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Abstract This paper aims to study the finite-time
synchronization (FTS) of fractional-order delayed
memristor-based Cohen–Grossberg neural networks
(FODMCGNNs). Firstly, on the basis of the inequality
on fractional-order derivative of the composite func-
tion, a novel fractional-order finite-time inequality is
established; it extends the existing one and can be
employed to discuss the FTS of fractional-order dif-
ferential systems. More importantly, it is demonstrated
theoretically that the estimated settling time by this
inequality is more accurate than that with the existing
one. Subsequently, on the basis of this novel inequality,
the designed feedback controllers, and the fractional-
order power law inequality, two novel criteria are
obtained to ensure the FTS of FODMCGNNs. Finally,
three examples are given to verify the correctness and
advantage of the obtained results.

Keywords Finite-time synchronization · Fractional-
order · Memristor-based Cohen–Grossberg neural
network · Time delay

F. Du · J.-G. Lu (B)
Department of Automation, Shanghai Jiao Tong University, Key
Laboratory of System Control and Information Processing, Min-
istry of Education of China, and Shanghai Engineering Research
Center of Intelligent Control and Management,
Shanghai 200240, China
e-mail: jglu@sjtu.edu.cn

F. Du
e-mail: qinjin65@126.com

1 Introduction

Over the past decades, neural networks (NNs) have
attracted much attention on account of their poten-
tial applications in agriculture, medical image-based
diagnosis, manipulator motion generation, fault diag-
nosis of mechanical intelligence, and so on. Cohen–
Grossberg neural network (CGNN) was first proposed
in 1983 [7], which includes numerous models such
as evolutionary, population biology, and neurobiology
theory. It can be seen as the generalization of some clas-
sicalNNs such as cellularNNs,HopfieldNNs, andbidi-
rectional associative memory NNs [3]. Hence, CGNNs
have been extensively investigated bymany researchers
[17].

Fractional-order calculus has attracted more and
more interest due to its wide application prospects
in uncertain financial market, cancer treatment, blood
ethanol concentration systems, and so on. Fractional-
order calculus possesses more degrees of freedom and
infinite memory in comparison with integer-order cal-
culus. Hence, it can describemany systems better. Con-
sequently, fractional-order calculus has been incorpo-
rated into CGNNs to form fractional-order Cohen–
Grossberg neural networks (FOCGNNs). Recently,
FOCGNNs have been widely explored and many valu-
able contributions on them have been made [11,26].

The memristor is a two-terminal electrical com-
ponent relating magnetic flux and electric charge. It
was first put forward by Chua [6] and realized by
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HP labs [25]. The memristor has been extensively
investigated for hardware implementation of NNs on
account of the superiorities of functional similar-
ity to the biological synapse, low power consump-
tion, nanometer size, and fast switching speed [34].
Hence, the memristor is introduced to simulate the
synapse in the FOCGNNs to form fractional-order
memristor-based Cohen–Grossberg neural networks
(FOMCGNNs). Recently, FOMCGNNs have been a
hot topic and some remarkable works on FOMCGNNs
have been reported [1,28].

Synchronization of FOMCGNNs has been paid
much attention owing to its wide practical applica-
tions in image encryption, cryptography, HIV infec-
tion model, secure communications, and so on. Up
to now, plenty of contributions have been made
on synchronization, such as Mittag–Leffler synchro-
nization, quasi-synchronization, asymptotic synchro-
nization, and exponential synchronization, which are
all concerned with synchronization error within the
infinite-time interval.As reported in [29],most real sys-
tems only operatewithin a limited time interval. Hence,
more and more efforts have been made to investigate
the finite-time synchronization (FTS) of fractional-
order systems and a great deal of valuable research
achievements have been reported until now. In [2], the
FTS of fractional-order systems was first investigated
by using fractional nonsingular terminal sliding mode
technique. In [9], the FTS of fractional-order real val-
ued memristor-based neural networks was studied by
the fractional-order Gronwall inequality. In [35], the
FTS of complex-valued fractional-order neural net-
works was investigated by some developed fractional-
order inequalities. In [31], the FTS of quaternion-
valued fractional-order neural networks was investi-
gated on the basis of some established fractional-order
differential inequalities. Overall, the above discussed
FTS can be divided into two categories. The first cate-
gory of FTSmeans that the synchronization error tends
to zero in a limited time. The second category of FTS
means that the synchronization error does not exceed
the given bounds within a limited time interval. The
first category of FTS is investigated in this article.

Due to finite processing speeds and information
transmission among the units, time delays are univer-
sally involved in neural networks, which may bring
about some undesirable phenomenon such as chaos,
oscillation, and even instability [8]. Therefore, it is nec-
essary and significant to study the FTS of fractional-

order delayedmemristor-based Cohen–Grossberg neu-
ral networks (FODMCGNNs). Recently, some contri-
butions have been made to the FTS of FODMCGNNs.
In [36], on the basis of the fractional-order Gronwall
inequality, the first kind of FTS of FODMCGNNs was
investigated. In [16], the second kind of FTS of FODM-
CGNNs was investigated with the aid of inequality
skills. However, the results in [16] are connected with
a certain imperfection. Specifically, the FTS criteria
were established on the basis of unreliable inequality
and equality, respectively. The detailed discussion can
be found in Remarks 7 and 8.

