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Abstract Although several vaccines against COVID-
19 are available for mass vaccination, non-vaccine
interventions remain essential to control the pandemic,
which has spread around the world due to both the
imperfections of the vaccines and the emergence of
new and highly transmissible variants of the virus.
In this study, by developing a novel compartmen-
tal dynamic model called SVEPACR to describe the
spread of the infection considering the characteristics
of COVID-19, we explore how vaccination and recom-
mended treatments (auxiliary pharmaceutical and non-
pharmaceutical interventions) jointly affect COVID-
19 transmission. The SVEPACR model focuses on
the influence of vaccination and recommended treat-
ments on the symptomatic and asymptomatic individ-
uals who have incurred substantial features of COVID-
19. The qualitative analysis of the proposed model is
conducted, including a proof showing that the model
is well-posed, the global stability of disease-free equi-
librium and the unique existence of endemic equilib-
rium. At the same time, the model is also a good fit for
real data on confirmed COVID-19 cases in Shanghai,
China, in 2022. Moreover, the effective reproduction
number R0 is acquired, and its sensitivity to the main
model parameters is analyzed. Based on the numerical
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simulation of the SVEPACR model and the sensitiv-
ity analysis, the interactions between the reproduction
number and the model parameters are analyzed. By
introducing the concept of relative cross-infection of
one compartment of the model with respect to another,
the mutual influence of disease transmission between
the compartments is also interpreted reasonably. The
studies show that the proposed model can detect the
dynamic transmission behavior of COVID-19 with a
combination of vaccination and recommended treat-
ments, proving that the recommended treatment has a
higher impact on the evolution of the epidemic than
vaccination alone, and advocate that this type of treat-
ment should be consistent with the vaccination cam-
paign in order to contain the virus.

Keywords COVID-19 mathematical model ·
Vaccination · Recommended treatment · Mathematical
analysis · Numerical simulation

1 Introduction

At present, COVID-19 has become a pandemic, as it
has spread worldwide. The main reason for the dif-
ficulty controlling the outbreak is due to the unique
characteristics of COVID-19. These features are: (1)
The virus mutates more frequently. Then, it weakens
the effectiveness of the vaccine. (2) The incubation
period is long, which allows the virus to survive longer
in individuals. (3) Asymptomatic individuals who are
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not easily identified lead to the concealed transmission
of the disease. The studies in [1] show that the virus
is mainly transmitted by the asymptomatic individuals.
This is one of themain causes of secondary infections in
some recovered people. (4) The recovery period is long
and the treatment cost is high. These characteristics of
the virus make immunity take a long time, and several
peaks of the widespread infection are occurring. It is
evident that these characteristics of COVID-19 lead to
the strong fluctuations and cycles of the current epi-
demic in many countries.

The reality is that although several highly efficacious
vaccines against COVID-19 are available for mass vac-
cination, it is clear that vaccines alone are not sufficient
to stop the widespread transmission of the virus. Some
theoretical studies and simulations studies also par-
tially supported the conclusions fromdifferent perspec-
tives and various forms [2,3]. This implies that non-
vaccine auxiliary interventions are essential to more
effectively control further spread of the virus. There-
fore, it is inevitable that the vaccine and some spe-
cial interventions will be coordinated and combined
to prevent and control the epidemic for some time.
Because of the adoption of such different interven-
tions, different nations have shown various evolution-
ary patterns. In China, the government has approved
the use of traditional Chinese medicine (TCM) as a
method of social intervention since the outbreak to pre-
vent people from contracting COVID-19 and to pro-
vide adjunctive treatment for the infected (e.g., asymp-
tomatic and symptomatic) individuals due to the antivi-
ral and analgesic effects of someTCMmedicines. TCM
hasmade remarkable positive contributions onmitigat-
ing the spreading of the epidemic [4]. China’s experi-
ence with COVID-19 strongly suggests that the combi-
nation of vaccines with auxiliary treatments rather than
solely relying on vaccines is an efficient way to control
the disease. However, although the importance of the
combined application of the vaccination and treatment
to control COVID-19 has been shown in practice and in
some studies, the causality of the combined effect of the
two has not yet been investigated in detail. In particular,
targeting both asymptomatic and symptomatic individ-
uals has not yet been explored theoretically. Therefore,
there is an urgent need to understand the potential joint
impact of both vaccination and auxiliary treatments on
COVID-19 transmission through qualitative and quan-
titative exploration. This is also main motivation of the
present work.

Here, the meaning of auxiliary treatment can be
broad and takes many forms, including various mea-
sures taken for infected persons or for the general public
to help reduce the spread of the virus. For example, spe-
cific pharmaceutical or non-pharmaceutical interven-
tions (hospitalization, isolation, wearing masks, etc.),
policy constraints, behavioral standards, etc., can be
treatments or interventions recommended by profes-
sional authorities. Following [5], we collectively con-
sider them as recommended treatment.

In the current study, based on the concept of the
recommended treatment, we aim to study the incorpo-
rated impacts of vaccination and a recommended treat-
ment to control the spread of COVID-19 in general.
As a result, a new mathematical model of seven com-
partments for the spread of COVID-19 is proposed.
In the model, in addition to considering the suscepti-
ble (S), vaccinated (V ), exposed (E), symptomatic (P),
asymptomatic (A) and recovered (R) compartments,
we designed a recommended treatment compartment
(C) for individuals who can be partially considered in
both symptomatic and asymptomatic groups receiving
a recommended treatment. This particular considera-
tion can be more generalized to include a wide range
of auxiliary interventions or treatments that contribute
to the mitigation of the epidemic, and provide a way
to investigate the joint effect of both the vaccination
and recommended treatments on the symptomatic and
asymptomatic groups.

Compared with the existing literature, this study
summarizes the following highlights in addition to its
own technical route within the underlying theoretical
framework adopted by most literature.

1. The model has its own feature compartment net-
work structure. The model is composed of a closed
connection network, reflecting key factors, such as the
repeated transmission of COVID-19 and the limited
protection period of the vaccine. Particularly, while
introducing the recommended treatment compartment
(C) directly connecting both symptomatic and asymp-
tomatic compartments as the final stage of disease
transmission, the closer linkages between the model
compartments can be built. Therefore, the close rela-
tionships among the vaccine parameters α and β and
recommended treatment parameter m(τ ) are estab-
lished through the effective reproduction number R0,
which are used to detect the joint effect of the two
group parameters on asymptomatic and symptomatic
compartments (see Sect. 4).
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Remark Here, the effective reproduction number R0

represents the average number of secondary infections
generated by a single infectious individual during his
entire infectious period in a totally susceptible popu-
lation when vaccination and recommended treatments
are implemented [6–8]. An application of the concept
in an optimal control model can be seen in [2,3].

2. Developing the proposed model is very pertinent,
and the model also has extensive generalization. Com-
pared with most of the literature considering some
types of treatments, the treatment compartment (C) is
a conceptualization that can represent more different
treatments. Moreover, it specifically targets (connects)
both symptomatic (P) and asymptomatic (A) compart-
ments at the same time, with the aim of exploring the
precision and concentration of the treatment measures
on the two compartments. Because the infected indi-
viduals in these two groups have been identified, the
recommended treatment can be easily used on them.
In addition, if the connection of compartment (C) to
other compartments is relaxed (removed), the model
will return to the situations described in more literature
where the treatment compartments were designed for
a specific treatment (hospitalization, quarantine, etc.).
For instance, if the compartments (P), (A) and (C) are
reduced to one, then ourmodel becomes themodel pro-
posed in [9]. The model proposed in this paper can also
be considered a generalization of themodel in [10,11] if
compartment (C) in our model is removed or regarded
as an isolation room.

3. Our theoretical findings and numerical simula-
tions adapt well to the real case data. The proposed
SVEPACR model has valuable qualitative properties
and good overall behavior for simulating real case data.
Particularly, through fitting with the real data on the
COVID-19 epidemic in Shanghai China in 2022, the
model’s ability to simulate real cases is verified (see
Sect. 3.3). Accordingly, by estimating the value of the
R0 < 1, the model really reflects the decreasing trend
of COVID-19 confirmed cases at that time.

