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Abstract Bipedal robots with instantaneous impact

form a subclass of the dynamic systems with hybrid

and under-actuation properties. Because of these two

complex properties, finding an effective control

method to show a rule base motion is difficult. In

particular, few works are focused on how to regulate

gait speed based on analytical stability and its own

model which boost the robustness and accuracy. This

is, thereby, still an open and challenging issue. In this

paper, we present a solution for online regulating

walking gait speed of bipedal robot based on its model

while simultaneously stabilizing a closed orbit in the

constraint manifold space. Suitable paths are therefore

taken as the virtual holonomic constraints, which are

then characterized by some parameters. By proposing

a stability theorem, a hierarchical controller is

designed in two levels. At the low level, the controller

stabilizes the constraints as an output of the system

state space, thereby creating the constraint manifold.

In order to achieve the desired gait speed, the high-

level controller adaptively deforms this manifold

through the characterization parameters. In this

design, the robustness of the controller is taken into

consideration to prevent the system from being

affected by disturbances. Simulation results show that

the control method has a good performance and works

smoothly in regulating the robot gait speed. Further-

more, the robot is also resistant to disturbance during

movement and performs a stable motion over time.

Keywords Hybrid systems � Bipedal robot �
Adaptive deforming � Virtual holonomic constraint �
Walking gait speed

1 Introduction

Human motion is closely mimicked by the biped

robots. The usage of legs facilitates the motion of

robots navigating uneven surfaces and cluttered envi-

ronments, such as climbing stairs and rocky terrain

with ease. Furthermore, the movements of this type

require less energy intensive [1, 2]. According to

modeling considered for bipedal robots, their move-

ment cycle can consist of different phases, such as a

single support phase (SSP) and a double support phase

(DSP) [3]. Since there is no actuator between the foot

and the ground, it is more common to be modeled as

underactuated, especially in the biped robots by point

feet. Further to the challenge of under-actuation and

complex nonlinear dynamics, the impact of the foot
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with the ground is a significant factor that affects the

stability of motion, which makes the system have a

hybrid form when viewed instantaneously [4–6].

Movement in creatures with legs is typically rhythmic

and repetitive [7]. A closed orbit, known as a limit

cycle, is therefore constructed in the phase space

[8–10]. There are certain characteristic attributes

encoded in the limit cycle, such as average speed or

typical energy level set. Also, there are various

methods to control the energy [11–13], angular

momentum [14–16], and others [17–19] for this

application. However, most of the algorithms rely on

tracking precomputed reference paths. The reference

paths may be determined for their models by analogy,

either with biological researches [20–22] or with a

simple model of dynamics [23–25] or using the shape

of passive motion gaits [26–28]. One of the main

strategies for generating these paths is the optimiza-

tion based on various cost criteria, such as the

minimum amount of power expended over a walking

cycle [29–31]. Only a few works have produced a

closed-loop system with a definite stability property.

The Virtual Holonomic Constraints (VHCs) are

employed as a key concept that is imposed asymptot-

ically on the robot motion via feedback control. This

approach removes timed signals entirely from the

control loop and replaces them with state-dependent

virtual constraints [32–34]. To demonstrate motion

stability, some researchers used a Poincare return map

strategy for an underactuated system with instanta-

neous impact (USWII) phenomenon [19, 35, 36]. It is a

numerical method that places a line as a transversal

section across the closed orbit and investigates the

stability by comparing the convergence of the points

along that line within a temporal progression [37–39].

Therefore, we are unaware of the stability at first.

However, even though it is harder to control than

precomputed reference path-based methods, it

enhances the robustness of the feedback loop by

eliminating exogenous reference signals. Moreover, it

decreases the cost of such analysis by reducing the

dimensions and complexity of the dynamic system.

The other advantage of this method in an analysis and

control design is that it takes into account both

kinematics and dynamics. As yet, these works have

not evolved to be more compatible with human

movement in the environment, nor do they have the

ability to smoothly modulate their speed based on

human intent. There were various approaches used to

regulate the speed of the robot motion. For example, in

[40], their approach used time-varying rules, and the

robot was considered as fully actuated. In [41], they

mainly focused on passive robots, and the result was

that changing physical parameters, such as stiffness of

hip springs or other joint flexibilities, affected robot

speed. In [42], they used a two-level control structure

that did not rely on model dynamics or reference paths

to control robot speed, although they required a library

of data to figure out how control inputs affect the robot

speed. In [43], they considered an inverted pendulum

model to adjust the robot speed by injecting energy.

They also utilized the Poincare return map to analyze

the stability. In [44], they shift the energy equilibrium

point based on a variable-length inverted pendulum to

achieve the desired speed. Some of these works

simplified the biped model as an inverted pendulum

and almost in all, they did not analyze the under-

actuation or impact effect, and also did not provide

guarantees of stability under switching condition.

Ensuring stable switching, on the other hand, requires

estimating the basin of attraction of each individual

gait and a proper transition between other cycles in a

way that no instability occur. The VHCs have been

used in [32] to regulate walking speed. For some speed

values, a library of different sets of the VHCs is

developed and then smooth maps between each of the

two sets are generated. Their stability was also based

on the Poincare return mapping. Similarly, this

perspective is employed in [45, 46]. It can be often

an intolerable challenging task, for generating each

gait. We attempted to present a comprehensive and

brief compression of this issue. Providing a library of

data [32, 42] and saving it on board require extensive

numerical integration of the high-dimensional nonlin-

ear dynamics of the system with high processing costs,

as well as searching for stability of each gate.

