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Abstract In this work, Sanders–Koiter’s nonlinear
shell theory is applied to study the nonlinear moderate-
amplitude vibrations of doubly curved shells using two
different approximations of the strain–displacement
relations for shallow and non-shallow shells. The non-
linear equations of motion are determined by Lagrange
equations. The displacement fields are approximated
using an expansion of trigonometric functions that
satisfy geometric (essential) and nonlinear natural
boundary conditions. Therefore, the backbone curves
are determined using multiple shooting method and
an Euler–Newtonian predictor–corrector continuation
algorithm; the Floquet theory is applied to determine
the stability of the periodic solutions. The obtained
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backbone curves showmultiple internal resonances due
to the coupling betweennormalmodes. Themode influ-
ence of some selected points on the backbone curves
is depicted to analyze the internal resonances, which
can represent loss of stability and sudden changes in
the dynamic behavior of shells undergoing moderate-
amplitude vibrations. Saddle–node, Newmark–Sacker
and period-doubling bifurcations are observed.
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1 Introduction

Due to their structural efficiency, thin shells are
widely used structural elements in several engineer-
ing branches and are mainly conceived with a rela-
tively small thickness when compared to their span. In
many cases, shells are subjected to dynamic loads that
can induce large-amplitude vibrations; then, a geomet-
ric nonlinear model considering large displacements
should be considered in analysis. The literature on shell
vibrations is vast, and detailed review studies of this
subject were presented by [1–3] and [4].

Nonlinear systems can exhibit extremely complex
behavior, and phenomena include jumps, bifurcations,
saturation, subharmonic and superharmonic vibrations,
internal resonances and chaos [5].Oneof themain char-
acteristics of nonlinear free vibrations is its dependence
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between frequency and amplitude/energy of vibration.
This dependence can be characterized by the deter-
mination of the frequency–amplitude plots (FAPs) or
frequency–energy plots (FEPs), which are curves that
relate the maximum amplitude (for a given generalized
coordinate) or energy of a periodic orbit with its fre-
quency. These curves, named backbone curves, repre-
sent the nonlinear normal modes (NNMs) of the struc-
ture and describe, among other things, the degree of
nonlinearity of the dynamic system, whether there is
hardening or softening (typically turning to hardening
for larger amplitudes) behavior of the system when
subjected to large-amplitude vibrations. [5] describe
several applications where NNMs represent a useful
framework for the structural dynamicist: (a) the repre-
sentation of NNMs in a FEP is a robust and accurate
tool to decide whether or not the linear framework is
still applicable and to determine which modes are sen-
sitive to the nonlinearity; (b) forced resonances in non-
linear systems occur in their neighborhoods and there-
fore provide valuable insight into the structure of the
resonances; (c) damped dynamics closely follows the
NNMs of the underlying undamped system; (d) NNMs
provide effective bases for constructing reduced-order
models; (e) the fact that NNMs spatially confine vibra-
tional energy can find applications in vibration mitiga-
tion of mechanical systems.
The determination of the backbone curves of shells
is the object of study in several works. [6] inves-
tigated the nonlinear free vibration of functionally
graded orthotropic cylindrical shells considering the
shear stresses. Nonlinear frequencies depending on the
amplitude of vibration are investigated through a para-
metric study. [7] analyzed the nonlinear free vibra-
tions of shells based on the six-parameter shell the-
ory. The frequency–response curves of cylindrical and
spherical shells were obtained by applying time peri-
odic discretization and pseudo arc-length continuation
techniques. [8] investigated the geometrically nonlin-
ear free vibration analysis of doubly curved composite
spherical shell panels using the nonlinear finite element
analysis (FEA). The frequency–amplitude relations for
the nonlinear free vibrations of spherical shell panel
were computed. The effects of curvature, thickness,
vibration amplitude, modular ratio, stacking sequence,
lamination scheme and different support conditions on
the frequency ratio were examined. [9] studied nonlin-
ear free vibrations of heterogeneous orthotropic shal-
low shells using a generalized first-order shear defor-

mation theory. They applied this theory to study sev-
eral types of shells such as circular cylindrical pan-
els, spherical panels and hyperbolic paraboloidal pan-
els. [10] studied the linear and geometrically nonlin-
ear vibrations of the three-layered functionally graded
shallow shells. Effects of different material distribu-
tions, lamination schemes, curvatures, boundary con-
ditions, and geometrical parameters on natural frequen-
cies and backbone curves were analyzed.

Internal resonance is essentially a nonlinear vibra-
tion phenomenon and occurs when energy is trans-
ferred between several modes, causing NNMs to inter-
act during a general motion of the system. Several
works describe the presence of internal resonances in
the analysis of free and forced vibrations of shells.
[11] investigated the internal resonance of a thin-walled
hyperelastic cylindrical shell composed of incompress-
ible Mooney–Rivlin material under radial harmonic
excitation, and the condition of 2:1 internal resonance
of the shell was studied. [12] studied the geometri-
cally nonlinear forced vibration response of truncated
thin conical shells using the Novozhilov shell the-
ory. They detected different types of complex non-
linear behavior such as pitchfork, Newmark–Sacker
and period-doubling bifurcations of the forced vibra-
tion responses arising from internal resonances. [13]
investigated the energy transfer of rectangular plates
when 1:3 internal resonance is obtained between dif-
ferent modes due to transversal and in-plane harmonic
excitation. [14] studied the dynamics of elastic cir-
cular cylindrical shells subjected to multi-harmonic
excitation. The shells exhibit many kinds of nonlin-
ear behavior such as simple periodic vibration, quasi-
periodic oscillations, subharmonic response, period-
doubling bifurcations and chaos. It was found that the
presence of a 1:1:2:2 internal resonance is the reason
for the complexity of the response. [15] studied the
nonlinear response of an imperfect circular cylindri-
cal shell, simply supported at the edges, to harmonic
excitation and analyzed the 1:1:1:1 internal resonance
considering four vibration modes with the same nat-
ural frequency. [16] studied resonant response of an
imperfect cylindrical shell using Donnell’s nonlinear
shallow shell theory and the nonlinear modal interac-
tions and couplings between two asymmetric vibration
modeswith near commensurable natural frequencies in
a 1:2 ratio. As a result of the circumferential symmetry,
each mode exhibits a 1:1 internal resonance, leading to
a possible 1:1:2:2 multiple internal resonance. Differ-
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ent problems of internal resonances were studied for
circular cylindrical and doubly curved shells in refer-
ences [17–21]. Many studies explore the phenomenon
of internal resonances occurring between modes of a
system with linear natural frequencies having integer
ratios. They often determine solutions using perturba-
tion techniques that exploit this property [11,15,19].
However, internal resonances may occur without com-
mensurate linear natural frequencies [13], highlight-
ing the possibility of missing important nonlinear phe-
nomena when using perturbation techniques limited to
small-amplitude motions [5].