4. New concepts, cross-infection rate and relative
change number are introduced. Due to the design of the
compartment (C), the cross-infection rate and relative
change number are (see definition 1 and equation (8) in
Sect. 4.2) introduced to account for the cross-infections
among the compartments in our model, which make
more clear implications of the model parameters’ roles
and their corporations.

5. The establishedmodel has good extensibility. The
idea and method for establishing the SVEPACRmodel
can be generalized and applied to awider range of areas
due to the high reliability of theoretical and numerical
analysis shown in the article. For example, the study
can be extended to include some epidemic–logistics
problemswhere it is necessary to consider the impact of
more epidemic factors on emergency logistics optimal
models of medical supplies [12].

The rest of the article is arranged as follows. Sec-
tion2 briefly reviews the relevant literature to show the
current research status. Section3 presents the proposed
model and its qualitative analysis, including proving
that the model is well-posed, thus demonstrating the
existence and stability of the equilibrium points, and
the determining effective reproduction number of the
model. Fitting our model with real data from the epi-
demic occurring in Shanghai is also demonstrated here.
Section4 provides the dynamic analysis of the model,
including the sensitivity analysis of the effective repro-
duction number to the model parameters. The results
are represented by symbolic calculation, numerical cal-
culation and graphical display. The discussion and con-
clusion are given in Sect. 5.

2 Literature review

In this section, we briefly review recent works on the
application of the compartment model to COVID-19
studies relevant to this paper.

Dating the compartment mathematical modeling
method for epidemiology begins with Kermack and
Mckendrickand [13] and has been greatly developed
as a new branch of applied mathematics [14,15].
Recently, as extensions of traditional epidemiology
modeling, there are many compartmental models that
have beenproposed focusingon exploring the transmis-
sion dynamics of COVID-19 according to its features
and considering some related social interventions. In
the following, we cite a few of them.

Diagne et al. [2] developed a seven compartmental
COVID-19 model incorporating vital dynamics of the
disease and two key therapeutic measures: vaccination
and hospitalization for individual treatment. Simula-
tion results suggest that despite the effectiveness of vac-
cination and hospitalization treatment, the additional
social interventions should continue to be implemented
to achieve better control of the disease. Rajapaksha, et
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al. [9] proposed afive compartmental SEIRVmodel and
simulated potential vaccine strategies under a range of
epidemic conditions. The results show that when the
reproduction number is increased in the model along
with the increase in the vaccination efficacy and vac-
cination rate, the vaccination population is reducing.
Viana, Rozhnova et al. [16], as opposed to strength-
ening social intervention, investigated the relaxation
scenarios of social actives using an age-structured ten
compartments transmission model. The analyses sug-
gest that the pressing need to restart socioeconomic
activities that can lead to new pandemic waves. Addi-
tional waves can be prevented altogether if measures
are relaxed in a stepwise manner. Oduro andMagagula
[17] developed five compartment COVID-19 epidemic
models to study earlier aggressive treatment strategies
as a recommended treatment to control the pandemic.
This shows that if the treatment works perfectly, con-
taining the disease is possible. Additionally, the exis-
tence of a dual-rate effect is investigated. Ndaïrou et
al. [18] proposed an eight compartment mathemati-
cal model for the spread of COVID-19 with special
focus on the contagious of super-spreader individuals.
This model is verified by the data from the outbreak of
COVID-19 that occurred in Wuhan, China. Mamo [5]
developed a SHEIQRD model of COVID-19 consid-
ering some health interventions. The study enhanced
the perspective that the special interventions, such as
the stay-at-home rate, high coverage of precise iden-
tification and isolation of exposed and infected indi-
viduals, can mitigate the COVID-19 pandemic. Huo et
al. [1] developed a time-dependent seven-compartment
mathematical model to describe the dynamics of the
disease transmission in Wuhan, China. Based on the
reported data, they estimated that around 20% of infec-
tions were asymptomatic and their transmissibility was
about 70% of symptomatic ones. The total number of
asymptomatic individualswas also estimated. Tomochi
and Kono [19] constructed a six compartment math-
ematical model of COVID-19 to describe the spread
of the infection. The model can handle asymptomatic
individuals. Following the IHME COVID-19 forecast-
ing team [20], a four compartment model to study the
potential impact of the use of face masks to curtail the
spread of the COVID-19 pandemic was studied. It was
found that achieving universal mask use (95% mask
use in public) could be sufficient to ameliorate theworst
effects of epidemic resurgences in many states in USA.
They also suggested that community-wide benefits are

likely to be greatest when face masks are used in con-
junctionwith other non-pharmaceutical practices (such
as social or physical distancing), and high universal
adoption and compliance. Musa et al. [21] presented
a nine-compartment mathematical model to study the
transmission dynamics of COVID-19 in Nigeria. They
introduced an awareness program in the model. The
analysis of the model shows that the awareness pro-
gram is an essential basic guide to take effective mea-
sure (treatment) to control and mitigate the COVID-
19 pandemic in Nigeria. With an eight compartmental
dynamic model, Rong et al. [22] investigated the effect
of the delay in the diagnosis of the COVID-19. The
model shows that by strengthening early diagnosis, the
virus can be greatly limited, shortening the peak time
and reducing the peak value of new confirmed cases.
Mandal et al. [23] presented five compartmentalmathe-
maticalmodels of the spreadofCOVID-19.Themodels
proved that enhancing the public health interventions
wouldmitigate the COVID-19 pandemic greatly. Lin et
al. [24] proposed a model for the COVID-19 outbreak
in Wuhan by incorporating individual behavioral reac-
tion and governmental actions. The model captures the
possible course of the COVID-19 outbreak and reveals
the patterns of the outbreak. Song et al. [25] established
a four compartment model of COVID-19 transmission.
By using the data fromHarbin, China, and based on the
model, they estimated the outbreak size of COVID-19
in Harbin and warned people to be vigilant about the
presence of asymptomatic patients to control the epi-
demic. Li et al. [26] provided a ten compartment math-
ematical model focusing on the treatment for people
complaining of influenza-like symptoms, potentially
at risk of contracting COVID-19. The model shows
that increasing influenza vaccine uptake would facili-
tate the management of respiratory outbreaks coincid-
ing with the peak flu season. Schlickeiser and Kröger
[27] proposed a four compartmental epidemic model
with a compartment of vaccinated individuals and a
time-dependent effective vaccination rate. The influ-
ence of vaccination on the total cumulative number
and the maximum rate of new infections in different
countries is discussed.Ghostine et al. [10] built a seven-
compartmentmodelwith a vaccination compartment to
simulate the novel coronavirus disease spread in Saudi
Arabia. The numerical results demonstrate the model’s
capability of achieving accurate prediction of the epi-
demic development for up to two-week time scales. Fir-
dos Karim et al. [28] proposed a combined epidemic-
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economics model that analyzes the system dynamics
generated in the presence of COVID-19. The study
revealed several important phenomena in the relation-
ship between the epidemic and the economy. For exam-
ple, vaccination can boost economic growth, complete
vaccination can greatly reduce all infectious diseases,
overexposure to the media can contribute to the spread
of infectious diseases, and parameter sensitivity anal-
ysis can greatly aid policy development. Kambali et
al. [29] used a nonlinear three compartmental model
of susceptibility, infection and immunity incorporating
dynamic transmission rates (expressed as a cosine func-
tion) and vaccination policy to model and analyze the
dynamics of COVID-19 evolution. This study demon-
strated the value of systematic nonlinear dynamic anal-
ysis in pandemic modeling and showed the effects of
vaccination and the frequency, phase and amplitude of
the transmission rate on the persistent dynamic behav-
ior of COVID-19.

