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Abstract The mesh phasing angle is an important

influencing factor in a gear dynamic system. However,

previous studies of mesh phasing in a multi-stage gear

system ignore the coupling effects of coaxial teeth

ratio. Therefore, this paper derives the coupling

relationship between mesh phasing angle and coaxial

teeth ratio in a multi-stage gear system. The dynamic

model for a two-stage parallel shaft gear train with

time-varying mesh stiffness is established. The phase

relationship is validated by rigid-flexible coupling

model. Through the derived coupling relationship, it is

found that the coaxial teeth ratio reduces the periodic

variation range of mesh phasing. When the coaxial

teeth ratio is not equal to 1, the effect of mesh phasing

on the nonlinear vibration response of the system is

investigated, and the suppression effect on the system

vibration is found. The influence of mesh phasing on

the chaotic motion of the system is analyzed in detail.

The effect of mesh phasing on the vibration charac-

teristics is compared for different coaxial teeth ratio.

Finally, the change law of system vibration is revealed

under the interaction of coaxial teeth ratio and mesh

phasing, which provides a reference for the dynamic

design of a multi-stage gear system.

Keywords Multi-stage gear system � Mesh phasing

angle � Coaxial teeth ratio � Nonlinear vibration

List of symbols

Ji i ¼ 1; 2; 3; 4ð Þ Inertia of the i gear

zi i ¼ 1; 2; 3; 4ð Þ Teeth number of the i gear

Toi i ¼ 1; 2ð Þ Input and output torque

kiðtÞ i ¼ 1; 2ð Þ Time-varying mesh

stiffness of the i stage

k12ðtÞ; k012ðtÞ The coupling stiffness of the

first and second stages

kim i ¼ 1; 2ð Þ Mean value of the time-

varying mesh stiffness of the

i stage

kh; kf Contact stiffness, fillet-

foundation stiffness

kb; ks; ka Bending stiffness, shear

stiffness and axial

compressive stiffness

ke Mesh stiffness

ci i ¼ 1; 2ð Þ Mesh damping of the i stage

bi i ¼ 1; 2ð Þ Nonlinear backlash of the

i stage

ui i ¼ 1; 2ð Þ Dynamic transmission error

of the i stage

qi i ¼ 1; 2ð Þ Dimensionless dynamic

transmission error of the

i stage

s Dimensionless time
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bn System characteristic length

xn System characteristic

frequency

xij i ¼ 1; 2; j ¼ 1; 2ð Þ Dimensionless

characteristic frequency

Fi i ¼ 1; 2ð Þ Dimensionless input and

output load force

ei i ¼ 1; 2ð Þ Dimensionless static

transmission error of the

i stage

a Pressure angle

b Operating pressure angle

hf Angle between the tooth

center-line and the junction

with the root circle

ufi i ¼ 1; 2ð Þ Distance along the tooth

centerline measured from

the tooth root to the loading

tooth section

Sf Tooth root thickness

rf Root circle radius

rin Hub bore radius

E; t Material Young’s modulus

and Poisson’s ratio

L Tooth width

G Shear modulus

Iy1; Iy2 Moment of inertia of the

cross-sectional area y1; y2
Ay1;Ay2 Cross-sectional area y1; y2

L�i ;M
�
i ;P

�
i and Q�

i

R�
j ; S

�
j ; T

�
j ;U

�
j and V�

j

(i = 1,2,3; j = 2,3)

Coefficients expressing the

fillet-foundation

deformation a based on rf ,

rin and hf
e Contact ratio

k
ð0Þ
i ðtÞ i ¼ 1; 2ð Þ Average mesh stiffness of

the first and second stages

k
ðsÞ
i ðtÞ i ¼ 1; 2ð Þ Mesh stiffness of the

s Fourier coefficient

uis i ¼ 1; 2ð Þ The s mesh phasing

Xi i ¼ 1; 2ð Þ Mesh frequency of the first

and second stages

T1; T2; T12 Mesh period of the first

stage, the second stage and

the total

U1;U2;U12 Characteristic quantity of

the relationship between the

coaxial teeth ratio and the

mesh phasing of a two-stage

gear system

Fm1;Fm2 Mesh force of first stage and

second stage

1 Introduction

A multi-stage gear system is used in a variety of

applications in vehicles, ships, aerospace, etc. The

vibration and noise generated during the gear opera-

tion process can cause mechanical failure, shorten the

life of devices and cause damage or injury to personnel

[1]. Therefore, the mechanism of vibration and noise

during the gear system needs to be analyzed. The time-

varying mesh stiffness is one of the main causes of

vibration and noise. The stiffness of the different

stages of the multi-stage gear system interacts with

each other through the phase angle and the tooth

number ratio of the intermediate shaft, which are

influencing factors that cannot be ignored. To differ-

entiate from gear ratios, this paper uses coaxial teeth

ratio to represent the tooth number ratios of the two

gears on the intermediate shaft between the different

stages.

The mesh phasing as an influencing factor is often

achieved by affecting the mesh stiffness in a gear

system. For the study of the mesh phasing, Kahraman

[2] established a dynamic model of a multi-mesh gear

system containing idlers and found that there was a

suppression effect on the vibration of the system at

specific frequencies at different mesh phasing. Lin [3]

derived the range of stable and unstable domains for a

two-stage gear system and considered the effect of

mesh phasing and contact ratio on the mesh stiffness

by means of the Fourier series. Parker [4] found that

mesh phasing suppresses harmonics at specific mesh

frequencies for a planetary gear system, which lead to

a series of studies on mesh phasing in a planetary gear

system. Parker [5] next derived the mesh phasing

123

19856 W. Li, Z. Li



difference for a planetary gear system, laying the

foundation for the study of mesh phasing for a

planetary gear system. Al-shyyab [6, 7] analyzed the

nonlinear vibration characteristics of a two-stage gear

system based on the harmonic balance method, simply

considering the effect of the mesh phasing on the

period-one motion, but with coaxial teeth ratio 1

which corresponds to an idler system. Gill-Jeong [8]

used the mesh phasing in a single-stage gear pair to

smooth out the time-varying mesh stiffness by adding

another pair of gears with half-pitch phasing, thus

achieving vibration and noise reduction. Guo [9]

studied the mesh phasing relationship for general

compound planetary gears, extending on the mesh

phasing relationship. Wang [10] found that the factors

influencing the mesh phasing are the number of teeth,

the number of planets, and their greatest common

divisor of a planetary gear system, and mainly found

that the mesh phasing changes the vibration mode of

the system. Kang [11] developed a test rig for a

double-helical gear, based on experimental data

showing that the mesh phasing is the most key

parameter impacting the dynamic response. Vavuz

[12] analyzed the nonlinear characteristics of the two-

stage gear system based on the harmonic balance

method, where the effect of the mesh phasing was

considered. Brecher [13] tested a two-stage gearbox

for dynamic noise and confirmed that the effect of the

mesh phasing angle of the intermediate shaft could not

be ignored. Peng [14, 15] proposed a fault diagnosis

method for a planetary gear system, which focuses on

distinguishing the type of fault and identifying the

faulty gear by transmission error and mesh phasing.

Wang [16] established a dynamical model of a

planetary gear system and proposed a spectral analysis

method based on the mesh phasing. Sanchez-Espiga

[17, 18] considered the influence of the mesh phasing

of a planetary gear system and made the system load

balance by adjusting the mesh phasing. Wang [19, 20]

obtained the rule that the mesh phasing affects the

vibration of a planetary gear system, and the number

of teeth and the mesh phasing can be used to determine

the vibration mode of the system.

