: �0

0, �
R1
0 , and �0

R2
; however, they exhibit topo-

logically different phase portraits. Finally, we note that
Region V has unstable foci.

Although we have presented the results for stability
analysis in Table 2 for only one representative point
in each region, we have verified numerically that the
nature of stability remains the same in a given region.
For instance, wewill obtain unstable foci for all param-
eter values belonging to Region V.

We now comment on the implications of the above
analysis on a ship’s roll stability for the chosen values
of (ε, εδ). Recall that fixed points of the slow-flow
amplitude equations (Eqs. (37a) and (37b)) correspond
to the magnitude of the roll angle. Accordingly, the
zero-amplitude fixed point (�0

0) corresponds to the zero
equilibrium of the ship, whereas nonzero fixed points

(�R1
0 , �0

R2
, and �

R1
R2
) correspond to an oscillating ship.

Stable nodes are found only inRegions IV (a stable zero
equilibrium) and I-b (a stable limit cyclewith frequency
ω2). Because the zero equilibrium is stable in Region
IV, delayed proportional control can be employed in its
vicinity to maintain stability. In Region I-b, the ampli-
tude of the stable limit cycle is 0.0813 rad,which iswell
below the capsizing roll angle of 0.48 rad [20], indicat-
ing the suitability of employing delayed proportional
control in this region as well.

In Fig. 6, we plot the phase portraits correspond-
ing to Eqs. (37a) and (37b) for the six regions dis-
cussed above. The phase portraits are obtained by solv-
ing Eqs. (37a) and (37b) using the ode45 ODE solver
in Matlab®. Note that the nature of each fixed point
shown in Fig. 6 is indicated in the last column of
Table 2.

123



Nonlinear dynamics near a double 21451

Fig. 6 Phase portraits in the six regions without the quintic non-
linearity (i.e., α̂5 = 0) for the chosen values of (ε, εδ): a
Region I-a, b Region II, c Region III, d Region IV, e Region
I-b, and f Region V. In each phase portrait, the horizontal axis
represents R1, the vertical axis represents R2, and the origin rep-

resents the zero equilibrium. Stable nodes are shown as green cir-
cles, saddle nodes as blue upward-pointing triangles, and unsta-
ble nodes and unstable foci as red downward-pointing triangles.
Shaded regions indicate basins of attraction for stable fixed points

5.2 Slow-flow equations with quintic nonlinearity

As mentioned in Sect. 5.1, setting α̂5 = 0 in Eqs. (36)
simplifies the task of finding fixed points. Using the
insight from Sect. 5.1, we now investigate the more
general case where α̂5 �= 0. For this case, the slow-
flow equations are

Ṙ1 = R1
( − 0.5669R4

1 − 1.7008R4
2 − 3.4015R2

1R
2
2

+ 1.7539R2
1 + 3.1029R2

2 + 1.0952(ε)

+ 0.0521(εδ)
)

, (45a)

Ṙ2 = R2
(

1.1350R4
1 + 0.3783R4

2 + 2.2700R2
1R

2
2

− 2.7897R2
1 − 1.9717R2

2 − 3.1200(ε)

+ 0.0363(εδ)
)

, (45b)

φ̇1 = 0.2457R4
1 + 0.7371R4

2 + 1.4743R2
1R

2
2

− 0.9350R2
1 − 2.8040R2

2 − 0.5088(ε)

− 0.0206(εδ), (45c)

φ̇2 = 1.0285R4
1 + 0.3428R4

2 + 2.0570R2
1R

2
2

− 1.7971R2
1 − 0.2600R2

2 − 2.7552(ε)

+ 0.0287(εδ). (45d)

The right-hand sides in the amplitude equations
(Eqs. (45a) and (45b)) are fifth-order polynomials; thus,
we will obtain more fixed points than in Sect. 5.1.
Numerical calculations reveal that the fifth-order terms
have small numerical values; hence, we obtain fixed
points that are numerically close to those obtainedwhen
α̂5 = 0. Below, we will show that the stability nature of
these fixed points remains the same.We focus our anal-
ysis on the new fixed points that appear when α̂5 �= 0.