In addition, the optimal control theory has also been
applied to understand the ways to control the spread
of infectious diseases by devising optimal interven-
tion strategies. Giordano et al. [3], based on the Italian
case study, studied several scenarios ofCOVID-19with
a nine-compartment model (SIDARTHE-V) (three of
which can be uncoupled). The model confirmed that
implementation of strong non-pharmaceutical inter-
ventions could bring the epidemic under control with-
out vaccines or before reaching population immu-
nity. Acuña-Zegarra et al. [11] developed a seven-
compartment model (one of which can be uncoupled)
and considered the optimal control problem by intro-
ducing control variables of vaccination rates to obtain
the vaccination scheduling policy. The results of the
study show that response regarding vaccine-induced
immunity and reinfection periods would play a domi-
nant role in mitigating COVID-19. An eight compart-
ment optimal control COVID-19 transmission model
was presented by Moore and Okyere [30]. They exam-
ined the impact of control strategies for this disease
using personal protection, treatment with diagnosis
and spraying the virus in the environment as time-
dependent control variables to contain the disease.
Considering the dynamics of the virus in the environ-
ment, Asamoah et al. [31] presented a six compartment
optimal control model, including asymptomatic and
symptomatic compartments. The model proved that
the safety measures adopted by the asymptomatic and
symptomatic individuals are the most effective strate-

gies among all the control intervention strategies under
consideration.More literature on optimal controlmath-
ematical models for pandemic can be found in a review
paper by Sharomi and Malik [32].

In addition to the compartment model method, there
are other model-like approaches. For example, in con-
trast from the compartmental model, Moghadas et al.
[33] formulated an age-structured transmission model
for COVID-19 as an agent-based model. The results of
the study indicate that although vaccination can have a
substantial impact onmitigating COVID-19 outbreaks,
even with limited protection against the infection, con-
tinued compliance with non-pharmaceutical interven-
tions is essential to achieve this impact.

3 A COVID-19 dynamic model and qualitative
analysis

3.1 Model

We propose a seven-compartment model considering
vaccination and a recommended treatment for symp-
tomatic and asymptomatic people to simulate the trans-
mission epidemic of the COVID-19 outbreak. We
decomposed the total human population at time t ,
denoted by N = N (t), into the mutually exclusive
compartments of susceptible (S), exposed (E), vac-
cinated (V ), symptomatic (denoted by P), asymp-
tomatic (A), recommended treatment (denoted by C)
and recovered (R) individuals, respectively. Thus, we
have N (t) = S(t) + E(t) + V (t) + R(t) + I (t) where
I (t) = P(t) + A(t) + C(t) denotes the total infected
population at time t . Particularly, a vaccinated room
V is designed to observe the influence of the vaccine
and learn the experience of using vaccine. Moreover,
for the population receiving a particular recommended
treatment in compartments (P) and (A), we specifi-
cally designed the recommended treatment room (C) to
investigate the combined effect of that particular treat-
ment with the vaccination. We use δ and σ to measure
the proportion of people in rooms (P) and (A) who are
willing to receive this particular treatment, andm repre-
sents the curative ratio of the recommended treatment.
Hence, these ratios consist of a quantification of the rec-
ommended treatment. Additionally, this room can also
be considered as the group of special treated people
in the asymptomatic and symptomatic compartments
who are more vulnerable to novel coronavirus attacks.
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Fig. 1 The flowchart of the
proposed SVEPACR model
with compartments
S, V, E, P, A,C and R

For instance, this group of people includes elderly indi-
viduals with some chronic underlying diseases. There-
fore, the recommended treatment compartment (C) is
a general conceptual compartment that can contain the
various treatments or interventions, including the vul-
nerable group in both (P) and (A). We simply call this
model the SVEPACRmodel.Moreover, the SVEPACR
model is designed to not only consider the role of vac-
cines, but to also consider the strategy of using various
specific treatments (interventions) to control COVID-
19.

The flowchart of the model is given in Fig. 1 and the
state variables are governed by the following system of
nonlinear ordinary differential equations:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡ = � − βs S Ĩ − θ7S + γ R,

V̇ = αS − βvV Ĩ − θ6V,

Ė = βs S Ĩ + βvV Ĩ − θ3E,

Ṗ = b1E − θ1P,

Ȧ = b2E − θ2A,

Ċ = δP + σ A − θ4C,

Ṙ = c1P + c2A + τC + βV − θ5R.

(1)

where Ĩ = εa A + εp P + εcC , μa = μ + (1 − μ)δa ,
μp = μ + (1 − μ)δp, μc = μ + (1 − μ)δc and
τ = r +(1−r)m, βs = 1−α, βv = 1−β. The system
admits nonnegative initial values S(0) = S0, E(0) =
E0, P(0) = P0, A(0) = A0,C(0) = C0, R(0) = R0

andV (0) = V0.Here, for simplicityweuse notations of
letters, θ and ε, listed in Table 1 to represent some com-
pound parameters made up of basic parameters given
in Table 2. The meanings of the basic parameters used
in the proposed model are explained in Table 2. We

assume that all compartments admit the same natural
death rate μ.

In order to observe the influences of somemajor fac-
tors on the dynamic behavior of the model, the basic
parameters used in the model are divided into two
groups as mainly observed (o) and fixed (f ) parame-
ters. The main parameters are α, β, γ, τ, σ and δ. The
joint efficienciesμi (i = p, a, c) and τ are used if there
are two efficiencies in one compartment.

The parameters in the model can take various values
according to different scenarios. In our qualitative anal-
ysis, the parameters are not assigned any specific val-
ues. To serve the numerical simulation of the dynamic
behavior of the model in the next section, under refer-
ence [4,10,17,19,31,34–36] and estimation, we deter-
mine a baseline value range of each parameter in the
model as shown in Table 3. Referencing the research
in [17,18], we suppose the state variables take initial
values, such as S0 = 12, 797, 248, V0 = 0, E0 =
2792, P0 = 19, A0 = 10(estimated),C0 = 0, R0 = 0
and � = 10, 000. These values are approximations to
the scale of COVID-19 cases inWuhan and Pennsylva-
nia (USA) in early 2020. There was no vaccine at that
time, so we are able to compare some of the numeri-
cal results with the results in these papers and see the
effects of the vaccine and the recommended treatment
through the proposed model.

It is emphasized here that the recommended treat-
ment in our numerical simulation is taken as an exam-
ple of traditional Chinese medicine using a therapeutic
effect m [34]. The efficiency of the vaccine is within
the range of the standards required by theWorld Health

123



A new model of the transmission dynamics of COVID-19 propagation 20471

Table 1 Some
compounded parameters
with their notations

Joint parameters and notations Description

θ1 = c1 + μp + δ The rate of individuals comes out from P .

θ2 = c2 + μa + σ The rate of individuals comes out from A.

θ3 = b1 + b2 + μ The rate of individuals comes out from E .

θ4 = τ + μc The rate of individuals comes out from C .

θ5 = γ + μ The rate of individuals comes out from R.

θ6 = β + μ The rate of individuals comes out from V .

θ7 = α + μ The rate of individuals comes out from S.

ε1 = δεc + θ4εp The joint contact rate of P and C .

ε2 = σεc + θ4εa The joint contact rate of A and C .

ε3 = θ6βs + αβv The joint contact rate of S and V .

Table 2 State variables,
fixed (f ) and main observed
(o) parameters

State variables Description

S The number of susceptible individuals

V The number of vaccinated individuals

E The number of exposed individuals

P The number of symptomatic individuals

A The number of asymptomatic individuals

C The number of recommended treated individuals

R The number of the recovered individuals

Basic parameters Description f or o

� Fraction number of recruits f

εi Transmission rates of {P, A,C} for i ∈ {p, a, c} f

α Rrate of vaccination in S o

β Efficiency rate of vaccine o

γ Rate of transforming from R to S o

b j Rates of transforming from E to {P, A}, j ∈ {1, 2} f

c j Rates of transforming from {P, A} to R, j ∈ {1, 2} f

δ Rate of used recommended treatment in P o

σ Rate of used recommended treatment in A o

m Therapeutic efficiency of the recommended treatment o

r Therapeutic efficiency of a general therapy treatment f

μ Natural mortality rate in {P, A,C} f

δ j Disease mortality rates of {P, A,C} for for j ∈ {p, a, c} f

τ = r + (1 − r)m joint therapeutic efficiency of m and r o

μ j = μ + (1 − μ)δ j joint rates of μ and δ j for j ∈ {p, a, c} f
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Table 3 Baseline value
ranges of the parameters
used in the model (1)

Fixed parameters Value (Ranges) Unites/remarks Sources

εp 4.511 ∗ (10−8–10−7) day−1 [17]

εa 4.511 ∗ (10−8–10−7) day−1 Estimated

εc 1.000 ∗ (10−8–10−7) day−1 Estimated

b1 0.06000–0.50000 day−1 [19,35]

b2 0.14000–0.50000 day−1 [19,35]

c1 0.05882–0.50000 day−1 [19]

c2 0.04706–0.50000 day−1 [19]

r 0–0.42000 – [17]

μ 0–0.00864 – [17]

δa 0–0.01737 day−1 Estimated

δp 0–0.01737 day−1 [35]

δc 0–0.01410 day−1 [17]

Control parameters Value (Ranges)

α (0–4) ∗ (10−4–10−2) day−1 [10]

β 0.5–0.9 – [36]

γ 0.001–0.03 day−1 [19,31]

δ 0.5–0.9 day−1 [34]

σ 0.5–0.9 day−1 [34]

m 0.4655–0.9 – [4,34]

Organization, Bernal et al. [36] provided more detailed
information.