Experimental analyses have been conducted that
demonstrate how damped dynamics closely follow
the NNMs of the underlying undamped system. This
relationship is exemplified by experiments conducted
on planar cantilever beams, employing a continuous
wavelet transformation to trace the temporal evolu-
tionof instantaneous frequencies [5]. Experiments have
also been conducted on an aluminum cylindrical panel
to identify the nonlinear response of the fundamental
mode [22]. Additionally, linear free vibration analy-
ses have been carried out for polymeric and composite
cylindrical shells [23,24]. Similar analyses were per-
formed for cylindrical shells, considering thermal and
hygrothermal effects [25,26]. Moreover, internal reso-
nances, specifically the 1:1:2 internal resonance, have
been examined using a perturbation method in the con-
text of harmonic forced excitation of spherical shells
[27], and these findings were subsequently validated
through experiments [28].
Despite several works on nonlinear dynamic behavior
of shells, some shell geometries have not been stud-
ied yet, especially doubly curved non-shallow shells.
Recently, [29] applied Sanders–Koiter’s shell theory
to obtain the natural vibration modes and natural
frequencies of thin shallow and non-shallow ellip-
tic paraboloids, hyperbolic paraboloids and parabolic
conoids; the obtained results showed good agreement
with FEA.

In this study, the nonlinear free vibrations of shells
are studied through the determination of backbone
curves. For this, the Sanders–Koiter’s nonlinear shell
theory is applied using two different approxima-
tions: one for shallow and the other for non-shallow
shells. The nonlinear equilibrium equations are derived
through Lagrange equations using an expansion that
satisfies the geometric (essential) and nonlinear nat-
ural boundary conditions. The FAP and FEP are

obtained by applying a combination of multiple shoot-
ingmethod and numerical continuation. First, the back-
bone curves of a shallow spherical panel is obtained;
numerical results are compared with the literature and
finite element method, showing a good agreement.
Next, the backbone curves of three non-shallow shell
geometries—spherical panel, hyperbolic paraboloid
and parabolic conoid—are determined, again showing
good agreement with the FEA. The percentage influ-
ence of each mode in the time response is determined
to characterize internal resonances. Finally, the sta-
bility of the backbone curves is determined by using
Floquet’s theory. Saddle–node, Newmark–Sacker and
period-doubling bifurcations are observed.

2 Mathematical formulation

Consider a generic thin shell, with constant thickness
h, made of an isotropic homogeneous elastic material
with Young’s module E , Poisson ratio ν and density
ρ. In this section, Koiter’s theory of thin shells will
be briefly presented. Regarding index notation, Greek
indices take values 1 and 2 and Latin indices take val-
ues 1, 2 and 3, unless another definition is presented.
Summation conventionwith respect to repeated indices
is also adopted. A description of the differential geom-
etry relations of themid-surface of the shell used in this
work is presented in Appendix A.
According to Koiter’s theory [30–32], the Green–
Lagrange strain tensor of the shell can be approximated
by:

E ≈ γαβMα ⊗ Mβ + ξ3ραβMα ⊗ Mβ (1)

where the triad of vectorsMi are the contravariant basis
of the mid-surface (see in Appendix A); the symbol ⊗
denotes the dyadic product; γαβ and ραβ are, respec-
tively, and the components of the stretching and bend-
ing tensors given by Eqs. (2a) and (2b).

γαβ = 1

2

(
gαβ − Gαβ

)
(2a)

ραβ = καβ − Kαβ (2b)

where gαβ andGαβ are, respectively, the components of
the metric tensor in the current and reference configu-
rations; καβ and Kαβ are, respectively, the components
of the curvature tensor in the current and reference con-
figurations. The values of gαβ and καβ depend on the

123
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position vector r, while Gαβ and Kαβ depend on R, as
presented in Appendix A.
Equation (2) is highly nonlinear, and some approxima-
tions can be considered to reduce the coupling level
between the nonlinear terms in the resultant equilib-
rium equations. In cases where the displacement of the
shell is of the order of magnitude of the shell thickness
or less, the nonlinear terms of the bending tensor can
be neglected [3,12,29,33–35]. Furthermore, in most
cases, the membrane components of the displacement
are small compared to the transversal components, and
hence, the nonlinear terms involvinguα can be removed
[35]. Combining these simplifications, the components
of the stretching and bending tensors can be written as:

γαβ = 1

2

(
uα|β + uβ|α + GσλKασ Kβλu

2
3 + u3,αu3,β

)

(3a)

ραβ = �
γ
αβu3|γ − u3|αβ (3b)

Moreover, if the shell is geometrically shallow, then the
curvature is small and terms involving the components
Kαβ can also be neglected [35,36], resulting in:

γαβ = 1

2

(
uα|β + uβ|α + u3,αu3,β

)
(4a)

ραβ = �
γ
αβu3,γ − u3,αβ (4b)

The strain energy, according to Koiter’s shell theory, is
given by:

U =
∫∫

�

Cαβθλ

(
h

2
γαβγθλ + h3

24
ραβρθλ

)

√
Gdξ1dξ2 (5)

where Cαβλθ = E
2(1−ν2)

((
GαθGβλ + GαλGβθ

)

(1 − ν) + 2νGαβGλθ
)

are the components of the
fourth-order constitutive tensor of a linear elastic mate-
rial considering plane stress state; G is the determinant
of the matrix composed by the components Gαβ of the
metric tensor. Finally, the kinetic energy, by neglecting
rotary inertia, is given by:

T =
∫∫

�

ρ
h

2
Gi j u̇i u̇ j

√
Gdξ1dξ2 (6)

