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Abstract Gear disengaging, back-side tooth contact

or poor dynamic behavior during operating leads to

dynamic instability in planetary gear trains (PGTs). A

novel nonlinear dynamic model of PGTs with internal

and external gear pairs considering multi-state

engagement induced by backlash and contact ratio is

established. An improved time-varying meshing stiff-

ness model including temperature stiffness is analyt-

ically derived. The time-varying meshing stiffness

with temperature effect, friction, backlash, time-

varying pressure angle, and time-varying friction

arm are to be incorporated into the dynamic model

of PGTs. Multi-state engaging behavior is efficiently

identified by constructing different Poincaré map-

pings. A method to calculate dynamic instability is

proposed in the time-domain trace. The intrinsic

relationship between multi-state engaging and

dynamic instability is investigated via multi-section

bifurcation plots and phase trajectory topology. The

global dynamic instability is revealed based on the

bifurcation and evolution of coexistence behavior

under the parameter-state synergy. The results show

that the multi-state engagement is heavily depending

on bifurcation and phase trajectory topology, which

whereby affects the dynamic instability. Two special

phenomena, complete and incomplete bifurcations,

are discovered under parameter-state synergy. Com-

plete bifurcation causes global instability and incom-

plete bifurcation results in local instability and yields

coexistence responses. Incomplete bifurcation brings

about new bifurcation branches.

Keywords Planetary gear trains � Multi-state

engagement � Time-varying meshing stiffness � Gear
contact temperature � Global dynamic instability �
Nonlinear dynamics

1 Introduction

Because of the small size, light weight, high load

capacity and large transmission ratio, planetary gear

trains (PGTs) are extensively used in various mechan-

ical systems, such as robots, aircrafts and vehicles.

However, the vibration and noise problems of PGTs

are also prominent due to their complex structure and

operating conditions, such as including internal and

external meshing gear pairs, single- and double-tooth

engagements caused by the non-integer contact ratio,

gear separation and back-side tooth contact induced by

backlash [1–3]. In particular, the long-term
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accumulation of unhealthy meshing status or dynamic

instability caused by changes in the number of

meshing tooth pairs and gear disengagement restricts

gear life and aggravates failure behaviors, thereby

affecting equipment operating accuracy, transmission

efficiency and service life [4–6]. Therefore, studying

the global dynamic instability and healthy meshing

conditions of PGTs based on multi-state engagement

(MSE) and revealing the mechanisms of MSE and

nonlinear dynamics on dynamic instability are essen-

tial in order to evaluate and improve the dynamic

engagement, transmission quality and remaining life

of PGTs.

The accuracy of the dynamic model of PGTs

determines the validity and reliability of the analyzed

results. Recently, many researchers have developed

extensive dynamic models of PGTs and analyzed the

nonlinear dynamic response characteristics taking

various influencing factors into account. For instance,

Kahraman [7] established a torsional dynamic model

of the planetary gear set. Parker et al. have conducted

meaningful research in dynamics modeling and anal-

ysis of planetary gearing systems with various condi-

tions, such as two-dimensional dynamic model [8],

tooth profile modification [9], elastic-body vibration

[10], and parametric instability [11–13]. Li et al. [14]

established an integrated drivetrain coupling analysis

model of wind turbine gearbox with the effect of non-

torque loads. Liu et al. [15] established a dynamic

model for a double planetary gear set containing sun

gear, ring gear, carrier, inner planet, outer planet,

planetary bearing roller, and planetary bearing cage. In

order to obtain accurate evaluation models, more

significant influencing factors are analyzed and con-

sidered in the modeling of PGTs, such as friction and

backlash [16–18], positioning errors [19–21], gear

eccentricities [22, 23], rotational-translational dynam-

ics [24, 25], time-varying pressure angles and contact

ratios [26], random tooth profile errors [27], structural

flexibility [28], load sharing characteristics [29–31],

gyroscopic effects [32], and so on. Additionally, as

one of the key internal excitations of geared systems,

the calculation of time-varying meshing stiffness

(TVMS) plays a pivotal role in the dynamic modeling

and analysis of PGTs. There are abundant methods in

existing literatures to calculate TVMS with consider-

ing multiple factors. Ma et al. have conducted

extensive works on the TVMS calculation methods

[33–35], laying the great foundation for the analysis

and fault diagnosis of meshing vibration and dynamics

of geared systems. Chen et al. have developed some

interesting researches on TVMS modeling with tooth

deformation, gear body structure coupling effect, and

tooth profile deviations [36–38]. These models are

widely used in the modeling and analysis of nonlinear

dynamics of geared systems and provide theoretical

guidance for dynamics prediction. Afterward, many

modified TVMS models have also been proposed

including wear evolution process [39, 40], addendum

modification [41], tooth profile modification [42, 43],

profile-shifted spur gears [44], viscoelastic behavior

[45], different crack lengths [46–48], centrifugal

effect [49], static transmission error [50], and lubri-

cation and temperature effects [51]. Marafona et al.

[52] reviewed in detail the different types of models to

calculated the TVMS of parallel axis cylindrical gears

including analytical, finite element, hybrid and

approximated analytical models. Although numerous

and effective TVMS models have been obtained, the

effect of TVMS with temperature effect on the

dynamic model and nonlinear dynamics of PGTs has

rarely been reported. The tooth contact temperature is

critical for the TVMS and the dynamic response of

PGTs. Furthermore, the model mentioned above

characterizes the engagement vibration of PGTs

simply and equivalently in terms of springs and

damping. The variation in the number of simultane-

ously meshed gear-tooth pairs, gear disengagement,

back-side contact, and the time-varying characteristics

of the meshing position are ignored, thus an accurate

dynamic analysis and evaluation model for PGTs

cannot be obtained effectively.

In dynamic analysis, backlash is essential to ensure

the normal operation and good lubrication of the

geared system and results in non-smooth nonlinear

dynamic characteristics of the systems [53–55].

Backlash leads to multi-state mesh and is affected by

various influencing factors, such as the gear wear [56],

assembly/manufacturing errors [57], and temperature

[58, 59]. Guo and Parker [60] investigated the
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bifurcation and chaos characteristics of planetary

gears considering tooth separation and backlash. Liu

et al. [61] observed the phenomenon of tooth separa-

tions with increasing in the rotating speed. Shi et al.

[62] investigated the effects of backlash on the tooth

separation and back-side tooth meshing behavior for a

spur gear pair system. Tooth disengagement or back-

side tooth contact induced by backlash leads to

dynamic instability or unhealthy meshing situation

for PGTs, which not only aggravates the vibration and

noise, but also weakens the transmission smoothness

and reliability. Long term accumulation of dynamic

instability is prone to gear fatigue failure. Moreover,

the dynamic behavior of PGTs is jointly governed by

parameters and initial conditions. Thus, co-existence

responses are easy to occur for PGTs and leads to

complicated vibration behavior. The transitions of the

dynamic response in the initial value domain may

cause the global dynamic instability. Coexistence

behavior has been heavily observed in geared systems,

such as spur gear system [63–66], gear-rattling impact

model [67], and face gear-bearing system [68]. Based

on coexisting response, the safety characteristics [69]

and two-parameter bifurcation [70] of a spur gear pair

were discussed and some valuable research results

were obtained. However, the coexistence behavior and

global dynamic instability properties for PGTs have

not yet been reported, which is extremely significant

for vibration attenuation and dynamics improvement

of PGTs.

Based on the above analysis, a nonlinear dynamic

model of PGTs with internal and external meshing

gear pairs considering multi-state mesh is established.

The model includes the time-varying pressure angle,

time-varying friction arm, and radius of the meshing

point. A method to calculate the time-varying meshing

stiffness taking temperature effect into account is

derived. Multi-state meshing behavior of PGTs is

efficiently characterized and analyzed via constructing

different types of Poincaré mappings. A calculation

method of dynamic instability for PGTs is proposed.

The effect and intrinsic mechanism of multi-state

engaging behavior and nonlinear dynamics on

dynamic instability have been studied in details as

the system parameters change. Subsequently, the

multi-stability response of PGTs and its effect on

dynamic instability are discussed with the parameter-

state synergistic effect.

The rest of this paper is organized as follows:

Sect. 2 presents a new dynamic model of PGTs with

multi-state engaging behavior and time-varying mesh-

ing parameters. The time-varying meshing stiffness

model with temperature effect is also presented in this

section. An identification method of multi-state

meshing behavior and a calculation method of

dynamic instability are proposed in Sect. 3. Section 4

describes the impact mechanism of multi-state mesh

and nonlinear dynamics on dynamic instability, as

well as the generation and evolution of coexisting

responses under the synergistic effect of parameter

space and state space. Some conclusions are outlined

in Sect. 5.