It then needs a large amount of memory in practical

applications after providing a library with these

motion gates and most of these works cannot be

matched with other models. The other drawback is that

the resulting cycles are only calculated for specific

values of motion speeds, and for other values of speed,

the obtained cycles cannot be directly used. Therefore,

there is not an effective algorithm that can adjust the

speed of biped robot walking in real time. Considering

simple model as an inverted pendulum has two faults,

since it is different from the main dynamic model

[23–25]. The first is: it causes that we cannot adjust
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precisely the speed even more in accelerating maneu-

ver due to ignoring the under-actuation or impact

effect in analyzing. The second is; it does not provide

guarantees of stability under switching condition and

cannot propose a stability rule. For conclusion, the

impact cause state space has a hybrid dynamic in

which the states are switched, whereas the under-

actuation causes state space has zero dynamic. Aside

from the impact and under-actuation issue, there are

several challenges in achieving this goal. The first

is to stabilize a suitable VHC in the state space and

provide repetitive motion or a closed orbit lying on

the constraint manifold (more information can be

found in [47]). The second is orbital stabilization

using a suitable control algorithm. The third is online

adjustment of the VHC parameters according to the

desired demand of the gait speed. We propose our

solution to remove this defect that has not been

properly addressed to date. As a result, we use a novel

method to search online for new manifolds to reach

each arbitrary non-predetermined biped robot speed

which eliminates the need for a library, unlike [32].

1.1 Contributions

The aim of this article is to present a practical

approach for regulating the average speed of a five-

link biped robot from an initial stable movement. Our

work here relies on the idea of the adaptive deforming

of the VHCs, which enable our dynamic system, after

applying the controller, to be autonomous by elimi-

nating time. Our method uses the original model of the

robot to find out the desired average speed, therefore it

is a very accurate and more robust response as well.

Four contributions are made in this article. In the first

contribution, we develop a methodology that analyt-

ically determines the stability obtained from stabiliz-

ing the VHCs to remove numerical and time-

consuming methods such as Poincare returns maps.

Second, the robot average speed is being regulated

online. This is achieved using the concept of adaptive

deformation of constraints, which transforms the

obtained periodic orbit into one with the desired

characteristics. Third, a mathematical formula is

derived to determine the average speed of the created

orbit in the USWII systems, which has proven to be

unique in the phase diagram. At last, we design a

hierarchical control scheme with two levels, that have

a robust property. At the low level, a controller

stabilizes the VHCs in the system, resulting in making

an orbit in a two-dimensional constraint manifold. At

the high level, the controller uses adaptive deforming

of the constructed orbit to adapt its characteristics to

our desires. The shaping process occurs in a basin of

attraction of the next gate, following the proper

stability theorem. The high-level controller searches

the suitable characterizing parameters of VHCs when

the low-level control acts. So, we define a critic agent

to observe the stability and quality of convergence in

low-level control. The critic results are used to tune the

high-level control actions in changing the VHCs

parameters.

1.2 Organization

The article is organized as follows. In Sect. 2, the

dynamic model of the biped robot in both SSP and

DSP phase is presented. In Sect. 3, we outline our

strategy to get a solution for the problem. In Sect. 4,

we describe the motion planning and present a stability

theorem. In Sects. 5, we design the hierarchical

control method in two levels with a critic agent. In

Sect. 6, some simulations are illustrated and a brief

discussion about the results is presented.

2 Model of biped robot with instantaneous impact

This section reviews the kinematics and kinetics of the

biped robot presented in [32, 33]. Since most of the

locomotion takes place in the sagittal plane and on a

level surface, the robot is considered planar, and is

therefore examined from a two-dimensional perspec-

tive, like [19, 45, 48]. We consider a biped robot with

five rigid links and four joints that consist of a torso,

hips, and two equal-length legs with point feet, as

shown in Fig. 1. Each link is further assumed to have a

uniformly distributed mass, like [32–34]. The links are

connected by an actuated revolute joint that acts as an

external source of energy that generates torque.

Therefore, there are four actuators. The walking gait

is supposed that there are successively two phases of

SSP (with only one leg touching the ground) and an

instantaneous DSP (where the legs alternate). The

model from [33] is used here, which also known as

RABBIT.
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2.1 Modeling of SSP

During SSP, the stance leg is placed on the ground and

acts as an inverted pendulum. It is based on the

physical assumption that the friction on the ground

prevents the foot from sliding, which is typical and

found in some literatures, like [19, 32, 35]. Inspired to

the biological of the human walking, there is no

actuator between the foot and the ground. Thus, the

system has five degrees of freedom (DOF) with four

actuators as outlined above. Due to this, the biped

robot has one degree of under actuation. We consider

the absolute angles of links are the generalized

coordinates of the system. The dynamic equation of

the SSP can generally be derived easily by using the

Lagrange method [33, 34]. The result is in standard

second order system.

D qð Þ€qþ C q; _qð Þ _qþ G qð Þ ¼ B qð Þu ð1Þ

Here, q ¼ ðq1; :::; q5Þ 2 Q is a configuration coor-

dinates vector with qi; i 2 1::5 determined by an

angular displacement variable in R½ �2p. The configu-

ration manifoldQ ¼
Q5

i¼1qi, then, is a generalized

cylinder. _q 2 R5 is the generalized velocities that

qT ; _qT
� �T 2 TQ where TQ is the Cartesian product of

TQ ¼ Q�R5. In Eq. (1), B qð Þ : Q ! R5�4 is a

smooth map whose rank is four for allq 2 Q. Further,

DðqÞ, the mass matrix, is symmetric and positive

definite for all q 2 Q, C q; _qð Þ is a matrix of Coriolis

and centrifugal forces and GðqÞ, the gradient of

potential energy function, is smooth and u is a vector

of control input. One can see the specific formula

expression of Eq. (1) in [32] section E page 465.

2.2 Modeling of DSP

The impact between the swing leg and the ground is

analyzed as a contact between two rigid bodies,

whereas the transition takes place in an infinitesimal

amount of time [32, 35, 46]. Since this phase occurs

when the tip of the swing foot touches the ground, we

define impact surface (I) given as,

I :¼ qT ; _qT
� �T2 TQ Yswingfoot ¼ 0;Xswingfoot

�
�

�
0

n o

ð2Þ

The contact model requires the full seven DOF.

