
Nonlinear Dyn (2023) 111:20257–20273
https://doi.org/10.1007/s11071-023-08937-2

ORIGINAL PAPER

Exploring lump soliton solutions and wave interactions
using new Inverse (G ′/G)-expansion approach: applications
to the (2+1)-dimensional nonlinear Heisenberg
ferromagnetic spin chain equation

Sachin Kumar · Monika Niwas

Received: 18 August 2023 / Accepted: 17 September 2023 / Published online: 4 October 2023
© The Author(s), under exclusive licence to Springer Nature B.V. 2023

Abstract In this research article, we propose a novel
approach called the “ new Inverse (G ′/G)-Expansion
Method” to discover new exact soliton solutions for
the (2+1)-dimensional nonlinearHeisenberg ferromag-
netic spin chain (HFSC) equation. By employing the
proposed method, we successfully derive various set
of new exact soliton solutions for the HFSC equa-
tion. These soliton solutions of the HFSC equation find
valuable applications in various fields, including opti-
cal fiber communications, plasma physics, condensed
matter physics, and nonlinear dynamics. To gain a
visual understanding and illustrate the nature of the
derived soliton solutions, we present 3-dimensional
plots, contour plots, and 2-dimensional plots. Through
these visualizations, we comprehensively observe and
analyze various structures, including lump solitons,
interactions of lumps with waves, periodic solitons,
breather-type solitons, and solitary waves. To establish
a connection between the depicted graphics and real-
world phenomena, we incorporate images of transverse
waves in a rope, waves on the ocean’s surface, the oscil-
lationswithin the ocean depths, and bubblywaves in the
application section. These real-world examples help us
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to bridge the gap between theoretical soliton behavior
and physical occurrences, providing a deeper insight
into the significance and applicability of our findings.
These results significantly enhance our understanding
of the (2+1)-dimensional nonlinear Heisenberg ferro-
magnetic spin chain equation, and also demonstrate the
effectiveness of the novel Inverse (G ′/G)-expansion
method in extracting exact soliton solutions under spe-
cific constraint conditions.

Keywords Nonlinear waves · HFSC equation · New
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1 Introduction

The theory of solitary waves and solitons has emerged
as a fundamental aspect of nonlinear dynamics, finding
profound applications in awide array of scientific disci-
plines, including plasma physics, fluid mechanics, par-
ticle physics, condensed matter physics, and photon-
ics, among others. In recent decades, researchers have
directed their attention toward investigating the behav-
ior of nonlinear Schrödinger (NLS) equations, which
serve as essential models for understanding nonlinear
phenomena in various physical systems. To gain deeper
insights into the dynamics of NLS equations, numer-
ous integration tools have been proposed by schol-
ars and researchers. Some of these integration meth-
ods include the Bell polynomial method [1], Painlevé
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test [2], Kudryashov’s simplest Equation method [3],
Exp-function method [4], Hirota bilinear method [5–
8], modifed rational sine–cosine and sinh–cosh func-
tions [9,10], Extended Sinh-Gordon equation method
[11], Extended rational sin–cos method [12], Darboux
transformation method [13], F-expansion method [14],
the generalized exponential rational function method
[3], Kudryashov-expansion method [15], Lie symme-
trymethod [16–18], Backlund transformation [19], test
function [20,21], the new modified generalized expo-
nential rational function method [22], the generalized
Riccati equation mapping method [23], Wronskian
solutions [24], Riccati projective equationmethod [25],
the extended trial equation scheme [26], Solitary Wave
Ansatze [27], right–left-moving wave solutions [28],
two-stage epidemicmodelwith a dynamic control strat-
egy [29], extended tanh-coth expansion method [30],
and other mathematical approaches [31]. To provide
a comprehensive understanding of the soliton theory,
the focus of this study lies in investigating the (2+1)-
dimensional nonlinear Heisenberg ferromagnetic spin
chain (HFSC) equation [32]:

i
∂R(x, y, t)

∂t
+ α

∂2R(x, y, t)

∂x ∂x
+ β

∂2R(x, y, t)

∂y ∂y

+ γ
∂2R(x, y, t)

∂x ∂y
− λR(x, y, t) |R(x, y, t)|2 = 0,

(1)

where α = δ4(J + J2), β = δ4(J1 + J2), γ = 2δ4 J2,
and λ = 2δ4 M. In this context, J , J1, and J2 stand
for the unchanging coefficients of bilinear exchange
interactions within a two-dimensional space. The vari-
able M symbolizes the interaction arising from the
anisotropy of the crystal field, while δ represents the
lattice parameter. This equation plays a crucial role in
the study of magnetic materials and condensed mat-
ter physics, offering valuable insights into the behavior
of spins in two-dimensional systems with ferromag-
netic interactions. The exploration of this equation is
expected to reveal intricate soliton dynamics and col-
lective phenomena, offering valuable insights into the
behavior of spins.

In recent years, the HFSC equation has acquired sig-
nificant attention from researchers exploring diverse
methodologies. Some notable studies have contributed
to our understanding of this equation: Latha and Vas-
anthi [32] explored the behavior of spins in (2+1)-

dimensional Heisenberg ferromagnetic spin chains.
They used the coherent state ansatz and the Holstein–
Primakoff representationof spinoperators. They looked
at how the equation can be solved, creating solutions
called multisolitons using the Darboux transformation.
Liu [33] offered an explicit formulation for rogue wave
solutions in the context of the (2+1)-dimensional non-
linear Schrödinger equation. Employing the bilinear
method, they expressed these solutions using Gram
determinants. Hashemi [34] focused on the HFSC
equation’s solutions incorporating conformable time
fractional derivatives. Through the utilization of the
simplest equation method and Nucci’s method with
conformable fractional derivatives, theyderived a range
of solutions, including bright and dark solitons. Bashar
and Islam [35] extended the modified simple equation
and the improved F-expansion method to determine
exact solutions of the HFSC equation. Their approach
resulted in the construction of traveling wave solutions
characterized by hyperbolic, trigonometric, and ratio-
nal functions, all of whichwere parameterized. Guan et
al. [36] used a mathematical approach called the com-
plete discrimination system for polynomial method to
solve the HFSC equation. They also used computer
simulations to showhow the equationworks in different
situations. Du et al. [37] directed their attention toward
the spin dynamics of nonlinear localized waves within
the HFSC equation. By using a technique that nonlin-
earizes the spectral problem, they obtained values for
the spectral parameter and periodic eigenfunction asso-
ciated with the Lax pair linked to the Jacobian elliptic
function of the third kind. Utilizing the Darboux trans-
formation, they generated semirational solutions based
on seed solutions expressed using the Jacobian elliptic
function.