2 Modelling of planetary gear trains with multi-

state engagement

It is assumed that the planetary gear trains (PGTs) are

rigidly supported without considering the lateral

vibration of the gears, only its pure torsional vibration,

a simplified physical model is shown in Fig. 1. PGTs is

composed of sun gear, planetary gear, carrier and ring

gear, wherein the gear ring is fixed on the foundation.

hs, hc, and hpi represent the torsional displacements of

the sun, carrier and the ith planet gear (i = 1,2,…,N),

respectively. Rsb, Rrb, and Rpbi denote the radii of the

base circle of the sun, ring, and the ith planet gear,

respectively. Rc is the radius of the planet carrier.

ksi(s), csi, lsi(s), esi(s), and 2Dsi are the time-varying

meshing stiffness, meshing damping, friction coeffi-

cient, dynamic transmission error, and backlash of the

internal meshing gear pair (planet-ring mesh). kri(s),
cri, lri(s), eri(s), and 2Dri are the time-varying meshing

stiffness, meshing damping, friction coefficient,

dynamic transmission error, and backlash of the

external meshing gear pair (sun-planet mesh). The

nonlinear dynamics of pure torsional planetary gear

trains is mainly caused by the meshing vibration of

internal and external gear pairs. Thus, it is very
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significant to analyze the meshing vibration behavior

of internal and external gear pairs.

2.1 Internal mesh gear pair (planet-ring mesh)

When the contact ratio, er, of the planet-ring gear pair

is between 1 and 2 (1\ er\ 2), the alternating mesh

between single and double teeth is obtained during its

operation. The details of the line of action (LoAr) for

the planet-ring gear pair is illustrated in Fig. 2. Rra and

Rpai are the addendum radii of the ring gear and the ith

planet gear, respectively. Line segment AD is the

actual line of action. A is the let in point and D is the let

out point. AB and CD zones are double-tooth meshing

areas, and BC is single-tooth meshing area. Let

Xrpi = hpiRpbi-hcRcb-eri(s) be the relative displacement

of the internal gear pair along LoAr. Considering the

drive-side tooth mesh, gear tooth disengagement and

back-side tooth mesh, the contact force, FNri, at the

meshing point along LoAr is expressed as Eq. (1) by

introducing backlash Dri.

FNri ¼
KriðsÞ Xrpi � Dri

� �
þ cri _Xrpi Xrpi �Dri

� �

0 jXrpij\Dri

� �

KriðsÞ Xrpi þ Dri

� �
þ cri _Xrpi Xrpi � � Dri

� �

8
<

:

ð1Þ

The total load is unevenly distributed on two gear

pairs in double-tooth area, and only acts on one gear

pair in single-tooth area. Thus, in order to obtain

accurate dynamic meshing force, the force analysis for

the single- and the double-tooth meshes should be

carried out respectively, as plotted in Figs. 3 and 4.

2.1.1 Double-tooth mesh state

Figure 3 presents the force analysis at the meshing

points under double-tooth engaging state, and two

pairs of gear teeth engage simultaneously. Fpr1i, Fpr2i,

Frp1i and Frp2i are the positive forces acting on the ith

Fig. 2 The details of the line of action for the internal gear pair

Fig. 3 Schematic of force analysis of planet-ring gear pair

under double-tooth state

Fig. 4 Schematic of force analysis of planet-ring gear pair

under single-tooth engaging state

Fig. 1 A simplified physical model of a planetary gear train
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planet gear and ring gear along LoAr. fpr1i, fpr2i, frp1i
and frp2i are the friction forces acting on the ith planet

gear and ring gear perpendicular to LoAr. The positive

forces can be calculated by Eq. (2), and the friction

forces can be written as Eq. (3).

Fpr1i ¼ Frp1i ¼ Lr1iðsÞFNri; Fpr2i ¼ Frp2i

¼ Lr2iðsÞFNri ð2Þ

where Lr1iðsÞ and Lr2iðsÞ ¼ 1� Lr1iðsÞ are the load

distribution ratios of spur gear pairs, and detailed

calculations can be obtained in the Ref. [8].

fpr1i ¼ frp1i ¼ kr1iðsÞlr1iðsÞLr1iðsÞFNri; fpr2i ¼ frp2i
¼ kr2iðsÞlr2iðsÞLr2iðsÞFNri

ð3Þ

Herein, lr1iðsÞ and lr2iðsÞ are the time-varying

friction coefficients at the meshing point for the

planet-ring gear pair. kr1iðsÞ and kr2iðsÞ are the

direction coefficients of the friction forces and can

be obtained by Eq. (4).

kr1iðsÞ ¼ sgnðvr1iÞ; kr2iðsÞ ¼ sgnðvr2iÞ ð4Þ

where sgn(•) is the sign function, and vr1i and vr2i are

the sliding speeds at the meshing points.

The friction moments of the planet-ring gear pair at

the meshing points for the double-tooth engaging,

Spr1i(s), Sr1i(s), Spr2i(s) and Sr2i(s), can be got from

Eq. (5).

Spr1iðsÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
ra�R2

pb

q
þRpbxpis

Sr1iðsÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
rp�R2

rb

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
pp�R2

pb

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
ra�R2

pb

q
þRpbxpis

8
>>>><

>>>>:

;
Spr2iðsÞ¼Sp1iðsþT0Þ
Sr2iðsÞ¼Sr1iðsþT0Þ

(

ð5Þ

where Rpp and Rrp are the pitch radii of the planet gear

and ring gear. T0 = 2p/(zpixpi) is a single- and double-

tooth meshing cycle. xpi and zpi are the tooth number

and the rotational angular velocity of the ith planet

gear, respectively.

2.1.2 Single-tooth mesh state

The force analysis at the meshing point under single-

tooth state is plotted in Fig. 4, and only one pair of

gear teeth meshes. The total load of the planet-ring

gear pair acts on one pair of meshing teeth. The

positive force and friction force at the meshing point

for the planet-ring gear are expressed as Eq. (6).

Fpr2i ¼ Frp2i ¼ FNri; fpr2i ¼ frp2i ¼ kr2iðsÞlr2iðsÞFNri

ð6Þ

2.2 External mesh gear pair (sun-planet mesh)

Figure 5 presents the details of the line of action

(LoAs) for the sun-planet gear pair. Rsa and Rpai are the

addendum radii of the sun gear and the ith planetary

gear, respectively. es is the contact ratio of the sun-

planet gear pair. Single-tooth meshing (BC zone) and

double-tooth meshing (AB and CD zones) occur

periodically along LoAs due to 1\ es\ 2. In order to

have a good understanding of the dynamic character-

istics of PGTs, the detailed meshing vibration behav-

ior of the gear pair is considered in this work. Take

Xspi = hsRsb-hpiRpbi-hcRcb-esi(s) as the relative dis-

placement of the sun-planet gear pair along LoAs.

Introducing backlashDsi, the contact force, FNsi, at the

meshing point along LoAr is got by Eq. (7).

FNsi ¼
KsiðsÞ Xspi � Dsi

� �
þ csi _Xspi Xspi �Dsi

� �

0 jXspij\Dsi

� �

KsiðsÞ Xspi þ Dsi

� �
þ csi _Xspi Xspi � � Dsi

� �

8
<

:

ð7Þ

Fig. 5 The details of the line of action for the external gear pair
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For single- and double-tooth meshes of the external

meshing gear pair, the force at the meshing point is

discussed in detail as follows.

2.2.1 Double-tooth mesh state for sun-planet mesh

The force analysis of sun-planet gear pair under

double-tooth state is shown in Fig. 6. The total contact

force FNsi along the line of action LoAs is not

uniformly distributed between the twomeshing points.

The positive forces at the engaging points along LoAs

is shown in Eq. (8).

Fps1i ¼ Fsp1i ¼ Ls1iðsÞFNsi; Fps2i ¼ Fsp2i

¼ Ls2iðsÞFNsi ð8Þ

The friction force at the engaging points perpen-

dicular to LoAs is written as Eq. (9).

fps1i ¼ fsp1i ¼ ks1iðsÞls1iðsÞLs1iðsÞFNsi; fps2i ¼ fsp2i
¼ ks2iðsÞls2iðsÞLs2iðsÞFNsi

ð9Þ

Herein, ls1iðsÞ and ls2iðsÞ represent the time-

varying friction coefficients at the meshing points for

the planet-ring gear pair. ks1iðsÞ and ks2iðsÞ denote the
direction coefficients of the friction forces and can be

got by Eq. (10).

ks1iðsÞ ¼ sgnðvs1iÞ; ks2iðsÞ ¼ sgnðvs2iÞ ð10Þ

where sgn(•) is the sign function, and vs1i and vs2i are

the sliding speeds at the meshing points for the

external gear pair (sun-planet gear pair).