In order to reduce the system to a finite number of
degrees of freedom, the displacements fields ui are

expanded using the approximate functions given by:

uk
(
ξ1, ξ2, t

)
≈

mk∑

i=1

nk∑

j=1

uki j (t) φki j

(
ξ1, ξ2

)
(7)

where mk and nk are the number of functions for each
curvilinear coordinate; uki j (t) are the unknown time-
dependent generalized coordinates; and φki j

(
ξ1, ξ2

)

are the shape functions properly chosen to satisfy the
boundary conditions.
The system of nonlinear equilibrium equations of
motion, for the free vibration problem of shells, can
be determined via Euler–Lagrange equations as:

d

dt

(
∂L

∂ u̇ki j

)

− ∂L

∂uki j
= 0 (8)

where L = K − U is the Lagrange functional of
the shell. The resulting system can be rewritten in the
matrix form as:

MÜ + KU + F(U) = 0 (9)

where M is the mass matrix; K is the linear stiffness
matrix; U = [uki j ] is a vector of dimension N = mknk
containing all generalized coordinates uki j , for k =
1 . . . 3, i = 1 . . .mk and j = 1 . . . nk ; and Ü denotes
the second time derivative of the vectorU. N represents
the number of degrees of freedomof the approximation.
The vector function F contains all quadratic and cubic
nonlinear stiffness terms and can be written as:

F (U) =
3∑

k=2

FkU •⊗k (10)

whereFk is a sparsematrix of dimension N×Nk due to
approximations (3) and (4) of the strain–displacement
relations; U •⊗k is equal to the product U •⊗ . . . •⊗ U (k
times) where the symbol •⊗ represents the Kronecker
product.
The system described by equation (9) is investigated
using a combination of the multiple shooting method
[37] and an Euler–Newtonian predictor-corrector con-
tinuation algorithm [38] to determine periodic solu-
tions (see Appendix B). This methodology is used to
extract the backbone curves, i.e., the FAP and FEP,
which represent of the NNMs of the shells. Finally, the
stability of the periodic solutions is evaluated via the
Floquet theory. Since the system (9) is autonomous and
conservative, at least one of the Floquet multipliers is
always 1 and is not considered in the stability checks. A
classical case is to obtain periodic solutions which are
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marginally stable; therefore, the tolerance for the sta-
bility check has to be chosen carefully as themultipliers
often lies exactly on the unit cycle [39]. Hence, a circle
slightly larger than the unit (1.00001) was considered
in the determination of stability via Floquet theory.

2.1 Modal decomposition

There are NNMs that can be internally resonant with-
out necessarily having commensurate linear natural fre-
quencies due to the coupling between them during a
general motion of the system [40]. In order to analyze
these interactions, it is convenient to decompose the
time response of the shell in the vector space of the
linear vibration modes [41]. For this, the time response
of each displacement field is rewritten in modal coor-
dinates as:

uk
(
ξ1, ξ2, t

)
=

N∑

m=1

μm (t) ψm
k

(
ξ1, ξ2

)
(11)

where μm(t) is the modal coordinate amplitude of
the correspondent eigenfunction ψm

k

(
ξ1, ξ2

)
, which is

determined by:

ψm
k

(
ξ1, ξ2

)
=

mk∑

i=1

nk∑

j=1

zmki j φki j

(
ξ1, ξ2

)
(12)

The values of zmki j are the elements of the eigenvector
zm = [zmki j ], determined by the eigenvalue/eigenvector
problem resulted by the linearization of the Eq. (9):

(K − ω2
mM)zm = 0

zm · Mzn = δmn
(13)

whereωm is the correspondent linear natural frequency
of the vibration mode zm , which is normalized by the
mass matrix.
The modal response is determined projecting the dis-
placement vector U onto the orthogonal vector space
of the linear vibration modes, according to

μ(t) = ZTMU(t) (14)

where Z = [z1 . . . zN ] is a matrix formed by all
eigenvectors zm and μ is a vector which elements are
the modal coordinate responses μm(t). The vibration
modes and eigenfunctions are sorted according to their
linear natural frequencies.
In order to evaluate the percentage influence of each
mode for a given periodic steady-state response of the

shell, one can determine the average of the projection
of each modal response onto the displacement vector
along the time response curve, according to:

Mode influence =
∫ 1

0

μm(τ )zm · U(τ )

U(τ ) · U(τ )
dτ (15)

where τ = ωt/(2π) is the normalized time and ω is
the angular frequency of the periodic orbit.

3 Numerical results

In the present work, the backbone curves are obtained
for shells with three different mid-surfaces, as illus-
trated in Fig. 1: (a) spherical panel; (b) parabolic
conoid; and (c) hyperbolic paraboloid. These figures
also display the equations of Z(ξ1, ξ2) that mathemat-
ically define the mid-surface as a function of curvi-
linear coordinates together with the other functions
X (ξ1, ξ2) = ξ1 and Y (ξ1, ξ2) = ξ2. In all cases, the
domain � is composed by the set 0 ≤ ξ1 ≤ a and
0 ≤ ξ2 ≤ b, which also represents the projection of
the shell’s mid-surface on the horizontal plane.

In order to validate the present formulation, a numer-
ical approximation of the backbone curve for the
finite element problem is also presented. This solution
was obtained using the commercial software Abaqus
with a 50 × 50 mesh and S4 elements, which is a
quadrilateral fully integrated, general-purpose, finite-
membrane-strain shell element with 4 nodes with 3
translations and 3 rotations per node [42]. This mesh
is large enough to guarantee numerical convergence.
The backbone curves are determined from a nonlinear
time domain solution with a small damping and the ini-
tial conditions corresponding to displacement with the
shape of the first mode and zero velocity. The vibra-
tion frequency is determined by calculating the period
between two consecutive points of maximum kinetic
energy.