Through the study of mesh phasing in a gear

system, mesh phasing is used predominantly in a

single-stage gear pair, a planetary gear system, and a

multi-stage gear system. The single-stage gear pair

achieves control of the mesh phasing by means of a

double-row gear. Theoretical and experimental studies

have confirmed the effectiveness of mesh phasing on

vibration suppression. Due to the complex structure of

planetary gear trains, the process has evolved from the

discovery of the effects of mesh phasing to the

derivation of mesh phasing relationships and ulti-

mately to the development of rules for the effects of

mesh phasing and their application in fault diagnosis

[21, 22]. Most scholars in the study of multi-stage gear

system will assume an intermediate shaft teeth ratio 1,

which is consistent with idler system and reduces the

complexity of the mesh phasing. In terms of experi-

mentation, it was demonstrated that the influence of

the intermediate shaft mesh phasing could not be

ignored. The coupling mesh stiffness of the multi-

stage gear system is importantly related to the mesh

phasing and coaxial teeth ratio. Thus, the dynamic

model of multi-stage gear that considers mesh phasing

and coaxial teeth ratio needs to be studied.

Vinayak [23] developed the dynamic model of

multi-mesh gear based on the concentrated mass

method, and this model framework has been univer-

sally valid. Eritenel [24] considered the multi-degree-

of-freedom, multi-mesh gear transmission model in

which three vibration directions were added in addi-

tion to the mesh line direction, allowing for a more

detailed analysis of the vibration characteristics.Wang

[25] established the dynamic model of the multi-stage

system with crack fault, whose crack stiffness was

calculated using the potential energy method. Li [26]

established the dynamic model of a two-stage parallel

shaft transmission system and analyzed the system

dynamic in terms of speed, damping, and accuracy,

but did not consider the effect of its nonlinear behavior

and mesh phasing. He [27] investigated the effect of

gear eccentricity on the time-varying mesh stiffness

and dynamic behavior of the two-stage gear system.

Lu [28] established a coupled dynamic model of a

multi-stage gear with a box and explored the effect of

mesh frequency. The multi-stage gear system models

are all based on a concentrated mass model [29],

focusing on the calculation of its time-varying mesh

stiffness and the factors which considers in the model.

The time-varying mesh stiffness is related to the

mesh phasing, contact ratio, speed, and coaxial teeth

ratio, and it is particularly essential to develop a

suitable time-varying mesh stiffness model to include

these parameters [30]. The stiffness can be approxi-

mated in the form of a Fourier series [31], which can

simply reflect the nonlinear characteristics of the

123

Dynamic analysis of a multi-stage gear system 19857



system. The potential energymethod has recently been

modified and improved to use in calculating time-

varying stiffnesses [32, 33]. With the development of

science and technology, the use of the finite element

method to calculate stiffness is considered accurate and

thus used for the verification of the analytical method

[34]. In order to calculate quickly and to take into

account the influence parameters, the potential energy

method is chosen to solve the time-varying mesh

stiffness and is verified using finite element method.

In summary, mesh phasing has been studied more

in single-stage gear pairs and a planetary gear system.

In a multi-stage gearing system, only the case of the

intermediate shaft teeth ratio 1 is considered, ignoring

the coupling effect of different intermediate shaft teeth

ratios. However, the coaxial teeth ratio not equal to 1 is

more widely used in applications. In the current work,

the time-varying mesh stiffness model considering the

mesh phasing is established by Lagrange equation and

derived by dimensionless method. Based on the theory

of periodic function and the meshing principle of

multistage gear transmission system, the relationship

between the mesh phasing and the coaxial teeth ratio is

derived. It is found that the coaxial teeth ratio reduces

the periodic variation range of mesh phasing. Further-

more, the phase relationship is verified using the rigid-

flexible coupling model. A two-stage gear dynamic

model based on the concentrated mass method is used

to study the effects of mesh phasing and coaxial teeth

ratio on the vibration characteristics. The nonlinear

frequency response is analyzed in terms of the mesh

phasing. The mesh phasing characteristics of the

chaotic and stable motion zones are compared. Based

on the relationship between the mesh phasing and the

coaxial teeth ratio, the variation law of the system

vibration characteristics with the mesh phasing and the

coaxial teeth ratio is revealed, which provides a

reliable basis for the dynamic design of a multi-stage

gear system.

Based on the theory of periodic function and the

meshing principle of multistage gear transmission

system, the coupling relationship between the mesh

phasing angle and the coaxial teeth ratio is derived. A

dynamic model of a two-stage parallel gear train with

time-varying meshing stiffness is established.

2 Dynamic model of two-stage gear system

considering coupling relationship between mesh

phasing angle and coaxial teeth ratio

The mesh phasing relationship in the multi-stage gear

system is generally represented by the two mesh

phasing angles of the intermediate shaft. Adjustment is

carried out in the actual reducer by the position of the

key or spline in the gear connection. In previous

studies [3, 6], no attention has been paid to the

relationship between the mesh phasing angle and the

coaxial teeth ratio. This section derives the relation-

ship between the mesh phasing angle and the coaxial

teeth ratio, and develops a dynamic model of a two-

stage gear transmission system.

2.1 The coupling relationship between the mesh

phasing angle and coaxial teeth ratio

In multi-stage gear system, the mesh stiffness of each

stage is essentially similar to that of a gear pair. In the

two-stage parallel shaft spur gearing system, the

coupling stiffness of the first and second stages is the

system stiffness. The mesh stiffness of each phase is

approximated by a periodic rectangular wave.

Figure 1 shows the shape of the mesh stiffness for

two different periods. The mesh stiffness of the first-

stage gear has a period of T1, and the mesh stiffness of

the second-stage gear has a period of T2. The

alternating single and double pairs of the spur gear

mesh stiffness can be clearly seen in Fig. 1a. From

Fig. 1b, the quantitative relationship between the

contact ratio e and the mesh period T2 can be found.

Since the number of teeth is a positive integer,

according to Fig. 1c, the system stiffness period T12
can be obtained as the least common multiple of the

relationship between T1 and T2. There is a time-

independent phase difference between the two mesh

stiffnesses, and different phase differences correspond

to different coupling stiffnesses of the system. The

phase difference between k12ðtÞ and k012ðtÞ is u2T2
The mesh phasing (u1 andu2) of the two-stage gear

transmission is defined as the phase angle of the initial

meshing position of the first stage and the second

stage. According to the meshing principle, the mesh
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phasing changes in the period of 0–1. When u2 ¼ 0

and u2 ¼ 1, it means that the initial meshing positions

of the second stage are one tooth different. So, they’re

the same. According to the circles in Fig. 1c and d,

although there is a certain time difference, the

coupling stiffnesses k12ðtÞ and k012ðtÞ are revealed to

be the same. Although mesh phasing u2 is less than 1,

the two coupling stiffnesses k12ðtÞ and k012ðtÞ corre-

spond to the same mesh state of system. In view of this

phenomenon, it is found that when the coaxial teeth

ratio is not equal to 1, the periodic range of mesh

phasing will be reduced.

According to [31], the time-varying mesh stiffness

is approximated by the Fourier series based on a two-

stage parallel shaft gearing system as follows.

k1ðtÞ ¼ k
ð0Þ
1 þ

XS

s¼1

k
ðsÞ
1 cosð2psX1t � 2pu1sÞ

k2ðtÞ ¼ k
ð0Þ
2 þ

XS

s¼1

k
ðsÞ
2 cosð2psX2t � 2pu2sÞ

ð1Þ

where X1;X2 is the mesh frequency of the first and

second stages X1 ¼ RX2, R ¼ z2=z3.u1;u2 is the

mathematical representation of the mesh phasing,

and the range is from 0 to 1.