The friction moments from any engaging point to

the sun gear and planet gear can be got by Eq. (11).

Ss1iðsÞ¼ RsbþRpbi

� �
tana�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
pai�R2

pbi

q
þRsbxss

Sps1iðsÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
pai�R2

pbi

q
�Rsbxss

;

8
><

>:

Ss2iðsÞ¼Ss1iðsþT0Þ
Sps2iðsÞ¼Sps1iðsþT0Þ

�

ð11Þ

2.2.2 Single-tooth mesh state for sun-planet mesh

The total contact force along LoAs acts on one

engagement point, as shown in Fig. 7, and the positive

forces and friction forces at the engagement point are

as in Eq. (12).

Fps2i ¼ Fsp2i ¼ Ls2iðsÞFNsi; fps2i ¼ fsp2i
¼ ks2iðsÞls2iðsÞLs2iðsÞFNsi ð12Þ

2.3 Dynamic model of PGTs with sun-planet

and planet-ring gear pairs

The torsional vibration of planetary gear trains (PGTs)

is mainly caused by the meshing vibration of the sun-

planet gear pairs and the planet-ring gear pairs. From

Fig. 1, the sun gear and the planetary carrier are the

input and output, respectively. The alternate meshing

between single and double teeth, gear disengagement

and back-side tooth contact are considered compre-

hensively herein. It is assumed that the gear impact is

Fig. 7 Schematic of force analysis of sun-planet gear pair under

single-tooth engaging state
Fig. 6 Schematic of force analysis of sun-planet gear pair under

double-tooth engaging state
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small when switching between different meshing

states, and the gear tooth collision behavior is not

considered in this work. Based on the action decom-

position of engaging process of the gear pair and the

force analyses at the meshing point, the purely

torsional equations of the sun gear, the ith planet gear

and the carrier under double-tooth mesh areas are

written as Eq. (13) according to the principle of 2nd

Newtonian law.

Is€hs þ
XN

i¼1

Rsb þ ks1iðsÞls1iðsÞLs1iðsÞSs1iðsÞ½

þks2iðsÞls2iðsÞLs2iðsÞSs2iðsÞ�FNsi ¼ Tin

Ipi€hpi � Rpbi þ ks1iðsÞls1iðsÞLs1iðsÞSps1iðsÞ
�

þks2iðsÞls2iðsÞLs2iðsÞSps2iðsÞ
�
FNsi

þ Rpbi þ kr1iðsÞlr1iðsÞLr1iðsÞSpr1iðsÞ
�

þkr2iðsÞlr2iðsÞLr2iðsÞSpr2iðsÞ
�
FNri ¼ 0

Icm€hc �
XN

i¼1

Rcb þ ks1iðsÞls1iðsÞLs1iðsÞSs1iðsÞ½

þks2iðsÞls2iðsÞLs2iðsÞSs2iðsÞ�FNsi

� Rcb þ kr1iðsÞlr1iðsÞLr1iðsÞSr1iðsÞ½
þkr2iðsÞlr2iðsÞLr2iðsÞSr2iðsÞ�FNri ¼ �Tout

8
>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð13Þ

where Tin and Tout are the input and output torques

respectively. Is, Ipi and Icm denote the equivalent mass

moment of inertia of the sun gear, the ith planet gear

and the carrier, respectively, and Icm can be obtained

by Eq. (14).

Icm ¼ Ic þ
XN

i¼1

mpiR
2
c ð14Þ

Herein, Ic is the mass moment of inertia of the

carrier, mpi the mass of the ith planet gear. The

condition of double-tooth engagement can be effec-

tively identified in the time domain, that is, nT0-
\ s B nT0(es-1), n = 1,2,3,….

The purely torsional equations of the sun gear, the

ith planet gear and the carrier under single-tooth mesh

area can be expressed as Eq. (15). The condition of

single-tooth engagement in the time domain is T0(es-
1)\ s B (n-1)T0.

Is€hs þ
PN

i¼1

Rsb þ ks2iðsÞls2iðsÞSs2iðsÞ½ �FNsi ¼ Tin

Ipi€hpi � Rpbi þ ks2iðsÞls2iðsÞSps2iðsÞ
� �

FNsi

þ Rpbi þ kr2iðsÞlr2iðsÞSpr2iðsÞ
� �

FNri ¼ 0

Icm€hc �
PN

i¼1

Rcb þ ks2iðsÞls2iðsÞSs2iðsÞ½ �FNsi

�
PN

i¼1

Rcb þ kr2iðsÞlr2iðsÞSr2iðsÞ½ �FNri ¼ �Tout

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

ð15Þ

To better understand the meshing vibration of the

external and internal gear pairs, the relative displace-

ments Xrpi = hpiRpbi-hcRcb-eri(s) and Xspi = hsRsb-hpi-
Rpbi-hcRcb-esi(s) along the lines of action are

introduced. According to Eq. (13), the nonlinear

dynamic model of PGTs with external and internal

gear pairs under single-tooth engaging state is

expressed in Eq. (16).

€Xspiþ
XN

i¼1

1þks2iðsÞls2iðsÞgs2iðsÞ½ �FNsi=msc

þ
XN

i¼1

1þkr2iðsÞlr2iðsÞgr2iðsÞ½ �FNri=mcm

þ 1þks2iðsÞls2iðsÞgps2iðsÞ
� �

FNsi

�
mpi

� 1þkr2iðsÞlr2iðsÞgpr2iðsÞ
� �

FNri

�
mpi¼T1� €espi

€Xrpi� 1þks2iðsÞls2iðsÞgps2iðsÞ
� �

FNsi

�
mpi

þ 1þkr2iðsÞlr2iðsÞgpr2iðsÞ
� �

FNri

�
mpi

þ
XN

i¼1

1þks2iðsÞls2iðsÞg2siðsÞ½ �FNsi=mcm

�
XN

i¼1

1þkr2iðsÞlr2iðsÞgr2iðsÞ½ �FNri=mcm¼T2� €espi

8
>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð16Þ

Similarly, the nonlinear dynamic model of PGTs

with external and internal gear pairs under single-tooth

engaging state is written as Eq. (17).
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€Xspiþ
XN

i¼1

1þks1iðsÞls1iðsÞLs1iðsÞgs1iðsÞ½

þks2iðsÞls2iðsÞLs2iðsÞgs2iðsÞ�FNsi=msc

þ
XN

i¼1

1þkr1iðsÞlr1iðsÞLr1iðsÞgr1iðsÞ½

þkr2iðsÞlr2iðsÞLr2iðsÞgr2iðsÞ�FNri=mcm

þ 1þks1iðsÞls1iðsÞLs1iðsÞgps1iðsÞ
�

þks2iðsÞls2iðsÞLs2iðsÞgps2iðsÞ
�
FNsi

�
mpi

� 1þkr1iðsÞlr1iðsÞLr1iðsÞgpr1iðsÞ
�

þkr2iðsÞlr2iðsÞLr2iðsÞgpr2iðsÞ
�
FNri

�
mpi

¼T1�€espi €Xrpi� 1þks1iðsÞls1iðsÞLs1iðsÞgps1iðsÞ
�

þks2iðsÞls2iðsÞLs2iðsÞgps2iðsÞ
�
FNsi

�
mpi

þ 1þkr1iðsÞlr1iðsÞLr1iðsÞgpr1iðsÞ
�

þkr2iðsÞlr2iðsÞLr2iðsÞgpr2iðsÞ
�
FNri

�
mpi

þ
XN

i¼1

1þks1iðsÞls1iðsÞLs1iðsÞg1siðsÞ½

þks2iðsÞls2iðsÞLs2iðsÞg2siðsÞ�FNsi=mcm

�
XN

i¼1

1þkr1iðsÞlr1iðsÞLr1iðsÞgr1iðsÞ½

þkr2iðsÞlr2iðsÞLr2iðsÞgr2iðsÞ�FNri=mcm¼T2�€espi

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð17Þ

where msc ¼ IsIcm
�

IcmR
2
sb þ IsR

2
cb

� �
, mcm ¼ Icm

�
R2
cb,

mpi ¼ Ipi

.
R2
pbi, gr1iðsÞ ¼ Sr1iðsÞ=Rcb, gs1iðsÞ ¼

IcmRsb þ IsRcbð ÞSs1iðsÞ
�

IcmR
2
sb þ IsR

2
cb

� �
, gs2iðsÞ ¼

IcmRsb þ IsRcbð ÞSs2iðsÞ
�

IcmR
2
sb þ IsR

2
cb

� �
, gr2iðsÞ ¼

Sr2iðsÞ=Rcb, gps1iðsÞ ¼ Sps1iðsÞ
�
Rpbi, gps2iðsÞ ¼ Sps2i

ðsÞ
�
Rpbi, gpr1iðsÞ ¼ Spr1iðsÞ

�
Rpbi, gpr2iðsÞ ¼ Spr2iðsÞ�

Rpbi, g1siðsÞ ¼ Ss1iðsÞ=Rcb, g2siðsÞ ¼ Ss2iðsÞ=Rcb,

T1 ¼ TinIcmRsb þ ToutIsR
2
cb

� ��
IsIcm, T2 ¼ ToutRcb=Icm.