In each region, fixed points numerically close to
those listed in Table 2 were obtained and the stability
nature of each of these points was the same as before.
We also obtained exactly three additional fixed points
in each region (�̂R1

0 , �̂0
R2
, and �̂

R1
R2
) having the same

stability nature in each region. We use Region I-a to
demonstrate our results. All the fixed points obtained
in this region and the eigenvalues of the corresponding
Jacobian matrices are listed in Table 3. The first three
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Table 3 Fixed points (R∗
1 and R∗

2 ) and the eigenvalues of the
corresponding Jacobian matrices (ξ1 and ξ2) in Region I-a with
quintic nonlinearity. The labels �0

0 , �
R1
0 (or �̂

R1
0 ), �0

R2
(or �̂0

R2
),

and �
R1
R2

(or �̂
R1
R2
) represent, respectively, the zero equilibrium, a

Hopf bifurcation limit cycle with frequency ω1, a Hopf bifurca-
tion limit cycle with frequency ω2, and a quasi-periodic solution

Label R∗
1 R∗

2 ξ1 ξ2 Nature

�0
0 0 0 0.0624 −0.0219 Saddle

�
R1
0 ±0.1120 0 0.0436 0.0276 Unstable node

�0
R2

0 ±0.1784 0.0752 −0.1240 Saddle

�̂
R1
0 ±1.7553 0 2.2421 −10.7201 Saddle

�̂0
R2

0 ±2.2759 20.1757 −29.5785 Saddle

�̂
R1
R2

±1.4576 ±0.5016 −2.4447 + 3.4537 j −2.4447 − 3.4537 j Stable focus

fixed points (�0
0 ,�

R1
0 , and�0

R2
) are numerically close to

those listed in Table 2 for Region I-a and have the same
stability nature. The last three fixed points (�̂R1

0 , �̂0
R2
,

and �̂
R1
R2
) are the additional fixed points found when

α̂5 �= 0.
Analysis of these results produces the following

observations. In Region IV, there exist fixed points
corresponding to a stable zero equilibrium and large-
amplitude stable limit cycles. In Region I-b, fixed
points corresponding to both small-amplitude and
large-amplitude stable limit cycles exist. In all other
regions, fixed points with only large-amplitude stable
limit cycles exist. These phenomena are clearly illus-
trated in Fig. 7, which shows the phase portraits cor-
responding to each region. Because the trajectories are
densely clustered near the origin, amagnified view near
the origin is also shown for each phase portrait.

The existence of fixed points of different stability
nature gives rise to interesting characteristics of ship
rolling dynamics. For example, in Region IV (Fig. 7d),
if the amplitude of the initial disturbance corresponds
to the shaded region, then the ship stabilizes at the
zero equilibrium; otherwise, it stabilizes at the large-
amplitude limit cycle corresponding to �̂

R1
R2
. Similarly,

in Region I-b (Fig. 7e), if the amplitude of the ini-
tial disturbance corresponds to the shaded region, then
the ship stabilizes at the small-amplitude limit cycle
corresponding to �0

R2
near the origin; otherwise, it sta-

bilizes at the large-amplitude limit cycle correspond-
ing to �̂

R1
R2
. However, we have noted in an additional

analysis (not presented here) that the amplitudes of the
large-amplitude limit cycles corresponding to �̂

R1
R2

are
greater than the critical roll angle in all regions. For
example, the amplitude of the large-amplitude limit

cycle corresponding to �̂
R1
R2

in Region I-a (see Table 3)
is 1.5415 rad, which is greater than the critical roll
angle of 0.48 rad. Practically, this means that the ship
will capsize in all regions at the large-amplitude limit
cycles corresponding to �̂

R1
R2
.