Soliton solutions obtained through the “Inverse
(G’/G)-Expansion Method” have wide-ranging appli-
cations across various fields. These solitons are sig-
nificant in nonlinear optics, where they maintain their
shape and speed during propagation, enabling long-
distance communication without distortion. Addition-
ally, they find application in plasma physics, where
solitons play a crucial role in understanding wave phe-
nomena and energy transport in plasma environments.
Moreover, their relevance extends to condensed matter
physics, aiding in the study of localized excitations and
magnetic behavior in spin chains and other condensed
matter systems.
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The study of nonlinear partial differential equations
has led to the discovery of fascinating wave phenom-
ena, including lump solitons, breather waves, periodic
solitons, interactions of lumps with solitary waves, and
bubbly solitarywaves. These intriguingwave behaviors
have captured the attention of researchers across vari-
ous scientific disciplines, from engineering to physics
and mathematics. Lump solitons exhibit localized,
compact wave structures that maintain their shape dur-
ing propagation, while breather waves display periodic
oscillations of amplitude and shape. Periodic solitons,
on the other hand, manifest as repeating wave patterns
with stable spatial periodicity. The interaction of lumps
with solitary waves showcases intricate wave dynam-
ics, and bubbly solitary waves represent an intricate
combination of solitary waves and bubble-like struc-
tures. Understanding and characterizing these distinct
wavephenomenahold immense significance in advanc-
ing our knowledge of nonlinear wave dynamics and
their applications in the natural world and engineered
systems.

This article is organized into several sections to
comprehensively explore the application of the Inverse
(G ′/G)-expansion method to the HFSC equation and
its implications. In Sect. 1, we delve into the histori-
cal background of the HFSC equation, providing an
insightful context for its significance in the field of non-
linear wave equations. In Sect. 2, we present a detailed
algorithm of our novel proposed “Inverse (G ′/G)-
expansion method,” outlining its systematic approach
for obtaining exact solutions to nonlinear partial differ-
ential equations. Moving on to Sect. 3, we demonstrate
the successful implementation of the Inverse (G ′/G)-
expansionmethod on theHFSCequation, leading to the
discovery of new and novel analytic solutions. These
solutions are thoroughly examined and analyzed via
graphical representations, offering a clear visualization
of their unique wave behaviors. In Sect. 4, we estab-
lish a connection between our mathematical findings
and real-world applications by discussing the impli-
cations of specific solutions, particularly those repre-
sented by Eqs. (6) and (7). By linking our research to
well-known physical phenomena, we enrich the practi-
cal significance of our results. Furthermore, in Sect. 5,
we explore the visual behavior of the obtained solu-
tions under various parameter choices, elucidating the
impact of different parameter values on wave dynam-
ics. This graphical analysis allows for a more profound
understanding of the complexities involved in nonlin-

ear wave phenomena. Finally, in Sect. 6, we culminate
our research study by presenting a comprehensive con-
clusion. We summarize the key findings of the Inverse
(G ′/G)-expansion method’s successful application to
the HFSC equation and discuss its potential implica-
tions for further advancements in the study of nonlinear
wave dynamics. The organization of this article ensures
a thorough exploration of our research, providing valu-
able insights for researchers in various scientific disci-
plines.

2 Novel methodology: Inverse
(
G′
G

)
-expansion

method

In this section, we outline the fundamental steps of the

proposed Inverse
(
G ′
G

)
-expansion method, which is a

powerful approach for finding exact solutions to nonlin-
ear partial differential equations (NLPDEs) in various
fields, including engineering, physics, and mathemat-
ics. This method combines the generalized exponen-
tial rational function (GERF) method and the (G ′/G)-
expansion method. It is based on the concept that the
nonlinear traveling wave solutions of NLPDEs can be

expressed as a polynomial in
(
G ′
G

)
, where G satisfies

the Riccati equation. Here is how the method works:

• Consider the nonlinear partial differential equation
(NLPDE):

P(R, Rx , Ry, Rt , Rxx , Ryy, Rtt , Rxt , . . . ) = 0,
(2)

where R = R(x, y, t) is the wave amplitude and
P is a polynomial function containing various par-
tial derivatives of R with respect to its independent
variables.

• Assume a traveling wave solution of the form:

R(x, y, t) = S(η) exp(iμ), (3)

where η = a1x + a2y + a3t and μ = b1x + b2y +
b3t .

• Substituting the assumed solution into the NLPDE,
it reduces to an ordinary differential equation
(ODE) for the function S(η):

N (S(η), S′(η), S′′(η), . . . ) = 0, (4)

123



20260 S. Kumar, M. Niwas

where S′ = d S
dη

, S′′ = d2S
dη2

, and so on.
• To solve this ODE (4), we propose a trial solution

S(η) as a series expansion in
(
G ′(η)
G(η)

)
:

S(η) = M0 +
N∑
i=1

Mi

(
G ′(η)

G(η)

)i

+
N∑
i=1

Ni

(
G ′(η)

G(η)

)−i

,

(5)

where Mi , Ni (0 ≤ i ≤ N ) represents the arbitrary
constants to be determined later, and G(η) satisfies
the Riccati equation:

G ′(η) = pG(η) + qG(η)2 + r, (6)

where p, q, and r are arbitrary constants.
• By substituting the trial solution S(η) into the ODE
(4) and balancing the highest-order derivative term
with the nonlinear term, a system of algebraic equa-
tions for the arbitrary constants Mi , Ni , p, q, and r
is obtained. Solving the system of algebraic equa-
tions yields the values of the arbitrary constants,
which, in turn, provide the exact solutions to the
original NLPDE.