It is widely known that the integer-order finite-
time inequality (IOFTI) is a main tool of FTS the-
ory for ordinary differential systems [19], a very nat-
ural idea is to extend the IOFTI to the corresponding
FO case to explore the FTS of fractional-order differ-
ential systems (FODSs). Nowadays, various kinds of
IOFTIs have been generalized to the fractional-order
finite-time inequalities (FOFTIs) to study the FTS of
FODSs [32]. For example, the FOFTI ct0D

ν
t V (t) ≤ −b

has been established to investigate the FTS of various
FO complex networks [23]. The FOFTI c

t0D
ν
t V (t) ≤

−δV (t) − ε has been developed to study the FTS of
various FO neural networks [21]. Recently, an attempt
[15, Property 3] has been made to generalize the clas-
sical first-order inequality V ′(t) ≤ −δV (t) − εV ϑ(t)
with 0 < ϑ < 1 in [24] to the fractional-order case
c
t0D

ν
t V (t) ≤ −δV (t)− εV ϑ(t) with 0 < ϑ < 1. How-

ever, the FOFTI has additional features over the IOFTI
[33]. The commonly used theoretical basis, which was
used in the proof of [15, Property 3], c

t0D
ν
t h

α(t) =
�(2−ν)�(1+α)

�(1+α−ν)
hα−1(t)ct0D

ν
t h(t) may be not applicable.

As a result, the FOFTI, which is based on this particular
equality, appears to be uncertain and raises questions
about its validity. In summary, the theory of FOFTI is
still in its infancy and remains to be developed further.
The main difficulty is that the existing widely used the-
oretical basis is difficult to establish the novel FOFTI.
It is still a challenging task to develop the novel FOFTI
by studying the FTS of FODMCGNNs and reducing
the conservativeness of the results.

Motivated by the aforementioned discussions, the
FTS of FODMCGNNswill be investigated by the novel
FOFTI, the designed feedback controllers, and the
fractional-order power law inequality. The key points
for our contributions include:
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(i) A novel fractional-order finite-time inequality is
established; it extends the existing one and can be
employed to investigate the FTS of FODSs.

(ii) With the help of the novel fractional-order finite-
time inequality, the designed feedback controllers,
and the fractional-order power law inequality, two
novel criteria are obtained to ensure the FTS of
FODMCGNNs.

(iii) It is demonstrated theoretically that the estimated
settling time obtained by our developed novel
inequality is more accurate than the existing one
(see Remark 5).

The rest of this article is arranged as follows. Pre-
liminaries on fractional-order calculus are provided in
Sect. 2. Besides, the considered FODMCGNNs are also
presented. In Sect. 3, a novel fractional-order finite-
time inequality is established. Based on this developed
inequality, the designed feedback controllers, and the
fractional-order power law inequality, two novel FTS
criteria of FODMCGNNs are obtained. In Sect. 4, three
examples are provided to support the theoretical results.
Conclusions are given in Sect. 5.

Notations: Nı = {ı, ı + 1, ı + 2, . . .}, Nj
ı = {ı, ı +

1, ı + 2, . . . , j}, where j, ı ∈ R and j − ı ∈ N1. For
w = (w1, w2, . . . , wm)T ∈ R

m , ‖w‖ = ∑m
i=1 |wi |.

sign(w) is the sign function of w ∈ R. R, R+ are
the set of real numbers, the set of nonnegative num-
bers, respectively. Rm is the m-dimensional Euclidean
space. C m([0,+∞),R) represents a set of continuous
m-order differentiable functions from [0,+∞) into R.

2 Preliminaries and problem formulation

2.1 Preliminaries

Definition 1 [22] The Caputo derivative of the func-
tion w ∈ C 1([t0, t],R) with κ-order is given by

c
t0D

κ
t w(t) =

∫ t

t0

(t − θ)−ν

�(1 − ν)
w′(θ)dθ,

where κ ∈ (0, 1), �(·) is the gamma function.

Lemma 1 [27] Assume w ∈ C 1(R,R) and υ ∈ C 1

([t0,+∞),R). Ifw is convex onR and κ ∈ (0, 1), then

c
t0D

κ
t w(υ(t)) ≤ dw

dυ
c
t0D

κ
t υ(t), t ≥ t0.