Accordingly, one can add the two extra coordinates as

the position of swing foot, p2ðqÞ. External forces act as
impulses since the impact occurs instantaneously. It

can be proven that the configuration states are not

changed, but there happens a jump in the velocity

states (see [32] and its other references for more

details). As a result, the governing differential equa-

tion of this phase is converted into the following

algebraic equation,

D hdð Þ _hþd � _h�d

� �
¼ Fext ð3Þ

where hd :¼ qT ;Xswingfoot q
�ð Þ; Yswingfoot q�ð Þ

� �T
is the

orientation of the robot links in the space which

depicts seven DOF. Fext :¼ r
tþ

t�
dFext að Þda; _hþd is the

velocity coordinates after the impact, by index þ.

And, _h�d is the velocity coordinates before this event,

by index�.

To solve Eq. (3) for all unknowns, we need two

additional equations describe what happens in touch-

ing the swing foot with the ground. These equations

are derived under the assumption of no rebound nor

slip [32–34], as Eq. (4).

op2 hdð Þ
ohd

_hþd ¼ 0 ð4Þ

As a result, the impact map is obtained using

Eq. (4) and Eq. (3).

qþ; _qþð Þ ¼ D q�; _q�ð Þ ð5Þ

2.3 Dynamics equation in its overall form

The overall form of the governing equation for the

dynamics is expressed with Eq. (6).

Fig. 1 The schematic of five-link underactuated biped Robot
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R :¼
D qð Þ€qþ C q; _qð Þ _qþ G qð Þ ¼ B qð Þu q�; _q�ð Þ 62 I

qþ; _qþð Þ ¼ D q�; _q�ð Þ q�; _q�ð Þ 2 I

�

ð6Þ

Let x :¼ qT ; _qTð ÞT2 TQ. The state space for the

system is then taken as Eq. (7).

Rs :¼
_x ¼ f xð Þ þ g xð Þux� 62 I
xþ ¼ D x�ð Þ x� 2 I

�

ð7Þ

The dynamics of the system is governed by a

differential equation and a discrete map. The differ-

ential equation defines the evolution of the trajectories

in time, and the time when the trajectories meet the

impact surface. The discrete map results in a very

rapid change in the velocity components of the state

vector. The differential equation is therefore reinitial-

ized after the impact event to be solved again in the

next step of walking.

3 Problem formulation

This article addresses the problem of steadily regulat-

ing the average speed of a five-link bipedal robot with

the instantaneous impact depending on the demands.

First, it must define the model dynamics. This work,

due to our control method, is the dynamic based to

increase its accuracy and robustness. Our model of a

biped robot with instantaneous impact is a hybrid

system with one degree of under actuation [32], as

shown by Eq. (6). But unlike [23, 32, 42], we neither

intend to provide a library nor use a simple model. The

hybrid property has a discontinuous effect on state-

space trajectories at impact event. The discontinuity of

Eq. (6) shifts the state variables to a different location

in space according to the impact mapping D :ð Þ. We

therefore design a proper control method for the

mentioned purpose, while overcoming both under-

actuation and hybrid challenges. To make this point,

we defined the stability law in the first section. By that,

we express three sets that should be stabilized relative

to each other in the control method. One of these sets

shows the gait of walking defined using four VHCs to

make a manifold, known as a constraint manifold. The

two specifications of the constraint manifold are

highlighted here. The first is that it contains the

trajectory of zero dynamics. The second is that its

governing equation is shown by a second-order

differential equation. Based on these specifications,

we formulate a relation for the average speed of a

biped robot. The other sets deal with how we obtained

the goal. We will therefore design a two-level control

scheme with asymptotic stability property in each

level. Speed regulation is achieved by deforming the

VHCs among altering their parameters, name as

characterization parameters. A low-level control

scheme is implemented by stabilizing the VHCs to

build a periodic motion gate. The high-level control

scheme is paid for dynamical shaping of the VHCs

through the obtained formula for the average speed of

the biped robot. Change in the VHCs takes place when

the low-level controller converges VHCs close to zero.

In this regard, the control scheme includes a critic

agent that assesses the system to plan for getting new

characterization parameters from high-level control. If

the trend of motion is stable, it also increases the time

rate of generating new characterization parameters to

accelerate the average speed regulation process, and if

the system comes to be unstable, it reduces the time

rate as much as it needed to allow the system to

stabilize itself by means of low-level control. Feed-

back linearization backstepping sliding mode (FLBS)

control method [49, 50] is employed at low level to

enhance robustness against disturbances. One can find

the overall scheme of the proposed method in Fig. 2.

4 Motion planning and stability analysis

In this section, we describe an appropriate stability

theorem and explain how one can use it for our

purposes. To this end, we use the VHCs to make a

stable gait that can be utilized by a biped robot. In

contrast to numerical methods commonly used in

references [32, 37, 51], we describe the sufficient and

necessary conditions for the analytical stability

Fig. 2 The schematic of control method

123

Online regulation of walking gait speed for a five-link bipedal robot 20059



analysis. We then introduce the notion of adaptive

deforming by characterizing these constraints. More-

over, we develop a mathematical formula to determine

the exact average speed of the biped robot with the

original model.

4.1 Characterizing the VHCs

Throughout this work, the VHCs are used to achieve

our aims. Since the system has 4 independent

controller inputs, we suppose 4-row vector function,

HðqÞ, to define VHCs with relative degree of

2; . . .; 2f g. The relative degree is determined by the

appearance of the input in the time derivatives of the

HðqÞ w.r.t the dynamic system, R. The Bezier curves
is utilized for the functions ofHðqÞ. Having no sudden
or large oscillations resulted from the small changes in

their coefficients persuade us to select them [32, 52].