3.2 Qualitative analysis of the model

In the following,we demonstrate that themodel iswell-
posed (1) by proving the boundedness, nonnegativity
of the solutions and the local and global stability of
disease-free equilibrium and the existence of endemic
equilibrium. The effective reproduction number of the
model (1) is also derived.

3.2.1 Nonnegativity and boundedness

In order to easily prove the nonnegativity of the solu-
tion to (1), we use the method used in [5]. To this
end, we take transformation F(t) = f (t)N (t) for
all F ∈ {S, V, E, P, A,C, R} and correspondingly
f ∈ {s, v, e, p, a, c, r} to normalize the system (1).
Here denote the recruit � = bN with birth rate b.
Thus, the normalized system is read as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṡ = b − βs is − (α + b)s + γ r + ids,
v̇ = αs − βviv − (b + β)v + idv,

ė = βviv + βs is − (b + b1 + b2) e + ide,
ṗ = b1e − (

b + c1 + δ + μp − μ
)
p + id p,

ȧ = b2e − (b + c2 + σ + μa − μ) a + ida,

ċ = aσ + δp − (b + μc − μ + τ) c + idc,
ṙ = c1 p + c2a + τc + βv − (b + γ )r + idr.

where i = aεA + cεC + pεP and id = a (μa − μ) +
c (μc − μ)+p

(
μp − μ

)
bydenoting εA = εaN , εP =

εpN , εC = εcN . Since s + v + e + p + a + c +
r ≡ 1. Removing the first equation from above system,
we have a system of the following six equations with
replacing s by 1 − v − e − p − a − c − r as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v̇ = α(1 − v − e − p − a − c − r) − βviv
−(b + β)v + idv,

ė = βviv + βs i(1 − v − e − p − a − c − r)
− (b + b1 + b2) e + ide,

ṗ = b1e − (
b + c1 + δ + μp − μ

)
p + id p,

ȧ = b2e − (b + c2 + σ + μa − μ) a + ida,

ċ = aσ + δp − (b + μc − μ + τ) c + idc,
ṙ = c1 p + c2a + τc + βv − (b + γ )r + idr.

(2)
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Let X = (x1, x2, x3, x4, x5, x6) = (e, p, a, c, v, r)
and h(X) be right sides of system (2). Then, the sys-
tem can be written as dX

dt = h(X) and we have feasible

domain � = {X ∈ R6+ : ∑6
i=1 xi ≤ 1} for the sys-

tem. The domain is compact and convex with seven
boundary surfaces: Pi = {X ∈ R6+ : xi = 0,∀x j ∈
[0, 1],∑6

j=1 x j ≤ 1}(i = 1, 2, . . . , 6) and P7 = {X ∈
R6+ : ∑6

j=1 x j = 1} with corresponding outside nor-
mal vectors ni = Xi and n7 = (1, 1, 1, 1, 1, 1) respec-
tively. The Xi represents the vector in R6 whose i th
coordinate is−1, others are zeros for i = 1, 2, . . . , 6. It
is easily computed that the scale products h(X)·ni ≤ 0.
Hence, it is confirmed that domain � is invariant, that
is xi ≥ 0(i = 1, 2, . . . , 6) from the results in [37]. This
proved the nonnegativity of the solutions of the system
(2). In turn, we have proved the nonnegativity of the
solution to the system (1). For proving the bounded-
ness of the solutions, we return to original system (1).
Summing all equations in (1), we have

Ṅ (t) = � − μN (t) − [(μp − μ)P(t) + (μa − μ)A

+(μc − μ)C] ≤ � − μN (t)

which implies that N (t) ≤ �
μ

+ (N0 − �
μ

)e−μt . This
proved the boundedness of the solutions to system (1).
Hence, we have

Theorem 1 [Nonnegativity and Boundedness] If all
initial values S(0) = S0, V (0) = V0, E(0) = E0,
P(0) = P0, A(0) = A0, C(0) = C0 and R(0) = R0

are nonnegative and all parameters in the model (2)
are positive, then the solutions of model (2) remain
nonnegative for all t ≥ 0.Moreover, the total popula-
tion number N (t) ≤ �

μ
+ (N0 − �

μ
)e−μt for all t ≥ 0.

Consequently, the solutions of model (1) are uniformly
bounded.

3.2.2 Disease-free equilibrium and effective
reproduction number

Under variable order taking in X = (E, P, A,C, S,

V, R), let the right sides of (1) be zeros. Then, we get
the disease-free equilibrium

X0 = (0, 0, 0, 0, θ6T, αT, αβT/θ5), (3)

where T = �θ5(μ (αβ + (θ7 + β)θ5))
−1. It is easily

seen that the system (1) can be written as

dX

dt
= F(X) − V(X)

by taking into account the new infectious where

F =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(βs S + βvV ) Ĩ
0
0
0
0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

V =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

θ3E
θ1P − b1E
θ2A − b2E
θ4C − δP − σ A
θ7S − γ R − � + Ĩβs S
θ6V + V Ĩβv − αS
θ5R − βV − τC − c1P − c2A

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Their Jacobins at X0 are

JF =
(
F 0
0 0

)

, JV

=
(
V 0
J3 J4

)

in which

F = T ε3

⎛

⎜
⎜
⎝

0 εp εa εc
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠ ,

J4 =
⎛

⎝
θ7 0 −γ

−α θ6 0
0 −β θ7

⎞

⎠ ,

V =

⎛

⎜
⎜
⎝

θ3 0 0 0
−b1 θ1 0 0
−b2 0 θ2 0
0 −δ −σ θ4

⎞

⎟
⎟
⎠ .

Obviously, matrix F is nonnegative, J4 and V are non-
singularM-matrices. Calculating the eigenvalues of the
next generation matrix FV−1 [6], we obtain the effec-
tive reproduction number [2,3,7,8]

R0 = (θ1b2ε2 + θ2b1ε1) ε3

θ1θ2θ3θ4
T

for system (1) with parameters given in Tables 1 and 2.
In order to see the joint impacts of parameters on

various compartments in themodel,R0 is broken down
into three components

R0 = REP + RE A + RAP , (4)

in which
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REP = b1εpε3
θ1θ3

T, RE A = b2εaε3
θ2θ3

T,

RPA = εcε3

θ3θ4
(
δb1
θ1

+ σb2
θ2

)T .

These components are the new infections induced by
the susceptible individuals (E) contacts with symp-
tomatic individuals (P), asymptomatic individuals (A)
and those in treatment (C). In otherwords, each entry of
R0 represents, respectively, the contribution of asymp-
tomatic, symptomatic and treated individuals to the
spread of COVID-19 in our SVEPACR model.

Theorem 2 [Stability of disease-free equilibrium] The
disease-free equilibrium X0 in (3) of dynamic system
(1) is locally asymptotically stable for R0 < 1 and
unstable for R0 > 1.