• By following these steps, the modified
(
G ′
G

)
-

expansion method offers a systematic and effi-
cient approach for finding exact solutions to a wide
range of NLPDEs, making it a valuable tool for
researchers in various scientific and engineering
disciplines.

2.1 Remark

Thename“Inverse (G ′/G)-Expansionmethod” empha-
sizes the uniqueness and novelty of the constructed
method, highlighting its dual-sided nature in incorpo-
rating both positive and negative powers of (G ′/G) in
the trial solution (5).

3 Application of the Inverse
(
G′
G

)
-expansion

method

In this section, we apply the newly proposed Inverse
(G

′
G )-expansion method to simplify the HFSC Eq. (1).

To begin, we introduce a transformation given by

R(x, y, t) = S(η) exp(iμ), with

η = a1x + a2y + a3t, μ = b1x + b2y + b3t. (7)Upon using the transformation, the HFSC Eq. (1)
reduces into following equation,

(
αa21 + a22β + a2a1γ

)
S′′(η) + i (b1 (2αa1 + a2γ )

+b2 (2a2β + a1γ ) + a3) S
′(η)

−
(
αb21 + βb22 + b2b1γ + b3

)
S(η) − λS(η)3 = 0.

(8)

The above Eq.(8) reduces to two separate equations,
one for the real part and the other for the imaginary
part. The real part equation is represented by

(
αa21 + a22β + a2a1γ

)
S′′(η)

−
(
αb21 + βb22 + b2b1γ + b3

)
S(η) − λS(η)3 = 0,

(9)

where α, β, γ , and λ are constants related to the HFSC
equation. The imaginary part equation is represented
by

(b1 (2αa1 + a2γ ) + b2 (2a2β + a1γ ) + a3) S
′(η) = 0.

(10)

From Eq. (10), we deduce the relationship for a3:

a3 = −2αa1b1 − 2a2βb2 − a2b1γ − a1b2γ. (11)

Next, we employ the homogeneous balancing principle
on the terms S′′(η) and S(η)3 in Eq. (9) to determine
the value of the parameter N . Through this process, we
find that N = 1, which means that our trial solution
will take the form

S(η) = M0 + M1
G ′(η)

G(η)
+ N1

(
G ′(η)

G(η)

)−1

. (12)

Incorporating the expression labeled as Eq. (12) along
with (11) into the framework of Eq. (9), and subse-
quently equating the factor associated with G(η) to
zero, leads to the formulation of a set of algebraic
equations. By solving this system, we get some set of
constraints, which play a crucial role in determining
the specific form of the exact solutions to the HFSC
equation. These constraints ensure that the trial solu-
tion (12) and the transformation (7) are compatiblewith
the HFSC equation, leading to valid solutions for the
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given problem. Next, in the analytic solutions section,
we will apply these constraints to obtain and visual-
ize the exact solutions of the HFSC equation using the
Inverse (G

′
G )-expansion method.

3.1 Analytic solutions

Solution set 1

M0 �= 0; M1 �= 0; N1 �= 0;
b3 = (a2b1 − a1b2) (a2βb2 − αa1b1)

a1a2
;

γ = −αa21 − a22β

a1a2
; λ = 0.

From Eq. (12), we obtained the following solutions
for ODE given by Eq. (9):

Case (i): Exploring solutions when 	 = p2 − 4rq > 0
and pq �= 0.

We obtain the solutions of the ODE (9) as

S(η) = M0 +
M1 (	) sech2

(
1
2η

√
	

)

2
(√

	 tanh
(
1
2η

√
	

)
+ p

) +
2N1 cosh2

(
1
2η

√
	

) (√
	 tanh

(
1
2η

√
	

)
+ p

)

	
, (13)

S(η) = M0 −
M1 (	) csch2

(
1
2η

√
	

)

2
(√

	 coth
(
1
2η

√
	

)
+ p

) −
2N1 sinh2

(
1
2η

√
	

) (√
	 coth

(
1
2η

√
	

)
+ p

)

	
, (14)

S(η) = M0 +
M1

√
	

((
−√

	
)
coth

(
η
√

	
)
csch

(
η
√

	
)

− √
	csch2

(
η
√

	
))

√
	

(
coth

(
η
√

	
)

+ csch
(
η
√

	
))

+ p

+
N1

(√
	

(
coth

(
η
√

	
)

+ csch
(
η
√

	
))

+ p
)

√
	

((
−√

	
)
coth

(
η
√

	
)
csch

(
η
√

	
)

− √
	csch2

(
η
√

	
)) , (15)

S(η) = M0 + M1
√−	

(√−	 sec2
(
η
√−	

) − √−	 tan
(
η
√−	

)
sec

(
η
√−	

))
√−	

(
tan

(
η
√−	

) − sec
(
η
√−	

)) − p

+ N1
(√−	

(
tan

(
η
√−	

) − sec
(
η
√−	

)) − p
)

√−	
(√−	 sec2

(
η
√−	

) − √−	 tan
(
η
√−	

)
sec

(
η
√−	

)) . (16)

Therefore, the solutions of the HFSC equation under
the transformation (7) are given by
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R(x, y, t) = eiμ

⎛
⎝ 	M1sech2

(√
	η
2

)

2
(√

	 tanh
(√

	η
2

)
+ p

) + M0 +
2N1 cosh2

(√
	η
2

) (√
	 tanh

(√
	η
2

)
+ p

)

	