Let 1� i� 4 and r is a regular parameterization.

Bezier polynomial [16] of degree M is defined as

polynomial Bei rð Þ : 0; 1½ � ! R with M þ 1 coeffi-

cients bik; 1� k�M þ 1:

Bei rð Þ :¼
XM

k¼0

M!

k! M � kð Þ! b
i
k 1� rð ÞM�krk ð8Þ

A regular parameterization should be defined based

on the configuration state of zero dynamic, h. In

[32, 45, 53], it is shown that the walking gait is

monotonic; thus, a regular parameterization can be

dimensionless, like Eq. (9).

r ¼ h� hþ

h� � hþ
ð9Þ

In Eq. (9), hþ and h� are the maximum and

minimum values. Our method calls b as the charac-

terization parameters, i.e., by changing them, we can

modify the characteristic of the dynamic system.

When the dynamic system R with the output of

y ¼ H q;bð Þ is in rhythmic motion, it is time-invariant.

In this manner, zero dynamics equation is derived to

represent the maximum internal dynamics of the

system in which the controller does not appear on the

equation in any form. It is easily calculated by

multiplying the left annihilator of

B qð Þ; B? qð Þ : Q ! R1�4n 0f g, into Eq. (6), on the

left-hand side. As a result, we get the zero dynamics

equation described as follows,

a hð Þhþ q hð Þ _h2 þ c hð Þ ¼ 0 h�; _h�
� �

62 I

hþ; _hþ
� �

¼ D h�; _h�
� �

h�; _h�
� �

2 I

8
><

>:

ð10Þ

4.2 Overall stability analysis

The control method approach followed in this paper

has a hierarchical structure. This approach is divided

into two levels. As we describe shortly, each level

corresponds to stabilizing a closed set of the space

state, which we introduce below. After that, these two

levels have to be stable together in a general insight, to

form the following stability theorem (Theorem 1).

Definition 1 Let C1 and C2 be closed positively

invariant sets with C1 � C2 � X . For any �[ 0, C1 is

stable relative to C2 for Rs if a neighborhood B C1ð Þ
exists such that / Rþ;B C1ð Þ \ C2ð Þ � D� C1ð Þ where
/ Rþ;B C1ð Þ \ C2ð Þ denotes the set / t; x0ð Þ : t 2f
Rþ; x0 2 B C1ð Þ \ C2g and D� C1ð Þ denotes the �-ball

given by the set D� C1ð Þ ¼ x 2 X : kxkC1
\�

	 

[54].

kxkC1
shows the point-to-set distance of x to C1.

For all x0 2 Ci; i ¼ 1; 2 and all t� 0; the invariance

property implies that / t; x0ð Þ 2 Ci; i ¼ 1; 2. Besides,

the set C1 is asymptotically stable relative to C2 forRs,

provided that when x0 2 C2 then C1 is asymptotically

stable. Therefore, with the help of some suitable sets

and the following stability theorem, we are able to

shape the strategy for reaching our goal. For the first

set, it is defined some characterization parameters and

then modify them to form the other sets. C3 represents

the manifold on which the trajectories are initially

placed. It is assumed that the average speed of the

biped robot,v, has an amount v0 which would be varied

to our preference. The set C1 defines the target

manifold in which the dynamic system has the demand

characteristic,vdes. Unlike the methods in which the

desired trajectories should be completely pre-defined,

it is not clear from the beginning and is defined based

on the search. Therefore, some transition manifoldsC2

are constructed through which we can reach to the

target manifoldC1. These topologies are set by the

high-level controller. Obviously, all manifolds of C2

together surround a range of space from C3 manifold

to C1 manifold. We show the successive transition

manifolds C2 byC2;t,0\t\1. Since the biped robot
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has 5 DOF in DSP with 4 control input, it must

consider 4 outputs as VHC Bezier curves. For

simplicity, the characterization parameters are

assumed to be one or two. Equation (11) demonstrates

the referred manifolds, C1;C2;C3 for regulating the

average speed of a biped robot using two character-

ization parameters.

C1 ¼ q; _q;b 1ð Þ 2 R12 : y� Hb 1 qð Þ ¼ 0&v� vdes ¼ 0
	 


C2;t ¼ q; _q; b tð Þð Þ 2 R12 : Hb tð Þ qð Þ � Hb1 qð Þ ! 0 as t ! 1; b 0ð Þ � b0\r 1

n o

C3 ¼ q; _q;b 0ð Þ 2 R12 : y� Hb 0 qð Þ\r 2

	 


ð11Þ

where 21 and 22 have sufficiently small positive

values. b 0 and b 1 indicate the different set of b
devoted to the constraint manifolds.

Theorem 1 Suppose a five-link biped robot is USWII

dynamic system (7) with locally Lipschitz feedback

uiðxÞ; i ¼ 1::4. Suppose its initial movement is placed

on the set C3, which is positively invariant. As a target

for robot motion, the desired average speed can be

specified as a set C1. Therefore, it must positively

invariant and asymptotically stable for the closed-loop

system (7), if the following conditions (a)-(b) are held.

a. The sequence of manifolds C2;t must be made

asymptotically convergent to C1 as t ! 1.

b. For any two successive manifolds C2;t1 and C2;t2

there exists�, 0\t2 � t1\�, such that the local

Lipschitz feedback uiðxÞ; i ¼ 1::4 cause the C2;t2 is

asymptotically stable starting from C2;t1 .

Proof The proof can be reached directly by using the

Theorem 10 in [55] for both successive sets of C2;t and

considering their convergence to C1.