Lemma 2 [21] Suppose that V ∈ C 1([t0,+∞),R),

c
t0D

κ
t V (t) ≤ λV (t) + μ, t ≥ t0,

where 0 < κ < 1, λ �= 0 and μ are constants. Then

V (t) ≤
(
V (t0) + μ

λ

)
Eκ(λ(t − t0)

κ) − μ

λ
, t ≥ t0,

where Eκ(z) = ∑∞
i=0

zi
�(iκ+1) is the Mittag–Leffler

function.

Lemma 3 [14] For a, b > 0, ξ, η > 1, and 1/ξ +
1/η = 1, one has

ab ≤ aξ

ξ
+ bη

η
.

Lemma 4 [32] (Fractional-order power law inequal-
ity) Suppose that κ ∈ (0, 1), p̃ ≥ 1, and the function
f ∈ C 1(R,R). Then one has

c
t0D

κ
t f p̃(t) ≤ p̃sign( f (t))| f (t)| p̃−1c

t0D
κ
t f (t).

Lemma 5 [20] If there exists a positive definite func-
tion V ∈ C 1([t0,+∞),R+) such that

c
t0D

κ
t V (t) ≤ −μ, V (t) ∈ R

+\{0}, (1)

where 0 < κ < 1,μ > 0, then one has limt→t� V (t) =
0 and V (t) = 0 for all t ≥ t�, where

t� ≤
[
�(1 + κ)V (t0)

μ

] 1
κ + t0. (2)

Lemma 6 [12, Lemma 1] Assume that δ > 0, ε > 0,
0 < μ < 1, and Ũ ∈ R

n is a neighborhood of
the origin. If there exists a positive definite function
V ∈ C 1(Ũ ,R+) such that

V ′(t) ≤ −δV (t) − εVμ(t), V (t) ∈ R
+\{0},

then one has limt→t∗ V (t) = 0 and V (t) = 0, t ≥ t∗,
where

t∗ ≤ t0 + ln
(
1 + δ

ε
V 1−μ(t0)

)

δ(1 − μ)
.
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2.2 Problem formulation

Consider the following FODMCGNNs
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c
t0D

κ
t xk(t) = − dk(xk(t))

{

ck(xk(t)) − Jk

−
n∑

i=1

aki (xi (t))hi (xi (t))

−
n∑

i=1

bki (xi (t − ρ))gi (xi (t − ρ))

}

,

xk(t) = ψk(t), t ∈ [−ρ, 0],

(3)

and
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c
t0D

κ
t yk(t) = − dk(yk(t))

{

ck(yk(t)) − Jk

−
n∑

i=1

aki (yi (t))hi (yi (t))

−
n∑

i=1

bki (yi (t − ρ))gi (yi (t − ρ))

}

+ uk(t),

yk(t) = φk(t), t ∈ [−ρ, 0],

(4)

where k ∈ N
n
1, the fractional-order κ ∈ (0, 1); dk(·)

denotes the amplification function, ck(·) is the well-
behaved function, xk(·), yk(·) represent the states of
the k-th neuron, hi (·) and gi (·) stand for the activation
functions, aki (·) and bki (·) are the memristive synaptic
connection weights, the constant ρ > 0 is the trans-
mission delay, Jk represents constant external inputs.

On the basis of the feature of memristor [36], let

aki (xi (t)) =
{
a��
ki , |xi (t)| > Tk,

a�
ki , |xi (t)| ≤ Tk,

bki (xi (t − ρ)) =
{
b��
ki , |xi (t − ρ)| > Tk,
b�
ki , |xi (t − ρ)| ≤ Tk,

aki (yi (t)) =
{
a��
ki , |yi (t)| > Tk,

a�
ki , |yi (t)| ≤ Tk,

bki (yi (t − ρ)) =
{
b��
ki , |yi (t − ρ)| > Tk,
b�
ki , |yi (t − ρ)| ≤ Tk,

where a�
ki , a

��
ki , b

�
ki , b

��
ki , k, i ∈ N

n
1 are constants, the

switching jumps Tk > 0.

Since the FODMCGNNs (3) and (4) are discontin-
uous, the solution of the FODMCGNNs (3) and (4)
cannot be defined via the classical solutions. To investi-
gate the solutions of the FODMCGNNs (3) and (4), the
solutions of the FODMCGNNs (3) and (4) have to be
considered in Filippov’s sense [13]. Hence, the FODM-
CGNNs (3) and (4) can be transformed into the their
differential inclusion form via differential inclusions
and the set-valued maps. Based on this, one defines the
set-valued maps as follows:

K [aki (xi (t))] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a��
ki , |xi (t)| > Ti ,

co
{
a�
ki , a

��
ki

}
, |xi (t)| = Ti ,

a�
ki , |xi (t)| < Ti ,

K [bki (xi (t − ρ))] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

b��
ki , |xi (t − ρ)| > Ti ,

co
{
b�
ki , b

��
ki

}
, |xi (t − ρ)| = Ti ,

b�
ki , |xi (t − ρ)| < Ti ,

K [aki (yi (t))] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a��
ki , |yi (t)| > Ti ,

co
{
a�
ki , a

��
ki

}
, |yi (t)| = Ti ,

a�
ki , |yi (t)| < Ti ,

K [bki (yi (t − ρ))] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

b��
ki , |yi (t − ρ)| > Ti ,

co
{
b�
ki , b

��
ki

}
, |yi (t − ρ)| = Ti ,

b�
ki , |yi (t − ρ)| < Ti ,

where the convex closure of a set is denoted as co;
K [alk(xk(t))], K [blk(xk(t − h̄))], K [alk(yk(t))], and
K [blk(yk(t − h̄))] are all closed, convex and compact
about xk(t), xk(t − h̄), yk(t), and yk(t − h̄).