⎞
⎠ , (17)

R(x, y, t) = eiμ

⎛
⎝M0 −

M1 (	) csch2
(
1
2η

√
	

)

2
(√

	 coth
(
1
2η

√
	

)
+ p

) −
2N1 sinh2

(
1
2η

√
	

) (√
	 coth

(
1
2η

√
	

)
+ p

)

	

⎞
⎠ , (18)

R(x, y, t) = eiμ

⎛
⎝M0 +

M1
√

	
((

−√
	

)
coth

(
η
√

	
)
csch

(
η
√

	
)

− √
	csch2

(
η
√

	
))

√
	

(
coth

(
η
√

	
)

+ csch
(
η
√

	
))

+ p
+

⎞
⎠ (19)

+eiμ

⎛
⎝ N1

(√
	

(
coth

(
η
√

	
)

+ csch
(
η
√

	
))

+ p
)

√
	

((
−√

	
)
coth

(
η
√

	
)
csch

(
η
√

	
)

− √
	csch2

(
η
√

	
))

⎞
⎠, (20)

R(x, y, t) = eiμ
(
M0 + M1

√−	
(√−	 sec2

(
η
√−	

) − √−	 tan
(
η
√−	

)
sec

(
η
√−	

))
√−	

(
tan

(
η
√−	

) − sec
(
η
√−	

)) − p

)
(21)

+eiμ
(

N1
(√−	

(
tan

(
η
√−	

) − sec
(
η
√−	

)) − p
)

√−	
(√−	 sec2

(
η
√−	

) − √−	 tan
(
η
√−	

)
sec

(
η
√−	

))
)

, (22)

where η = a1 (x − αb1t) + a2 (y − βb2t) + αa21b2t
a2

+
a22βb1t

a1
and μ = b1

(
αa1b2t
a2

+ a2βb2t
a1

+ x
)

− αb21t +
b2 (y − βb2t) .

Case (ii): Exploring solutions when r = 0 and pq �= 0.

Subsequently, the solutions of the differential equation
(9) can be written in the following manner

S(η) = M0 − M1(p sinh(ηp) − p cosh(ηp))

ζ0 − sinh(ηp) + cosh(ηp)

− N1 (ζ0 − sinh(ηp) + cosh(ηp))

p sinh(ηp) − p cosh(ηp)
, (23)

S(η) = M0 + cM1 p

ζ0 + eηp
+ N1 (ζ0 + eηp)

ζ0 p
. (24)

Therefore, the solutions for the HFSC equation are as
follows:

R(x, y, t) = exp

(
i

(
b1

(
αa1b2t

a2
+ a2βb2t

a1
+ x

)

+αb21(−t) + b2 (y − βb2t)
))

(
−M1(p sinh(ηp) − p cosh(ηp))

ζ0 − sinh(ηp) + cosh(ηp)

+M0 − N1 (ζ0 − sinh(ηp) + cosh(ηp))

p sinh(ηp) − p cosh(ηp)

)
,

(25)

R(x, y, t) = exp

(
i

(
b1

(
αa1b2t

a2
+ a2βb2t

a1
+ x

)

+αb21(−t) + b2 (y − βb2t)
))

(
ζ0M1 p

ζ0 + eηp
+ M0 + N1 (ζ0 + eηp)

ζ0 p

)
,

(26)

where η = αa21b2t
a2

+ a22βb1t
a1

+ a1 (x − αb1t) + a2 (y
−βb2t) .

Case (iii): Exploring solutions when 	 = p2 − 4rq <

0, and rq �= 0.

We obtain the solutions of the ODE (9) as
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S(η) = M0 +
√−	M1

(
1
4
√−	 csc2

(√−	η
4

)
+ 1

4
√−	 sec2

(√−	η
4

))

√−	
(
tan

(√−	η
4

)
− cot

(√−	η
4

))
− 2p

+
N1

(√−	
(
tan

(√−	η
4

)
− cot

(√−	η
4

))
− 2p

)

√−	
(
1
4
√−	 csc2

(√−	η
4

)
+ 1

4
√−	 sec2

(√−	η
4

)) , (27)

S(η) = M0 +
	M1sech2

(√
	η
2

)

2p − 2
√

	 tanh

(√
	η
2

) +
N1

(
−√

	 sinh
(√

	η
)

+ p cosh
(√

	η
)

+ p
)

	
, (28)

S(η) = M0 +
2N1

(
sin

(√−	η
) − 1

) (
− sin

(√−	η
) (

p2 − 2qr
)

+ √−	p cos
(√−	η

) + 2qr
)

− 	2M1

	
(
p

(
sin

(√−	η
) − 1

) − √−	 cos
(√−	η

)) .

(29)

Therefore, the required solutions of the considered
equation under the transformation (7) are

R(x, y, t) = eiμ

⎛
⎜⎝M0 +

√−	M1

(
1
4
√−	 csc2

(√−	η
4

)
+ 1

4
√−	 sec2

(√−	η
4

))

√−	
(
tan

(√−	η
4

)
− cot

(√−	η
4

))
− 2p

⎞
⎟⎠

+eiμ

⎛
⎜⎝

N1

(√−	
(
tan

(√−	η
4

)
− cot

(√−	η
4

))
− 2p

)

√−	
(
1
4
√−	 csc2

(√−	η
4

)
+ 1

4
√−	 sec2

(√−	η
4

))

⎞
⎟⎠ , (30)

R(x, y, t) = eiμ

⎛
⎜⎜⎝M0 +

	M1sech2
(√

	η
2

)

2p − 2
√

	 tanh

(√
	η
2

) +
N1

(
−√

	 sinh
(√

	η
)

+ p cosh
(√

	η
)

+ p
)

	

⎞
⎟⎟⎠ , (31)

R(x, y, t) = eiμ

⎛
⎝2N1

(
sin

(√−	η
) − 1

) (
− sin

(√−	η
) (

p2 − 2qr
)