6 Numerical validation of observations in Sect. 5

In Sect. 5, we used the MMS method to analyze the
behavior of the systemnear the doubleHopf bifurcation
point. We observed that the (ε, εδ) parametric space
comprised six distinct regions of different dynamical
behavior. However, MMS is an approximate numerical
method; hence, it is imperative to validate the obser-
vations that were made in Sect. 5. To this end, we use
direct numerical computation of the solutions of the
governing differential equation (Eq. (27)). If the MMS
analysis is correct, then the numerical simulations of
the system should converge to the stable zero equilib-
rium or a stable limit cycle, as the case may be, as
predicted by the MMS analysis.

The numerical simulations are performed using the
dde23 DDE solver in Matlab®. The history func-
tions r(s) and ṙ(s) for s ∈ [−τ, 0) used for the com-
putations are motivated from Eq. (35) and are taken to
be

r(s) = R1 sin (ω1s) + R2 sin (ω2s) , (46a)

ṙ(s) = R1ω1 cos (ω1s) + R2ω2 cos (ω2s) , (46b)

where R1 and R2 are constants that determine the initial
point in the phase portrait.We study the effect of differ-
ent initial conditions on subsequent system dynamics
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Fig. 7 Phase portraits in the six regions with the quintic nonlin-
earity (i.e., α̂5 �= 0) for the chosen values of (ε, εδ): a Region
I-a, b Region II, c Region III, d Region IV, e Region I-b, and f
Region V. In each phase portrait, the horizontal axis represents
R1, the vertical axis represents R2, and the origin represents
the zero equilibrium. Stable nodes and stable foci are shown as
green circles, saddle nodes as blue upward-pointing triangles,

and unstable nodes and unstable foci as red downward-pointing
triangles. Diamond and square markers are initial points for the
direct numerical computations presented in Sect. 6. A magnified
view near the origin of each phase portrait is indicated with a
blue rectangle. Shaded regions indicate basins of attraction for
stable fixed points

by choosing several values of R1 and R2 in Eqs. (46).
In Table 4, we list the values of R1 and R2 chosen in
each region.

We now present the results of the direct numerical
simulations, beginning with Region I-a. We choose R1

and R2 such that the initial points in the phase por-
trait are QIa

1 (indicated with a red diamond in Fig. 7a)
and QIa

2 (indicated with a red square). It can be seen
that QIa

1 is near the fixed point �0
R2
, which is a sad-

dle node, suggesting that the trajectory of the system
will migrate to the large-amplitude stable limit cycle
corresponding to �̂

R1
R2
. The corresponding time evolu-

tion of the system is shown in Fig. 8a. The system
reaches a limit cycle in approximately 50s. In con-
trast, QIa

2 is located between the unstable zero equilib-

rium and the unstable limit cycle corresponding to �
R1
0

(red square in Fig. 7a). The trajectory in the phase por-
trait first approaches the origin, but is repelled toward
the unstable limit cycle corresponding to �0

R2
; it is

then further deflected and, subsequently, asymptoti-
cally approaches the large-amplitude stable limit cycle
corresponding to �̂

R1
R2
. This slow approach to the limit

cycle in phase space is evident in Fig. 8b, which shows
the time evolution of the system. In this case, the limit
cycle is reached in approximately 200s. Note, however,
that the amplitudes of these stable limit cycles exceed
the critical roll angle of 0.48 rad. Thus, practically, the
ship would capsize.

Similar analyses are performed for the other regions;
we summarize the results here for completeness. Fig-
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Table 4 Initial points used
in each region for numerical
computation of solutions of
Eq. (27) in terms of R1 and
R2

Label Symbol in Fig. 7 R∗
1 R∗

2

Region I-a (ε = −0.02, εδ = 0)

QIa
1 � 0.01 0.21

QIa
2 � 0.08 0

Region II (ε = −0.005, εδ = 0.5)

QI I
1 � 0.015 0.18

QI I
2 � 0.02 0

Region III (ε = 0.02, εδ = 0)