On the basis of the theory of differential inclusions
and the set-valuedmaps, the FODMCGNNs (3) and (4)
can be rewritten as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c
t0D

κ
t xk(t) ∈ − dk(xk(t))

{

ck(xk(t)) − Jk

−
n∑

i=1

K [aki (xi (t))]hi (xi (t))

−
n∑

i=1

K [bki (xi (t − ρ))]gi (xi (t − ρ))

}

,

xk(t) = ψk(t), t ∈ [−ρ, 0]

(5)

123



Novel methods of finite-time synchronization 18989

and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c
t0D

κ
t yk(t) ∈ − dk(yk(t))

{

ck(yk(t)) − Jk

−
n∑

i=1

K [aki (yi (t))]hi (yi (t))

−
n∑

i=1

K [bki (yi (t−ρ))]gi (yi (t−ρ))

}

+ uk(t),

yk(t) = φk(t), t ∈ [−ρ, 0],
(6)

respectively.
According to differential inclusions theory and the

set-valued map, there exist ãki (xi (t)) ∈ K [aki (xi (t))],
b̃ki (xi (t − ρ)) ∈ K [bki (xi (t − ρ))], âki (yi (t)) ∈
K [aki (yi (t))] and b̂ki (yi (t − ρ)) ∈ K [bki (yi (t − ρ))]
such that the FODMCGNNs (3) and (4) can be rewrit-
ten as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c
t0D

κ
t xk(t) = − dk(xk(t))

{

ck(xk(t)) − Jk

−
n∑

i=1

ãki (xi (t))hi (xi (t))

−
n∑

i=1

b̃ki (xi (t − ρ))gi (xi (t − ρ))

}

,

xk(t) = ψk(t), t ∈ [−ρ, 0]

(7)

and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c
t0D

κ
t yk(t) = − dk(yk(t))

{

ck(yk(t)) − Jk

−
n∑

i=1

âki (yi (t))hi (yi (t))

−
n∑

i=1

b̂ki (yi (t − ρ))gi (yi (t − ρ))

}

+ uk(t),

yk(t) = φk(t), t ∈ [−ρ, 0].
(8)

Let zk(t) = yk(t)− xk(t). Then the synchronization
error system is
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c
t0D

κ
t zk(t) = − dk(yk(t))

{

ck(yk(t)) − Jk

−
n∑

i=1

âki (yi (t))hi (yi (t))

−
n∑

i=1

b̂ki (yi (t − ρ))gi (yi (t − ρ))

}

+ uk(t)

+ dk(xk(t))

{

ck(xk(t)) − Jk

−
n∑

i=1

ãki (xi (t))hi (xi (t))

−
n∑

i=1

b̃ki (xi (t − ρ))gi (xi (t − ρ))

}

,

zk(t) = ϕk(t), t ∈ [−ρ, 0].

(9)

Definition 2 FODMCGNNs (3) and (4) are finite-time
synchronized if there exists a constant t̃ > 0 satisfying

lim
t→t̃

zk(t) = 0 and zk(t) = 0, t > t̃, k ∈ N
n
1 .

In addition, t∗ = inf{t |zk(t) = 0, t ≥ t0} is the set-
tling time.

In order to realize the FTS between the FODM-
CGNNs (3) and (4), the following assumptions are
given.

Assumption 1 [20] There exist positive constants dk ,
d̄k , d̃k such that

0 < dk < dk(x(t)) ≤ d̄k < ∞

and

|dk(y(t)) − dk(x(t))| ≤ d̃k |y(t) − x(t)|

for x(t), y(t) ∈ R, k ∈ N
n
1.

Assumption 2 [20] There exists a constant ζk > 0
such that

|dk(y(t))ck(y(t))−dk(x(t))ck(x(t))|≤ ζk |y(t)−x(t)|

for x(t), y(t) ∈ R, k ∈ N
n
1.
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Assumption 3 [20] There exist positive constants h̄k ,
ḡk , Hk , Gk satisfying

|hk(x(t))| ≤ h̄k,

|gk(x(t))| ≤ ḡk,

|hk(y(t)) − hk(x(t))| ≤ Hk |y(t) − x(t)|,
|gk(y(t)) − gk(x(t))| ≤ Gk |y(t) − x(t)|

for x(t), y(t) ∈ R, k ∈ N
n
1.