2.4 Dimensionless normalized analytical model

of PGTs

The established dynamic model of PGTs in Sect. 2.3

includes single- and double-tooth meshes, backlash,

time-varying meshing parameters, etc., which has

strong non-smooth and nonlinear time-varying char-

acteristics. It is very difficult to solve such models

directly, so it is very necessary to build its dimension-

less normalized analytical model for easy solution and

analysis. The dimensionless time t = xns is intro-

duced, where xn
2 = ksp/meq, ksp the average meshing

stiffness of the external gear pair, meq = (mscmpimcm)/

(mscmcm ? mscmpi ? mpimcm) the equivalent mass.

Take D0 as the displacement nominal scale, then the

dimensionless backlash is D1 = Dsi/D0 and D2 = Dri/

D0, and the dimensionless displacement is xsi = Xsi/D0

and xri = Xri/D0. By introducing multiple sub-func-

tions, furthermore, the dimensionless normalized

analytical model of PGTs with internal and external

gear pairs considering multi-state mesh is obtained by

Eq. (18).

€xsi þ
XN

i¼1

osihsiðtÞFnsiðtÞ þ
XN

i¼1

ocihriðtÞFnriðtÞ

þopihpsiðtÞFnsiðtÞ � opihpriðtÞFnriðtÞ
¼ F1 � e1x2 cosðxtÞ
€xri � opihpsiðtÞFnsiðtÞ þ opihpriðtÞFnriðtÞ

þ
PN

i¼1

ocih2siðtÞFnsiðtÞ þ
PN

i¼1

ocihriðtÞFnriðtÞ

¼ F2 � e2x2 cosðxtÞ

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

ð18Þ

where hsiðtÞ, hriðtÞ, hpsiðtÞ, hpriðtÞ, and h2siðtÞ are the

engaging state functions to characterize and identify

double-tooth meshing behavior, nT0\t� nT0 es � 1ð Þ,
and single-tooth meshing behavior, T0 es � 1ð Þ
\t� n� 1ð ÞT , and can be written as Eqs. (19)–(23).

hsiðtÞ¼
1þks1iðtÞls1iðtÞLs1iðtÞgs1iðtÞ
þks2iðtÞls2iðtÞLs2iðtÞgs2iðtÞ;

nT0\t�nT0 es�1ð Þ

1þks2iðtÞls2iðtÞgs2iðtÞ; T0 es�1ð Þ\t� n�1ð ÞT0

8
<

:

ð19Þ

hriðtÞ¼
1þkr1iðtÞlr1iðtÞLr1iðtÞgr1iðtÞ
þkr2iðtÞlr2iðtÞLr2iðtÞgr2iðtÞ;

nT0\t�nT0 es�1ð Þ

1þkr2iðtÞlr2iðtÞgr2iðtÞ; T0 es�1ð Þ\t� n�1ð ÞT0

8
<

:

ð20Þ

hpsiðtÞ¼
1þks1iðtÞls1iðtÞLs1iðtÞgps1iðtÞ
þks2iðtÞls2iðtÞLs2iðtÞgps2iðtÞ;

nT0\t�nT0 es�1ð Þ

1þks2iðtÞls2iðtÞgps2iðtÞ; T0 es�1ð Þ\t� n�1ð ÞT0

8
<

:

ð21Þ

hpriðtÞ¼
1þkr1iðtÞlr1iðtÞLr1iðtÞgpr1iðtÞ
þkr2iðtÞlr2iðtÞLr2iðtÞgpr2iðtÞ;

nT0\t�nT0 es�1ð Þ

1þkr2iðtÞlr2iðtÞgpr2iðtÞ; T0 es�1ð Þ\t� n�1ð ÞT0

8
<

:

ð22Þ

h2siðtÞ¼
1þks1iðtÞls1iðtÞLs1iðtÞg1siðtÞ
þks2iðtÞls2iðtÞLs2iðtÞg2siðtÞ;

nT0\t�nT0 es�1ð Þ

1þks2iðtÞls2iðtÞg2siðtÞ; T0 es�1ð Þ\t� n�1ð ÞT0

8
<

:

ð23Þ
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In Eq. (18), FnsiðtÞ and FnriðtÞ denote the meshing

force functions of the external and internal gear pairs,

respectively, which are used to characterize the drive-

side engagement, gear disengagement and back-side

contact behaviors of PGTs, and can be expressed as

Eqs. (24) and (25).

FnsiðtÞ ¼
ksiðtÞ xsi � D1½ � þ nsi _xsi xsi �D1ð Þ
0 jxsij\D1ð Þ
ksiðtÞ xsi þ D1½ � þ nsi _xsi xsi � � D1ð Þ

8
<

:

ð24Þ

FnriðtÞ ¼
kriðtÞ xri � D2½ � þ nri _xri xri �D2ð Þ
0 jxrij\D2ð Þ
kriðtÞ xri þ D2½ � þ nri _xri xri � � D2ð Þ

8
<

:

ð25Þ

The remainders of the dimensionless parameters

are as follows: ksiðsÞ ¼ KsiðsÞ
�
ðmeqx2

nÞ, nsi ¼ csi
�

ðmeqxnÞ, kriðsÞ ¼ KriðsÞ
�
ðmeqx2

nÞ, nri ¼ cri
�
ðmeq

xnÞ,osi ¼ meq

�
msc, oci ¼ meq

�
mcm, opi ¼ meq

�
mpi,

e1x2 cosðxtÞ ¼ €espi
�
D0x2

n, e2x2 cosðxtÞ ¼ €erpi=

€erpiD0x2
n:D0x2

n, F1 ¼ T1
�
D0x2

n, F2 ¼ T2
�
D0x2

n,

x ¼ xh=xn.

Therefore, a nonlinear dimensionless analytical

model of PGTs with sun-planet and planet-ring gear

pairs including time-varying meshing stiffness with

temperature effect, backlash, dynamic transmission

error, friction, time-varying load distribution, and

single- and double-tooth mesh is obtained. The time-

varying geometric characteristics of the meshing point

along the line of action or the tooth profile, such as the

meshing point position, friction moments, time-vary-

ing pressure angle, sliding speed, etc., are considered

in the established model. This model can better

analyze and evaluate the meshing vibration and

nonlinear vibration mechanism of PGTs, and provide

accurate analysis model for the dynamic performance

prediction and control of such systems.

2.5 Calculation of time-varying meshing stiffness

with temperature effect

The temperature rise in tooth contact gives rise to

thermal deformation of the gear-tooth profile, which in

turn affects the meshing stiffness of the gear system.

The contribution of temperature effect to TVMS is

characterized by temperature stiffness. Thus, the

comprehensive TVMS incorporating Hertzian contact

stiffness kh(s), bending stiffness kb(s), axial compres-

sive stiffness ka(s), shearing stiffness ks(s), fillet-

foundation stiffness kf(s), and temperature stiffness

kt(s) can be obtained from Eq. (26).

1

KsiðsÞ
¼ 1

KriðsÞ
¼ 1

khðsÞ
þ 1

kbðsÞ
þ 1

kaðsÞ
þ 1

ksðsÞ
þ 1

kfðsÞ
þ 1

ktðsÞ
ð26Þ

where kh(s), kb(s), ka(s), ks(s), and kf(s) can be

calculated via Eqs. (27)–(31) [71, 72].

kh ¼
pEB

4 1� v2ð Þ ð27Þ

1

kaji
¼

Z hbj

�rji

ðhbj � aÞ cos a sin2 rji
2EB sin aþ ðhbj � aÞ cos a

� � da ð29Þ

1

ksji
¼

Z hbj

�rji

1:2ð1þ mÞðhbj � aÞ cos a cos2 rji
EB sin aþ ðhbj � aÞ cos a

� � da ð30Þ

1

kf
¼cos2a

EB
L�

uf
Sf

	 
2

þM� uf
Sf

	 

þP�ð1þQ� tan2aÞ

" #

ð31Þ

In Eqs. (27)–(31), E, B, v denote Young’s modulus,

tooth width and Poisson’s ratio, respectively. hbj ðj ¼
p; gÞ is half of the tooth angle measured on the base

circle of pinion ðj ¼ pÞ and gear ðj ¼ gÞ. The detailed

1

kbji
¼

Z hbj

�rji

3 cos rji l1
�
Rbp þ cos hbj � cos aþ ðhbj � aÞsina

� �
� h1 sin rji

�
Rbp

� �2ðhbj � aÞ cos a
2EB sin aþ ðhbj � aÞ cos a

� �3 da ð28Þ
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calculation of relevant parameters can be found in

Refs. [71, 72].