Proof of Theorem 2 The characteristic equation of the
eigenvalues of Jacobin of system (1) at X0 is given by
f1 f2 f3 = 0 where

f1 = λ + μ,

f2 = αβ + (λ + θ5)(α + β + λ + μ),

f3 = λ4 + k3λ3 + k2λ2 + k1λ + k0,
(5)

with coefficients in f3 as

k0 = (1 − R0)θ1θ2θ3θ4,

k1 = θ4(θ
∗ − (b1ε1 + b2ε2)θ1θ2θ3

(b1ε1θ2 + b2ε2θ1)
R0) + θ1θ2θ3(1 − RE A − REP ),

k2 = (θ1 + θ2 + θ3)θ4 + θ3θ2

(1 − REA) + θ1θ3 (1 − REP ) + θ1θ2,

k3 = θ1 + θ2 + θ3 + θ4, θ∗ = θ1θ2 + θ1θ3 + θ2θ3.

Without loss of generality, we suppose that θ1 ≤ θ2
holds, thus we have inequality (b1ε1+b2ε2)θ1θ2θ3

(b1ε1θ2+b2ε2θ1)
≤ θ2θ3,

which leads to

k1 ≥ θ1θ4(θ2 + θ3)

+(θ2θ3θ4 + θ1θ2θ3)(1 − R0).

In addition, we have� = k2k3−k1 = B1+B2+B3

with

B1 = T ε3[b2 (θ1εA + ε2) + b1 (θ2εP + ε1)],
B2 = (θ1 + θ2 + θ3 + θ4)[(θ1 + θ2 + θ3)θ4

+ θ∗ − θ2θ3RE A − θ1θ3REP ],
B3 = −θ∗θ4 − θ1θ2θ3.

Since B1 > 0 and B2 > θ∗θ4 + θ1θ2θ3 when R0 <

1, we have � ≥ 0. Consequently, when R0 < 1 all

coefficients ki > 0(i = 0, 1, 2, 3) and discriminant
� > 0. This proved the eigenvalues admitted by the
Jacobin systemof (1) have negative real parts according
to the Lienard–Chipard test [38]. This demonstrates the
local stability of the disease-free equilibrium X0. �	

The global stability of disease-free equilibrium is
given by using Lyapunov function method in the fol-
lowing theorem.

Theorem 3 [Global Stability of disease-free equilib-
rium] The disease-free equilibrium X0 of dynamic sys-
tem (1) is globally stable for R0 ≤ 1.

Proof of Theorem 3 Suppose the Lyapunov function L
for disease-free equilibrium point X0 as follows

L = k0E(t) + k1P(t) + k2A(t) + k3C(t),

with positive constants ki (i = 0, 1, 2, 3) to be deter-
mined. Differentiating L w. r. t t and substituting
Ė, Ṗ, Ȧ and Ċ from system (1), we obtain

L̇ = k0((βs S + βvV ) Ĩ − θ3E) + k1(b1E − θ1P)

+k2(b2E − θ2A) + k3(δP + σ A − θ4C).

Then collecting the derivative by P, A,C, E and using
S ≤ N , P ≤ N and C ≤ N , we have

L̇ ≤ ((k0(βs + βv)εa + k3σ − k1θ2)A

+(k0(βs + βv)εp + k3δ − k1θ1)P + k0(βs

+βv)εc + k3θ4)C + (k1b1 + k2b2 − θ3)E . (6)

Letting the coefficients of P, A andC be zero and solv-
ing the obtained system in k1, k2, k3, we have

k1 = (βs+βv)
θ1

(
εp + δ

θ4
εc

)
k0,

k2 = (βs+βv)
θ2

(
εa + σ

θ4
εc

)
k0,

k3 = (βs+βv)
θ4

εck0.

Choosing constant as k0 = b((γ+μ)βs+αβv)
μ(αβ+(α+β+μ)(γ+μ))

, we
have from (6)

L̇ ≤ θ3(R0 − 1)E . (7)

Therefore, L̇ ≤ 0 whenever R0 ≤ 1. Also, L̇ = 0
if and only if E = 0 which results in Ĩ = 0 from the
third equation in system (1). Since the nonnegativeness
of P, A,C and parameters in the system (1), we have
E = P = A = C = 0. Consequently, the invariant
set {U = (E, P, A,C, S, V, R) ∈ R

4 : L̇ = 0 at U }
constitutes only equilibrium X0 given in (3). Hence, by
the Krasovskii–LaSalle theorem in [14], disease-free
equilibrium X0 is globally stable. Thus, the theorem
has been proved. �	
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The effective reproduction number R0 shows the
epidemic is expected to increase exponentially ifR0 >

1, and to end ifR0 ≤ 1.

3.2.3 Existence of endemic equilibrium

Let the right sides of (1) be zeros with EPAC 
=
0. From the fourth, fifth and sixth equations of (1),
we obtain E∗ = n1P∗, A∗ = n2P∗, C∗ =
n3P∗ with n1 = θ1/b1, n2 = b2n1/θ2, n3 =
(δ + n2σ) /θ4. Substituting the E∗, A∗ and C∗ into
third equation of (1) and solving the equation,weobtain
V ∗ = (αθ3n1) / (n4 (n4P∗βsβv + ε3)) . Substituting
the E∗, A∗ and C∗ into second equation of (1) and
solving the equation, we obtain

S∗ = ((
θ6 + n4P

∗βv

)
/α

)
V ∗.

From seventh equation, we have R∗ = (P∗(c2n2
+c1+n3τ)+αV ∗)/θ5. Substituting these expressions
of E∗, A∗,C∗, S∗, V ∗ and R∗ into first equation of (1),
we get a quadratic equation in P∗:

ηP∗2 + ξ P∗ + ζ = 0

with ξ an expression of parameters in themodel (1) and

η = ((c1 + c2n2 + n3τ)γ − n1θ3θ5) n24βsβv,

ζ = μθ3n1(αβ + (α + β + μ)θ5) (R0 − 1) .

Using the expressions of n1, n2, n3, one easily prove
that η < 0. The expression of ζ shows that ζ > 0
when R0 > 1. Hence, the endemic equilibrium point
X∗ = (E∗, P∗, A∗,C∗, S∗, V ∗, R∗) of system (1)
uniquely exists when R0 > 1. Thus, we have proved
the following theorem for the endemic equilibrium X∗.

Theorem 4 [Existence of endemic equilibrium] The
system (1) has unique endemic equilibrium X∗ for
R0 > 1.

Theorems 1–3 proved the well-posedness of the
model (1).

Because of the strong non-linearity of model (1),
the stability of the endemic equilibrium in the general
sense has not yet been obtained. The local stability
of endemic equilibrium is guaranteed by the Jacobin
matrix of model (1) at the point admitting negative real
part eigenvalues. In the next section,we provide numer-
ical simulations of the local and global stability of the
endemic equilibrium.

3.3 Numerical simulations: the real case study of
Shanghai China

In the previous section, we prove that the proposed
SVEPACR model has good qualitative properties. In
this section, we further demonstrate that the model
also has a strong simulation capability for real case
data. From late March to late May 2022, an outbreak
of COVID-19 occurred in Shanghai, China, causing a
large number of infections. At that time, the Shanghai
government adoptedmanymeasures, such asmass vac-
cination, nucleic acid and antigen detection, traditional
Chinese medicine intervention and a partial lockdown
of the city to effectively control the spread of the virus,
and the epidemic data during this period were recorded
in the literature [39]. We performed numerical simula-
tions to compare the results of our model with real epi-
demic data from Pudong, the largest district in Shang-
hai, following the reports [39]. We fitted the variables
P and A. The fitting results are shown in Fig. 2a, b
which shows that our SVEPACR model describes the
data on daily symptomatic (P) and asymptomatic (A)
cases well during the 49 days fromMarch 21 to May 8,
2022, with initial values of S0 = 279, V0 = 1.5 ∗ 105,
E0 = 163, P0 = 0, A0 = 0, C0 = 0, R0 = 0. For the
fitting result, we obtained the biological parameters,
� = 100, δ = 0.2257, δa = 0.01546, δp = 0.0151,
δc = 0.0199; b1 = 0.01, b2 = 0.24, c1 = 0.0727, c2 =
0.1718; μ = 0.0011; α = 0.699970, β = 0.011384,
βs = 0.9886, βv = 0.30003; r = 0.42, m = 0.8643,
σ = 0.4784, γ = 0.0010; εa = 7.2101546 ∗ 10−6,
εp = 5.787028 ∗ 10−6, εc = 3.0674 ∗ 10−5. Cor-
respondingly, we obtained the estimated value R0 =
0.011987 of the effective reproduction number using
formula (4). The valueR0 < 1 is in line with the strict
prevention and control measures adopted by the gov-
ernment at that time, and effectively indicates the end
of the epidemic. In addition, under these fitting param-
eters, the overall performance of our SVEPACRmodel
is shown in Fig. 3c, d. It shows that our theoretical find-
ings and numerical simulation results adapt well to the
real data and demonstrate the stability of the conclu-
sions given in Theorems 1–3.