From Theorem 1 and the characterized VHCs, it is

apparent that the biped robot must have a stable motion

with Bezier VHC curves using adaptive deforming

strategy. Since the general forms of the VHCs have not

altered (only changing in the value of the character-

ization parameter), it is preferring the low-level

control to be robust and exponentially stabilizing. If

the changes are enough small, one can infer that the

transition manifolds would be close enough to be

placed in their attractive domains. As a result, the low-

level control makes C3 positively invariant and

satisfies condition (b). The high-level controller is

responsible for producing transition manifolds to

converge to C1, i.e., to satisfy condition (a). Addi-

tionally, a critical agent is designed to check that the

transition manifolds are sufficiently close and prevent

the system from becoming unstable.

5 Proposing the control approach

In this section, we introduce an innovative control

approach at two levels. In the high level, new

characterization parameters are sought to meet the

demand. Through the low-level control, the new

VHCs produced by the high-level control are stabi-

lized. In addition, this approach has a critic agent that

assesses the system dynamics and convergence rate of

low-level control and tune the change rate of VHCs

parameters.

5.1 Designing the low-level control

There are some types of control method that can

stabilize the VHCs in a dynamic system. It is common

to use numerical methods to examine stability in the

literature, such as Poincare maps [39, 54], and some

others modify it to become more robust [9, 51, 55].

Researchers are drawn to using the analytical method

due to the drawbacks inherent in numerical method. It

will demonstrate the analytic stability theorem using

the concept of the impact invariance. The impact

invariant property specifies that while the states are on

a particular path, they will remain on it even after the

impact event. Equation (12) shows the impact rela-

tion; therefore, the states before and after the impact

mapping D :ð Þ fulfill the VHC functions. Even though

this concept does not eliminate jumps in the trajecto-

ries, it ensures that the trends of the control is

preserved.

qþ; _qþð Þ ¼ D q�; _q�ð Þ ð12Þ

The FLBS method was used in this study. It is a

robust and can stabilize the VHCs to be exponentially

attracted by the system trajectories. Here, we present

only the final control form and its Lyapunov relation;

further details can be found in [49, 50]. Consider y as

the output function of the Bezier curve VHCs asso-

ciated with Eq. (7). Following the FLBS method, we

can define the Lyapunov function of the low-level

controller, VL, named as inner Lyapunov function, as

follows:
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VL ¼ 1

2
y2 þ 1

2
_yþ k1yð Þ2þ 1

2
S2L ð13Þ

where SL is inner sliding surface with Eq. (14) and

k1 [ 0.

SL ¼ k2 Lf y zð Þ þ k1y
� �

þ L2f y zð Þ þ LgLf y zð Þuþ k1Lf y zð Þ
� �

þ y ð14Þ

Lf y zð Þ is the Lie derivative of y zð Þ with respect to

f zð Þ. In this method, the control law has a dynamic

equation as Eq. (15) with k2; k3; k[ 0.

The time derivative of the inner Lyapunov function,

VL, is negative definite which is shown in Eq. (16),

also it was also shown in [49, 50] that the system has

an exponential stability.

_VL ¼ �k1y
2 � k2 _yþ k1yð Þ2�k3S

2
L � kSLsign SLð Þ

ð16Þ

Consequently, the development of a low-level

controller with exponential stability is completed,

and its robustness is sufficient to update the charac-

terization parameters without concern. Hence, we

proved that the C3 is at least asymptotically stable for

the dynamic system (7) regarding Theorem 1.

Theorem 2 Regard the USWII as a form of

Eq. (7) with 5 DOF and 4 independent actuators.

Consider a set of 4 smooth functions H qð Þ has a well-

defined relative degree 2; . . .; 2f g and it is chosen as

VHCs. Let C denotes its constraint manifold, i.e., C ¼
q; _qð Þ 2 TQjH qð Þ ¼ 0; LfH qð Þ ¼ 0

	 

where LfHðqÞ

refers to Lie derivative of HðqÞ along f . The dynamic

system (7) can be asymptotically stabilized, if the

following conditions are satisfied.

að Þ is invertible on every point of C.

(b) C1 is impact invariant.

(c) The convergence time of the controller is strictly

less than the time of a single step of biped robot.

Proof By stabilizing a set of 4 smooth functionH qð Þ
of VHCs, the biped robot would have a rhythmic

motion [33, 34]. For rhythmic motions, suppose we

have the nominal solution /0 tð Þ of Eq. (7) such that

/0 t þ Tð Þ ¼ /0 tð Þ for all t 2 Rþ, where a finite T [ 0

exists. Condition (a) causes that if the states of the

biped robot are placed on its constraint manifoldC, the
control method could stabilize them. On the other

hand, the term LgLfHðqÞ�1
in feedback linearization

method like Eq. (15) is bounded [33, 34]. As a result,

the control method ensures that VHCs remain stable if

there are deviations in the states which make them get

far fromC. The USWII has a hybrid property at impact

event [32, 39]. Impact causes that the states become far

from the C, i.e., /0 Tþð Þ 6� C. The impact invariant

property, shown in Eq. (12), causes the states also to

be maintained on C, especially after the impact event.

Condition (c) causes that the biped robot find its

required movement rapidly before it faces its impact

mapping D :ð Þ. Because the impact mapping may cause

the states to get far from C h.

Remark 1 Suppose /0 tð Þ is the desired periodic

orbit. A suitable control should be chosen such that the

contraction taking place during the SSP dominates the

expansion occurrence over the impact event. The

FLBS method can be utilized as a low-level controller.