Lemma 7 [10] Let ăki = max{|a�
ki |, |a��

ki |}. b̆ki =
max{|b�

ki |, |b��
ki |}. Then one has

|dk(yk(t))̂aki (yi (t)) − dk(xk(t))̃aki (xi (t))|
≤ ăki d̃k |xk(t) − yk(t)| + 2ăki dk, (10)

|dk(yk(t))̂bki (yi (t − ρ)) − dk(xk(t))̃bki (xi (t − ρ))|
≤ b̆ki d̃k |xk(t) − yk(t)| + 2b̆ki dk . (11)

for xk(t), xi (t), xi (t − ρ), yk(t), yi (t), yi (t − ρ) ∈ R,
k, i ∈ N

n
1 .

The objective of this paper is to establish two novel FTS
criteria between FODMCGNN (3) and FODMCGNN
(4) under the designed feedback controllers.

3 Main results

3.1 Novel fractional-order finite-time inequality

Remark 1 In [15, Property 3], to discuss the FTS of
memristive neural networks with the fractional-order
0 < ν < 1, the inequality

c
t0D

ν
t V (t) ≤ −δV (t) − εV ϑ(t), 0 < ϑ < 1, δ, ε > 0

(12)

was established on the basis of the commonly used
equality

c
t0D

ν
t h

α(t) = �(2 − ν)�(1 + α)

�(1 + α − ν)
hα−1(t)ct0D

ν
t h(t),

(13)

where 0 < ν < 1, α ≥ 1. In fact, the equality (13) may
be not applicable. For example, let h(t) = t , α = 2,
t = 1, ν = 0.6, t0 = 0. Then one has

c
t0D

ν
t h

α(t) = c
0D

0.6
t t2|t=1

=
∫ 1

0

(1 − s)−0.6

�(0.4)
2sds

= 1.6100 (14)

and

�(2 − ν)�(1 + α)

�(1 + α − ν)
hα−1(t)ct0D

ν
t h(t)

= �(1.4)�(3)

�(2.4)
c
0D

0.6
t t |t=1

= �(1.4)�(3)

�(2.4)

∫ 1

0

(1 − s)−0.6

�(0.4)
ds

= 0.8050. (15)

It can be seen from (14) and (15) that the equality (13)
may be not feasible. Consequently, the inequality (12)
seems questionable to be used to investigate the FTS
of FODMCGNNs.

Now that the equality (12) seems questionable, it is
interesting and important to establish a novel one.With
the help of the inequality on fractional-order derivative
of composite function (Lemma 1), a novel fractional-
order finite-time inequality can be derived as follows.

Lemma 8 If there exists a positive definite function
V ∈ C 1 ([t0,+∞),R+) such that

c
t0D

ν
t V (t) ≤ −δV (t) − εV−ϑ(t), V (t) ∈ R

+\{0},
(16)

where 0 < ν < 1, δ �= 0, ε > 0, ε + δV 1+ϑ(t0) > 0,
and ϑ ≥ 0, then one has limt→t∗ V (t) = 0 and
V (t) = 0, t ≥ t∗, where

t∗ ≤ T1(ϑ) = t0 +
( −T ∗

1

δ(1 + ϑ)

) 1
ν

, (17)

T ∗
1 is the unique root of the equation

Eν(z) = ε

ε + δV 1+ϑ(t0)
. (18)

Proof Let h̄(υ) = υ1+ϑ and υ(t) = V (t). It follows
from ϑ ≥ 0 that h̄(υ) is convex on R. Therefore, from
Lemma 1 one has

c
t0D

ν
t V

1+ϑ(t) ≤(1 + ϑ)V ϑ(t)ct0D
ν
t V (t)
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≤(1 + ϑ)V ϑ(t)[−δV (t) − εV−ϑ(t)]
= − δ(1 + ϑ)V 1+ϑ(t) − ε(1 + ϑ).

With the help of Lemma 2, one has for t ≥ t0

V 1+ϑ (t) ≤
(

ε

δ
+ V 1+ϑ (t0)

)

Eν

( − δ(1 + ϑ)(t − t0)
ν
) − ε

δ
,

i.e., for t ≥ t0

V (t) ≤
[(

ε

δ
+ V 1+ϑ (t0)

)

Eν

( − δ(1 + ϑ)(t − t0)
ν
) − ε

δ

] 1
1+ϑ

.

(19)

Let

�(t)

=
[(ε

δ
+ V 1+ϑ(t0)

)
Eν

(−δ(1 + ϑ)(t − t0)
ν
) − ε

δ

] 1
1+ϑ

.

For δ > 0, one has that Eν

(−δ(1+ϑ)(t − t0)ν
)
is a

monotonically decreasing function. In addition, it fol-
lows from ε + δV 1+ϑ(t0) > 0 that ε

δ
+ V 1+ϑ(t0) > 0.