System stiffness is regarded as the whole of first-

stage stiffness and second-stage stiffness. The system

stiffness (u1 ¼ 0, u2 ¼ 0) corresponds to Fig. 1c and

the system stiffness (u1 ¼ 0,u2 ¼ 0:2) corresponds to

Fig. 1d, where there is a phase difference u2T2.

Fig. 1 Mesh phasing

relationship of mesh

stiffness. aMesh stiffness of

the first stage, b Mesh

stiffness of the second stage,

c Coupling stiffness at mesh

phasing u2 ¼ 0, d Coupling

stiffness at mesh phasing

u2 ¼ 0:2
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According to the circles in Fig. 1c and d, the two

stiffness curves in Fig. 1c and the two stiffness curves

in Fig. 1d are in the same state at the circle. Since the

steady state of gear operation is periodic, it indicates

that the stiffness states represented by the stiffness

curves of Fig. 1c and d are the same. This means that

there is a quantitative relationship between the coaxial

teeth ratio and the mesh phasing.

The mesh period of the first and second stages is

obtained from the speed of the intermediate shaft.

T1 ¼
60

n2z2

T2 ¼
60

n3z3

8
><

>:
ð2Þ

where n2; n3 represents the speed of the gear 2 and gear

3 and n2 ¼ n3, z2; z3 represents the number of teeth of

gear 2 and gear 3. Since the speed of the two

intermediate gears is the same, the mesh period is

related to the teeth number of the two gears. Total

period of the two-stage gear system.

T12 ¼
z2; z3½ �
n2z2z3

ð3Þ

where ;½ � is the symbol for solving the lowest common

multiple of two integers. As the number of teeth is a

positive integer, different mesh phasing angles corre-

spond to different mesh states when mesh stiffness of

two stages are coupled. Based on Eqs. (1)–(3), it is

deduced that:

U12 ¼
ðz2; z3Þ
z2z3

ð4Þ

where ð; Þ is the symbol for solving the greatest

common divisor of two integers. In this paper, U12 is

defined as a characteristic quantity of the relationship

between the coaxial teeth ratio and the mesh phasing

of the two-stage gear system. The periodic range

U1;U2 of u1;u2 can be given by Eq. (4). For the mesh

stiffness k1ðtÞ; k2ðtÞ of a two-stage gear train, u1 ¼
0;u2 2 ð0;U2Þ or u1 2 ð0;U1Þ ¼ 0;u2 ¼ 0 describes

the coupling state of all mesh phasing to the stiffness.

All calculations in this paper are in the form of

u1 ¼ 0;u2 2 ð0;U2Þ.

U1 ¼ U12z2 U2 ¼ U12z3 ð5Þ

In order to verify the correctness of Eq. (4), the

dynamic equations were solved using ode45, and the

coaxial teeth ratio and mesh phasing relationships are

shown in Table 1. In order to compare their mesh state

are the same, the root mean square (RMS) values of

the first and second stage DTE q
ðrmsÞ
1 and q

ðrmsÞ
2 are

chosen as the results shown in Fig. 2.

When R ¼ z2=z3 ¼20=20 and U2 ¼ 1, q
ðrmsÞ
1 and

q
ðrmsÞ
2 change in u2 2 ð0; 1:0Þ. when R ¼ z2=z3 ¼

40=20 and U2 ¼ 0:5, q
ðrmsÞ
1 and q

ðrmsÞ
2 change in u2 2

ð0; 0:5Þ the same as in u2 2 ð0:5; 1Þ. When R ¼
z2=z3 ¼60=20 and U2 ¼ 1=3, q

ðrmsÞ
1 and q

ðrmsÞ
2 change

in u2 2 ð0; 1=3Þ the same as in u2 2 ð1=3; 2=3Þ and
u2 2 ð2=3; 1Þ. Thus, the paper finds that the coaxial

teeth ratio will affect the periodic range of the mesh

phasing, which is smaller when the numbers of teeth of

the intermediate shaft are coprime. Meanwhile, the

relationship (Eq. (4)) between the coaxial tooth ratio

and the mesh phasing angle is verified.

2.2 Establishment of dynamic model

The gear ratio of each stage, coaxial teeth ratio, and

their mesh phasing angle led to differences in vibration

characteristics in the multi-stage gear system. In order

to describe the nonlinear dynamic behavior in the two-

stage gear system, its dynamic model is shown in

Fig. 3. This includes the basic parameters of the gear

system. For example, the inertia of the four gears Ji
(i = 1,2,3,4), number of teeth zi (i = 1,2,3,4), Input

and output torque To1, To2 for stable system operation.

The dynamic parameters of the gear are mainly

considered in terms of the time-varying mesh stiffness

k1ðtÞ and k2ðtÞ, the mesh damping c1 and c2, the

nonlinear backlash 2b1 and 2b2. In the two-stage gear

transmission system, the intermediate shaft plays the

role of connecting the first and second stage, so this

paper considers the torsional stiffness kn and torsional

Table 1 Coupling relationship between mesh phasing angle

and different coaxial teeth ratios

Coaxial teeth ratio Mesh phasing range

R ¼ z2=z3 ¼20=20 u1 ¼ 0;u2 2 ð0; 1:0Þ
R ¼ z2=z3 ¼40=20 u1 ¼ 0;u2 2 ð0; 0:5Þ
R ¼ z2=z3 ¼60=20 u1 ¼ 0;u2 2 ð0; 1=3Þ
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damping cn of the intermediate shaft. The equations of

motion for this 4-degree-of-freedom (4-DOF) system

are shown in Eq. (6).

To reduce computational complexity and accu-

rately reflect model characteristics, Eq. (6) is con-

verted to a 3-DOF equation using Eq. (7).

Fig. 2 Effect of mesh

phasing on the vibration in

different coaxial teeth ratios.

a z2=z3 ¼ 1, b z2=z3 ¼ 2, c
z2=z3 ¼ 3

J1€h1 þ rb1½c1ðrb1 _h1 � rb2 _h2 þ _~e1Þ þ k1ðtÞf1ðrb1h1 � rb2h2 þ ~e1Þ� ¼ To1

J2€h2 � rb2½c1ðrb1 _h1 � rb2 _h2 þ _~e1Þ þ k1ðtÞf1ðrb1h1 � rb2h2 þ ~e1Þ� þ cnð _h2 � _h3Þ þ knðh2 � h3Þ ¼ 0

J3€h3 þ rb3½c2ðrb3 _h3 � rb4 _h4 þ _~e2Þ þ k2ðtÞf2ðrb3h3 � rb4h4 þ ~e2Þ� � cnð _h2 � _h3Þ � knðh2 � h3Þ ¼ 0

J4€h4 � rb4½c2ðrb3 _h3 � rb4 _h4 þ _~e2Þ þ k2ðtÞf2ðrb3h3 � rb4h4 þ ~e2Þ� ¼ �To2

8
>>><

>>>:
ð6Þ
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u1 ¼ rb1h1 � rb2h2 � ~e1ðtÞ
u2 ¼ rb3h3 � rb4h4 � ~e2ðtÞ
u3 ¼ ðrb2þrb3Þ=2 � ðh2 � h3Þ

8
><

>:
ð7Þ

u1 and u2 is generally defined as transmission error. u3
is defined in this paper as the vibration displacement of

intermediate shaft. The derived equation is as in

Eq. (8).