According to the thermo-elastic theory, the tem-

perature stiffness can be calculated by Eq. (32).

ktjðtÞ¼
DFn

DdtðtÞ
ð32Þ

Herein, DFn and DdtðtÞ represent the dynamic

contact force increment and thermal deformation

increment at the meshing point, respectively. The

thermal deformation, dtj, of the j-th gear tooth can be

expressed as Eq. (33).

dtjðtÞ ¼ crRjðtÞ
0 ðTjðrjÞ � T0Þdrj � RjðtÞ

h i
sinðajðtÞÞ

þ 1

2
SjðRjÞ c TjðRjÞ � T0

� �
� 1

� �
cosðajðtÞÞ

ð33Þ

where c is the linear expansion coefficient of the gear

material, T0 the initial temperature, rj the distance

from any position to the gear center, Tj(Rj) and Sj(Rj)

the temperature and tooth thickness at the meshing

point Rj. aj(t) is the time-varying pressure angle and

can be got by Eq. (34).

ajðt) = arccos(Rbj

�
RjðtÞÞ ð34Þ

where Rbj is the base circle radius of the j-th gear. Rj(t)

is the distance from the meshing point to the gear

center, and can be written as Eq. (35).

RpðtÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
bpþ½ðRbpþRbgÞtana�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
ag�R2

bg

q
þRbpxpt�2

r

RgðtÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
bgþ½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
ag�R2

bg

q
�Rbpxpt�2

r

8
>><

>>:

ð35Þ

It is assumed that the gear temperature has a

gradient distribution in the radial direction and an

isothermal distribution in the circumferential direc-

tion. The temperature field distribution of the gear in

the radial direction, Tj(rj), can be obtained by Eq. (36)

[52].

TjðrjÞ ¼ TsjðRsjÞ

þ TajðRajÞ � TsjðRsjÞ
� � ln rj � lnRsj

lnRaj � lnRsj
ðj

¼ p; gÞ
ð36Þ

where Tsj(Rsj) is the temperature on the gear shaft, and

Taj(Raj) is the temperature of the outer circumference

of the gear.

3 Analysis methods

Backlash can induce gear separation or back-side

tooth contact, leading to multi-state meshing behavior

that can be effectively identified by constructing three

Poincaré maps, as seen from Sect. 3.1. In addition,

tooth separation or back-side tooth contact causes gear

shock or bumping in the planetary gear train, resulting

in a dynamic instability of the system. A method for

calculating the dynamic instability rate of geared

systems is proposed in the time domain based on the

multi-state engagement as shown in Sect. 3.2.

3.1 Identification method of multi-state engaging

behavior

Without losing generality, the differential equations of

PGTs can be expressed as follows:

_x ¼ f ðx; tÞ: ð37Þ

where x ¼ ðxs1; xs2; xs3; xr1; xr2; xr3; Þ is a 6-dimen-

sional state variable of PGTs, and t is a time variable.

Define a 6-dimensional Poincaré mapping section Pt

in the 6 ? 1-dimensional phase space R6 � R, as

shown in Eq. (38).

Pt ¼ x; tð Þjmod t; Tð Þ ¼ 0f g ð38Þ

The system Poincaré mapping equation on the

section Pt is as Eq. (39), and the mapping schematic

in Pt is shown in Fig. 8a, where C represents the

system phase trajectory.

Pt ! Pt : xnþp

¼ xn þ
Z pT

0

f ðx; tÞdt; xnþp; xn 2 Ptð Þ ð39Þ

where n = (1,2,3,…) is the number of iterations in Pt

and p is a positive integer to determine the type of

system motion.

Gear separation and back-side tooth engagement

can be effectively identified by defining two types of

Poincaré mapping sections Ps and Pb, as written in

Eq. (40).
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Ps ¼ x; tð Þj x; tð Þ 2 R6 � R; xs1 ¼ D1

� �
;

Pb ¼ x; tð Þj x; tð Þ 2 R6 � R; xs1 ¼ �D1

� � ð40Þ

If Eq. (41) holds, it means that the phase trajectory

of the system does not cross sections Ps and Pb. The

system only exhibits a drive-side tooth meshing state,

without gear separation or back-side tooth mesh

occurring. If Eq. (41) does not hold, it indicates that

the system phase trajectory may cross sectionsPs and

Pb, and that tooth separation or back-side tooth

meshing may occur during gear operation, as shown in

Fig. 8b.

Ps \ C 6¼ ;; Pb \ C 6¼ ; ð41Þ

where the symbol C denotes the phase trajectory and ;
denotes the empty set.

It can be seen that the motion type of the system can

be identified based on the Poincaré mapping Eq. (39),

and the multi-state meshing behavior can be identified

according to Eq. (41).

3.2 A calculation method of dynamic instability

rate (DIR)

Backlash divides the phase plane, xs1- _Xs1, of the

system into three regions: the drive-side meshing

region (xs1[D1), the gear separation region (|xs1|\-

D1), and the back-side meshing region (xs1\-D1),

as seen from Fig. 9. The possible forms of the

trajectory of the system in the phase plane xs1- _Xs1

consist of three, such as C1, C2 and C3. C1 indicates

that the system only drive-side tooth engages, C2 the

drive-side tooth mesh and gear separation (disengage-

ment), and C3 the drive-side tooth mesh, gear

separation and back-side engagement. Assuming

counterclockwise as the positive direction, G2in and

G2out are the let in and let out points of the trajectory

C2 through the cross sectionPs. G3in and G3out are the

let in and let out points of C3 through Ps. B3in and

B3out are the let in and let out points of C3 throughPb.

C2 and C3 characterize the dynamic instability

condition of the system, which is prone to poor

dynamic behavior or transmission failure. In order to

better predict the transmission quality of the geared

system, therefore, a method for calculating the

dynamic instability rate is proposed. The dynamic

instability rate, DIR, in the time domain during gear

operation can be calculated by Eq. (42).

DIR ¼ ts þ tb
td þ ts þ tb

ð42Þ

where td indicates the duration of dive-side engage-

ment, and ts is the duration of gear separation, and tb is

Fig. 8 a The mapping schematic in Pt; b The mapping schematics in Pb and Ps

Fig. 9 Schematic diagram of system engagement reliability

calculation
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the duration of back-side engagement. Td and tb can be

obtained by Eq. (43). Ts can be calculated by Eq. (44)

for C2 and C3, respectively.

td ¼
Z G2in

G2out

dt ¼
Z G3in

G3out

dt; tb ¼
Z G3out

G3in

dt ð43Þ

ts ¼
Z G2out

G2in

dt; ts ¼
Z B3in

G3in

dt þ
Z G3out

B3out

dt ð44Þ

The dynamic stability rate, DSR, can be obtained

by Eq. (45).

DSR ¼ 1� DIR ¼ td
td þ ts þ tb

ð45Þ

The back-side meshing dynamic instability rate,

BDIR, can be calculated by Eq. (46) to obtain the

contribution or effect of back-side engagement.

BDIR ¼ tb
td þ ts þ tb

ð46Þ

4 Results and discussion

Gear separation and back-side tooth engagement

break the dynamic stability meshing conditions. The

type of motion and bifurcation have also a big impact

on DIR. In addition, the coexisting dynamic response

greatly impacts DIR due to their different topologies.

In this section, the immanence between DIR and

multi-state engagement (MSE) is explored as the

transmission error amplitude e and loading factor F are

used as control parameters, respectively. The impact

of coexisting response of the system on global

dynamic instability has also been studied as the

meshing frequency x changes with parameter-state

space synergy. A set of parameters for the studied

PGTs is shown in Table 1.