QI I I
1 � 0 0.08

QI I I
2 � 0.02 0

Region IV (ε = 0.005, εδ = −0.5)

QIV
1 � 0.1 0.02

QIV
2 � 0.115 0.02

Region I-b (ε = −0.01, εδ = −0.5)

QIb
1 � 0.13 0.02

QIb
2 � 0.16 0.02

Region V (ε = −0.025, εδ = −0.5)

QV
1 � 0.01 0.2

QV
2 � 0.16 0

Fig. 8 Time response of
Eq. (27) for Region I-a with
initial conditions at a QIa

1 ,
i.e., (R1, R2) = (0.01, 0.21)
and b QIa

2 , i.e.,
(R1, R2) = (0.08, 0)

ure9 shows the time response of the system in Region
II with initial conditions QI I

1 (indicated with a red
diamond in Fig. 7b) and QI I

2 (indicated with a red
square). The system reaches the large-amplitude sta-
ble limit cycle corresponding to �̂

R1
R2

in both cases. It
takes longer for the system to reach the limit cycle in
the case of QI I

2 because of the presence of an unstable
limit cycle corresponding to �0

R2
.

Figure 10 shows the time response of the system in
Region III with initial conditions QI I I

1 (indicated with
a red diamond in Fig. 7c) and QI I I

2 (indicatedwith a red
square). The system reaches the large-amplitude stable
limit cycle corresponding to �̂

R1
R2

in both cases. Fig-

ure11 shows the time response of the system in Region
IVwith initial conditions QIV

1 (indicatedwith a red dia-
mond in Fig. 7d) and QIV

2 (indicatedwith a red square).
The system reaches the stable zero equilibrium for QIV

1
and the large-amplitude stable limit cycle correspond-
ing to �̂

R1
R2

for QIV
2 .

Figure 12 shows the time response of the system in
Region I-b with initial conditions QIb

1 (indicated with
a red diamond in Fig. 7e) and QIb

2 (indicated with a
red square). The system reaches the small-amplitude
stable limit cycle corresponding to �0

R2
for QIb

1 and
the large-amplitude stable limit cycle corresponding to
�̂
R1
R2

for QIb
2 . Finally, in Fig. 13, we show the time
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Fig. 9 Time response of
Eq. (27) for Region II with
initial conditions at a QI I

1 ,
i.e., (R1, R2) = (0.015,
0.18) and b QI I

2 , i.e.,
(R1, R2) = (0.02, 0)

Fig. 10 Time response of
Eq. (27) for Region III with
initial conditions at a QI I I

1 ,
i.e., (R1, R2) = (0, 0.08)
and b QI I I

2 , i.e.,
(R1, R2) = (0.02, 0)

Fig. 11 Time response of
Eq. (27) for Region IV with
initial conditions at a QIV

1 ,
i.e., (R1, R2) = (0.1, 0.02)
and (b) QIV

2 , i.e.,
(R1, R2) = (0.115, 0.02)

response of the system in Region V with initial condi-
tions QV

1 (indicated with a red diamond in Fig. 7f) and
QV

2 (indicated with a red square). The system reaches
the large-amplitude stable limit cycle corresponding to
�̂
R1
R2

in both cases. It takes longer for the system to reach

the limit cycle in the case of QV
2 because of the pres-

ence of the unstable zero equilibrium and the unstable
small-amplitude limit cycle corresponding to �

R1
R2
.