where m1 ¼ J1J23
J1r

2
b2
þJ23r

2
b1

, m2 ¼ J23J4
J23r

2
b4
þJ4r

2
b3

, m3 ¼ J2J3
ðJ2þJ3Þr2,

c3 ¼ cn
r2
, k3 ¼ kn

r2
, ~F1 ¼ m1

rrb1
J1
To1, ~F2 ¼ m2

rrb4
J4
To2,

r ¼ ðrb2þrb3Þ
2

, m13 ¼ J2
rb2r

, m23 ¼ J3
rb3r

.

f1; f2 is a non-linear gear clearance function, which

is mathematically defined as:

fi ¼
ui � bi ui [ bi

0 �bi � ui � bi

ui þ bi ui\� bi

8
><

>:
ð9Þ

Defining:

j1 ¼
k1ðtÞ
k1m

j2 ¼
k2ðtÞ
k2m

j3 ¼
k3
k3

-2
11 ¼

k1m
m1

-2
22 ¼

k2m
m2

-2
33 ¼

k3
m3

-2
13 ¼

k3
m13

-2
23

¼ k3
m23

-2
31 ¼

k1m
m13

-2
32 ¼

k2m
m23

f11 ¼
c1

2m1-11

f22 ¼
c2

2m2-22

f33 ¼
c3

2m3-33

f13

¼ c3
2m13-13

f23 ¼
c3

2m23-23

f31 ¼
c1

2m13-31

f32 ¼
c2

2m23-32

In order to obtain a dimensionless equation, it is

necessary to define: qi ¼ ui=bi (i = 1,2,3), s ¼ xnt,

xij ¼ -ij

�
xn, Fi ¼ ~Fi

�
bnx2

n, ei ¼ ~ei
�
bnx2

n.Where bn
is the system characteristic length andxn is the system

characteristic frequency. The dimensionless equation

is shown in Eq. (10).

Fig. 3 Dynamic model of a two-stage gear system

m1 €u1 þ c1 _u1 þ k1ðtÞf1ðu1Þ ¼ ~F1 þ m1

rb2r

J2
ðc3 _u3 þ k3u3Þ þ m1

€~e1ðtÞ

m2 €u2 þ c2 _u2 þ k2ðtÞf2ðu2Þ ¼ ~F2 þ m2

rb3r

J3
ðc3 _u3 þ k3u3Þ þ m2

€~e2ðtÞ

m3 €u3 þ c3 _u3 þ k3u3 ¼ m3

rb2r

J2
ðc1 _u1 þ k1ðtÞf1ðu1ÞÞ þ m3

rb3r

J3
ðc2 _u2 þ k2ðtÞf2ðu2ÞÞ

8
>>>>><

>>>>>:

ð8Þ
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The most widely used method for calculating the

mesh stiffness of single tooth in previous studies is the

potential energy method [33], the geometric model

which is shown in Fig. 4. The potential energy method

considers four components of energy in a mesh gear

pair, Hertzian contact potential energy, bending

energy, shear energy and axial compressive energy.

According to contact theory [32], the contact stiffness

is:

kh ¼
pEL

2ð1� t2Þ ln
2R1

a
þ ln

2R1

a
þ t
1� t

a ln
2R1

a
þ ln

2R2

a

� �� ��1

ð11Þ

where a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4PR=pE

p
, P is the load per unit length

F=L. The bending, shear and axial compression

stiffnesses can be obtained by derivation [35].

1

kb
¼
Za

p=2

½cos bðyb � y1Þ � xb sin b�2

EIy1

dy1
dc

dc

þ
Zb

sc

½cos bðyb � y2Þ � xb sin b�2

EIy2

dy2
d/

d/ ð12Þ

1

ks
¼
Za

p=2

1:2 cos2 b
GAy1

dy1
dc

dcþ
Zb

sc

1:2 cos2 b
GAy2

dy2
d/

d/

ð13Þ

1

ka
¼
Za

p=2

sin n2b
EAy1

dy1
dc

dcþ
Zb

sc

sin2 b
EAy2

dy2
d/

d/ ð14Þ

Fig. 4 Geometric model of

the single tooth stiffness

€q1 þ 2f11x11 _q1 þ x2
11j1ðsÞf1ðq1Þ ¼ F1 þ 2f13x13 _q3 þ x2

13j3q3 þ €e1ðsÞ
€q2 þ 2f22x22 _q2 þ x2

22j2ðsÞf2ðq2Þ ¼ F2 þ 2f23x23 _q3 þ x2
23j3q3 þ €e2ðsÞ

€q3 þ 2f33x33 _q3 þ x2
33j3q3 ¼ 2f31x31 _q1 þ x2

31j1ðsÞf1ðq1Þ þ 2f32x32 _q2 þ x2
32j2ðsÞf2ðq2Þ

8
<

: ð10Þ
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When calculating the stiffness, it is necessary to

consider the influence of the fillet-foundation, in

which the radius of the inner hole plays an important

role. According to the fillet-foundation stiffness cal-

culation method [36], the interaction between the two

tooth regions is taken into account. The fillet-founda-

tion stiffness of a single tooth and the mutual influence

stiffness of two tooth regions are as follows:

1

kf11
¼ cos2 b1

EL
L�1

uf1
Sf

� �2

þM�
1

uf1
Sf

� �
þ P�

1ð1þ Q�
1 tan

2 b1Þ
" #

ð15Þ

kf11 represents fillet-foundation stiffness of gear tooth

1. kfij represents the equivalent stiffness in gear tooth i

due to the load on gear tooth j. kfi represents the total

fillet foundation stiffness the of gear tooth i consid-

ering the stiffness of neighboring teeth.

1

kf1
¼ 1

kf11
þ 1

kf12
1

kf2
¼ 1

kf22
þ 1

kf21

8
>><

>>:
ð18Þ

Finally, the mesh stiffness of the gear pair is

calculated as:

1

ke
¼ 1

kh
þ 1

kpb
þ 1

kps
þ 1

kpa
þ 1

kpf
þ 1

kwb
þ 1

kws
þ 1

kwa
þ 1

kwf

ð19Þ

where the superscript p andw represent a pair of pinion

and wheel. From Eqs. (12) to (19), the value of the

mesh stiffness depends on themesh position parameter

/, which can correspond to the rotation angle of the

gear 1, ultimately transforming the mesh stiffness into

a function of time.

3 Validation

In order to verify the coupling relationship between

the coaxial teeth ratio and the mesh phasing angle, this

paper uses a simulation test model based on Adams

software to carry out a dynamic analysis. The two-

stage parallel shaft gear train of R ¼ z2=z3 ¼40=20

was selected for simulation and the simulation test

model is shown in Fig. 5.

In the Adams software, the mesh phasing u2 is

adjusted by changing the initial meshing positions of

gear 3 and gear 4 while not changing the gear 1 and

gear 2 (u1 ¼ 0). It can be clearly seen in Fig. 5 that the

meshing positions of gear 3 and gear 4 are different for

u2 ¼ 0 and u2 ¼ 0:25. The results of the simulation

test model are shown in Fig. 6. Under different mesh

phasing u2 ¼ 0,u2 ¼ 0:25, and u2 ¼ 0:5, the ampli-

tude of the first stage mesh force Fm1 is different. Since

the mesh phasing u2 of the second stage is changed,

the amplitude and phase of the second stage mesh

force Fm2 change and offset in the time domain. Using

mesh phasing step size of 0.05 and mesh phasing range

1

kf21
¼ cos b1 cos b2

EL

L�2
uf1uf1
S2f

 !
þ ðtan b2M�

2 þ P�
2Þ

uf1
Sf

� �
þ ðtan b1Q�

2 þ R�
2Þ

uf2
Sf

� �
þ

ðtan b1S�2 þ T�
2 Þ tan b2 þ U�

2 tan b1 þ V�
2

2
664

3
775 ð16Þ

1

kf12
¼ cos b1 cos b2

EL

L�3
uf1uf2
S2f

 !
þ ðtan b1M�

3 þ P�
3Þ

uf2
Sf

� �
þ ðtan b2Q�

3 þ R�
3Þ

uf1
Sf

� �
þ

ðtan b2S�3 þ T�
3 Þ tan b1 þ U�

3 tan b2 þ V�
3

2
664

3
775 ð17Þ

123

19864 W. Li, Z. Li



u2 2 ½0; 1�½0; 1�, the meshing force F
ðrmsÞ
m1 and F

ðrmsÞ
m2

were obtained by solving the simulation test model

(Fig. 5), the results of which are shown in Fig. 7.