4.1 The immanence between multi-state mesh

and dynamic instability rate

4.1.1 The effect of e

Let e = e1 = e2 be the parameter variable, and the

remaining parameters are shown in Table 1. Based on

the methods proposed in Sects. 3.1 and 3.2, the

evolution laws of the multi-state engagement (MSE)

and the dynamic instability of the system is shown in

Fig. 10 as the parameter e increases. Figure 10a shows

the bifurcation of the dynamic behavior in the section

Pt, characterizing the evolution of the motion type of

the system. Figure 10b illustrates the tooth separation

(in sea green) and back-side tooth meshing (in orange)

characteristics. In Fig. 10c, DSR denotes drive-side

tooth engagement, and DIR denotes unhealthy

engagement conditions (gear separation and back-side

tooth mesh). BDIR is the back-side mesh, which gives

the effect or contribute of the back-side engagement.

From Fig. 10, when e is very small (on the left side

of point A), the system exhibits a period-1 response

without gear disengagement and back-side meshing

behavior. The phase trajectory and Poincaré mapping

in Pt for the period-1 response are shown in Fig. 11a,

where the red symbol 9 denotes Poincaré mapping.

Increasing in e, gear separation occurs near point A

due to the expansion of the phase trajectory of period-1

response, as in Fig. 11b. The portrait traverses section

Ps and the dynamic stability rate, DSR, is destroyed.

DSR starts to decrease and the dynamic instability

rate, DIR, increases, as shown in Fig. 10c. Near point

B, the period-1 response transitions to a period-2

response by period-doubling bifurcation and gear

separation persists. DSR forms local minima at B and

increases due to period-doubling bifurcation. A graz-

ing bifurcation is observed near point C for period-2

response and the number of gear separation shocks

decreases, as seen from Fig. 11c. In contrast, DSR

Table 1 A set of

parameters for the studied

planetary gear train

Parameters Values Parameters Values

Number of tooth zs/zpi/zr 27/48/123 Module (mm) 5.0

Pressure angle a (�) 20 Addendum coefficient h�a 1.0

Poisson’s ratio v 0.3 Young’s modulus E (N/mm2) 206

Meshing frequency x 2.7 Mass ratio osi/opi/oci 0.8/0.65/0.9

Load factors F1/F2 0.18 Friction coefficient lsi/lri 0.02

Meshing damping nri/nsi 0.06 Backlash D1/D2 1.0
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forms a local maximum at C point and starts to

decrease because of grazing bifurcation, as shown in

Fig. 10c. Compared to DSR, DIR undergoes the

opposite change around points B and C.

Period-2 response transitions to a chaotic response

near point D, where gear separation and back-side

meshing are observed. DSR suddenly drops sharply at

D and DIR dominates during gear operation, as in

Fig. 10c. BDIR is relatively small, and gear separation

is the main cause of DIR. Figure 11d gives the phase

trajectory of chaotic response, and the trajectory is

mainly distributed in the region of gear separation

(-D1\ xs1\D1), and DSR is low. The chaotic

response degenerates to a period-4 response near point

E, and gear separation and back-side tooth meshing

persist, as in Fig. 11e. DSR hardly changed much for

the period-4 response. Subsequently, the period-4

response enters chaos again near the point F as in

Fig. 11f, and the DSR has increased. DIR decreases

and BDIR increases for the chaotic response. The

Fig. 10 Evolution of dynamic instability and multi-state engagement (MSE) with the increase of transmission error amplitude e
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chaotic response degenerates to a period-2 response at

point G and the phase trajectory is as in Fig. 11g. DSR

increases slightly and remains smooth with the

increases of e. Hopf bifurcation is observed near the

point H, and the period-2 response transitions to a

quasi-periodic response with two limit cycles in the

Poincaré section Pt, as shown in yellow Fig. 11h.

However, DSR and DIR do not change significantly

near the Hopf bifurcation point. The quasi-periodic

response transitions to a period-2 response at I and

DSR increases abruptly, followed by the period-2

response converts to a period-4 response at J, and

enters chaos via a short period-doubling bifurcation, as

in Fig. 10 and 11i–k.

The chaotic response degenerates to a period-6

response at point K and DSR suddenly decreases due

to the expansion of the phase trajectory, as shown in

Fig. 11l. The period-6 response changes to a period-12

response via a period-doubling bifurcation, as in

Fig. 11m, and then enters chaos near the point L.

Subsequently, the chaotic response degenerates to a

period-8 response with the phase trajectory and the

Poincaré mapping as in Fig. 11n. The period-8

response degenerates to a period-4 response near the

point M, and its phase trajectory and Poincaré

mapping are shown in Fig. 11o. The variation of

DSR is relatively stable for larger e.
Therefore, the transmission error amplitude e

greatly governs the multi-state engagement (MSE)

behavior and dynamic instability properties of the

system. Gear separation and back-side meshing occurs

gradually and MSE becomes complex increasing in e.
The occurrence of MSE reduces the DSR of the

system. For small e, DSR or DIR is severely affected

by bifurcation and chaotic response of the system.

Two interesting phenomena are obtained: (1) period-

doubling bifurcation improves DSR of the system and

causes it to form local minima, as in point B in

Fig. 10c; (2) grazing bifurcation reduces DSR and

causes it to form local maxima, as in point C in

Fig. 10c. For larger e or back-side tooth mesh, the

period-doubling and Hopf bifurcations have a small

effect on DSR, but DSR is greatly influenced by

chaotic response. In addition, DSR is closely related to

the topology of the system dynamics response, the

larger the phase trajectory the smaller the DSR.

4.1.2 The effect of F

As one of the key parameters, the load factor F has a

significant influence on the multi-state mesh and

dynamic instability of the system. Take x = 1.0 and

e = 0.21, other parameters remain unchanged. The

evolution of MSE and DSR of PGTs with decreasing

F is depicted in Fig. 12.When F is large (to the right of

point A), the system only exhibits a complete drive-

side meshing state, without multi-state meshing. The

system has the highest reliability of healthy meshing

(DSR = 1.0), and operates in a healthy and safe state.

The vibration amplitude is very small, as shown in

Fig. 13a for the phase portrait and Poincaré mapping

of the period-1 response. As F decreases, the phase

trajectory continues to expand and the vibration

amplitude increases. The trajectory passes through

section Ps at point A and gear tooth detachment

occurs, as shown in Fig. 13b. DSR begins to decrease

and healthy meshing state is disrupted. At point B the

system undergoes a period jump, and the type of

dynamic response does not change before and after the

jump, but the topology of the phase trajectory changes

and increases, as shown in Fig. 13c. DSR suddenly

plummeted near the B point and the gear separation

ratio is expanded again. Local maximum value of DSR

appears near point B1, followed by a decrease in DSR

and increase in DIR.

As F decreases to point C, the period-1 response

transitions to a chaotic response and back-side tooth

engagement occurs. DSR decreases greatly and DIR

and BDIR increase suddenly, aggravating drive-side

and back-side tooth impact due to chaos. Subse-

quently, the system exhibits a chaotic response with

MES in the BC region, corresponding to a smaller

DSR. The chaotic response degenerates to a periodic

response at point D, and then transitions to a period-2

response after bifurcation and a short chaos. At small

F conditions, although the system exhibits a stable pe-

riodic response, multi-state engagement persists and

DSR decreases again due to elevated BDIR and DIR.

Consequently, as the load factor F decreases, the

system gradually develops gear separation and back-

side tooth meshing, exacerbating the complexity of

multi-state engagement (MSE). Also, the dynamic

bFig. 11 Phase trajectories and Poincaré mappings of the system

in the phase plane xs1- _Xs1 for different values of e. a e = 0.005;

b e = 0.02; c e = 0.035; d e = 0.06; e e = 0.16; f e = 0.24;

g e = 0.287; h e = 0.31; i e = 0.37; j e = 0.39; k e = 0.414;

l e = 0.42; m e = 0.435; n e = 0.465; o e = 0.495
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stability rate (DSR) is decreasing, and the dynamic

instability rate (DIR) and back-side meshing rate

(BDIR) are increasing. Phase trajectory expansion

causes gear separation and reduces DSR, and the

chaotic response leads to back-side tooth meshing and

greatly reduces DSR. The effect of MSE on DSR is

large and the effect of dynamic response type is small

under light load conditions. Under heavy load condi-

tions, however, the impact of dynamic response type

on DSR is greater than that of multi-state engagement

behavior.