7 Conclusions

In this paper, we considered the roll motion of a low-
freeboard ship, controlled actively with a U-tube ART
with delayed feedback. The rolling dynamics of the

ship were modeled as a single-degree-of-freedom sys-
tem with cubic and quintic nonlinearities. Building
upon previous work in which a detailed stability anal-
ysis was performed for states near single Hopf bifur-
cation points, we focused this work on the first dou-
ble Hopf bifurcation point. We first identified and
proved the existence of the first double Hopf bifur-
cation point using three techniques: graphically, ana-
lytically, and through calculation of eigenvalues. We
then obtained the slow-flow equations using the MMS
method, bypassing the center manifold reductions and
normal forms. The slow-flow equations revealed the
existence of six distinct regions in the parameter space,
which we labeled Regions I-a, II, III, IV, I-b, and V.
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Fig. 12 Time response of
Eq. (27) for Region I-b with
initial conditions at a QIb

1 ,
i.e., (R1, R2) = (0.13, 0.02)
and b QIb

2 , i.e.,
(R1, R2) = (0.16, 0.02)

Fig. 13 Time response of
Eq. (27) for Region V with
initial conditions at a QV

1 ,
i.e., (R1, R2) = (0.01, 0.2)
and b QV

2 , i.e.,
(R1, R2) = (0.16, 0)

These regions are characterized by the nature of their
fixed points and the corresponding phase portraits.

A detailed study of the fixed points in each region of
the parameter space yielded interesting observations
with regard to the stability of a low-freeboard ship.
All six regions contain a stable large-amplitude limit
cycle (�̂R1

R2
) with amplitude greater than the critical roll

angle of a low-freeboard model. As a result, large dis-
turbances will cause the ship to capsize as it evolves
toward the large-amplitude limit cycle. In Regions I-a,
II, III, and V, even a small disturbance could result in
the capsizing of the ship due to its tendency to reach
a large-amplitude limit cycle (�̂R1

R2
). In Region IV, the

system has a stable zero equilibrium (�0
0), so a small

disturbance will subside and the ship will return to the
zero equilibrium. On the other hand, in Region I-b,
the system has a limit cycle (�0

R2
) whose amplitude is

less than the critical roll angle, indicating that a small
disturbance will cause the ship to perform small roll
oscillations without capsizing.

Based on this analysis, it can be concluded that the
optimal operating region for a delayed-feedback con-
troller is Region IV, followed by Region I-b as the
second-best option. In theworst case,RegionsVand I-a
would provide a substantial amount of timeprior to cap-
sizing, allowing for necessary measures to be taken to

protect the crew and cargo. These qualitative observa-
tions, made from slow-flow equations, were validated
through numerical simulation of the original DDE sys-
tem. Future work includes experimental validation of
these results and applying similar analyses to different
ship models.
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Appendix A: Basis functions used in Eq. (17)

The basis functions used in Eq. (17) are the shifted
Legendre polynomials, which are defined as follows:

�1(s) = 1, (A1a)

�2(s) = 1 + 2s

τ
, (A1b)

�i (s) = (2i − 3)�2(s)�i−1(s) − (i − 2) �i−2(s)

i − 1
,

i = 3, 4, . . . . (A1c)

When these basis functions are used, the mass matrices
W (k) and stiffness matrices Q(k) in Eq. (22) have the
following simple forms:

W (k)
i j = τ

2i − 1
δi j , i, j = 1, 2, . . . , N , (A2)

Q(k)
i j =

⎧

⎪⎨

⎪⎩

0, if i ≥ j

2, if i < j and i + j is odd

0, if i < j and i + j is even

,

i, j = 1, 2, . . . , N . (A3)

Appendix B: Coefficients Pi in Eq. (32)

The coefficients Pi appearing in Eq. (32) have lengthy
expressions. Thus, we provide here the expressions for
only the pertinent coefficients P1, P2, P3, and P4.

P1 = 5

8
α5A

5
2 + 3

4
α3A

3
2 + 2ω1D1A1 + 2μ̂1D1A2

+ 2kcr sin(ω1τcr )A1 − 2kcr cos(ω1τcr )A2
+ τcr kcr sin(ω1τcr )D1A1 − τcr kcr cos(ω1τcr )D1A2