+ √−	p cos
(√−	η

) + 2qr
)

− 	2M1

	
(
p

(
sin

(√−	η
) − 1

) − √−	 cos
(√−	η

)) + M0

⎞
⎠ ,

(32)

whereη = αa21b2t
a2

+ a22βb1t
a1

+a1 (x − αb1t)+a2 (y − βb2t)

and μ = b1
(

αa1b2t
a2

+ a2βb2t
a1

+ x
)

+ αb21(−t) +
b2 (y − βb2t)

Solution set 2

M0 = − N1 p

p2 − 4qr
; M1 = 0;

b3 = αa21

(
p2 − 4qr

)
+ a22β

(
p2 − 4qr

)

+a2a1γ
(
p2 − 4qr

)

−b1 (αb1 + b2γ ) − βb22; λ = 0. (33)

Now, from Eq. (12), we acquired the following solu-
tions of the ODE(9):

Case (i): Exploring solutions when 	 = p2 − 4rq > 0
and pq �= 0.

We obtain the solutions of the ODE (9) as
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S(η) =
2N1 cosh2

(
1
2η

√
	

) (√
	 tanh

(
1
2η

√
	

)
+ p

)

	
− N1 p

	
, (34)

S(η) = −
2N1 sinh2

(
1
2η

√
	

) (√
	 coth

(
1
2η

√
	

)
+ p

)

	
− N1 p

	
, (35)

S(η) =
N1

(√
	

(
coth

(
η
√

	
)

+ csch
(
η
√

	
))

+ p
)

√
	

((
−√

	
)
coth

(
η
√

	
)
csch

(
η
√

	
)

− √
	csch2

(
η
√

	
)) − N1 p

	
, (36)

S(η) = N1
(√−	

(
tan

(
η
√−	

) − sec
(
η
√−	

)) − p
)

√−	
(√−	 sec2

(
η
√−	

) − √−	 tan
(
η
√−	

)
sec

(
η
√−	

)) − N1 p

	
. (37)

Therefore, the solutions of theHFSC equation under
the transformation (7) are given by

R(x, y, t) = eiμ

⎛
⎝2N1 cosh2

(
1
2

√
	η

) (√
	 tanh

(
1
2

√
	η

)
+ p

)

	
− N1 p

	

⎞
⎠ , (38)

R(x, y, t) = eiμ

⎛
⎝−

2N1 sinh2
(
1
2

√
	η

) (√
	 coth

(
1
2

√
	η

)
+ p

)

	
− N1 p

	

⎞
⎠ , (39)

R(x, y, t) = eiμ

⎛
⎝ N1

(√
	

(
coth

(√
	η

)
+ csch

(√
	η

))
+ p

)

√
	

((
−√

	
)
coth

(√
	η

)
csch

(√
	η

)
− √

	csch2
(√

	η
)) − N1 p

	

⎞
⎠ , (40)

R(x, y, t) = eiμ
(

N1
(√−	

(
tan

(√−	η
) − sec

(√−	η
)) − p

)
√−	

(√−	 sec2
(√−	η

) − √−	 tan
(√−	η

)
sec

(√−	η
)) − N1 p

	

)
, (41)

whereη = t (−2αa1b1 − 2a2βb2 − a2b1γ − a1b2γ )+
a1x + a2y and μ = b1x + b2y + tb3.

Case (ii): Exploring solutionswhen r = 0, and pq �= 0.

Subsequently, the solutions to the ODE (9) can be writ-
ten in the following manner

S(η) = −N1 (ζ0 − sinh(ηp) + cosh(ηp))

p sinh(ηp) − p cosh(ηp)
− N1

p
,

(42)

S(η) = N1eηp

ζ0 p
. (43)

Therefore, the solutions for the HFSC equation are as
follows:

R(x, y, t) = ei(b1x+b2 y+b3t)
(

− N1 (− sinh (p (a1x + a2y + a3t)) + cosh (p (a1x + a2y + a3t)) + ζ0)

p sinh (p (a1x + a2y + a3t)) − p cosh (p (a1x + a2y + a3t))
− N1

p

)
, (44)

R(x, y, t) = N1

ζ0 p
exp

(
p (a1x + a2y + a3t) + i

(
t
(
αa21 p

2 + a22βp
2 + a1a2γ p

2 − b1 (αb1 + b2γ ) − βb22
) + b1x + b2y

))
. (45)

Case (iii): Exploring solutions when 	 = p2 − 4rq <

0, and rq �= 0.

We obtain the solutions of the ODE (9) as

S(η) =N1
(√−	 sin

(
η
√−	

) − p cos
(
η
√−	

))

	
,

(46)

S(η) =N1
(√−	 sin

(
η
√−	

) + p cos
(
η
√−	

))

	
,

(47)

S(η) =N1
(√−	 cos

(
η
√−	

) − p sin
(
η
√−	

))

	
.

(48)

Therefore, the required solutions of the considered
equation under the transformation (7) are
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R(x, y, t) = N1

	
ei(b3t+b1x+b2 y)

(√−	 sin
(√−	 (a3t + a1x + a2y)

)

−p cos
(√−	 (a3t + a1x + a2y)

))
,

(49)

R(x, y, t) = N1

	
ei(b3t+b1x+b2 y)

(√−	 sin
(√−	(a3t + a1x + a2y)

)
+ p cos

(√−	(a3t+a1x+a2y)
))

, (50)

R(x, y, t) = N1

	
ei(b3t+b1x+b2 y)

(√−	 cos
(√−	(a3t + a1x + a2y)

)
− p sin

(√−	(a3t+a1x+a2y)
))

. (51)

Solution set 3.

M0 �= 0; M1 = 0; N1 �= 0;
b3 = (a2b1 − a1b2) (a2βb2 − αa1b1)

a1a2
;

γ = −αa21 − a22β

a1a2
; λ = 0. (52)

Now, from Eq. (12), we acquired the following solu-
tions of the ODE(9):

Case (i): Exploring solutions when 	 = p2 − 4rq > 0
and pq �= 0.