3.1 Shallow spherical panel

Thefirst example is a simply supportedmovable (i.e. in-
plane displacement orthogonal to the edge is allowed,
while the out-of-plane displacement and the one tan-
gent to the edge are restrained) spherical shallow shell
with radius R = 1 m, horizontal projections with
dimensions a = b = 0.1 m, thickness h = 0.001 m,
Young’s module E = 206 GPa, Poisson ratio ν = 0.3
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Fig. 1 Mid-surface geometry: a spherical panel; b parabolic conoid and c hyperbolic paraboloid

and density ρ = 7850 kg/m3. The geometric (essen-
tial) and natural boundary conditions at the four edges
are given by:

u2 = u3 = N1 = M1 = 0 at ξ1 = 0, a (16a)

u1 = u3 = N2 = M2 = 0 at ξ2 = 0, b (16b)

where Nα is the normal force and Mα is the bending
moment per unit of length in the direction of mα . The
shape functions φki j (ξ

1, ξ2), which satisfy the bound-
ary conditions (16), were adopted as:

φ1i j =
{
1 + (−1)i

2
sin

(
iπξ1

a

)
+ 1 + (−1)i+1

2

× cos

(
iπξ1

a

)}
sin

(
(2 j − 1)πξ2

b

)

φ2i j = sin

(
(2i − 1)πξ1

a

){
1 + (−1) j

2
sin

(
jπξ2

b

)

+1 + (−1) j+1

2
cos

(
jπξ2

b

)}

φ3i j = sin

(
(2i − 1)πξ1

a

)
sin

(
(2 j − 1)πξ2

b

)
(17)

By adopting expansions of Eq. (17), only vibrations
that are symmetrical along the axis ξ1 = a/2 and ξ2 =
b/2 are considered. The shape functions φ1i j and φ2i j

present both sin(iπξ1/a) sin( jπξ2/b) (for even i and
odd j) and cos(iπξ1/a) sin( jπξ2/b) (for odd i and j)
terms. Term cos(iπξ1/a) sin( jπξ2/b) guarantees that
the displacement u1 is allowed at ξ1 = 0, a. Although
termsin(iπξ1/a) sin( jπξ2/b)does not change the dis-
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Fig. 2 Maximum amplitude vibration of the generalized coordi-
nate u311 (t) versus normalized frequency ω/ω1 of the backbone
curve of the fundamental mode for a shallow spherical panel—in
a for the model with 9 dof ( ) and in b for the model with 22
dof ( ) and 27 dof ( ); NS, Newmark–Sacker bifurcations.
The dashed curves represent unstable solutions; meanwhile, the
solid curves represent stable solutions. NS, Newmark–Sacker
bifurcations; SN, saddle–node bifurcations; PD, period-doubling
bifurcations. (Color figure online)

placement u1 at ξ1 = 0, a, without the inclusion of this
term, the natural boundary condition on the in-plane
normal force N1, which is essentially nonlinear, is not

Fig. 3 Total energy versus normalized frequency ω/ω1 of the
backbone curve of the fundamental mode for a shallow spherical
panel; , stable periodic orbit of the model with 9 dof; ,
stable periodic orbit of the model with 22 dof; , unstable
solution of the model with 22 dof; , stable periodic orbit of
the model with 27 dof; , unstable solution of the model with
27 dof; • • •, Abaqus’ backbone curve; NS, Newmark–Sacker
bifurcations; SN, saddle–node bifurcations; PD, period-doubling
bifurcations. (Color figure online)

satisfied at the edge; therefore, it is also necessary in
the expansion [43].
This shell was previously studied by [44], who deter-
mined the backbone curve using a model with 9 dof,
and [34], who determined the forced vibration response
curves formodels with 9 and 22 dof considering an har-
monic vertical concentrated load applied at the center
of the shell. Similar expansionswere also adopted in the
present work—with 9 dof (m1 = n1 = m2 = n2 = 2
and m3 = n3 = 1) and 22 dof (m1 = n1 = m2 =
n2 = 3 and m3 = n3 = 2). In order to seek con-
vergence, a model with 27 dof (mk = nk = 3) was
also employed. The natural fundamental frequency of
the shell is ω1 = 952.2 × 2π rad/s. The comparison
between the results from the literature with the results
of the present work is depicted in Fig. 2a, b.

As illustrated by Fig. 2a, the backbone curve of the
model with 9 dof shows an initial softening behav-
ior followed by a hardening behavior as the vibration
amplitude reaches the value of about 1.3h, which cor-
responds to a normalized frequencyω/ω1 = 0.75. This
response is in good agreement with the curves found
in the literature. The model with 22 dof shows a more
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Fig. 4 Time responses inmodal coordinates of the periodic solu-
tions a-d of the shallow spherical panel. , mode 1; ; mode
2; , mode 3; , mode 4. (Color figure online)

complex curve, as illustrated in Fig. 2b. Themodel with
27 dof shows very similar behavior to themodelwith 22
dof, with the stable part being almost identical between
the twomodels. Due to the internal resonances between
multiple vibrationmodes, multiple branches arise from
the fundamental response curve. This nonlinear behav-
ior is also depicted in Fig. 3, which shows the relation
between the total energy versus the frequency of the
periodic orbits of the shell. As shown in the figure,
internal resonances are also characterized by a sudden
increase in the shell’s total energy. Furthermore, the
response of FEA aligns consistently with the analyti-
cal solution for the main branch of the backbone. The
points with energy levels higher than 0.6 J depict aperi-
odic solutions, after which, as the energy decreases, the
solution converges to the main branch of the backbone.
As the FEA solution is derived from a damped free

vibration analysis, considering the first linear vibration
mode as the initial condition, the FEA solution fails to
capture new internal resonance branches, which mani-
fest as an energy increase that cannot occur in a scenario
of free damped vibration.

To better understand the nonlinear behavior of the
shell, the time response curves in modal coordinates of
four points of the backbone curve of the model with 22
dof in Fig. 3 are displayed in the graphs of Fig. 4a–d.
Themode influence at each of these four points is deter-
mined using Eq. (15). The percentage of mode influ-
ence of thefirst twomost influentialmodes at each point
is presented in Table 1. To characterize the internal res-
onances, the table also presents the dominant frequency
of each modal response, which is a multiple of the fre-
quency of the periodic orbit ω. Only the responses of
the most influential modes (1-4) were highlighted in
the graphs of Fig. 4, and their correspondent eigen-
functionsψm

k (ξ1, ξ2) are depicted in Fig. 5, which also
presents the linear natural frequencies of these modes.
Despite being internally resonant, the linear frequen-
cies of the resonant modes do not exhibit an integer
ratio, i.e., ω2/ω1 = 2.7, ω3/ω1 = 2.7, ω4/ω1 = 4.7.
In the 108 dof model, four periodic orbits (a–d) taken
from the backbone curve in Fig. 6a were analyzed to
characterize the different branches along the curve.
Therefore, the percentage mode influences at these
points are determined by using Eq. (15), and results
are presented in Table 2.