For completeness, we provide the list here of
the number of symptomatic and asymptomatic cases:
DP = {6, 0, 0, 12, 31, 1, 4, 39, 169, 249, 180, 79, 107,
140, 205, 162, 151, 307, 348, 517, 212, 493, 192, 1139,
1252, 1142, 1002, 521, 1075, 720, 756, 409, 704, 541,
874, 292, 206, 534, 1456, 131, 37, 132, 38, 49, 50, 28,
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Fig. 2 The real case data
fitting. The histograms are
the real data of P and A
cases obtained from report
[39] while the red and pink
lines have been obtained by
solving numerically our
model SVEPACR for
variables P and A

Fig. 3 Under the fitting
parameters the population
S, V, E,C, R (c) and P, A
(d) obtained by solving the
SVEPACR model, which
show the well-posdeness
properties of the model
given in Theorem 1–3

33, 28, 34} and DA = {163, 237, 218, 183, 1884, 322,
1420, 2463, 2018, 1949, 2224, 2518, 1949, 3529, 6788,
7892, 8296, 8734, 6938, 10,613, 6520, 7813, 10,857,
13,888, 10,404, 9140, 9789, 7219, 7756, 4926, 3709,
4246, 7257, 7085, 5307, 3620, 2539, 2459, 2016, 1897,
1588, 1520, 1124, 834, 839, 649, 551, 647, 658} in
Pudong, Shanghai, per day, corresponding to the his-
togram in Fig. 3. The list DP represents the numbers
of symptomatic cases from March 21 to May 8, 2022,
and analogously, DA is the number of the asymptomatic
cases during same time period.

It is worth mentioning that some gaps exist between
the data and our model results on real data cases. Espe-
cially in lateApril, the Shanghaimunicipal government
adjusted the testing strategy by expanding the cover-
age of nucleic acid and antigen testing, which led to
the fluctuations in the actual data, showing a slightly
higher fitting gap. However, even with these types of
disturbances, our proposed model captures the overall
trend of the epidemic relatively accurately.

4 Dynamics analysis

4.1 Numerical experiments

In order to simulate the strong behavioral dynamic
characteristics of the model in a more general case,
we randomly select two values in the baseline range
corresponding toR0 < 1 and R0 > 1, respectively.

The first group of parameters is taken as follows:
value1 = {α = 3.8 ∗ 10−5, β = 0.7430, βv =

1 − β, βs = 1 − α, b1 = 0.5582, b2 = 0.3382,
εp = 4.6401∗10−8, εa = 4.8591∗10−8, εc = 2.525∗
10−7, δ = 0.5258, σ = 0.7083, r = 0.4296,m =
0.8635, τ = 0.9220, c1 = 0.35, c2 = 0.25, μ =
0.003418, δp = 0.01658, δa = 0.01915, δc =
0.01757, μp = 0.01994, μa = 0.02250, μc =
0.0209, γ = 0.0011428} with a corresponding value
of the effective reproduction number, R0 = 0.636738
< 1, and the second one is taken as follows:

value2 = {α = 3.6 ∗ 10−5, β = 0.7790, βv =
1 − β, βs = 1 − β, b1 = 0.4582, b2 = 0.3382, εp =
4.5968 ∗ 10−8, εa = 4.5493 ∗ 10−8, εc = 3.0674 ∗
10−7, δ = 0.8257, σ = 0.5684, r = 0.4200,m =
0.8643, τ = 0.9213, c1 = 0.1543, c2 = 0.4019, μ =
0.0011, δp = 0.0151, δa = 0.01546, δc = 0.0199,
μp = 0.016, μa = 0.0165, μc = 0.0210, γ =
0.0010} with a corresponding value of the effective
reproduction number, R0 = 2.49605 > 1.

Some of the effects of these major parameters are
illustrated graphically by numerical solutions of the
SVEPACR model, as shown in Fig. 4a–f. These effects
show that, compared with the case, R0 > 1, the pop-
ulation peaks are delayed and the population in each
compartment for R0 < 1 is reduced considerably in
the same period of time.

However, all figures in Fig. 4 show the convergences
of the trajectories of model (1) to the corresponding
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Fig. 4 Comparisons of the populations E, P, A,C, I and S for R0 < 1 and R0 > 1 at values1 and values2

disease-free equilibrium X0 = (0, 0, 0, 0, 2.90273 ∗
106, 146.904, 22519.9) forR0 < 1 and endemic equi-
librium X∗ = (14, 000, 6431.76, 4793.38, 8517.43,
3.57148∗106, 165.165, 5.1327∗106) forR0 > 1. This
demonstrates the asymptotic stability trends of the two
equilibrium, as shown in Theorems 2–3. Particularly,
Fig. 4f shows the global stability of both disease-free
and endemic equilibrium for the solutions (say S as
example) of model (1). This implies that the spread of
COVID-19 ends when R0 < 1 and continues in the
community whenever R0 > 1.

4.2 Sensitivity analysis

The effective reproduction number R0 is a substantial
indicator of both transmission risks and control of an
infectious virus. In the following, to provide a compre-
hensive understanding of the influence of the different
parameters, and to characterize the major parameters
and their variations on the model outcomes, we com-
pute R0 sensitivity analysis of system (1) using the
normalized sensitivity index [40]

� = ∂R0

∂λ
× λ

R0
,

for basic parameter representative λ inmodel (1). Thus,
in Table 4, the normalized sensitivity indices formula,
�, and its signs and specific values at value1 and
value2 are presented symbolically and numerically.

General analysis. From the calculation indices, it is
clear that the main parameters to observe have strongly
influenced the diffusion dynamics of the virus spread-
ing. Particularly, parameters α (the daily rate of vac-
cinated), β (the efficiency rate of vaccination), τ (the
cure rate of recommended treatment), and ci (i = 1, 2)
(the recovery rate from symptomatic and asymptomatic
compartments) have a negative contribution on the
effective reproduction number R0, that is, an increase
in these parameters at some extend leads to an decrease
in the R0 at same level. These are shown in Fig. 5a–d
for the values of the parameters.

The parameters, εi (i ∈ {p, a, c}) (contact transmis-
sion rates) and γ (transmission rate of recovered people
to susceptible individuals), always have positive contri-
butions on R0; that is, an increase in these parameters
to some extent leads to an increase inR0 at same level.
However, it can be seen that R0 is a linear function
of the transmission rates εi (i = p, a, c). Hence, the
monotonous positive influences of these parameters on
R0 are clear. The rest of the parameters have a non-
linear influence on R0. Figure5e shows the nonlinear
dependence ofR0 on γ as an example.

The influences of major parameters on R0 are dis-
cussed in the following.