We obtain the solutions of the ODE (9) as

S(η) = M0 +
2N1 cosh2

(
1
2η

√
	

) (√
	 tanh

(
1
2η

√
	

)
+ p

)

	
, (53)

S(η) = M0 −
2N1 sinh2

(
1
2η

√
	

) (√
	 coth

(
1
2η

√
	

)
+ p

)

	
, (54)

S(η) = M0 +
N1

(√
	

(
coth

(
η
√

	
)

+ csch
(
η
√

	
))

+ p
)

√
	

((
−√

	
)
coth

(
η
√

	
)
csch

(
η
√

	
)

− √
	csch2

(
η
√

	
)) , (55)

S(η) = M0 + N1
(√−	

(
tan

(
η
√−	

) − sec
(
η
√−	

)) − p
)

√−	
(√−	 sec2

(
η
√−	

) − √−	 tan
(
η
√−	

)
sec

(
η
√−	

)) . (56)

Therefore, the solutions of theHFSC equation under
the transformation (7) are given by

R(x, y, t) = eiμ

⎛
⎝M0 +

2N1 cosh2
(
1
2

√
	η

) (√
	 tanh

(
1
2

√
	η

)
+ p

)

	

⎞
⎠ , (57)

R(x, y, t) = eiμ

⎛
⎝M0 −

2N1 sinh2
(
1
2

√
	η

) (√
	 coth

(
1
2

√
	η

)
+ p

)

	

⎞
⎠ , (58)

R(x, y, t) = eiμ

⎛
⎝M0 +

N1

(√
	

(
coth

(√
	η

)
+ csch

(√
	η

))
+ p

)

√
	

((
−√

	
)
coth

(√
	η

)
csch

(√
	η

)
− √

	csch2
(√

	η
))

⎞
⎠ , (59)

R(x, y, t) = eiμ
(
M0 + N1

(√−	
(
tan

(√−	η
) − sec

(√−	η
)) − p

)
√−	

(√−	 sec2
(√−	η

) − √−	 tan
(√−	η

)
sec

(√−	η
))

)
, (60)
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whereη = αa21b2t
a2

+ a22βb1t
a1

+a1 (x − αb1t)+a2 (y − βb2t)

and μ = b1
(

αa1b2t
a2

+ a2βb2t
a1

+ x
)

+ αb21(−t) +
b2 (y − βb2t) .

Case (ii): Exploring solutions when r = 0 and pq not
equal 0.

Then, the solutions of the ODE (9) can be determined
as

S(η) = M0 − N1 (ζ0 − sinh(ηp) + cosh(ηp))

p sinh(ηp) − p cosh(ηp)
,

(61)

S(η) = M0 + N1 (ζ0 + eηp)

ζ0 p
. (62)

Therefore, the solutions for the HFSC equation are
as follows:

R(x, y, t) = 1

p
exp

(
−i

(
−b1

(
αa1b2t

a2
+ a2βb2t

a1
+ x

)

+αb21t + b2 (βb2t − y)
))

(
N1

(
ζ0 exp

(
p

(
αa21b2t

a2
+ a22βb1t

a1
+ a1

(x − αb1t) + a2 (y − βb2t))) +1) +M0 p) ,

(63)

R(x, y, t) = 1

pζ0
exp

(
i

(
b1

(
αa1b2t

a2
+ a2βb2t

a1
+ x

)

+αb21(−t) + b2 (y − βb2t)
))

(
N1

(
exp

(
p

(
αa21b2t

a2
+ a22βb1t

a1
+ a1

(x − αb1t) + a2 (y − βb2t))) +ζ0) + ζ0M0 p) .

(64)

Case (iii): Exploring solutions when 	 = p2 − 4rq <

0, provided rq �= 0.

We obtain the solutions of the ODE (9) as

S(η) = M0 + N1
(√−	 sin

(
η
√−	

) + p
(− cos

(
η
√−	

)) + p
)

	
, (65)

S(η) = M0 + N1
(√−	 sin

(
η
√−	

) + p cos
(
η
√−	

) + p
)

	
, (66)

S(η) = M0 + N1
(
p

(− sin
(
η
√−	

)) + √−	 cos
(
η
√−	

) + p
)

	
. (67)

Therefore, the required solutions of the considered
equation under the transformation (7) are

R(x, y, t) = eiμ
(
M0 + N1

(√−	 sin
(√−	η

) + p
(− cos

(√−	η
)) + p

)

	
+

)
, (68)

R(x, y, t) = eiμ
(
M0 + N1

(√−	 sin
(√−	η

) + p cos
(√−	η

) + p
)

	

)
, (69)

R(x, y, t) = eiμ
(
M0 + N1

(
p

(− sin
(√−	η

)) + √−	 cos
(√−	η

) + p
)

	

)
, (70)

where η = t

(
− b1

(−αa21−a22β
)

a1
− b2

(−αa21−a22β
)

a2

−2αa1b1 − 2a2βb2) + a1x + a2y, and μ =
t(a2b1−a1b2)(a2βb2−αa1b1)

a1a2
+ b1x + b2y.

4 Bridging the gap: connecting mathematical
visualization with real-world phenomena

In the fast-paced and ever-changing technological
world of today, developing innovative solutions marks
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Fig. 1 Visualization of solution (17): Exploring Real, Imaginary, and Absolute Components through 3D, Contour, and 2D Plots

only the initial phase. The true measure of success lies
in effectively connecting these solutions to real-world
applications, where their potential can be translated
into real effects on society. This article investigates
into the vital process of bridging the gap between the-
oretical solutions and practical implementation, shed-
ding light on key strategies and essential considera-
tions for achieving success. Here, we are connecting
our obtained solutionswith the real-world applications.
In Fig.(6), we have discussed the three components of
the solution (57) in the combination of 3D graphics,
contour graphics, and 2D graphics. From the graphics,
we depict the solitary waves from solution. To relate
these graphics with real world, we have presented a
graphics of “Transverse wave in a Rope,” “Waves on
ocean surface,” and “Waves in the depth of ocean” that
directly shows the connection between the analytical
solution (57) and the real-world application.