According to Eqs. (4) and (5), when R ¼ z2=z3
¼ 40=20, U2 ¼ 0:5. From the periodic range in

Fig. 6, it is possible to obtain that F
ðrmsÞ
m1 and F

ðrmsÞ
m2

change in u2 2 ð0; 0:5Þ the same as in u2 2 ð0:5; 1Þ.
Thus, the coaxial teeth ratio (R ¼ z2=z3 ¼40=20)

reduces the periodic variation range of the mesh

phasing from ð0; 1Þ to ð0; 0:5Þ. Ultimately the rela-

tionship of Sect. 3 is verified.

Fig. 5 Simulation test model of a two-stage gear system

Fig. 6 Time history of

mesh force under different

mesh phasing based on

simulation test model

123

Dynamic analysis of a multi-stage gear system 19865



4 Results and discussions

The above validation shows the validity and correct-

ness of the modelling process. On this basis, the effect

of the mesh phasing on the nonlinear response

characteristics of the two-stage spur gear pair is first

investigated in detail. Next, the effect of mesh phasing

in the chaotic motion region is explored. Finally, the

comprehensive variation law of coaxial teeth ratio and

mesh phasing on vibration characteristics is revealed.

The basic parameters of the two-stage gear pair are

shown in Table 2. The characteristic frequency of the

gear pair is xn ¼ 8380:8 Hz.

4.1 Frequency response considering mesh phasing

angle

In order to investigate the nonlinear characteristics of

the two-stage gear system, numerical simulations were

carried out using the Runge–Kutta method based on

the parameters in Table 2. The integration time step is

Tp
�
200, Tp ¼ 2p=X1, and to obtain a stable vibration

response, the total integration time is 200Tp. Accord-

ing to the relationship between the mesh phasing and

the coaxial teeth ratio, the mesh phasing is taken as

u2 ¼ 0� 0:5, and the mesh frequency is taken as

X1 ¼ 0:2� 2:2. The RMS ( _q
ðrmsÞ
1 , _q

ðrmsÞ
2 , and _q

ðrmsÞ
3 ) of

the velocities of the DTE of the first and second stages

and vibration displacement of intermediate shaft are

chosen to characterize their vibration and the results

are shown in Fig. 8.

The nonlinear characteristics of the system such as

the nonlinear softening curve of the stiffness, coexis-

tence solutions, super-harmonic resonances, subhar-

monic resonances and nonlinear jumps can be clearly

observed. In Fig. 8a the main resonance frequency

x11, the super-harmonic resonance frequency x11=2,

the subharmonic resonance frequency 2x11 and the

coexisting solution represented by the transparent

surface are clearly evident, and there is a second stage

to first stage influence x22=2. The mesh phasing has a

suppressive effect for _q
ðrmsÞ
1 in the x11, x11=2 and

Fig. 7 The influence of

different mesh phasing on

mesh force based on

simulation test model

Table 2 Parameters of gear

pairs in the two-stage

system

Gear1 Gear2 Gear3 Gear4

Teeth number 21 40 20 27

Module (mm) 3 3 3 3

Teeth width (mm) 20 20 20 20

Contact ratio 1.64 1.64 1.59 1.59

Inertia (kg � mm2) 171.55 2105.69 255.59 819.02

Pressure angle 20� 20� 20� 20�
Young modulus E (N

�
mm2) 2� 105 2� 105 2� 105 2� 105

Poisson’s ratio 0.3 0.3 0.3 0.3

Backlash (mm) 0.1 0.1 0.1 0.1
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x11=3. In addition, there is a significant suppression of

sub-harmonic resonances by the mesh phasing. It is

clear from Fig. 8 that the mesh phasing has a small

effect in the stable zone and a significant effect for

_q
ðrmsÞ
1 inx11=2 andx11=3. the position of the nonlinear

jumps in the system is changed and the generation of

sub-harmonic resonances is suppressed in x11 and

2x11. The time history in Fig. 10 shows that the mesh

phasing reduces the amplitude of the system vibration

by changing the phase angle of the mesh stiffness so

that the peaks of the first-stage and second-stage

waves are staggered.

Fig. 8 Effect of mesh

phasing and mesh frequency

on the system in

z2=z3 ¼ 40=20, f ¼ 0:08,

x11 ¼ 1,x22 ¼ 1:5. a _q
ðrmsÞ
1 ,

b _q
ðrmsÞ
2 , c _q

ðrmsÞ
3

123

Dynamic analysis of a multi-stage gear system 19867



The essence of adjusting the mesh phasing is to

change the phase difference by adjusting the keyway

or spline position between the first and second gears.

The two waveforms are coupled with each other

through the phase difference, which can play a role in

controlling the harmonic amplitude. Specifically,

when one wave is at the peak and the other wave is

at the trough at the same time, the coupled waveform is

smaller than when both waves are at the peak. The

harmonic amplitude in the linear region is controlled

by changing mesh phasing. However, the control

principle of mesh phasing is not obvious in the

nonlinear region because the gear teeth will be

separated. The meshing frequency (Rotational speed)

has a great influence on the coupling of the waveform.

The phenomenon of subharmonic resonance has a

great relationship with the parameters, which can be

observed only by controlling the parameters [37]. The

mesh phasing is to change the amplitude of the specific

order harmonics of the system so that there is no

subharmonic resonance phenomenon.

The intermediate shaft is affected not only by the

vibration response of the first and second stage, but

also by its own natural frequency response. As shown

in Fig. 8c, the influence curve of mesh phasing on the

vibration of intermediate shaft appears multi-peak

curve, and the number of peaks decreases with the

increase of rotational speed. At the same time, from

the linear region of Fig. 8a and b, it can also be seen

that the number of peaks decreases with the increase of

rotational speed. The reason for this is due to the

relationship between the excitation frequency and the

natural frequency of the system. In the two-stage gear

transmission system, the excitation frequency is

controlled by the rotational speed, and the natural

frequency of the system is related to the meshing

natural frequency or torsional natural frequency under

this degree of freedom. When the excitation frequency

is lower than the natural frequency of the system, the

mesh phasing affects the amplitude of higher harmon-

ics for many times in the range of change, which

results in a multi-peak curve. But the curve is not

necessarily periodic.

The two-stage gear system is an integration and the

vibration characteristics of the second stage need to be

taken into account when looking at the vibration

characteristics of the first stage. Through Fig. 8b, it is

evident that the primary resonance frequency x22, the

super-harmonic resonance frequency x22=2 and

x22=3, the subharmonic resonance frequency 2x11

of the second stage, verifying the influence of the first

stage on the second stage. Combined with the _q
ðrmsÞ
2 in

Fig. 9b, it can be seen that the nonlinear characteristics

(nonlinear jumps and co-existence of solutions) of the

first stage in x11 and 2x11 have a clear impact, while

the impact at the corresponding mesh frequencies of

x11=2 and x11=3 is smaller. Figure 10 shows the time

histories of the first and second stages. The phase

changes of q2 and _q2 of the second stage can be clearly
seen. By the variation of their maximum vibration

amplitude, it can be found that there is a controlling

effect of the mesh phasing on the vibration amplitude.