The main branch (points a and d) presents a stable
solution mostly represented by the first vibration mode
(Fig. 5a), as shown in the time response of Fig. 4a.
However, the influence of mode 2 (Fig. 5b) increases,
as shown in the response curve of Fig. 4d for point (d).
The second branch (b) presents a 5:1 internal resonance
due to the interaction between modes 1 and 4 (Fig. 5d),
as depicted in the time response of Fig. 4b. This branch

Table 1 Percentage mode influence of the first two most influential modes determined by the periodic orbits at the points a-d of the
backbone curve of the shallow spherical panel for the model with 22 dof in Fig. 3

Point 1st mode 2nd mode

Mode Dominant Mode Mode Dominant Mode
frequency (ω) influence (%) frequency (ω) influence (%)

a Mode 1 (Fig. 5a) 1 98.74 Mode 2 (Fig. 5b) 2 1.25

b Mode 4 (Fig. 5d) 1 73.28 Mode 1 (Fig. 5a) 5 25.84

c Mode 1 (Fig. 5a) 1 63.50 Mode 3 (Fig. 5c) 3 35.62

d Mode 1 (Fig. 5a) 1 95.64 Mode 2 (Fig. 5b) 3 4.33
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Fig. 5 Modal shape
functions of the shallow
spherical panel

presents an unstable solution delimited by saddle–node
bifurcations. The branch (c) contains multiple changes
of the stability due to saddle–node bifurcations, and
it is mostly characterized by a 3:1 internal resonance
between modes 1 and 3 (Fig. 5c), as illustrated by the

time response of Fig. 4c. After a Newmark–Sacker
bifurcation near the energy level of 1 J and frequency
ω = 0.75ω1, the solution becomes unstable.
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Fig. 6 Backbone curves of the non-shallow spherical panel for
the models with 48 dof ( ), 75 dof ( ), 108 dof ( ) and
147 dof ( ). • • •, Abaqus’ backbone curve. In a total energy
versus normalized frequency, and, in b maximum amplitude of
the generalized coordinate u311 versus normalized frequency are
given. The dashed curves represent unstable solutions; mean-
while, the solid curves represent stable solutions. NS, Newmark–
Sacker bifurcation. (Color figure online)

3.2 Non-shallow spherical panel

Now, the present formulation will be applied for the
study of non-shallow shells. For this, a non-shallow
spherical panel with the following geometric and phys-
ical properties was studied (see Fig. 1a): R = 0.1 m,

a = b = 0.1 m, h = 0.001 m, E = 206 GPa, ν = 0.3
and ρ = 7850 kg/m3. The shell is simply supported
with immovable edges, i.e.,

u1 = u2 = u3 = M1 = 0 at ξ1 = 0, a (18a)

u1 = u2 = u3 = M2 = 0 at ξ2 = 0, b (18b)

The shape functions φki j (ξ
1, ξ2), which satisfy the

boundary conditions (18), are defined by Eqs. (19).
Similar to the previous example, these functions were
chosen considering only the symmetrical effects along
the axes ξ1 = a/2 and ξ2 = b/2.

φ1i j = sin

(
(2i)πξ1

a

)
sin

(
(2 j − 1)πξ2

b

)

φ2i j = sin

(
(2i − 1)πξ1

a

)
sin

(
(2 j)πξ2

b

)

φ3i j = sin

(
(2i − 1)πξ1

a

)
sin

(
(2 j − 1)πξ2

b

)

(19)

In order to check the convergence of the solution,
four models with 48 dof (mk = nk = 4), 75 dof
(mk = nk = 5), 108 dof (mk = nk = 6) and 147
dof (mk = nk = 7) were built. The fundamental natu-
ral frequency is ω1 = 8,271.6× 2π rad/s. Figure 6a, b
shows the backbone curves of these four models. Con-
vergence is observed in the stable segments of the back-
bones and at the beginning of the unstable segments
in models with 108 and 147 dof. In both models, the
solution becomes unstable around ω = 0.985ω1. Con-
sequently, the shell displays aperiodic vibrations due to
a Newmark–Sacker bifurcation, which cannot be eval-
uated using the shooting method. The same behavior
could also be detected using FEA. Close to the bifur-
cation point, the Abaqus’ solution approaches the ana-
lytical backbone. Notably, for energy levels below 2 J,
both solutions exhibit highly similar results.

The main branch (points a and b) of the backbone
is predominantly characterized by mode 1 (Fig. 10a)
with increasing influence of mode 3 (Fig. 10b). The
internal resonances of the non-shallow spherical panel
have a fundamental difference when compared to the
shallow spherical panel. Notably, the branches of inter-
nal resonances activate in-plane modes and are unsta-
ble. In point (c), there is a 9:1 internal resonance
between modes 1 and 40 (Fig. 10c). At point (d), there
is a 13:1 internal resonance between modes 1 and 44
(Fig. 10d). These internal resonances, although mathe-
matically determined, do not represent real vibrations
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Table 2 Percentage mode influence of the first two most influential modes determined by the periodic orbits at the points a–d of the
backbone curve of the non-shallow spherical panel for the model with 108 dof in Fig. 6a

Point 1st mode 2nd mode

Mode Dominant Mode Mode Dominant Mode
frequency (ω) influence (%) frequency (ω) influence (%)

a Mode 1 (Fig. 10a) 1 92.75 Mode 3 (Fig. 10b) 1 3.04

b Mode 1 (Fig. 10a) 1 84.94 Mode 3 (Fig. 10b) 1 5.45

c Mode 1 (Fig. 10a) 1 76.06 Mode 40 (Fig. 10c) 9 8.99

d Mode 1 (Fig. 10a) 1 75.72 Mode 44 (Fig. 10d) 13 13.17

of the structure and may vanish with the addition of
new modes in the model.