+ 3

4
μ3ω

3
1A1A

2
2 + 15

4
α5A2A

2
3A

2
4 + 15

4
α5A

2
1A2A

2
3

+ 15

4
α5A

2
1A2A

2
4 + 3

2
μ3ω1ω

2
2A1A

2
3

+ 3

2
μ3ω1ω

2
2A1A

2
4 + 15

4
α5A

3
2A

2
3 + 15

4
α5A

3
2A

2
4

+ 5

4
α5A

2
1A

3
2 − δ sin(ω1τcr )A1 + δ cos(ω1τcr )A2

+ 3

4
α3A

2
1A2 + 3

2
α3A2A

2
3 + 3

2
α3A2A

2
4

+ 3

4
μ3ω

3
1A

3
1 + 15

8
α5A2A

4
3 + 5

8
α5A

4
1A2

+ 15

8
α5A2A

4
4 − 2ω2

0A2 − 2μ̂1ω1A1, (B4)

P2 = 3

4
α3A

3
1 − 2ω1D1A2 + 2μ̂1D1A1 + 5

8
α5A

5
1

+ 15

4
α5A1A

2
3A

2
4 + 15

4
α5A1A

2
2A

2
3 + 15

4
α5A1A

2
2A

2
4

− τcr kcr cos(ω1τcr )D1A1 − τcr kcr sin(ω1τcr )D1A2
− 2kcr cos(ω1τcr )A1 − 2kcr sin(ω1τcr )A2

− 3

4
μ3ω

3
1A

2
1A2 − 3

2
μ3ω1ω

2
2A2A

2
4 − 3

2
μ3ω1ω

2
2A2A

2
3

− 3

4
μ3ω

3
1A

3
2 + 15

8
α5A1A

4
4 + 5

8
α5A1A

4
2

+ 15

8
α5A1A

4
3 + 5

4
α5A

3
1A

2
2 + 15

4
α5A

3
1A

2
3

+ 15

4
α5A

3
1A

2
4 + δ sin(ω1τcr )A2 + δ cos(ω1τcr )A1

+ 3

2
α3A1A

2
4 + 3

4
α3A1A

2
2 + 3

2
α3A1A

2
3

− 2ω2
0A1 + 2μ̂1ω1A2, (B5)

P3 = τcr kcr sin(ω2τcr )D1A3 − τcr kcr cos(ω2τcr )D1A4
+ 2kcr sin(ω2τcr )A3 − 2kcr cos(ω2τcr )A4

+ 3

4
μ3ω

3
2A3A

2
4 + 15

4
α5A

2
1A

2
2A4 + 15

4
α5A

2
1A

2
3A4

+ 15

4
α5A

2
2A

2
3A4 + 15

4
α5A

2
2A

3
4 + 15

4
α5A

2
1A

3
4

+ 5

4
α5A

2
3A

3
4 − δ sin(ω2τcr )A3 + δ cos(ω2τcr )A4

+ 3

2
α3A

2
1A4 + 3

2
α3A

2
2A4 + 3

4
α3A

2
3A4

+ 3

4
μ3ω

3
2A

3
3 + 15

8
α5A

4
2A4 + 15

8
α5A

4
1A4

+ 5

8
α5A

4
3A4 + 5

8
α5A

5
4 + 3

4
α3A

3
4 + 2ω2D1A3

+ 2μ̂1D1A4 + 3

2
μ3ω

2
1ω2A

2
1A3 + 3

2
μ3ω

2
1ω2A

2
2A3

− 2μ̂1ω2A3 − 2ω2
0A4, (B6)

P4 = 5

8
α5A

5
3 + 3

4
α3A

3
3 − 2ω2D1A4 + 2μ̂1D1A3

+ 15

4
α5A

2
1A

2
2A3 + 15

4
α5A

2
1A3A

2
4 + 15

4
α5A

2
2A3A

2
4

− 2ω2
0A3 + 2ω2μ̂1A4 − τcr kcr cos(ω2τcr )D1A3

− τcr kcr sin(ω2τcr )D1A4 + 5

4
α5A

3
3A

2
4

− 3

4
μ3ω

3
2A

2
3A4 − 3

2
μ3ω

2
1ω2A

2
1A4 − 3

2
μ3ω
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1ω2A

2
2A4
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4
α5A

2
2A
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4
α5A

2
1A

3
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2
α3A

2
1A3
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2
α3A
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α3A3A
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4 − 3