In order to further analyze the effect of mesh

phasing on vibration intensity control. The percentage

decline of _q
ðrmsÞ
1 (i ¼ 1; 2; 3) at the optimal mesh

phasing compared to the worst mesh phasing under

different mesh frequencies is calculated and shown in

Fig. 11. The percentage decline curve of _q1 is more

consistent with the curve change of _q
ðrmsÞ
1 in Fig. 9a.

For example, the vibration reduction effect of mesh

phasing at the main resonance point, super-harmonic

resonance point, and sub-harmonic resonance point of

the first stage gear is better. Among them, the

percentage decline reaches more than 60% at the

main resonance frequency, and more than 80% at the

sub-harmonic resonance frequency. The curve of the

percentage decline of _q2 is similar to that of _q
ðrmsÞ
2

(Fig. 9b), but it is more similar to the percentage

decline curve of _q1.The percentage decline curve of _q3
is basically the collection of characteristics of _q1 and
_q2, because the torsion of the intermediate shaft is

directly affected by the first-stage and second-stage

meshing forces. In general, the vibration reduction

effect of the mesh phasing is about 20% on average,

and can reach more than 60% at special frequency.

4.2 Effect of mesh phasing angle on chaotic

motion

In order to further explore the effect of mesh phasing

on the nonlinear characteristics of gear, this section

explores the effect of mesh phasing on the chaotic

motion of a two-stage gear system. Gear system with

strong nonlinear characteristics can have chaotic

motion at high speeds and light loads [38]. Chaotic
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motion in gear trains generally occurs in the resonance

and subharmonic resonance regions, in the low

damping region, in the light load region and in the

large tooth profile error excitation region. Since

z2=z3 ¼ 40=20, the DTE of the second stage affects

the period of the DTE of the first stage, the interval of

the time section should be To ¼ 2Tp when performing

the Poincaré mapping of the system. Choosing X1 ¼
1:8 and e ¼ 0:3, the bifurcation diagrams and largest

Lyapunov exponent (LLE) for the q1 and q2 with

different damping are shown in Fig. 12.

Due to the interaction between q1 and q2 of a two-

stage gear system, the bifurcation diagrams of q1 and

q2 are consistent with the variation of the mesh

phasing, e.g. they have the same range of chaotic

motion and location of the bifurcation points. As the

mesh frequency is chosen in the 2x11 subharmonic

resonance region of the first stage gear, the system has

strong nonlinear characteristics here according to

Fig. 12, so it can be judged that the chaotic motion

is mainly generated by the first stage gear. A

comparison of the bifurcation diagrams for different

damping ratios f shows that the smaller the damping

ratio, the more likely chaotic motion is to occur in the

system. In Fig. 12c, the LLE is always negative, which

means that the system is always in periodic motion

Fig. 9 RMS variation in

z2=z3 ¼ 40=20, f ¼ 0:08,

x11 ¼ 1,x22 ¼ 1:5. a _q
ðrmsÞ
1 ,

b _q
ðrmsÞ
2

Fig. 10 Time history at

different mesh phasing in

z2=z3 ¼ 40=20, X1 ¼ 0:5,
f ¼ 0:08, x11 ¼ 1,

x22 ¼ 1:5. a q1, b _q1, c q2, d
_q2
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when the damping = 0.04. In Fig. 12a, when the mesh

phasing is less than 0.03, the system is in 2T-periodic

motion, and LLE is negative. When the mesh phasing

ranges from 0.03 to 0.48, the system is in chaotic

motion and LLE is positive. When the mesh phasing is

greater than 0.8, the system is in 1T-periodic motion

and LLE is negative. Under f ¼ 0:02, the proportion

of chaotic motion is large, and it is difficult to

determine how the gear system transfers into chaotic

motion. From Fig. 12b, it can be seen that the system

seems to have a period-doubling bifurcation, but it

cannot be determined from the LLE diagram. When

the mesh phasing is greater than 1.4, the system is in

1T-periodic motion and LLE is negative. In order toFig. 11 Percentage decline in vibration of the optimal mesh

phasing

Fig. 12 Bifurcation diagrams and LLE diagram of q1 and q2 with mesh phasing in z2=z3 ¼ 40=20, x11 ¼ 1, x22 ¼ 1:5, X1 ¼ 1:8,
e ¼ 0:3. a f ¼ 0:02, b f ¼ 0:03, c f ¼ 0:04
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further judge the bifurcation characteristics of the

system when the mesh phasing is less than 0.14, the

phase diagram under different mesh phasing is drawn

(Fig. 13).

As can be seen from Fig. 13, when the mesh

phasing is 0.02, the system is in 4T-periodic motion

and the LLE is negative (Fig. 12b). With the increase

of mesh phasing, when it is equal to 0.03, the system is

in a chaotic motion state, and the LLE is positive.

When the mesh phasing is 0.04, the system returns to

4T-periodic motion. When it continues to increase to

0.05, the system is in 2T-periodic motion. A period-

doubling bifurcation occurs between 0.04 and 0.05,

and the presence of 0 values can also be seen from the

LLE diagram. Then, when the mesh phasing is 0.75,

the system is in a chaotic motion state, but when the

mesh phasing is 0.8, a 2T-periodic motion point

appears, and it can be found in the LLE is negative.

Then the system is in chaotic motion again at mesh

phasing 0.85. When mesh phasing is 0.1, the system

returns to 2T-periodic motion and LLE is negative.

When the mesh phasing is between 0.1 and 0.12, the

system is in chaotic motion. At the mesh phasing

0.125, it goes to 4T-periodic state. The period-

doubling bifurcation occurs when the mesh phasing

is 0.135, and LLE is 0. When the mesh phasing is

greater than equal 0.14, the system is in 1T-period

state, and LLE is always negative. Through the above

analysis, it is obvious that the mesh phasing enters the

chaotic motion through period-doubling bifurcation

(Fig. 13).

Next, the analysis is carried out in the primary

resonance area of the first stage gear. The Poincaré

mapping of the system using time sections To ¼ 2Tp,

choosing X1 ¼ 0:9 and e ¼ 0:3, and the bifurcation

diagrams for q1 and q2 at different damping ratios f are
shown in Fig. 14. According to Fig. 14a and b, chaotic

motion occurs on both sides of the mesh phasing, and

near the mesh phasing u ¼ 0:25, the mesh phasing has

a significant suppression effect on chaotic motion.

This is not consistent with the results in Fig. 12 and

illustrates the other parameters that play a controlling

Fig. 13 Phase portrait of different mesh phasing in z2=z3 ¼ 40=20, x11 ¼ 1, x22 ¼ 1:5, X1 ¼ 1:8, e ¼ 0:3 f ¼ 0:03
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role. Comparing Sects. 4.1, it can be seen that the

control laws of the mesh phasing in steady and chaotic

motion are not the same and need to be discussed

separately in calculations for the design of an actual

gear system.

The results indicate that the mesh phasing has a rich

influence on the nonlinear dynamic characteristics of the

two-stage gear system. As the mesh phasing changes,

the system presents a variety of response states such as

1T-periodic, 2T-periodic, 4T-periodic, and chaotic

motion. There are also period-doubling bifurcations

and period windows. When the system is in chaotic

motion, it means that the movement is irregular and the

stability is poor. For the gear system, the phenomenonof

tooth separation and tooth collision may occur, which

greatly increases the possibility of gear failure. There-

fore, chaos control can be carried out through mesh

phasing to avoid the chaotic motion region reasonably

and improve the stability of the system.