3.3 Hyperbolic paraboloid

The third example is a non-shallowhyperbolic paraboloid
with the following geometric and physical properties
(see Fig. 1b): f1 = 0.02 m, f2 = 0.02 m, a =
b = 0.1 m, h = 0.001 m, E = 206 GPa, ν = 0.3
and ρ = 7850 kg/m3. The boundary conditions are
the same as the previous example: simply supported
with immovable edges (see Eq. (18)). As the shell
is symmetric along ξ1 = a/2 and ξ2 = b/2, the
shape functions from Eq. (19) were also adopted in
this case. Therefore, only symmetric vibrations along
these two axes were considered. Figure 7a, b shows
the backbone curve for the hyperbolic paraboloid for
models considering 48 dof (mk = nk = 4), 75 dof
(mk = nk = 5) and 108 dof (mk = nk = 6). Fig-
ure 7a displays the total energy versus the normalized
frequency, while Fig. 7b shows the maximum ampli-
tude of the generalized coordinate u333 versus the nor-
malized frequency. The fundamental natural frequency
of the shell is ω1 = 6,391.1 × 2π rad/s. Among the
structures examined, the hyperbolic paraboloid is the
only one that exhibits initial stiffness gain. While the
modelswith 75 and 108 degrees of freedomconverge in
the stable segments of the backbone, the model with 48
degrees of freedom does not exhibit any internal res-
onances. However, as additional degrees of freedom
are introduced to the system, new internal resonances
arise. The FEP determined via the finite element analy-
sis exhibits the same behavior as the analytical solution.
The FEA solution closely resembles the analytical one
for energy levels below 10 J and becomes nearly iden-
tical for energy levels below 1 J.

Again, some points (a-c) along the backbone curve
of the model with 75 dof were selected and are dis-
played in Fig. 7a to characterize the modal coupling
in the response. Therefore, the modal influences of the
most dominant modes, determined by Eq. (15), are dis-
played in Table 3; for each point—themodeswithmore
influence are depicted in Fig. 11. The table also presents
the dominant frequency of each modal response.

In themain branch, the free vibrations aremost char-
acterized by the first mode (Fig. 11a), with the increas-
ing presence of mode 12 (Fig. 11b) exhibiting a 3:1
internal resonance, as illustrated by the points (a) and
(c). The ratio between the linear natural frequencies of
these two modes is ω12/ω1 = 2.3, demonstrating once
again that internal resonances can occurwithout having
commensurable linear frequencies.At point (b), there is
an 7:1 internal resonance with the interaction between
modes 1 and 26. Similar to the previous example, the
branches of internal resonances that activate in-plane
modes (e.g., mode 26 depicted in Fig. 11) are unstable,
thus not physically realizable, and may vanish with the
addition of new modes to the model.

3.4 Parabolic conoid

Now, the results of the parabolic conoid are presented,
which has the following geometric and physical prop-
erties (see Fig. 1c): f1 = 0.03 m, f2 = 0.02 m,
a = b = 0.1 m, h = 0.001 m, E = 206 GPa,
ν = 0.3 and ρ = 7850 kg/m3. The shell is simply sup-
ported with immovable edges, according to Eq. (18).
Unlike the other shells, this one presents symmetry only
along the axis ξ2 = b/2, so the shape functions φ1i j
were chosen considering symmetric vibrations along
this axes as

φ1i j = sin

(
iπξ1

a

)
sin

(
(2 j − 1)πξ2

b

)
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Fig. 7 Backbone curves of the hyperbolic paraboloid for the
models with 48 dof ( ), 75 dof ( ) and 108 dof ( ).
• • •, Abaqus’ backbone curve. In a total energy versus normal-
ized frequency, and, in b maximum amplitude of the general-
ized coordinate u333 versus normalized frequency are given. The
dashed curves represent unstable solutions; meanwhile, the solid
curves represent stable solutions. NS, Newmark–Sacker bifurca-
tion; SN, saddle–node bifurcation. (Color figure online)

φ2i j = sin

(
iπξ1

a

)
sin

(
2 jπξ2

b

)

φ3i j = sin

(
iπξ1

a

)
sin

(
(2 j − 1)πξ2

b

)
(20)

In order to check convergence, four models with 48
dof (mk = nk = 4), 75 dof (mk = nk = 5), 108 dof
(mk = nk = 6) and 147 dof (mk = nk = 7) were
built. The fundamental natural frequency of the shell
is ω1 = 3,623.9 × 2π rad/s. The backbone curves for
these models are depicted in Figs. 8a, b. At the begin-
ning of the curve, the four models show the same soft-
ening behavior, but the model with 48 dof starts to dis-
play hardening behavior for a frequency value around
ω = 0.994ω1. Overall, the model with 75 dof presents
a behavior similar to the models with 108 and 147 but
without the unstable internal resonances. The models
with 108 and 147 dof exhibit internal resonances with
the activation of in-planemodes in unstable branches of
the backbone that do not represent real vibrations of the
structure. In the model with 147 dof, after a Newmark–
Sacker bifurcation the solution becomes unstable. The
backbone determined via FEAexhibits the samebehav-
ior as the backbone determined by the model with 147
dof, once again confirming the efficiency of the present
formulation in the analysis of free vibrations under
moderate-amplitude conditions.

4 Conclusion

This study explored the fundamental nonlinear nor-
mal mode of doubly curved shells using two different
approximations of the Sanders–Koiter shell theory—
one for shallow shells and the other for non-shallow
shells. The existing literature on semianalytical solu-
tions of shells was limited to specific geometries due
to the constraints of orthogonal theories. A tensor for-
mulation was applied to study shells with four different
geometries, including shallow and non-shallow spher-
ical panels, a hyperbolic paraboloid, and a parabolic
conoid.

The frequency–energy relations of the shells were
compared with results obtained with a finite element
method using Abaqus, demonstrating good agreement.
These results can serve as a benchmark for future
researchers working in the field of non-shallow dou-
bly curved shells. For future works, due to its relia-
bility and generality, the tensor formulation can be fur-
ther applied to analyze shells with different geometries.
Also, the determined backbone curves offer valuable
insights into the energy levels at which linear theories
are applicable or not.

Table 4 shows the results of mode influence (Eq. 15)
of the periodic orbits of points a-c on the backbone
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Table 3 Percentage mode influence of the first two most influential modes determined by the periodic orbits of the points a–c at the
backbone curve of the non-shallow hyperbolic paraboloid for the model with 75 dof in Fig. 7a

Point 1st mode 2nd mode

Mode Dominant Mode Mode Dominant Mode
frequency (ω) influence (%) frequency (ω) influence (%)

a Mode 1 (Fig. 11a) 1 91.61 Mode 12 (Fig. 11b) 3 4.05

b Mode 26 (Fig. 11c) 7 54.63 Mode 1 (Fig. 11a) 1 41.17

c Mode 1 (Fig. 11a) 1 86.52 Mode 12 (Fig. 11b) 3 6.71

curve for the model with 147 dof depicted in Fig. 8a—
the modes with more influence are depicted in Fig. 12.
The response is majorly influenced by the first mode
(Fig. 12a) with increasing influence of modes 2 (Fig.
12b) and 4 (Fig. 12c), exhibiting 2:1 internal reso-
nances.