Following Theorem 2, if the rank dHq equals 4 for

all q 2 H�1ð0Þ, it leads to condition (a) be satisfied

[32, 33]. By defining the output of the dynamic system

as follows,

y ¼ H q;bð Þ ¼ h0 qð Þ � hdes r; bð Þ ð17Þ

_u ¼ �LgLf y zð Þ�1
2Lf y zð Þ þ k1 L2f y zð Þ þ LgLf y zð Þu

� ��

þ d

dt
L2f y zð Þ þ d

dt
LgLf y zð Þuþ k2 L2f y zð Þ

�
þ LgLf y zð Þuþ k1Lf y zð ÞÞ þ k1yþ ksign SLð Þ þ k3SL

�

þ d

dt
L2f y zð Þ þ d

dt
LgLf y zð Þuþ k2 L2f y zð Þ

�
þ LgLf y zð Þuþ k1Lf y zð ÞÞ þ k1yþ ksign SLð Þ þ k3SL

�
ð15Þ
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Given that Eq. (17) is split into two parts, h0ðqÞ and
hdesðr; bÞ. Because of independence hdesðr; bÞ toward
states, if the rank h0ðqÞ ¼ 4, then rank dHq will equal

4. For simplicity, we define h0 qð Þ ¼ q2; . . .; q5½ �T and

q1 ¼ h, where h represents the configuration state of

zero dynamic equation.

Since there are four VHCs, it is easier to avoid

complexity by using M ¼ 3. In addition, it is a

minimum number chosen for the Bezier curves to add

impact invariant property. When hþ and h� are the

maximum and minimum values of the zero dynamic

state in Eq. (9), it is common to write Eq. (18) for the

initial and final conditions of each step.

q�; _q�ð Þ ¼ bM;
M _h�

h� � hþ
bM � bM�1ð Þ

 !

qþ; _qþð Þ ¼ b0;
M _hþ

h� � hþ
b1 � b0ð Þ

 ! ð18Þ

Based on Eq. (12), VHCs is impact-invariant if and

only if D S \ Cð Þ � C. Therefore, ðb2; b3Þ can be

calculated in relation of ðb0; b1Þ as follows:

b0;
3 _hþ

h� � hþ
b1 � b0ð Þ

 !

¼ D b3;
3 _h�

h� � hþ
b3 � b2ð Þ

 !

ð19Þ

Characterization parameters can be expressed as

ðb0; b1Þ or their functions.

5.2 Designing the high-level control

High-level controller is responsible for generating new

characterization parameters to produce a new VHC set

for dynamic adaptation. There must be two require-

ments behind the design of the high-level method. The

method must first produce sets in C2;t that converge to

our objective, C1. The second requirement is that it

must have some parameters for adjusting the conver-

gence rate. It must formulate a mathematical relation

for the desired characteristics at first. The zero

dynamic equation plays a key role in this regard. It

is common to transmit the evolution of zero dynamics

to the normal form by a suitable mapping of the state

form f1; f2ð Þ, as demonstrated in Theorem 5.1 in [32].

_f1 ¼ w1 f1; bð Þf2
_f2 ¼ w2 f1; bð Þ

�

ð20Þ

where f1; f2ð Þ can be define as follows:

f1 ¼ hjC3

f2 ¼
oK

o _h

�
�
�
�
C3

w1 f1; bð Þ ¼ oh
oq

oH

oq
c

" #�1

0

1

� 
�
�
�
�
�
�
C3

w2 f1; bð Þ ¼ �oU

oh

�
�
�
�
C3

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð21Þ

that K and U are the functions of kinetic and potential

energy and c is obtained from the last entry of DðqÞ.
We will then derive a formula that shows the average

speed of the robot during each step. The average

walking rate can be calculated by dividing the step

length by the elapsed time after a step.

Definition 2 The time impact per step (TIS) T1 :
TQ ! R [ 1f g can be defined as the time when the

impact condition happens, as follows:

TI x0;bð Þ :¼ inf tf � 0ju tf ; x0
� �

2 I
	 


1otherwise;

�

ð22Þ

x0 is the initial state and tf is the time taken that the

trajectories reach to the impact surface, I. By keeping

the step length as the placing of the swing foot on the

ground in mind, p2ðh�; bÞ, the average speed can be

computed as follows,

t ¼ p2 h�; bð Þ
TI x0; bð Þ 	 D ¼ F bð Þ ð23Þ

where 	 refers the Composition of maps. Both

p2 h�; bð Þ and TI x0;bð Þ 	 D are well-defined on the

open subset ~I � I where 0\TI x0; bð Þ 	 D\1 and the

associated impacts are transversal to I. In Theorem 3,

we prove that zero dynamic trajectories can be fixed by

adding the property of the impact invariance to 4

VHCs. It causes that the dynamics of the whole system

is only affected by the parameters of the VHCs, and

not by the initial conditions or the control parameters,

therefore we can formulate TI by considering f2df2 ¼
w2 f1ð Þ
w1 f1ð Þ df1 from Eq. (21) as follows:
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TI ¼ r
h�

hþ

df1
w1 f1; bð Þf2 f1; b; f

�
2

� � ð24Þ

where f2 f1; b; f
�
2

� �
can be defined as follows:

f�2
2 � fþ2

2

2
¼ r

f�1

fþ1

w2 f1ð Þ
w1 f1ð Þ df1 ð25Þ

Theorem 3 Suppose the USWII as a form of Eq. (7)

with 5 DOF and restricted by 4 impact-invariant

VHCs. Then, the dynamics of the system is unique

regardless of the control parameters and initial

conditions.

Proof

When the dynamic system is restricted to four

impact-invariant VHCs, the output, Eq. (17), should

be zero. Therefore, there is a homeomorphic map that

relates the states of the system to zero dynamic state.