4.3 Effect of the coaxial teeth ratio

on the vibration characteristics

According to the relationship between the mesh

phasing and the coaxial teeth ratio, the coaxial teeth

ratio has a direct influence on the range of the mesh

phasing, so it is necessary to investigate the influence

of the mesh phasing on the vibration characteristics of

the system at different coaxial teeth ratios. Five

different coaxial teeth ratios were selected for com-

parison and the relationship between coaxial teeth ratio

and mesh phasing is shown in Table 3, the range of

mesh phasing can be obtained by Eqs. (4)–(5). Taking

into account the influence of coaxial teeth ratios on the

Fig. 14 Bifurcation diagrams and LLE diagram of q1 and q2 with mesh phasing in z2=z3 ¼ 40=20, x11 ¼ 1, x22 ¼ 1:5, X1 ¼ 0:9,
e ¼ 0:3. a f ¼ 0:01, b f ¼ 0:015, c f ¼ 0:02
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Table 3 Relationship between mesh phasing and different coaxial teeth ratios

Coaxial teeth ratio Range of mesh phasing Integration steps DRi1 ¼ D _q
ðrmsÞ
1 DRi2 ¼ D _q

ðrmsÞ
2

R1 ¼ z2=z3 ¼ 40=20 u1 ¼ 0;u2 2 ð0; 0:5Þ 200Tp 0.006 0.004

R2 ¼ z2=z3 ¼ 40=24 u1 ¼ 0;u2 2 ð0; 0:2Þ 300Tp 0.002 0.0006

R3 ¼ z2=z3 ¼ 40=25 u1 ¼ 0;u2 2 ð0; 0:125Þ 240Tp 0.0002 0.0005

R4 ¼ z2=z3 ¼ 40=22 u1 ¼ 0;u2 2 ð0; 0:05Þ 440Tp 0.0001 0.00001

R5 ¼ z2=z3 ¼ 40=21 u1 ¼ 0;u2 2 ð0; 0:025Þ 420Tp 0.00004 0.000002

Fig. 15 Effect of mesh

phasing on system vibration

for different coaxial teeth

ratios at x11 ¼ 1, X ¼ 0:32
a z2=z3 ¼ 40=20, b
z2=z3 ¼ 40=24, c
z2=z3 ¼ 40=25, d
z2=z3 ¼ 40=22, e
z2=z3 ¼ 40=21
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DTE of the system, different integration steps are used

for different coaxial teeth ratios as shown in Table 3.

Selecting f ¼ 0:1 and X ¼ 0:32, the variation curves

of _q
ðrmsÞ
1 and _q

ðrmsÞ
2 with the mesh phasing for different

coaxial teeth ratios are shown in Fig. 15.

In Fig. 15a, the change in mesh phasing is a three-

peaked curve. Comparing the variation curves of

different coaxial teeth ratios, it is found that the

variation curves of _q
ðrmsÞ
1 are single-peak at different

coaxial teeth ratios R2, R3, R4 and R5, but the locations

of the extreme points are different. The change curve

of _q
ðrmsÞ
2 is a double-peak curve at coaxial teeth ratio

R1R3R5, while it is a single-peak curve at coaxial teeth

ratio R2R4. It can be seen that the multi-peaked curves

of _q
ðrmsÞ
1 and _q

ðrmsÞ
2 are not so obvious for different

coaxial teeth ratios. The difference between the

maximum and minimum _q
ðrmsÞ
1 and _q

ðrmsÞ
2 for different

coaxial teeth ratios was calculated to investigate the

effect of mesh phasing and coaxial teeth ratio on the

suppression of vibration amplitude, and the results are

shown in Table 3. To facilitate comparative ordering,

the difference between the maximum and minimum of

_q
ðrmsÞ
1 and _q

ðrmsÞ
2 for different coaxial teeth ratios is

defined as DRi1 ¼ D _q
ðrmsÞ
1 and DRi2 ¼ D _q

ðrmsÞ
2 .

According on the y-coordinate in Fig. 15 and the data

in Table 3, DR11 [DR21 [DR31 [DR41 [DR51 is

obtained, which corresponds to the magnitude of the

mesh phasing for different coaxial teeth ratios. How-

ever, DR12 [DR32 [DR22 [DR42 [DR52, the

difference in the relationship between the coaxial

teeth ratio R2 and R3 is due to the fact that the effect of

changes in geometric parameters caused by the

number of teeth z3 exceeds the effect of the mesh

phasing. Thus, the relationship between the magnitude

of D _q
ðrmsÞ
2 and the range of mesh phasing u2 for

different coaxial teeth ratios is roughly the same.

In order to further explore the vibration reduction

effect of the mesh phasing of the coaxial tooth ratio,

based on Fig. 15 and Table 3, the percentage decline

of the mesh phasing on the vibration intensity under

different coaxial tooth ratio is plotted, as shown in

Fig. 16. Combined with Sect. 4.1, when the coaxial

tooth ratio is z2=z3 ¼ 40=24, the average percentage

decline of vibration is 20%, which is consistent with

the results in Fig. 16, and the periodic range of the

mesh phasing is 0.5 at this time. According to the

coupling relationship between the mesh phasing and

the coaxial teeth ratio, the larger the minimum

common multiple of the number of coaxial teeth, the

smaller the periodic range of the mesh phasing. It can

be concluded from Fig. 16 that as the periodic range of

mesh phasing decreases, the influence of mesh phasing

on vibration will also decrease. When the periodic

range of mesh phasing is less than 0.05, the vibration

reduction effect of mesh phasing will be completely

less than 1%, which means that the influence of mesh

phasing on vibration can be ignored. However, when

the mesh phasing variation range is greater than 0.2,

the percentage decline of mesh phasing can reach

7.57%. At this time, the purpose of reducing vibration

and noise can be achieved by adjusting the mesh

phasing angle.

In order to eliminate the contingency of the mesh

phasing and the coaxial teeth ratio on the vibration

characteristics, mesh frequency X ¼ 0:6 are selected

and the curves of _q
ðrmsÞ
1 and _q

ðrmsÞ
2 with the mesh

phasing for different coaxial teeth ratios are solved as

shown in Fig. 17. The variation with mesh phasing in

Fig. 17a is a double-peak curve, which is consistent

with previous results. Comparing the relationship

between DRi1 ¼ D _q
ðrmsÞ
1 and DRi2 ¼ D _q

ðrmsÞ
2 at differ-

ent coaxial teeth ratios according to Fig. 14 those

magnitude of the relationship is consistent with the

mesh frequency X ¼ 0:32, thus verifying the effect

law of the mesh phasing and coaxial teeth ratio on the

vibration characteristics. According to the magnitude
Fig. 16 Percentage decline in vibration of the optimal mesh

phasing under different coaxial teeth ratios
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relationship between DRi1 ¼ D _q
ðrmsÞ
1 and DRi2 ¼

D _q
ðrmsÞ
2 as well as the variation law of the mesh

phasing range, it can be obtained that the mesh phasing

range is small when the number of teeth of the

intermediate shaft is coprime. The smaller the range of

mesh phasing, the smaller the effect of mesh phasing

on _q
ðrmsÞ
1 and _q

ðrmsÞ
2 . The law is found to hold for steady

motion by numerical calculations. In the design of a

two-stage gear system, it is possible to choose the

prime number of teeth of the intermediate shaft, and

thus ignore the effect of the mesh phasing on the

vibration characteristics of the system, which has

some engineering significance.