4.2 Global dynamic instability properties

under the parameter-state space synergy

The dynamic characteristics of nonlinear systems are

collectively dominated by parameters and initial

values. The disturbance of parameters may induce

bifurcation or chaos in the system’s dynamic response,

and the disturbance of initial conditions may lead to

coexisting behavior of the dynamic response (multi-

stability). Taking e1 = e2 = 0.14 and F1 = F2 = 0.1,

the remaining parameters are shown in Table 1, and let

Fig. 12 Evolution of dynamic instability and MSE decreasing in load factor F
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meshing frequencyx be a parameter variable to form a

one-dimensional bounded parameter space, U ¼
fxjxı nð0:01; 5:0Þg. Considering the impact of the

initial perturbation of the relative displacement of the

sun-planetary engaging gear pair on the nonlinear

dynamic characteristics of PGTs, and set X ¼
fxsi; _xsi; xri; _xrijxsi 2 ð�3:0; 3:0Þ; _xsi 2 ð�3:0; 3:0Þ; xri
¼ _xri ¼ 0:0g as a bounded state space. Thus, the

bifurcation and evolution of the multi-stable response

under the synergistic effect of parameter space U and

state space X are illustrated in Fig. 14a with

decreasing in x, and the corresponding DSR are

shown in Fig. 14b.

The diversity of bifurcation branches is clearly

observed under the synergistic effect of parameter

space U and state space X with the decrease of x, as
shown in Fig. 14a, and there are six bifurcation

branches. For example, the period-1 response (p1)

transitions to a period-5 response (p5) from a partial

initial value at point G1, and continues within the

remaining initial value range X, forming a bifurcation

branch (Branch #1). p5 undergoes bifurcation at points

Fig. 13 Phase trajectories and Poincaré mappings of the system in the phase plane xs1– _Xs1 for different values of F. a F = 0.28;

b F = 0.245; c F = 0.22; d F = 0.16; e F = 0.025; f F = 0.0465; g F = 0.033; h F = 0.03
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G2 and G3 before entering chaos, and then returns to

p1 at point G4. At point B1, p1 transfers to a period-3

response (p3) at some initial values and persists at

another initial value, forming a new bifurcation branch

(Branch #2). p3 enters chaos at point B4 after

bifurcation at points B2 and B3, and then degenerates

into a period-2 response (q2) at point B5. p3 shifts to a

period-6 response (p6) at point Q1 under some initial

values and sustains under another initial values,

forming a bifurcation branch (Branch #3). p6 transi-

tions to chaos (c) at point Q2 and then degenerates into

period-4 response (q4) at point Q3. q4 transfers to p3 at

point Q4. The chaotic response degenerates into a

period-4 response (p4) at point P1 within some initial

values and persists for the remaining initial values,

forming a bifurcation branch (Branch #4). p4 shifts to

chaos at point P2. Correspondingly, a new branch

(Branch #5) is obtained at point R1, which is generated

by chaos under partial initial values. q2 degenerates

into a stable period-1 response (q1) at point R2 after a

very momentary chaos. At point S1, a new period-2

response (r2) is observed, which is generated by q2,

forming a new branch (Branch #6).

As can be seen, the overlap of different bifurcation

branches within a certain range of x leads to the

coexistence of multiple dynamic responses. The

coexistence of bifurcation and dynamic response is

also been obtained. Due to the differences in trajectory

topology, vibration amplitude, and stability of coex-

isting responses, their corresponding DSR is different.

For instance, the DSR of q1 is significantly greater

than that of q5 for Branch #1 (between G1 and G3). As

x is small (to the left of the S1 point), the system

exhibits q1 and healthy engagement behavior. DSR =

1.0 is observed for q1. However, the DSR of q1 is

greatly influenced by r2 taking the initial perturbation

into account between S1 and S2. Thus, when the

parameters of the system are fixed, the initial

Fig. 14 The evolution law

of multi-stability response

and HMRwith decreasing in

x under the synergistic

effect of parameter-state

space: a Multi-stability

response; b DSR
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conditions can be adjusted to ensure that the system

operates on the expected motion trajectory. Bifurca-

tion behavior can be purposefully avoided by revising

the initial conditions. Identically, when the initial

value changes within a certain range, the desired

dynamic response can be obtained by regulating the

parameters. The bifurcation and evolution mecha-

nisms of multi-stable responses under the synergistic

effect of parameter space U and state space X are

analyzed in detail in Fig. 15.

In order to have a well understand of the generation

and transition mechanisms of multi-stable response, it

is necessary to define some symbols and their terms. In

Fig. 15, the symbol circle represents the dynamic

response (periodic or chaotic response). Yellow

square denotes the complete bifurcation, which means

that the system dynamic response completely transi-

tions to another dynamic response with a different

phase trajectory topology at all initial values. Red

square means the incomplete bifurcation, which

indicates that the dynamic response transitions to a

new dynamic response at some initial values, while

remaining unchanged at another initial values. White

square stands for the no bifurcation, which implies that

the dynamic response continues at all initial values

without bifurcation. ? represents the direction in

which parameter x decreases. It is easy to observe

that there are six branches (such as Branch #1, Branch

#2, Branch #3, Branch #4, Branch #5, and Branch #6),

six incomplete bifurcation points (such as G1, B1, Q1,

P1, R1, and S1), sixteen complete bifurcation points,

and thirteen different dynamic responses in Fig. 15.

The bifurcation and transition laws of multi-stable re-

sponses under the synergistic effect of parameter

space U and state space X are extremely luxuriant and

sophisticated.

Combining Figs. 14 and 15, an incomplete bifur-

cation G1 is observed for p1 with the decrease of x,
which generates a bifurcation branch, Branch #1. It

implies that p1 transmigrates to p5 at a partial initial

value of X and persists at the remaining initial values.

Thus, a multi-stable response containing p1 and p5 is

obtained via incomplete bifurcation G1. The phase

trajectories of p1 and p5 are shown in Fig. 16a, where

the symbols 9 and ? represent Poincaré mappings.

The vibration of p5 is stronger than that of p1. With

decreasing in x, p1 undergoes incomplete bifurcation

again at point B1 and yields p3 and p1. A new

bifurcation branch, Branch #2, is obtained. p5 contin-

ues without bifurcation at point B1. As a result, the

coexistence of p1, p3, and p5 is observed after B1, and

the phase portraits is shown in Fig. 16b, where �

Fig. 15 Schematic of the

evolution mechanism of

multi-stability response

decreasing in x under the

synergistic effect of

parameter-state space

(corresponding to Fig. 14)
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denotes Poincaré mappings. It is obvious that the

vibration of p3 is greater than that of p5. p5 goes

through a complete bifurcation at G2 and transitions to

q5 under all its initial values. p1 and p3 go on after

passing G2. Thereby, the coexisting behavior of p1,

p3, and q5 is obtained after G2, as shown in Fig. 16c

for the phase portraits where the topology of q5 is

different from p5. At G3, p1 and p3 persist and q5

transfers to chaos (c), thus the coexisting response

including p1, p3, and chaos is found, as shown in

Fig. 16d for the trajectories. Although the chaos is

unstable, its vibration amplitude is still less than that of

p3. At G4, p1 and p3 continue and the chaos

degenerates to p1, which means that Branch #1 ends

and only p1 and p3 coexist after G4. p1 shifts to p2 by

the complete bifurcation T1 and then enters chaos via

the complete bifurcation T2. p3 continues through T1

and T2. The coexistence of p2 and p3 between T1 and

T2, and the coexistence of p3 and chaos between T2

and T3 are discovered, as shown in Fig. 16e, f for the

phase portraits. The chaos degenerates into p3 through

complete bifurcation at T3 and there is only p3 in X.
Further decreasing in x, an incomplete bifurcation

for p3 at Q1 is observed, which gives rise to a

bifurcation branch, Branch #3. The coexistence of p3

and p6 formed by p3 is obtained, and the phase

portraits are plotted in Fig. 16g. p6 enters chaos by

complete bifurcation at Q2, and no bifurcation for p3.

Thus, the coexistence of p3 and chaos is received, as

shown in Fig. 16h for the portraits. The vibration of

chaos is stronger than the vibration of p1. A new

bifurcation branch, Branch #4, is acquired due to an

incomplete bifurcation at P1, where the chaos degen-

erates into p4 under partial initial values and sustains

under the remaining initial values. There is no

bifurcation for p3 after passing through P1. The

coexistence of p3, p4, and chaos is gained, as plotted in

Fig. 16i for the portraits. There is no bifurcation for p4

in Branch #4 after passing through a series of points,

such as Q3, Q4, B2, B3, and B4. The chaos transfers to

q4 via complete bifurcation at Q3 and then shifts to p3

by complete bifurcation at Q4. The multi-stable re-

sponse including p3, p4 and q4 is got between Q3 and

Q4 and shown in Fig. 16j. The coexistence of p3 and

p4 after Q4 is obtained. Subsequently, p3 converts to

q3 at B2 via complete bifurcation, and q3 shifts to q6 at

B3 by complete bifurcation. q6 enters chaos at B4 by

complete bifurcation. The multi-stable responses with

p4 and q3, and with p4 and q6 are attained, and with p4

and chaos are observed, as plotted respectively in

Fig. 16k–m. p4 transfers to chaos at P2 by complete

bifurcation and only chaos without coexisting

response.