Then �(t) is a monotonically decreasing function.
For δ < 0, one has that Eν

(−δ(1+ϑ)(t − t0)ν
)
is a

monotonically increasing function. In addition, it fol-
lows from ε + δV 1+ϑ(t0) > 0 that ε

δ
+ V 1+ϑ(t0) < 0.

Then �(t) is a monotonically decreasing function.
Therefore, �(t) is monotonically decreasing func-

tion for any δ �= 0. Through verification, one has
�(T1) = 0. It follows from the inequality (19) that

0 ≤ lim
t→T1

V (t) = V (T1) ≤ �(T1) = 0.

Furthermore, from squeeze theorem in [4, Theorem
4.2.7], one has

lim
t→T1

V (t) = 0,

where

T1 = t0 +
( −T ∗

1

δ(1 + ϑ)

) 1
ν

,

T ∗
1 is the unique root of the equation

Eν(z) = ε

ε + δV 1+ϑ(t0)
. (20)

If there exists t̃ ≥ T1 such that V (t̃) > 0, then from
the inequality (19) and the fact that �(t) is monotoni-
cally decreasing function, one has

0 < V (t̃) ≤ �(t̃) ≤ �(T1) = 0,

which is a contradiction.
Thus, one has

V (t) = 0, for t ≥ T1.

The proof of Lemma 8 is completed. �

Remark 2 If δ > 0, then from (20) one has 0 <

Eν(z) < 1. Furthermore, from [30, Lemma 3] one

has T ∗
1 < 0, which leads to

−T ∗
1

δ(1+ϑ)
> 0. If δ < 0,

then from (20) one has Eν(z) > 1. Furthermore, from
[30, Lemma 3] one has T ∗

1 > 0, which also leads to
−T ∗

1
δ(1+ϑ)

> 0. All in all, for these two cases one both has
T1 > t0.

When ϑ = 0 in Lemma 8, one has the following Corol-
lary 1.

Corollary 1 If there exists a positive definite function
V ∈ C 1([t0,+∞),R+) such that

c
t0D

ν
t V (t) ≤ −δV (t) − ε, V (t) ∈ R

+\{0}, (21)

where 0 < ν < 1, δ > 0, ε > 0, and ε + δV (t0) > 0,
then one has limt→t∗ V (t) = 0 and V (t) = 0, t ≥ t∗,
where

t∗ ≤T2 = t0 +
(−T ∗

2

δ

) 1
ν
, (22)

T ∗
2 is the unique root of the equation

Eν(z) = ε

ε + δV (t0)
. (23)

Remark 3 Evidently, the estimation (22) in Corollary 1
is consistent with the result given in [31, Lemma 5].
Therefore, result in Lemma 8 generalizes the one in
the existing literature.

Remark 4 When 0 < V (t0) ≤ 1, ε > 0, and δ > 0,
one has that ε

ε+δV 1+ϑ (t0)
is increasing with respect to

ϑ . On the other hand, Eν(·) is a monotonically increas-
ing function, so one also has that T ∗

1 is monotonically
increasing with respect to Eν(T ∗

1 )(= ε
ε+δV 1+ϑ (t0)

).
Therefore, when 0 < V (t0) ≤ 1, ε > 0, and δ > 0, T ∗

1
is monotonically increasing with respect to ϑ .
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Remark 5 From Remark 2 one has T ∗
1 < 0 when δ >

0, which combined with the conclusion of Remark 4,
one has that for 0 < V (t0) ≤ 1, ε > 0, and δ > 0,

the estimated settling time T1(ϑ) = t0 + ( −T ∗
1

δ(1+ϑ)

) 1
ν is

monotonically decreasing with respect to ϑ . Further-
more, since ϑ ≥ 0, one has T1(ϑ) ≤ T1(0). That is
to say, when 0 < V (t0) ≤ 1, ε > 0, and δ > 0, the
estimated settling time T1(ϑ) given by the inequality
(16) is more accurate than the one T1(0) = T2 given
by Corollary 1 [31, Lemma 5].

When ν = 1 in Lemma 8, one has the following
Corollary 2.

Corollary 2 If there exists a positive definite function
V ∈ C 1([t0,+∞),R+) such that

V ′(t) ≤ −δV (t) − εV−ϑ(t), V (t) ∈ R
+\{0},

where δ �= 0, ε > 0, ε + δV 1+ϑ(t0) > 0, and ϑ ≥ 0,
then one has limt→t∗ V (t) = 0 and V (t) = 0, t ≥ t∗,
where

t∗ ≤ t0 + ln
(
1 + δ

ε
V 1+ϑ(t0)

)

δ(1 + ϑ)
.

Remark 6 From the proof of Lemma 8 one has that
the result in Lemma 8 is also valid for δ < 0 and
ε + δV 1−μ(t0) > 0. Therefore, combing Lemma 6
and Corollary 2, one has the following Corollary 3.