Impact of αand β. Here, we considered five different
values of α (as shown in Fig. 6) to observe the effect
of the vaccination for a fixed β. Intensifying the vac-
cination campaign starts to considerably decrease the
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Table 4 R0 Sensitivity analysis by � = ∂R0
∂λ

× λ
R0

Parameter λ � Sign Value1 Value2

α − θ8
φψ

− −0.00777 −0.01677

β − θ9
φψ

− −0.00004 −0.00002

τ − τ(b1θ2δ+b2θ1σ)εc
θ4θ10

− −0.74988 −0.81610

c1 − b1c1θ2ε1
θ1θ10

− −0.22858 −0.1001

c2 − b2c2θ1ε2
θ2θ10

− −0.10546 −0.14364

γ
αβγ
φθ5

+ 0.00269 0.00802

εp
b1θ1θ2θ4εp

θ2θ10
+ 0.14594 0.09457

εa
b2θ1θ2θ4εa

θ1θ10
+ 0.08434 0.06975

εc
(b1θ2δ+b2θ1σ)εc

θ10
+ 0.76962 0.83568

δ
δb1θ2((c1+μp)εc−θ4εp)

θ1θ10
± 0.09784 0.01676

σ
σb2θ1((c2+μa )εc−θ4εa )

θ2θ10
± 0.03185 0.08019

R0 =0.6367 R0 =2.4961

With θ8 = αθ6(μθ5 + β(1 + 2θ5)), θ9 = αβ(μ(1 + θ5) + α(1 + γ + θ5)), θ10 = b2ε2θ1 + b1ε1θ2, φ = θ6θ5 + α(β + θ5),
ψ = θ6(1 − α) + α(β − 1)

Fig. 5 Dependence of R0 on parameters α, β, τ, c1, γ, σ and δ
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Fig. 6 Impacts of main parameters on the population in our model (1) at different parameters values with the confirmed individuals
I = P + A + C

number of infected people. The more the vaccination
rate α is increasing, the more the infected population is
decreasing for I and S, as shown in Fig. 6a, b; addition-
ally, more people are vaccinated and recovered for V
and R, as shown in Fig. 6c, d. Similarly, we take three
different values of β to observe the effect of β for the
fixed α. It is shown that the higher the value of β is,
the less infected people there are, as shown in Fig. 6e
for I . However, it can be seen that although the number
of patients decreases when β increases, its magnitude
does not decrease considerably. This shows that the
vaccination rate, α, is important against the Covid-19
virus. Moreover, the vaccination rate, α, and efficiency
rate, β, must incorporate each other to essentially influ-
ence the reproduction number, R0. It should also be
noted that the R0 is significantly decreasing when α

and β are increasing simultaneously. It can be seen that
the number of infected individuals who are vaccinated
is much lower than those without vaccination (α � 1
or β � 1).

Impact of τand εc. In Table 4, it is explicitly noted
that the most dominant influences are occurred on τ

and εc rather than on the related vaccine parameters, α
and β, for value1 and value2. This releases an impor-
tant message that the recommended treatment on both
symptomatic and asymptomatic infections and expo-
sure transmission rate εc have a critical impact onR0.
The higher efficiency treatment rate τ is and the less

transmission rate εc is, the higher the opportunity to
control the disease from spreading. This demonstrates
that the coordination between α, β and τ is playing
much more prominent roles for controlling the disease,
implying that the vital role of combination between rec-
ommended treatment and vaccination in controlling a
epidemic. Similarly, it is clear that the number of infec-
tions with the recommended treatment is much lower
than without the recommended treatment (τ � 1) as
shown in Fig. 6f.

From the perspective of relative change analysis,
we can also see the important roles of τ and εc. As
a result, we investigated the relative change of the
number of infected individuals when τ changes. We
took five values of τ . Let τi represent the i th one and
Ii = Pi [t] + Ai [t] + Ci [t] be the total number of
infected individuals at time t and τi . Then, the rela-
tive change of the population is characterized by the
formula

Ri
[l,r ] =

∫ tr
tl

Ii (s)ds
∫ tr
0 Ii (s)ds

(8)

on interval [tl , tr ] at rate τi . The numerator of the for-
mula is the total number of infected individuals in inter-
val [tl , tr ] at τi . The denominator is the total number
of infected individuals in interval [0, tr ] for same τi .
Actually, the Ri[tl ,tr ] is the relative increased number of
infected individuals in interval [tl , tr ] and w. r. t total
number of infected people on the whole interval [0, tr ].
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Table 5 Relative changes of infected population as increasing of τ and εc in different time

εc τ τ1 = 0.55 τ2 = 0.65 τ3 = 0.75 τ4 = 0.85 τ5 = 0.95

Ri
[l,r ]

[tl , tr ]
3.067 ∗ 10−8(R0 < 1) [10,20] 0.5047 0.45601 0.4162 0.3837 0.3570

[20,30] 0.2140 0.2387 0.1948 0.1624 0.1383

[30,40] 0.1865 0.1300 0.09332 0.06938 0.0534

3.067 ∗ 10−7(R0 > 1) [10,20] 0.9731 0.9758 0.9779 0.9791 0.9797

[20,30] 0.1454 0.1774 0.2247 0.2854 0.3567

[30,40] 0.0022 0.0023 0.0030 0.0044 0.0069

We observed the relative change in population as
τi increases by 55%, 65%, 75%, 85% and 95%, on
each interval [10, 20], [20, 30], [30, 40] (that is tl =
10, 20, 30 and tr = 20, 30, 40) for two different values
εc = 3.067 ∗ 10−8 in value1 and εc = 3.067 ∗ 10−7 in
value2, which correspond to R0 < 1 and R0 > 1
respectively. The rest of the parameter values were
taken as value1 and value2 correspondingly. The com-
putation results are shown in Table 5.

It can be seen in this table that when R0 < 1, the
proportion of infected people decreases rapidly with
the increase in τ in different time intervals. However,
when R0 > 1, although the growth rate of infected
people decreases with the increase in τ , the proportion
of infected people keeps increasing at all time intervals.
Again, this demonstrates the necessity of raising τ and
lowering εc, which leads to a decrease inR0.

In the time dimension, the number of infected people
always decreases at different time levels. This can be
interpreted as the overall impact of vaccinations and
recommended treatments for mitigating outbreaks of
the disease over time.

Combined impacts of α, β and τ . Suppose the param-
eters that are not involved in the following lim-
its are fixed. It can be seen that limα→1R0 
= 0,
limβ→1R0 
= 0, limτ→1R0 
= 0, lim(α,τ )→(1,1) R0 
=
0 and lim(β,τ )→(1,1) R0 
= 0,while lim(α,β)→(1,1) R0 =
0. These limits show important information on control-
ling the epidemic using vaccines and recommended
treatments. That is, to mitigate the spreading of the
virus (expectingR0 � 1),α ≈ 1 andβ ≈ 1 are needed
simultaneously. However, it is difficult for humans to
achieve the values of the limits. Therefore, it is not
sufficient to eradicate the disease using vaccination or
special treatment alone. Even if a specific medicine is

found (expecting τ → 1), it still needs to be used in
combinationwith a large scale of vaccinations (α → 1)
to avoid repeated outbreaks of the pandemic. This
demonstrates the importance of alliance among α, β

and τ .

Impact of σ, δ. A particular situation about the impacts
of δ andσ onR0. InTable 4, it canbe seen that their con-
tribution signs on R0 are not deterministic. It depends
on the interactions between compartments (P) and (C)
((A) and (C)). To characterize the phenomena,we intro-
duce a concept called cross-infection rate of a compart-
ment w.r.t another one in the following definition.

Definition 1 [Cross-infection rate]Theproduct between
the total rate of removal from one compartment (say
(P)) to both recovery and death and the rate of trans-
mission in the other compartment (say (C)) is called
the cross-infection rate of the compartment (P) w.r.t
another one (C).

By this definition, products (c1 + μp)εc and θ4εp
are the cross-infection rates of compartment (P) w.r.t
(C) and (C) w.r.t (P), respectively. Thus, according to
the sensitivity analysis formula in Table 4, the dif-
ference between the two cross-infection rates decides
the sensitivity contribution of δ to R0. That is, if the
cross-infection rate of (P) w.r.t (C) is less than the
that of (C) w.r.t (P), i.e., (c1 + μp)εc < θ4εp, then
δ makes a negative contribution to R0; otherwise, it
makes a positive contribution toR0. Similarly,σ makes
a negative contribution if the cross-infection rate of
(A) w.r.t (C) is less than the one of (C) w.r.t (A), i.e.,
(c1 +μa)εc < θ4εa ; otherwise it makes a positive con-
tribution toR0. These situations are illustrated numer-
ically in Fig. 5f–i. Hence, in the real world, it is more
desirable for the treated individuals to have a lower
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infectious rate and to expect εc → 0 so that δ and σ

can have a negative influence on R0. This suggests
that authorities should take public healthy interven-
tions on infected compartments (P), (A) and (C) to
reduce the infectious rates (c1 + μp)εc and increase
θ4 = τ + μc since this contributed massively to the
reduction in secondary infections from one infected
compartment to another. Equivalently, the authorities
should make efforts to allow the transmission rate to
reduce as εc → 0 and intensify efforts to take more
effective recommended treatment (expecting τ → 1).