An incomplete bifurcation occurs in response to

chaos at point R1, and a bifurcation branch, Branch #5,

is obtained. The chaos transfers to q2 after R1 under

partial initial values and then the coexistence of q2 and

chaos is observed, as shown in Fig. 16n for the phase

portraits. The chaos degenerates into q2 at B5 via the

complete bifurcation. q2 transitions to an extremely

short chaos at point R2, and then undergoes an

incomplete bifurcation at S1 and shifts to q1 and r2,

forming a bifurcation branch, Branch #6. The trajec-

tories of q1 and r2 are plotted in Fig. 16o, where the

vibration amplitude of r2 is much larger than q1 and

DSR is relatively small. Subsequently, r2 shifts to q1

at point S2 by the complete bifurcation and the system

only exhibits a q1 response for the small x.
The generation and evolution of the coexistence

response is controlled synergistically by the parameter

space and state space. The distribution and evolution

of different types of coexisting responses in the one-

dimensional parameter space are clearly illustrated in

Figs. 14 and 15. Also, the phase trajectory topology of

the coexistence response is given in Fig. 16a–o.

Nevertheless, it is very interesting to effectively reveal

the initial value domain or basin of attraction of the

coexistence response in the state space. Figure 17

plots the basin of attraction of various types of

coexistence responses in state space X at different

values of x. Different colors indicate the initial value
domain or basin of attraction of different dynamic

responses, and some symbols, such as 9 , ? , •,
represent the attractor. Figure 17a shows the basin of

attraction of p1 in sea green and p5 in orange

calculated for x = 4.4, where ? and 9 stand for the

attractors of p1 and p5, respectively. The basin of

attraction of p1 or p5 exhibits a sieve shaped

distribution within X. It indicates that p1 or p5 have

strong sensitivity to initial values, and slight pertur-

bation of the initial value give rise to continuous

switching behavior between p1 and p5. In this way, the

bFig. 16 Topology of phase trajectories with coexisting

responses at different x values: a x = 4.4; b x = 4.14;

c x = 4.08; d x = 4.02; e x = 3.65; f x = 3.5; g x = 3.2;

h x = 2.9; i x = 2.74; j x = 2.64; k x = 2.4; l x = 2.25;

m x = 2.05; n x = 1.4; o x = 0.82
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global dynamical properties of p1 or p5 are unstable.

The basin of attraction of p1, p3, and p5 is plotted in

Fig. 17b, where • denotes the attractor of p3. The

initial domain of p3 is continuous and in blue. Because

of the transition of p5 to chaos, the attractive basin

where p1, p3, and chaos coexist are shown in Fig. 17c.

Compared to Fig. 17b, the initial domain of p3 is

expanded and the global stability is enhanced. Fig-

ures 17d express the basins of attraction of p2 in sea

green and p3 in blue, and Fig. 17e plots the basins of

attraction of p3 in blue and chaos in sea green. The

initial value domain area of p2 or chaos is greater than

that of p3. The basins of attraction of p3 and p6 in pink

is shown in Fig. 17f, where the initial area of p6 is

greater than that of p3. The system behaves as p6 in

most initial value domains. The sieve shaped attrac-

tion domain has been widely observed to respond to

different coexisting responses, such as the coexistence

of p3 in blue and chaos in pink, the coexistence of p3 in

blue and p4 in red, the coexistence of p6 in blue and p4

in red, and the coexistence of q2 in magenta and chaos

in blue, as shown in Figs. 17g–j. The continuous

Fig. 17 Basin of attraction

of the coexistence response

at different values of x
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switching behavior between different types of

dynamic responses under initial perturbation is

obtained. Figure 17k shows the basins of attraction

of q1 in magenta and r2 in green, where the initial

domains is continuously distributed. The global

dynamics of q1 and r2 are relatively stable within

their respective initial domains.

Based on the above analysis and discussion, all the

possible dynamic features of the system under the

synergistic effect of parameter space and state space

are fully revealed, and some potential dynamic

behaviors (including bifurcation and dynamic

response) that are easily hidden are completely

discovered. Two different bifurcation phenomena

have been found: incomplete bifurcation and complete

bifurcation. Complete bifurcation leads to global

instability of the system in the initial value domain

X, while incomplete bifurcation results in local

instability in X and yields coexistence of multiple

responses. With changes in parameters and initial

values, incomplete bifurcation generates new bifurca-

tion branches, leading to the coexistence of multiple

dynamic responses, as well as the coexistence of

bifurcation and dynamic responses. With the collab-

oration of one-dimensional parameter space U and

two-dimensional state space X, six incomplete bifur-

cations are observed, generating 6 bifurcation

branches and inducing various two-stable and three-

stable responses. By reasonably regulating the param-

eter, initial value and their matching relationship, the

system dynamic behavior can be purposefully con-

trolled, thus avoiding undesired dynamic response or

bifurcation, improving the system transmission qual-

ity and reliability, and extending the service life.

5 Conclusions

Dynamic instability, such as gear disengagement,

back-side tooth contact and poor dynamic behavior,

not only reduce the transmission quality and stability

of PGTs, but also accelerate gear damage and failure.

In order to prevent early failure and prolong life of

PGTs, multi-state engagement and dynamic stability

rate (DSR) of PGTs is investigated in this work based

on and nonlinear dynamics. A multi-state meshing

nonlinear dynamics model of PGTs close to real

engineering is developed considering the diversity of

influencing factors. An effective identification method

of multi-state engaging behavior and a calculation

method of DSR are proposed. The intrinsic correlation

between multi-state meshing behavior and DSR was

analyzed. The mechanisms of generation and transi-

tion of multi-stability response or coexistence behav-

ior under the synergistic effect of parameter-state

space is studied. Some conclusions are as follows.

Firstly, multi-state engagements caused by back-

lash and non-integer contact ratio, such as single- and

double-tooth meshes, drive-side and back-side tooth

meshes, and gear separation, are considered in this

work. A new nonlinear dynamic model of PGTs with

internal and external meshing gear pairs containing

multi-state engaging is established. A modified time-

varying meshing stiffness model considering tooth

profile thermal deformation due to temperature rise is

derived. Some key parameters, such as backlash,

transmission error, time-varying meshing stiffness

with temperature effect, load factor, time-varying

pressure angle, time-varying friction arm, time-vary-

ing meshing position and friction, are included in this

model. The model contains multiple subfunctions that

characterize the multi-state meshing, periodic switch-

ing behavior and non-smooth properties of PGTs.

Secondly, as the amplitude of transmission error

increases or the load factor decreases, the unique

drive-side meshing behavior gradually shifts to multi-

state meshing behavior. DSR also progressively

weakens with the complexity of multi-state meshing

behavior. The occurrence of multi-state meshing

behavior leads to dynamic instability or unhealthy

meshing situations. Bifurcation, chaos, and phase

trajectory topology greatly affect the DSR of PGTs.

Period-double bifurcation improves dynamic stability

and increases DSR, forming a local minimum, while

grazing bifurcation weakens dynamic stability and

decreases DSR, forming a local maximum. Expansion

of phase trajectory topology reduces DSR.

Finally, some easily hidden dynamical behaviors

are fully revealed under the synergy of parameter

space and state space. Diversity of coexistence

behavior is obtained, such as the coexistence of

diversity types of dynamic responses, and the coex-

istence of dynamic responses and bifurcation. Two

special bifurcation phenomena, complete and incom-

plete bifurcations, are discovered, which have not

been reported in the existing literature due to the

failure to consider the parameter-state space synergy

effect. Complete bifurcation causes global instability
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in the initial value domain X, and incomplete bifur-

cation leads to local instability in X and yields

coexistence of multiple responses. Incomplete bifur-

cation gives rise to new bifurcation branches, leading

to the coexistence of multiple dynamic behaviors. The

DSR of each response in the coexistence behavior

differs due to different phase trajectory topologies.

Therefore, the dynamic behavior of PGTs can be

precisely controlled by reasonably regulating the

parameters, initial values, and their matching relation-

ships to avoid inferior dynamic behavior or multi-state

meshing behavior, and improve the DSR. This study

provides a good understanding of the healthy and

unhealthy meshing conditions and therefore serve as a

useful source of reference for engineering in designing

and controlling such gear systems.
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