Corollary 3 If there exists a positive definite function
V ∈ C 1(Ũ ,R+) such that

V ′(t) ≤ −δV (t) − εV ϑ(t), V (t) ∈ R
+\{0}, (24)

where Ũ ∈ R
n is a neighborhood of the origin, δ �= 0,

ε > 0, ε + δV 1+ϑ(t0) > 0, and ϑ < 1, then one has
limt→t∗ V (t) = 0 and V (t) = 0, t ≥ t∗, where

t∗ ≤ t0 + ln
(
1 + δ

ε
V 1−ϑ(t0)

)

δ(1 − ϑ)
.

3.2 FTS of FODMCGNNs

In this subsection, two novel FTS criteria of FODM-
CGNNare obtained by the novel fractional-order finite-
time inequality, the designed feedback controllers, and
the fractional-order power law inequality.

In order to achieve the FTS between the FODM-
CGNN (3) and FODMCGNN (4), the following feed-
back controller is designed,

uk(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

− γ
zk(t)

|zk(t)| p̃ |zk(t − ρ)| p̃ − �zk(t) − η
zk(t)

|zk(t)|
− χ

zk(t)

|zk(t)|� , |zk(t)| �= 0,

0, |zk(t)| = 0,
(25)

where k ∈ N
n
1, � ≥ p̃ ≥ 1, γ , �, χ , η are positive

constants.

Theorem 1 Under the feedback controller (25) and
Assumptions 1–3, the FODMCGNNs (3) and (4) can
be finite-time synchronized if

p̃nχ + ς V̂ �/ p̃
p̃ (t0) > 0, (26)

where

V̂p̃(t) =
n∑

k=1

|zk(t)| p̃, p̃ ≥ 1,

p̃γ = max
1≤k≤n

{ n∑

i=1

(
d̄i Gk b̆ik + gi b̆ki d̃k

)}

,

p̃η = max
1≤k≤n

{ n∑

i=1

(
p̃hi2ăki dk + p̃gi2b̆ki dk

)}

,

�k = (ζk + d̃k |Jk |) p̃ +
n∑

i=1

(
d̄k Hi ăki ( p̃ − 1) + d̄i Hk ăik

+ p̃hi ăki d̃k + d̄kGi b̆ki ( p̃ − 1) + gi b̆ki d̃k( p̃ − 1)
)
,

and

ς = − max
1≤k≤n

{�k} + p̃�.

In addition, the settling time t∗ is evaluated as

t∗ ≤ t∗1 = t0 +
( −T ∗

1

ς�/ p̃

) 1
κ
,

where T ∗
1 is the unique root of the equation

Eκ(z) = p̃nχ

p̃nχ + ς V̂ �/ p̃
p̃ (t0)

.
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Proof Construct the Lyapunov function

V̂p̃(t) =
n∑

k=1

|zk(t)| p̃, p̃ ≥ 1.

Then from Lemma 4 one has

c
t0D

κ
t V̂p̃(t)

≤
n∑

k=1

p̃sign(zk(t))|zk(t)| p̃−1c
t0D

κ
t zk(t)

=
n∑

k=1

p̃sign(zk(t))|zk(t)| p̃−1
{

− [dk(yk(t))ck(yk(t)) − dk(xk(t))ck(xk(t))]
− γ

zk(t)

|zk(t)| |zk(t − ρ)|

− �zk(t) − η
zk(t)

|zk(t)| − χ
zk(t)

|zk(t)|�
+ [dk(yk(t)) − dk(xk(t))]Jk

+
n∑

i=1

[dk(yk(t))̂aki (yi (t))hi (yi (t))

− dk(yk(t))̂aki (yi (t))hi (xi (t))]

+
n∑

i=1

[dk(yk(t))̂aki (yi (t))hi (xi (t))

− dk(xk(t))̃aki (xi (t))hi (xi (t))]

+
n∑

i=1

[dk(yk(t))̂bki (yi (t − ρ))gi (yi (t − ρ))

− dk(yk(t))̂bki (yi (t − ρ))gi (xi (t − ρ))]

+
n∑

i=1

[dk(yk(t))̂bki (yi (t − ρ))gi (xi (t − ρ))

− dk(xk(t))̃bki (xi (t − ρ))gi (xi (t − ρ))]
}

. (27)

From Assumptions 1–2 one has

n∑

k=1

p̃sign(zk(t))|zk(t)| p̃−1
{

− [dk(yk(t))ck(yk(t))

− dk(xk(t))ck(xk(t))]
+ [dk(yk(t)) − dk(xk(t))]Jk

}

≤
n∑

k=1

p̃|zk(t)| p̃−1(ζk |zk(t)| + d̃k |Jk ||zk(t)|)

=
n∑

k=1

(ζk + d̃k |Jk |) p̃|zk(t)| p̃. (28)

From Lemma 7 and Assumption 3, one has

n∑

k=1

p̃sign(zk(t))|zk(t)| p̃−1

×
{ n∑

i=1

[dk(yk(t))̂aki (yi (t))hi (yi (t))

− dk(yk(t))̂aki (yi (t))hi (xi (t))]

+
n∑

i=1

[dk(yk(t))̂aki (yi (t))hi (xi (t))

− dk(xk(t))̃aki (xi (t))hi (xi (t))]
}

≤
n∑

k=1

n∑

i=1

(

p̃d̄k Hi ăki |zk(t)| p̃−1|zi (t)|

+ p̃hi
(
ăki d̃k |zk(t)| p̃ + 2ăki dk |zk(t)| p̃−1

))

.