Impact of the secondary infectious rate γ . The
parameter, γ , is the secondary infectious rate of the
recovered individuals, which always has a positive
influence on R0, as seen from the formula in Table
4. It can also represent the expiration of a vaccine
in a sense. This means that the existence of the sec-
ondary infections (γ > 0) may not stop spreading the
disease. This proves that decreasing the value of γ is
one essential factor for eliminating ways to spread the
disease. Again, this proves the importance of authori-
ties strongly intervening, by maintaining special social
interventions. This also calls for recommending treat-
ment, which should be advocated toward provision for
long term or permanent immunity to break the path
between the recovered class and reinfections. Further-
more, this also implies that the booster vaccine cam-
paign to improve the herd immunity is necessary.

Impact of compounded parameters θiand εi . At a
more macroscopic level, the basic parameters given in
Table 2 have comprehensive influences on the dynamic
performance of the model through their compounding,
as provided in Table 1. It is clear that R0 is inversely
proportional to the rates θi (I = 1, 2, . . . , 7) of peo-
ple leaving the compartments and is directly propor-
tional to the contact rates εi (i = 1, 2, 3). This indi-
cates that the sooner an individual’s virus-carrying sta-
tus is confirmed, the better the chance of reducing the
transmission of the virus and controlling the outbreak.
Hence, screening out carriers as earlier as possible is
crucial for epidemic prevention. That is why many
countries (including China) have resorted to mass test-
ing. Therefore, the proposed model has been revealed
and strengthened by the basic principles of epidemic
prevention.

5 Discussion and conclusion

Inspired by using of vaccination and more recom-
mended treatments to contain the COVID-19 pan-
demic, a new dynamical model of COVID-19 trans-
mission is proposed to study the dynamic behavior of
the spread of COVID-19. To reflect the special nature
of the virus, the model especially includes the symp-
tomatic and asymptomatic individuals compartments.
However, in addition to the compartments of suscepti-
ble groups, exposed groups and recovered groups, the
model also includes vaccination and a recommended
treatment compartments to reflect the effects of vac-
cines and special treatments. Particularly, the recom-
mended treatment in this article is a general concep-
tual compartment that can contain various treatments
or interventions quantified by δ, σ and τ . Thus, the
model is a general and strong nonlinear mathematical
model composed of seven compartments and eighteen
parameters.

Achievements of the study can be briefly summa-
rized as follows.

First, the nonnegativity, boundedness of the solu-
tions to the proposed model and local and global sta-
bility of disease-free equilibrium and unique existence
of endemic equilibrium are proved using the analysis
methods and symbolic computations, which demon-
strate that the model is well-posed. Particularly, the
model’s ability to adapt to real case data is verified
by fitting the model with the real data on the epidemic
that occurred in Shanghai, China in 2022. Correspond-
ingly, the reproduction number is estimated asR0 < 1
by our model, which is in line with the actual policy
situation at the time and the fact that the pandemic in
Shanghai ended at the end of May 2022.

Second, one of most critical indices of the model’s
effective reproduction numberR0 is determined by the
next generationmethod. As seen in (4),R0 is expressed
by the parameters in the model and written as a sum-
mation of three terms representing the correlative influ-
ences of the compartments (E), (P), (A) and (C) onR0.
This proved the compatibility among model’s the com-
partments.

Third, detailed analysis on the influence of major
parameters on the reproduction number R0 is carried
out through a sensitivity analysis of R0. For vaccina-
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tion to have an appreciable impact on containment,
the analysis indicates that a massive increase in vac-
cination rate α and vaccine effectiveness β is needed
since lim(α,β)→(1,1) R0 = 0. This basic feature of
the model is consistent with people’s perceptions and
expectations. The analysis also shows that the thera-
peutic effect, τ , of the recommended treatment is a
prominent element in curbing the spread of the virus. It
considerably enhances the effectiveness of controlling
the virus with the vaccine. Thus, an effective combi-
nation of the vaccines and recommended treatments
is a necessary way to control the pandemic. The con-
tact transmission rates ε j ( j ∈ {p, a, c}) have positive
influences on R0 directly. Particularly, the compart-
ment (C) as the ultimate stage of transmission is play-
ing the last defense role for preventing the disease.
Therefore, lowering the contact transmission rate εc
and increasing curative ratio τ are the tasks that must
be carried out to control the recurrence of the epidemic.
Because the individuals in compartment (C) have been
identified (diagnosed), it is easier to take measures to
control the infections, i.e., expecting εc → 0. As a
result, parameters δ and σ have negative influences on
R0; otherwise, we would have the opposite result. To
further show the roles of compartment (C) (through
εc and τ ), we use a concept of relative change num-
ber of infected individuals, explaining the decrease of
infected people as τ increases and time goes. In addi-
tion, to explain the impacts of δ and σ , we introduce
the concept of cross-infection rate of a compartment
w.r.t (see Definition 3.1). The concept can illustrate the
cross-infections among the disease compartments in
the SVEPACR model, which determines the trend of
spreading COVID-19 to some extent. On this basis, the
model can explain themeasures and objectives taken by
the Chinese government to control the epidemic, such
as establishing shelter hospitals, isolating the infected
individuals from the society (decreasing εc) and using
TCM treatment (increasing τ ). However, the model
clearly shows that the existence of secondary infec-
tions (positive contribution of γ > 0 on R0) means
that the spread of COVID-19 potentially exist.

Fourth, similar papers with present articles are arti-
cles [2,5,10,11,17,27]. Compared with our proposed
model, although Diagne et al. [2] used their seven-
compartment COVID-19 model to consider vaccina-
tion and treatment, their model was different in terms
of the compartmental network structure (in which the
treatment compartment was only connected with the

symptomatic one) and in their research method (they
used the optimal control method). The articles [5,17]
considered intensive early diagnosis and stay-at-home
measurements as specific treatments without vaccina-
tion. Acuña-Zegarra et al. [11] considered the vaccina-
tion, symptomatic and asymptomatic compartments in
their seven-compartment model of COVID-19, but did
not consider the treatment. The articles [10,27] only
considered the use of vaccines, but treatment. These
studies show the importance of considering the vac-
cination and treatment to control the epidemic from
the different point of view. Although it is impossible
to compare in detail, it can be seen from the calcula-
tion results that under approximate initial conditions,
the total number of infected individuals obtained by
our model is in line with the result of the articles [17].
However, our model became a considerably delayed
during the peaks of infected people. This is due to
the combined effect of vaccination and recommended
treatments.

In summary, the proposed model has the ability to
achieve features of COVID-19 dynamic transmission
and provide alternative perspectives to understand the
mechanism of the disease. Intensifying the combina-
tion of the vaccination campaign and recommended
treatments can help reduce the number of COVID-19
infections substantially.

In addition, this paper provides a purposeful ref-
erence for management cost accounting. Generally,
the recommended treatment is at a relatively lower
cost, and it is safe and easily operative. As a result,
it will substantially reduce the overall cost of fighting
the COVID-19 pandemic. This low-cost recommended
treatment can be replicated in low- and middle-income
regions and countries in the long run. Hence, the pro-
posed model can serve as a basic tool for health author-
ities to plan, prepare and take appropriate measures to
control the spread of COVID-19 or other diseases.

Furthermore, this study has some limitations as a
new model of the relatively recent elements related to
COVID-19, and therefore, few real cases of data are
accessible in this investigation. We did not consider
the time depending rate of vaccination. In fact, time
varying is more suitable to describe the real cases. In
the future, we can further explore thismodel. Evenwith
these shortcomings, the model can be useful due to its
highly reliable abilities for theoretical and numerical
analysis, as shown in the article.
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Finally, we suggest new directions for further
research on the model:

1. Fit the parameters of the model to simulate real
cases with different scenarios.

2. Implement the corresponding optimal control
model.

3. Study the time depending on the vaccination rate.
4. Based on this model, develop an optimization

model of vaccine or specific medicine production,
inventory and distribution logistics against a pan-
demic.

These new directions are under current study and will
be addressed elsewhere.
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