In Fig. (7), we present an exploration of the graph-
ical behavior of solution (63). This insightful analy-
sis showcases the bubbly solitary waves and their fas-
cinating characteristics, all made possible through a
careful selection of relevant parameters. By presenting
this visual representation, we bridge the gap between

theoretical findings and real-world applications. To
reinforce the practical relevance of our mathematical
insights, we have thoughtfully included a captivating
image of bubbly solitary waves observed in the vast
expanse of the ocean. This picture shows howourmath-
ematical model and the real world are strongly con-
nected. In this context, Fig. (7)b vividly illustrates the
presence of an elliptical wave in the ocean, serving as
a direct link between the contour plot showcased in
Fig. (7)a, while Fig. (7)c intriguingly portrays a bub-
bly solitary wave in the ocean, seamlessly connecting
to the three-dimensional representation highlighted in
Fig. (7)a. In doing so, we aim to not only enrich our
theoretical understanding but also demonstrate how the
study of mathematical solutions can unlock a deeper
appreciation of the incredible phenomena that occur
naturally around us. This combination of theories and
real-world experiences is incredibly helpful. It helps us
understand things better and encourages us to discover
and use these ideas in different areas of science and
engineering.
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Fig. 2 Visualization of solution (18): Exploring Real, Imaginary, and Absolute Components through 3D, Contour, and 2D Plots

5 Graphical overview and interpretations

In this section, we look into the behavior of the solu-
tions obtained from the HFSC equation and present our
findings graphically. To gain a comprehensive under-
standing of these solutions, it is essential to explore
their graphical representations while carefully select-
ing appropriate constants within a specific range of val-
ues. Since the HFSC equation is the Schrödinger equa-
tion, we focus on three crucial aspects: the real part, the
imaginary part, and the absolute value of the attained
solutions.

In Fig. (1), we examine the 3D and contour patterns
of the solution (17) for p = 2; q = 0.1; r = 0.1; a1 =
19i; a2 = 0.3; a3 = 0.3; b1 = 0.3; b2 = 1.2;α =
0.2i;β = 1.2; M0 = 0.02; M1 = 0.06; N1 =
0.5; where x ∈ [0.071, 0.1], y ∈ [−1, 1], x ∈
[0.07, 0.1], y ∈ [−1, 0.8], and x ∈ [−0.2, 0.2], y ∈
[−2, 2.5], respectively, while 2D graphics are dis-
cussed for x ∈ [−0.2, 0.2]. Through these visualiza-
tions, we gain insights into the nature of lump solitons
and their interaction with solitary waves.

In Fig. (2), we explore the 3D and contour behaviors
of the real and imaginary components of solution (18)

for p = 4; q = 0.1; r = 0.1 a1 = 9i; a2 = 0.3; a3 =
0.3; b1 = 0.3; b2 = 1.2; b3 = 0.5;α = 0.2i;β =
1.2; M0 = 0.02; M1 = 0.06; N1 = 0.5 where x ∈
[−0.02, 0.02], y ∈ [−1.5, 1], x ∈ [0.02, 0.02], y ∈
[−1, 0.5], respectively, and consider the absolute part
for p = 4; q = 0.1; r = 0.1 a1 = 19i; a2 =
0.3; a3 = 0.3; b1 = 0.3; b2 = 1.2; b3 = 0.5;α =
0.2i;β = 1.2; M0 = 0.02; M1 = 0.06; N1 =
0.5; within the range space x ∈ [−0.30, 0.20], y ∈
[−1, 2]. Additionally, we provide 2D representations
for x ∈ [−0.15, 0.15] x ∈ [−0.15, 0.15] and x ∈
[−0.05, 0.05], respectively. This graphical representa-
tion shows the lump soliton and single soliton.

In Fig. (3), we focus on solution (22) for p =
4; q = 0.1; r = 0.1; a1 = 8i; a2 = 0.5; a3 =
0.5; b1 = 0.1; b2 = 1; b3 = 0.5;α = 2;β = 2; M0 =
2; M1 = 3; N1 = 0.1; where x ∈ [−0.3, 0.3], y ∈
[−1.5, 1.5], x ∈ [−0.3, 0.3], y ∈ [−1.5, 1.5], and
x ∈ [−2.5,−1.5], y ∈ [−1, 1], respectively, while
2D graphics are discussed for x ∈ [−0.3, 0.3] x ∈
[−0.3, 0.3] and x ∈ [−0.5, 0.5], respectively. The
displayed graphics show the presence of lump soli-
tons, breather waves, and periodic solitons in distinct
regions, revealing the complexity of their interactions.
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Fig. 3 Visualization of solution (22): Exploring Real, Imaginary, and Absolute Components through 3D, Contour, and 2D Plots

In Fig. (4), we analyze the solution (32) for a
p = 4; q = 0.1; r = 0.1; a1 = 29i; a2 =
0.5; a3 = 0.5; b1 = 0.1; b2 = 1; b3 = 0.5;α =
2;β = 2; M0 = 12; M1 = 3; N1 = 0.1; where
x ∈ [−0.11, 0.13], y ∈ [−2.3, 2.3] (b) p = 4; q =
0.1; r = 0.1; a1 = 8i; a2 = 0.5; a3 = 0.5; b1 =
0.1; b2 = 1; b3 = 0.5;α = 2;β = 2; M0 = 2; M1 =
3; N1 = 0.1; where x ∈ [−0.5, 0.5], y ∈ [−2, 2]
(c) p = 4; q = 0.1; r = 0.1; a1 = 8.01i; a2 =
0.5; a3 = 0.5; b1 = 0.1; b2 = 1; b3 = 0.5;α =
2;β = 2; M0 = 20; M1 = 3; N1 = 0.1; where x ∈
[−0.5, 0.5], y ∈ [−2, 2] and corresponding 2D graph-
ics are discussed for x ∈ [−0.11, 0.13] x ∈ [−0.5, 0.5]
and x ∈ [−0.5, 0.5], respectively. By this visualiza-
tion, we depicted the breather waves, lump solitons,
and periodic soliton, respectively.