Other gear systems have different results for the

mesh phasing. In the planetary gear transmission

system [19], the mesh phasing is determined by

adjusting the number of planets and the number of

teeth of the sun wheel, so as to achieve different

vibration reduction effects. However, in idler system,

only adjusting gear train layout can reduce the

amplitude of the meshing force through the mesh

phasing [39]. The results obtained in this paper are

obtained by adjusting the number of coaxial teeth and

the mesh phasing to suppress the vibration. The result

forms of different gear transmission systems are

different, the influence law of the mesh phasing is

Fig. 17 Effect of mesh

phasing on system vibration

for different coaxial teeth

ratios at x11 ¼ 1, X ¼ 0:6 a
z2=z3 ¼ 40=20, b
z2=z3 ¼ 40=24, c
z2=z3 ¼ 40=25, d
z2=z3 ¼ 40=22, e
z2=z3 ¼ 40=21
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also very different, so this paper fills the gap of the

mesh phasing in the multi-stage gear system.

5 Conclusion

In the current work, the time-varying mesh stiffness

taking into account the mesh phasing and the coaxial

teeth ratio is developed based on the potential energy

method. The dynamic model for a two-stage gear

system is established. The coupling relationship

between the mesh phasing and the coaxial teeth ratio

is derived. The nonlinear vibration characteristics with

mesh phasing and coaxial teeth ratio are analyzed. The

effect of these factors on the system vibration response

is revealed. The main conclusions reached in this

paper are as follows:

(1) The coupling relationship between the mesh

phasing and the coaxial teeth ratio is derived and

validated by the simulation test model at different

coaxial teeth ratios. It is found that the coaxial teeth

ratio reduces the periodic variation range of mesh

phasing. Due to the periodic rotation of the gear, the

larger the minimum common multiple of the

number of coaxial teeth, the smaller the range of

mesh phasing.

(2) The nonlinear characteristics of the two-stage

gear system (softening curve, super-harmonic res-

onance, subharmonic resonance, and co-existence

solutions) are obtained based on numerical calcu-

lations. The influence of mesh phasing at different

mesh frequencies is analyzed. The mesh phasing

will suppress the super-harmonic resonance. The

vibration intensity changes with the mesh phasing

are a multi-peak curve, and the number of peaks

decreases with the increase of rotational speed.

When the coaxial tooth number ratio is 40/20, the

vibration reduction effect of the mesh phasing is

about 20% on average, and can reach more than

60% at special speed.

(3) At different speeds, the mesh phasing and

damping coefficient have different effects on the

chaotic motion of the system. Therefore, by match-

ing mesh phasing, damping coefficient and speed

reasonably, the gear system can achieve the purpose

of controlling chaotic motion. Compared with mesh

phasing, the damping system has more obvious

suppression of chaotic motion. But the mesh

phasing as a design parameter needs to be designed

in advance.

(4) the larger the lowest common multiple of the

coaxial teeth number, the smaller the range of mesh

phasing, and the smaller the effect of the mesh

phasing on the vibration amplitude. When the range

of mesh phasing is less than 0.125, the effect of

mesh phasing on vibration is less than 1%, which

can be ignored. When the range of mesh phasing is

0.5, the corresponding percentage decline of vibra-

tion intensity is about 20%, and the effect of

vibration reduction can be achieved by adjusting the

mesh phasing. In actual gear design, the range of

mesh phasing change can be calculated by the

number of coaxial teeth ratio to determine whether

the effect of mesh phasing should be considered.

The relationship between the mesh phasing and the

coaxial teeth ratio is derived and its influence on the

vibration of multi-stage gear system is obtained.

However, the actual damping effect and the optimal

value of mesh phasing can be calculated only with

given parameters in engineering practice. The effect of

mesh phasing relationship on the vibration character-

istics of multi-stage and multi-degree-of-freedom gear

transmission system can be further studied. For

example, the vibration effect of mesh phasing on axial

and translational degree-of-freedom of gear is consid-

ered. The method of finding the optimal parameters for

mesh phasing damping under given parameters is also

a valuable topic.

Acknowledgements The authors would like to acknowledge

the financial support from the NSFC, the research is funded by

National Natural Science Foundation of China (Contract No.

51775036), these supports are gracefully acknowledged.

Data availability The data can be made available on

reasonable request.

Declarations

Conflict of interests Wei Li and other co-authors declare that

we have no known competing financial interests or personal

relationships that could have appeared to influence the work

reported in this paper.

References

1. Zhang, A., Wei, J., Shi, L., Qin, D., Lim, T.C.: Modeling

and dynamic response of parallel shaft gear transmission in

123

19876 W. Li, Z. Li



non-inertial system. Nonlinear Dyn. 98, 997–1017 (2019).

https://doi.org/10.1007/s11071-019-05241-w

2. Kahraman, A.: Dynamic analysis of a multi-mesh helical

gear train. Proc. ASME Des. Eng. Tech. Conf. Part F1680,

365–373 (1992). https://doi.org/10.1115/DETC1992-0046

3. Lin, J., Parker, R.G.: Mesh stiffness variation instabilities in

two-stage gear systems. J. Vib. Acoust. Trans. ASME. 124,
68–76 (2002). https://doi.org/10.1115/1.1424889

4. Parker, R.G.: Physical explanation for the effectiveness of

planet phasing to suppress planetary gear vibration. J. Sound

Vib. 236, 561–573 (2000). https://doi.org/10.1006/jsvi.

1999.2859

5. Parker, R.G., Lin, J.: Mesh phasing relationships in plane-

tary and epicyclic gears. J. Mech. Des. Trans. ASME. 126,
365–370 (2004). https://doi.org/10.1115/1.1667892

6. Al-Shyyab, A., Kahraman, A.: Non-linear dynamic analysis

of a multi-mesh gear train using multi-term harmonic bal-

ance method: period-one motions. J. Sound Vib. 284,
151–172 (2005). https://doi.org/10.1016/j.jsv.2004.06.010

7. Al-Shyyab, A., Kahraman, A.: Non-linear dynamic analysis

of a multi-mesh gear train using multi-term harmonic bal-

ance method: sub-harmonic motions. J. Sound Vib. 279,
417–451 (2005). https://doi.org/10.1016/j.jsv.2003.11.029

8. Gill-Jeong, C.: Numerical study on reducing the vibration of

spur gear pairs with phasing. J. Sound Vib. 329, 3915–3927
(2010). https://doi.org/10.1016/j.jsv.2010.04.005

9. Guo, Y., Parker, R.G.: Analytical determination of mesh

phase relations in general compound planetary gears. Mech.

Mach. Theory. 46, 1869–1887 (2011). https://doi.org/10.

1016/j.mechmachtheory.2011.07.010

10. Wang, S., Huo, M., Zhang, C., Liu, J., Song, Y., Cao, S.,

Yang, Y.: Effect of mesh phase on wave vibration of spur

planetary ring gear. Eur. J. Mech. ASolids. 30, 820–827
(2011). https://doi.org/10.1016/j.euromechsol.2011.06.004

11. Kang, M.R., Kahraman, A.: An experimental and theoreti-

cal study of the dynamic behavior of double-helical gear

sets. J. Sound Vib. 350, 11–29 (2015). https://doi.org/10.

1016/j.jsv.2015.04.008

12. Yavuz, S.D., Saribay, Z.B., Cigeroglu, E.: Nonlinear time-

varying dynamic analysis of a multi-mesh spur gear train.

Conf. Proc. Soc. Exp. Mech. Ser. 4, 309–321 (2016). https://
doi.org/10.1007/978-3-319-29763-7_30

13. Brecher, C., Schroers, M., Löpenhaus, C.: Experimental
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