To analyze internal resonances, time responses of
periodic orbits inmodal coordinateswere used to deter-
mine the mode influence of each mode, highlight-
ing that some modes can be internally resonant with-
out having an integer ratio between their linear natu-
ral frequencies. Thus, significant internal resonances
have been characterized in the backbone curves of the
shells. Particularly, in the case of the shallow spher-
ical panel, these internal resonances represent abrupt
changes in the shell’s vibrations, accompanied by a sud-
den increase in the total energy. For non-shallow shells,
certain branches exhibit non-persistent unstable inter-
nal resonances with the activation of in-plane vibration
modes. However, the main branch of the backbones
displays stable internal resonances, and the activated
modes exert an increasing influence with rising energy
levels.
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Appendix A Differential geometric relations of the
shell’s mid-surface

In this Appendix, the differential relations of the
mid-surface are briefly presented; a detailed descrip-
tion of the tensor formulations can be found in the
literature [31,32]. The shell is oriented in Cartesian
directions x1, x2 and x3 with unit vectors e1, e2 and
e3, and its mid-surface is parameterized by vectors R
and r, in reference and current configurations. Vectors
R and r are function of curvilinear coordinates ξ1 and
ξ2, respectively, and are given by:

R= X (ξ1, ξ2)e1+Y (ξ1, ξ2)e2+Z(ξ1, ξ2)e3 (A1a)

r = R + u (A1b)

where ξ1 and ξ2 are the curvilinear coordinates of
the mid-surface, which can be interpreted as Carte-
sian coordinates taking values in some planar domain
�, according to (ξ1, ξ2) ∈ �; functions X , Y and Z
mathematically describe the mid-surface in reference
configuration and u is the field vector that describes
the displacement of the shell’s mid-surface. Figure 9
displays the shells coordinates in reference and current
configuration.

Vectors X and x describe the position of any point of
the shell in both reference and current configurations.
The kinematics of the shell follows theKirchhoff–Love
hypotheses, so vectors X and x are defined as:

X = R + ξ3M3 (A2a)

x = r + ξ3m3 (A2b)

where −h/2 ≤ ξ3 ≤ h/2 is the coordinate that defines
the position of a point of the shell perpendicular to
the mid-surface. The triad of vectors Mi (i = 1, 2, 3)
compose the covariant basis of the mid-surface in the
reference configuration and are described in Eqs. (A3)
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Fig. 8 Backbone curves of the parabolic conoid for the mod-
els with 48 dof ( ), 75 dof ( ), 108 dof ( ) and 147 dof
( ). • • •, Abaqus’ backbone curve. In a total energy versus
normalized frequency, and, in b maximum amplitude of the gen-
eralized coordinate u313 versus normalized frequency are given.
The dashed curves represent unstable solutions; meanwhile, the
solid curves represent stable solutions. NS, Newmark–Sacker
bifurcation. (Color figure online)

as a function of vectorR and the curvilinear coordinates
ξ1 and ξ2

M1 = ∂R
∂ξ1

= X,1e1 + Y,1e2 + Z,1e3 (A3a)

M2 = ∂R
∂ξ2

= X,2e1 + Y,2e2 + Z,2e3 (A3b)

M3 = M1 × M2√
G

(A3c)

where vectors M1 and M2, defined in Eqs. (A3a) and
(A3b), are tangent to the coordinate lines ξα (α = 1, 2);
M3, defined in Eq. (A3c), is a unit vector perpendicular
to the mid-surface of the shell; and

√
G = |M1 × M2|.

Notation Z,α represents the derivative of Z with respect
to ξα where α = 1, 2.
The contravariant basis is composed by vectorsMi (i =
1, 2, 3) and can be determined by

Mi · M j = δ
j
i (A4)

where δ
j
i is the Kronecker’s delta. It can be demon-

strated by Eqs. (A3) and (A4) that M3 = M3 and both
Mi and Mi bases are necessary in the analysis of shells
when the orthogonal condition M1 · M2 = 0 is not
satisfied.
The metric tensor G = Mi ⊗Mi is used to measure the
length of a curve along the surface, and its components
in both covariant and contravariant bases are given by
Eqs. (A5a) and (A5b), respectively, as:

Gi j = Mi · M j (A5a)

Gi j = Mi · M j (A5b)

An infinitesimal vector dR located on the mid-surface
of the shell can be expressed in terms of the tangent
vectors Mα and the infinitesimals dξα , according to:

dR = Mαdξ
α (A6)

The curvature tensor K relates both the infinitesimal
vectors dM3 and dR, according to Eq. (A7a) and can
be expanded in Eq. (A7b) as a function of vectors Mα

(contravariant basis) and Mα (covariant basis) and the
infinitesimals dξβ

dM3 = K · dR (A7a)

dM3 = KαβMαdξβ = K α
β Mαdξ

β (A7b)

where Kαβ and K α
β are, respectively, the covariant and

mixed components ofK given byEqs. (A8a) and (A8b).