In Fig. (5), we present the graphical view of the solu-
tion (44) for (a) a1 = 19i; a2 = 0.03; a3 = 0.3; b1 =
0.3; b2 = 1.2; b3 = 0.5;α = 0.2i;β = 1.2; ζ0 =
1; p = 0.2; M0 = 4i; M1 = 0.1; N1 = 0.05; where
x ∈ [0.420, 0.430], y ∈ [−4, 2] (b) a1 = 19i; a2 =
0.03; a3 = 0.3; b1 = 0.3; b2 = 1.2; b3 = 0.5;α =
0.2i;β = 1.2; ζ0 = 1; p = 0.2; M0 = 4i; M1 =
0.1; N1 = 0.05; where x ∈ [0.420, 0.430], y ∈

[−4, 2] (c) a1 = 19i; a2 = 0.03; a3 = 0.3; M0 =
4i; M1 = 0.1; N1 = 0.05; p = 0.2; b1 = 0.3; b2 =
1.2; b3 = 0.5;α = 0.2i;β = 1.2; ζ0 = 1; where
x ∈ [0.40, 0.46], y ∈ [−12, 8] and corresponding
2D graphics are discussed for x ∈ [0.35, 50] x ∈
[0.40, 0.45] and x ∈ [0.40, 0.46], respectively. By
these visualization, we depicted the interaction of soli-
tary wave and lump soliton.

In Fig. (6), our focus turns to the observation
of solitary waves within the context of the solution
(57) with the choice of parameters p = 7; q =
0.2; r = 0.2; a1 = 19i; a2 = 0.3; a3 = 0.3; b1 =
0.3; b2 = 0.2;α = 0.2i;β = 1.2; M0 = 0.2; M1 =
0.6; N1 = 0.5; where (a) x ∈ [−0.1, 0.1], y ∈
[−1, 1] (b) x ∈ [−0.27, 0.25], y ∈ [−1.2, 0.01]
(c) x ∈ [−0.1, 0.1], y ∈ [−1, 1] and correspond-
ing 2D graphics are discussed for x ∈ [−0.1, 0.1],
x ∈ [−0.27, 0.25] and x ∈ [−0.1, 0.1], respectively.
By integrating real-world context, we have incorpo-
rated relatable visuals into our figures. These include
depictions of a transverse wave moving along a rope,
waves cresting atop the ocean’s surface, and the oscilla-
tionswithin the ocean depths. These relatable scenarios
effectivelymirror the patterns observed in our 2D plots,
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Fig. 4 Visualization of solution (32): Exploring Real, Imaginary, and Absolute Components through 3D, Contour, and 2D Plots

Fig. 5 Visualization of solution (44): Exploring Real, Imaginary, and Absolute Components through 3D, Contour, and 2D Plots
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Fig. 6 Visualization of solution (57): Exploring Real, Imaginary, and Absolute Components through 3D, Contour, and 2D Plots and
showing connection with real-world phenomena

Fig. 7 Visualization of the real component of solution (63) through 3D plot connecting with bubbly ocean waves
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bridging the mathematical findings with the real-world
phenomena.

In Fig. (7), we provide a visual depiction of the real
part of solution (63). In part (a), where parameters are
set as a1 = 21i , a2 = 0.3, a3 = 0.3, b1 = 0.3, and
b2 = 1.2, along with α = 0.2i , β = 1.2, M0 = 0.02,
N1 = 0.5, and ζ0 = 0.5, we explore the behavior
within the range of x ∈ [−0.2, 0.2] and y ∈ [−2,−1].
This region reveals bubbly wave patterns. The contour
visualization of these waves demonstrates a striking
reflection of wave patterns, taking an elliptical form.
To bridge this mathematical discovery with real-world
analogs, we have incorporated an image of elliptical
ocean waves in part (b). This image serves as a direct
connection to the contour plot, reinforcing the rele-
vance of our findings. In part (c), we have inserted an
image of bubbly ocean waves, aligning with the 3D
graphics, thereby enhancing our understanding of the
dynamics.

6 Conclusion

In conclusion, the proposed Inverse
(
G ′
G

)
-expansion

method provides a structured and efficient way to find
precise solutions for nonlinear partial differential equa-
tions. This method offers a systematic approach for
obtaining accurate results. By transforming NLPDEs
into ordinary differential equations through this spe-
cific technique, we have achieved remarkable success
in deriving various exact solitary wave solutions for the
HFSC equation. The method’s versatility and applica-
bility extend to diverse fields of study, including engi-
neering, physics, andmathematics,making it a valuable
tool for researchers in these domains. Our research has
showcased the power of the Inverse

(
G ′
G

)
-expansion

method by presenting 3D, 2D, and contour graphics
that visually depict the behavior of the obtained solu-
tions. Through careful parameter selection within suit-
able ranges,we have observed the emergence of diverse
wave phenomena, including lump-type, breather-type,
periodic, interaction of lumps with solitary waves, and
bubbly solitarywaves. These findings enrich our under-
standing of wave dynamics in different scenarios. To
further emphasize the relevance of our results to real-
world phenomena, we have provided visual compar-
isons to well-known wave phenomena, such as “Trans-
verse wave in a Rope,” “Wave in the Ocean,” “Wave in
ocean on bottom,” and “Bubbly Waves in the Ocean.”

These visual connections reinforce the significance of
our research and highlight its potential applications in
various physical systems.
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