4
μ3ω

3
2A

3
4

+ 15

8
α5A

4
2A3 + 15

8
α5A

4
1A3 + 5

8
α5A3A

4
4

+ δ sin(ω2τcr )A4 + δ cos(ω2τcr )A3
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− 2kcr A3 cos(ω2τcr ) − 2kcr A4 sin(ω2τcr ), (B7)

where Ai = Ai (T1) and D1Ai = d Ai (T1)

dT1
.

Appendix C: Coefficients Ni in Eqs. (36)

The expressions for the coefficients in Eqs. (36) are as
follows:

H1 = 8kcrτcr
(

4ω1 sin(ω1τcr ) − 4μ̂1 cos(ω1τcr )

+kcrτcr
) + 32

(

μ̂2
1 + ω2

1

)

,

H2 = 8kcrτcr
(

4ω2 sin(ω2τcr ) − 4μ̂1 cos(ω2τcr )

+kcrτcr
) + 32

(

μ̂2
1 + ω2

2

)

,

N11 = 5α̂5
(

kcrτcr cos(ω1τcr ) − 2μ̂1
)

,

N12 = 15α̂5
(

kcrτcr cos(ω1τcr ) − 2μ̂1
)

,

N13 = 30α̂5
(

kcrτcr cos(ω1τcr ) − 2μ̂1
)

,

N14 = 6
[

α̂3
(

kcrτcr cos(ω1τcr ) − 2μ̂1
)

−μ̂3ω
3
1 (kcrτcr sin(ω1τcr ) + 2ω1)

]

,

N15 = 12
[

α̂3
(

kcrτcr cos(ω1τcr ) − 2μ̂1
)

−μ̂3ω1ω
2
2 (kcrτcr sin(ω1τcr ) − 2ω1)

]

,

N16 = 16
[

2μ̂1

(

ω2
0 + ω2

1

)

+ kcrω1
(

τcr μ̂1 − 2
)

sin(ω1τcr ) − kcr
(

τcrω
2
0 − 2μ̂1

)

cos(ω1τcr )

−k2crτcr
]

,

N17 = 16
(

ω1 sin(ω1τcr ) − μ̂1 cos(ω1τcr )
) + 8kcrτcr ,

N21 = 15α̂5
(

kcrτcr cos(ω2τcr ) − 2μ̂1
)

,

N22 = 5α̂5
(

kcrτcr cos(ω2τcr ) − 2μ̂1
)

,

N23 = 30α̂5
(

kcrτcr cos(ω2τcr ) − 2μ̂1
)

,

N24 = 12
[

α̂3
(

kcrτcr cos(ω2τcr ) − 2μ̂1
)

−μ̂3ω
2
1ω2 (kcrτcr sin(ω2τcr ) + 2ω2)

]

,

N25 = 6
[

α̂3
(

kcrτcr cos(ω2τcr ) − 2μ̂1
)

−μ̂3ω
3
2 (kcrτcr sin(ω2τcr ) + 2ω2)

]

,

N26 = 16
[

2μ̂1

(

ω2
0 + ω2

2

)

+ kcrω2
(

τcr μ̂1 − 2
)

sin(ω2τcr ) − kcr
(

τcrω
2
0 − 2μ̂1

)

cos(ω2τcr )

−k2crτcr
]

,

N27 = 16
(

ω2 sin(ω2τcr ) − μ̂1 cos(ω2τcr )
) + 8kcrτcr ,

N31 = 5α̂5 (kcrτcr sin(ω1τcr ) + 2ω1) ,

N32 = 15α̂5 (kcrτcr sin(ω1τcr ) + 2ω1) ,

N33 = 30α̂5 (kcrτcr sin(ω1τcr ) + 2ω1) ,
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