Kαβ = Mα · ∂M3

∂ξβ
= −M3 · ∂Mα

∂ξβ
= −M3 · ∂Mβ

∂ξα

(A8a)

K α
β = Mα · ∂M3

∂ξβ
= −M3 · ∂Mα

∂ξβ
(A8b)

The infinitesimal vectors dMα and dMα can also be
written as a function of Mβ and Mβ , according to
Eqs. (A9a) and (A9b), such as:

dMα = �β
αγ Mβdξ

γ (A9a)

123



Nonlinear free vibration... 21549

Table 4 Percentage mode influence of the first two most influential modes determined by the periodic orbits at the points a–c of the
backbone curve of the non-shallow parabolic conoid for the model with 147 dof in Fig. 8a

Point 1st mode 2nd mode

Mode Dominant Mode Mode Dominant Mode
frequency (ω) influence (%) frequency (ω) influence (%)

a Mode 1 (Fig. 12a) 1 98.47 Mode 2 (Fig. 12b) 2 0.85

b Mode 1 (Fig. 12a) 1 96.53 Mode 2 (Fig. 12b) 2 1.52

c Mode 1 (Fig. 12a) 1 94.41 Mode 4 (Fig. 12c) 2 2.38

Fig. 9 Shell’s motion
description

dMα = −�α
βγ Mβdξγ (A9b)

where �α
βγ are the well-known Christoffel symbols

determined by:

�α
βγ = Mα · ∂Mβ

∂ξγ
(A10)

By combining Eqs. (A7), (A8), (A9) and (A10), the
Gauss andWeingarten equations of themid-surface can
be obtained and are given by:

∂M3

∂ξα
= KαβMβ

∂M3

∂ξα
= K α

β Mβ

∂Mβ

∂ξα
= �

γ
αβMγ − KαβM3

∂Mβ

∂ξα
= −�β

αγ Mβ − K β
α M3

(A11)

Any vector field acting on the mid-surface, e.g.,
the displacement vector u, can be decomposed in con-
travariant basis as u = uiMi . Therefore, its derivatives
with respect to ξα are given by:

u,α = ui |αMi (A12)

where the values of ui |α are the covariant derivatives of
the displacement vector u, given by:

uσ |α = uσ,α − �τ
σαuτ + Kασu3

u3|α = u3,α − K τ
αuτ

(A13)

The second derivative of displacement vector u is given
by:

u,αβ = uσ |αβMσ + u3|αβM3 (A14)

where uσ |αβ and u3|αβ are given by:

uσ |αβ = (uσ |α),β − �τ
βσuτ |α + Kσβu3|α

u3|αβ = (u3|α),β − K τ
βuτ |α

(A15)

In this Appendix, the differential geometric properties
of the mid-surface S in reference configuration were
shown. Although the same properties (covariant and
contravariant basis vector, metric and curvature tensors
and Gauss–Weingarten equations) can also be obtained
in the current configuration. Therefore, in the current
configuration, vectors mi and mi are, respectively, the
covariant and contravariant basis vectors and tensors g
and κ are, respectively, themetric and curvature tensors
of the mid-surface s.
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Appendix B Numerical determination of periodic
orbits

To the determination of the periodic orbits, the nonlin-
ear system of second-order differential equations (9) is
transformed into a first-order differential system con-
sisting of 2 × N equations:

y′(τ ) = f (y(τ ), ω, α)

= 2π

ω

[
U′

M−1(−KU − αMU′ − F(U))

]
, (B16)

where ω represents the angular frequency of the peri-
odic orbit; τ is the dimensionless time variable scaled
by T = (2π)/ω to ensure a period of 1 for the orbits;
y′ = dy/(dτ) represents the derivative with respect
to τ ; and y = [[U]T, [U′]T]T denotes the vector of
state variables. The term αMU′ has been introduced to
account for system damping, with the damping coeffi-
cient α approaching zero as the continuation algorithm
converges to a periodic orbit.

The integration interval is divided into Nt segments,
i.e., 0 = τ0 < τ1 < · · · < τNt = 1. To find the values
of the shooting points y(τk) for a given initial condition
y(τk−1), Nt systems of ordinary differential equations
are solved, following the structure defined by the initial
value problem:

y′(τ ) = f (y(τ ), ω, α)

y(τk−1) = yk
τk−1 ≤ τ ≤ τk

(B17)

where k = 1, . . . , Nt , and the values of yk represent
the initial conditions at the time points. In this work, we
adopted Nt = 40, and the ordinary differential equa-
tions (ODE) are solved in parallel using the ode45
function in Matlab.
The goal of the multiple shooting method is to find
the vectorY = [[y1]T, . . . , [yNt ]T]T—that storages the
initial conditionsyk—thedamping coefficientα and the
frequency ω that represent a periodic orbit y(τ ) such
that y(τ ) = y(τ + 1). In other words, the objective
of the continuation algorithm is to find the root of the
residue equation (B18)

r (Y, ω, α) =

⎡

⎢
⎢⎢
⎣

y(τNt ) − y1
y(τ1) − y2

...

y(τNt−1) − yNt

⎤

⎥
⎥⎥
⎦

(B18)

whichmeans that all initial conditions yk and the corre-
spondent shooting points y(τk) lie in the same periodic
orbit y(τ ).

In this work, the phase constraint of Eq. (B19) was
adopted [37].

rph (Y, ω, α) =
Nt∑

k=1

{(
yk − [yk]0

)
· [y′(τk−1)]0

}

(B19)

where [ ]0 represents the previous iteration of the con-
tinuation method, such that [Y]0 is a solution to Eq.
(B18). From a geometric perspective, the phase con-
straint in equation (B19) aims to find a new periodic
orbit y(τ ) whose values of [yk]0 and yk lie in the same
Poincaré section, which is perpendicular to the orbit
[y(τ )]0 at τ = τk−1. The expanded problem adding the
phase constraint (B19) is given by:

R(x) =
[

r(x)

rph(x)

]
(B20)

where the vector x = [YT, ω, α]T represents the vari-
ables of the continuation algorithm.
The continuationmethodbegins byusing a known solu-
tion [x]0 to calculate an approximate solution w. This
initial step is referred to as the predictor.

w := [x]0 + δ[t]0 (B21)

Here, the tangent vector t = t(∂xR) is a function of
the Jacobian of the residue at the previous iteration
[38], and δ represents the step size of the predictor.
Throughout the continuation steps, various adaptation
schemes can be applied to modify the value of δ [38].
The solution w is then improved through iterative cor-
rection steps until convergence is achieved using equa-
tion (B22)

w := w − pinv(∂xR(w))R(w) (B22)

The process continues for a new solution x := w, and
subsequently applying the next fstep of the continua-
tion algorithm.

Appendix C Modal shapes

In this appendix, the vibration modes and natural fre-
quencies of the non-shallow spherical panel, the hyper-
bolic paraboloid, and the parabolic conoid are depicted
in Figs.10, 11 and 12, respectively.
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Fig. 10 Modal shape
functions of the
non-shallow spherical panel
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Fig. 11 Modal shape
functions of the hyperbolic
paraboloid
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Fig. 12 Modal shape
functions of the parabolic
conoid
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