For showing the uniqueness of the orbit, it is sufficient

to show that the zero dynamic evolution is fixed and

predetermined, and not dependent on the controller

stabilizing the VHCs. Zero dynamics is described by

the differential equation with a discrete mapping in

Eq. (10). Solve Eq. (10) in its general form by

assuming B is a trajectory of zero dynamic states

and C is the initial state. Two constants are then used

to identify B for the differential equation of two orders.

h tð Þ ¼ F A1;A2; tð Þ ð26Þ

If we solve the trajectory for the initial and final

times at each step (without contrast, we can determine

TI as its motion period), we find;

h 0ð Þ ¼ F A1;A2; 0ð Þ ¼ hþ

h TIð Þ ¼ F A1;A2; TIð Þ ¼ h�
_h 0ð Þ ¼ F A1;A2; 0ð Þ ¼ _hþ
_h TIð Þ ¼ F A1;A2; TIð Þ ¼ _h�

8
>><

>>:
ð27Þ

It should be noted that the mathematical formula of

F :ð Þ is determined by the VHC shapes. We have four

relations and seven unknown parameters,

TI ;A1;A2; h
þ; h�; _hþ; _h�. The other equations can be

derived from the discreet mapping, D h�; _h�
� �

, that

results in two new equations. Last equation is also

derived from the impact surfaceI, at the time of impact.

After determining the seven unknown parameters

using the seven equations outlined above, the zero

dynamic will have a fixed trajectory. Therefore, the

orbit of the USWII restricted by 4 distinct VHCs is

independent of the initial parameters or control

parameters that affect how long the constraints

become stabilized.

By Theorem 3, we prove for each set of VHCs, one

orbit with a specific characteristic is shaped in a phase

diagram. Therefore, every characteristic only depends

on the shape of VHCs. To have a desired average

speed,we first define e ¼ t� tdes and the outer sliding
surface SH , as follows:

SH :¼ eþ a1redt ð28Þ

For the design of the stabilizing high-level control

method, the outer Lyapunov function can be chosen as

VH ¼ 1
2
S2H. According to [57–59], the time derivative

of VH should be negative definite to have an asymp-

totically stability in high-level control. Taking the

derivative of _SH ¼ �a2SH , the time derivative of VH is
_VH ¼ �a2S2H. By expanding _SH ¼ �a2SH by Eq. (29),

we have,

_eþ a1e ¼ t� t
d
þa1e ¼

ot
ob

_b� t
d
þa1e ¼ �a2SH

ð29Þ

Thus, _b should satisfy Eq. (30).

_b ¼ ot
ob

� ��1

t
d
�a1e� a2SH

� �

ð30Þ

where t is obtained from Eq. (23). Firstly, the high-

level control law searches for new parameters in the

domain of attraction of the previous constraint man-

ifold points, then it finds which of the new parameters

makes the system have the desired average speed. To

satisfy condition (b) of Theorem 1 in the closed-loop

system, C1 should become asymptotically stable using

the proposed control method and, any for two

successive sets of C2;t1andC2;t2 (as mentioned in

condition (b) of Theorem 1), C2;t2 should be asymp-

totically stable starting from C2;t1. The change in a2
and a1 directly affects the convergence rate of

producing sets. This rate can be tuned by the critic

agent using those parameters. Therefore, we called

them the adjusting parameters.

5.3 Designing the critic agent

Assuring that the control process does not lead to

instability in the dynamic system is the task of the

critic agent. Two important points need to be
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considered. As a first point, a criterion should be

identified that indicates whether the system has

departed from the path determined by the control

method. The second point relates to how and how

much the production rate of new sets, C2;t, varies over

time. The best way to provide the criterion is to check

the trend of convergence of the output functions. The

rate of change in VHCS should be proportional to the

rates of convergence of y and _y to zero using the low-

level controller. In other words, the generation of new

C2;t should wait until the dynamic system becomes

stable. By decreasing or increasing the adjustment

parameters, the critic agent tries to adjust the rate of

generating C2;t. A few rules about the changes are also

introduced to ensure the second point is met. If uw;

known as an assessment value, is calculated by

considering ew ¼ colðy; _yÞ, we design the critic agent

like [60, 61].

uw ¼ 1 if _ew [ 0 or ew [Emax

0 else

�

ð31Þ

where Emax represents a specified affirmative limit.

Hence, the critic agent, w, is calculated by a dynamic

in Eq. (32).

_w ¼ � 1

dl
1� uw
� �

wþ dmuw 1� wð Þ ð32Þ

where dl and dm are two affirmative parameters specify

the speed at which w shows convergences or diver-

gences. The following rules are applied to get a

smoothly adaptive deforming law that obtain with the

average speed of a biped robot.

(1) If the critic agent is more than an upper-bound

value, it should stop the generating new char-

acterization parameters, e.g., for w[ 0:6 then

a1 ¼ a2 ¼ 0:01.

(2) If the critic agent is between two limit values, it

should wait until the critic agent fixes its trend.

If its derivative is negative, e.g., for

0:35\w\0:55 then a1 and a2 not changed. If

its derivative is positive, e.g., for

0:35\w\0:55 then a1 and a2 should decrease.

(3) If the critic agent is less than a lower-bound

value, it could increase the rate of generation

new characterization parameters, e.g., for

w\0:2 then a1 and a2 should increase.

6 Results and discussion

In this section, we present the simulation results along

with a brief discussion that illustrates the performance

of the proposed adaptive deforming strategy. By using

this strategy, the average speed of a five-link biped

robot is adaptively converged according to our

demand. Modeling and its parameters, recall Eq. (6),

are taken from the famous bipedal robot, RABBIT

[33]. Under-actuation and hybridity are two charac-

teristics of this model. In order to overcome the issue,

VHCs are used to make the robot dynamics follow the

desired motion. We add the impact-invariance prop-

erty, like Eq. (19), to use the analytical stability.

VHCs are regarded as the outputs of the dynamic

system. They are characterized to obtain specific

characterization parameters such as a torso angle and

step length. The low-level controller with Eq. (15)

tries to stabilize them at all times. When they are

stabilized, Eq. (24) provides the characteristics of the

dynamics. The high-level controller then produces the

new characterization parameters based on Eq. (30).

The critic agent assesses stability by evaluating the

convergence rate of the VHCs and their derivatives,

like Eq. (32). Some rules are required for the critic

agent to regulate the generating rate of new charac-

terization parameters by determining the adjusting

parameters. They are discussed in designing the critic

agent section. The control and critic agent parameters

are gathered in Table 1.

Simulations demonstrate how well our strategy

adapts to our demand as smoothly as possible. To

begin, we initialize the robot to have an average speed

of 1 (m/s) with 1.65 (rad) torso angle and 0.7 (m) step

size. The first demand intends that the biped robot

maintains its average speed. Then after 15, 50, and 80

steps, it will alter its average speed to attain 1.8 (m/s),

1.2 (m/s), and 2 (m/s), respectively. With this demand,

we hope to cover all possible trends of increasing and

decreasing. For first demand, we pick the torso angle

as a candidate of the characterization parameter.

Figure 3 depicts the closed orbits of certain states in

the phase portraits. q1 and q2 and q3 with their

derivations are shown. As we expected, each constant

part of the first demand leads to a close orbit. It also

depicts the trend of the critic agent in regulating the

adjusted parameters. Despite the high nonlinearity of

Eq. (24) and the fluctuating in the critic agent trend, it

can produce smooth adaptations. As time passes, the
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trend of the critic agent condenses to zero in the

constant part of the average speed of the biped robot.

Figure 4 depicts the trend of the regulation of the

average speed of the biped robot and the selected

characterization parameter during the adaptation pro-

cess. It shows how adaptive deformation occurs

smoothly and effectively. It is possible to change the

parameters to increase the rate of response. However,

this may add overshoot in trend or make stronger

control signals than the actuator can generate. Figure 5

depicts the values of control signals for this demand. It

shows that a high average speed causes greater control

signals. Although one can optimize their values by

tuning the low-level control parameters. The second

demand relates to a sinusoidal desire average speed in

the range of 0.8 (m/s) to 1.6 (m/s) with a period of 30

steps in one cycle. For this demand, we pick both torso

angle and step size as a candidate of the characteri-

zation parameters. Figure 6 depicts the trend of the

regulation of the average speed of the biped robot and

the selected characterization parameters during the

adaptive deforming by adjusting two characterization

parameters. After taking a few steps, it deforms nicely

the motion to have our demand. Because the low-level

controller stabilizes VHCs of the characterization

parameters after the high-level controller produces

them, there is a lag in the response. According to this

demand, we find that the dynamic system has a delay

of about four steps. Although we show for this case if

there were a delay rejection, how the trend changes.

For showing robustness against disturbances, we

suppose an unknown force acting on the robot that

makes 100 (Nm) moment in all joints for about 20

percent of the period of each step during 20 steps. In

addition, we chose another demand with a sinusoidal

desire average speed in the range of 0.7 (m/s) to 1.3

(m/s) with a period of 30 steps in one cycle. In this case

the delay is about 2 steps. It shows that for a low

amount of the average speed, the delay is smaller.

Figure 7 depicts their results on adaptive deforming of

Table 1 The schedule of

parameter values
Description The values of parameters

Low-level controller k ¼ 75 75 75 75½ �T; k1 ¼ 90 90 90 150½ �T

k2 ¼ 150 150 300 300½ �T; 75 75 75 150½ �T

High-level controller a1 ¼ 0:3 a2 ¼ 0:3

Critic agent dt ¼ 0:5; dm ¼ 2

Fig. 3 The left figure depicts the phase portrait of configuration

states vs. their velocities. The right figure depicts the critic agent

trend, along with adaptive deforming method by adjusting one

parameter of the VHCs, the Torso angle. The colors indicate the

behavior of states and the critic agent in the last step before

changing the desired velocity. The brown color indicates the

average speed of 1 (m/s), the green color indicates the average

speed of 1.8 (m/s), the blue color indicates the average speed of

1.2 (m/s), and the red color indicates the average speed of 2 (m/

s)
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the motion. The control method can effectively reject

the disturbance and continue to adaptive deforming.

Figure 8 depicts the low-level control signals. It is

shown that although the disturbances are large, the

control system performs well.

7 Conclusion

In this paper, we have investigated the issue of

regulating the average walking speed of five-link

biped robots. The system has one degree of under-

actuation and an instantaneous impact. The motion is

Fig. 5 The low-level control signals in the evolution of time for the adaptive deforming method by adjusting one parameter of the

VHCs, the Torso angle

Fig. 4 The left figure depicts the desired, recommended, and

actual average speed of the biped robot. The black line indicates

three different constant demands occurring just a few steps after

one another. The blue line indicates the recommended ones from

the response of the high-level controller by adjusting one

characterization parameter, the torso angle. The red line

indicates the actual ones. The right figure depicts the variation

of the torso angle for the adaptive deforming method
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obtained by defining 4 VHCs and adding an impact

invariant property. To achieve the goal, we have

introduced the concept of adaptive deforming to vary

the initial constraint manifold to ones that fulfill our

desires. A novel two-level hierarchical control has

designed to synchronize the enforcement of the VHCs

with the modification of their parameters in order to

achieve the desired outcome. In our knowledge, it is

the first approach that presents formal stability criteria

for the controlled system which can simultaneously

adapt the biped robots walking characteristic accord-

ing to our desire. The simulation results have verified

the effectiveness of the control method in regulating

new maneuvers and rejecting the disturbances. In

future work, this approach will be enhanced by

eliminating the delay between the actual maneuvering

and the command, as well as an extension suitable for

running motion.

Fig. 7 The left figure depicts the desired, recommended, and

actual average speed of the biped robot for a sinusoidal desire

average speed. It represents a result affected by disturbances, by

which the circle on the figure emphasizes the time of occurrence.

The right figure depicts the trend of the critic agent to deal with

disturbances

Fig. 6 The left figure depicts the desired, recommended, and actual average speed of the biped robot for a sinusoidal desire average

speed. The right figure depicts the variation of the torso angle and step size for the adaptive deforming method
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