(29)

Similarly, one has

n∑

k=1

p̃sign(zk(t))|zk(t)| p̃−1

×
{ n∑

i=1

[dk(yk(t))̂bki (yi (t − ρ))gi (yi (t − ρ))

− dk(yk(t))̂bki (yi (t − ρ))gi (xi (t − ρ))]

+
n∑

i=1

[dk(yk(t))̂bki (yi (t − ρ))gi (xi (t − ρ))

− dk(xk(t))̃bki (xi (t − ρ))gi (xi (t − ρ))]
}

≤
n∑

k=1

n∑

i=1

(

p̃d̄kGi b̆ki |zk(t)| p̃−1|zi (t − ρ)|

+ p̃gi
(
b̆ki d̃k |zk(t − ρ)||zk(t)| p̃−1

+ 2b̆ki dk |zk(t)| p̃−1
))

. (30)
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It follows from Lemma 3 that

n∑

k=1

n∑

i=1

p̃d̄k Hi ăki |zk(t)| p̃−1|zi (t)|

≤
n∑

k=1

n∑

i=1

p̃d̄k Hi ăki
( p̃ − 1

p̃
|zk(t)| p̃ + 1

p̃
|zi (t)| p̃

)

=
n∑

k=1

n∑

i=1

(
d̄k Hi ăki ( p̃ − 1) + d̄i Hkăik

)
|zk(t)| p̃,

(31)

n∑

k=1

n∑

i=1

p̃d̄kGi b̆ki |zk(t)| p̃−1|zi (t − ρ)|

≤
n∑

k=1

n∑

i=1

p̃d̄kGi b̆ki
( p̃ − 1

p̃
|zk(t)| p̃+ 1

p̃
|zi (t−ρ)| p̃

)

=
n∑

k=1

n∑

i=1

d̄kGi b̆ki ( p̃ − 1)|zk(t)| p̃

+
n∑

k=1

n∑

i=1

d̄iGkb̆ik |zk(t − ρ)| p̃, (32)

and

n∑

k=1

n∑

i=1

p̃gi b̆ki d̃k |zk(t − ρ)||zk(t)| p̃−1

≤
n∑

k=1

n∑

i=1

p̃gi b̆ki d̃k
( p̃ − 1

p̃
|zk(t)| p̃+ 1

p̃
|zk(t−ρ)| p̃

)

=
n∑

k=1

n∑

i=1

gi b̆ki d̃k
(
( p̃ − 1)|zk(t)| p̃ + |zk(t − ρ)| p̃

)
.

(33)

In addition,

n∑

k=1

p̃sign(zk(t))|zk(t)| p̃−1

×
{

− γ
zk(t)

|zk(t)| p̃ |zk(t − ρ)| p̃ − �zk(t)

− η
zk(t)

|zk(t)| − χ
zk(t)

|zk(t)|�
}

= −
n∑

k=1

(

p̃γ |zk(t − ρ)| p̃ + p̃�|zk(t)| p̃

+ p̃η|zk(t)| p̃−1 + p̃χ |zk(t)| p̃−�

)

. (34)

From (27)–(34) one has

c
t0D

κ
t V̂p̃(t)

≤
n∑

k=1

(ζk + d̃k |Jk |) p̃|zk(t)| p̃

−
n∑

k=1

(

p̃γ |zk(t − ρ)| p̃ + p̃�|zk(t)| p̃

+ p̃η|zk(t)| p̃−1 + p̃χ |zk(t)| p̃−�

)

+
n∑

k=1

n∑

i=1

(
d̄k Hi ăki ( p̃ − 1) + d̄i Hkăik

)
|zk(t)| p̃

+
n∑

k=1

n∑

i=1

p̃hi
(
ăki d̃k |zk(t)| p̃ + 2ăki dk |zk(t)| p̃−1

)

+
n∑

k=1

n∑

i=1

d̄kGi b̆ki ( p̃ − 1)|zk(t)| p̃

+
n∑

k=1

n∑

i=1

d̄i Gkb̆ik |zk(t − ρ)| p̃

+
n∑

k=1

n∑

i=1

gi b̆ki d̃k
(
( p̃−1)|zk(t)| p̃+|zk(t−ρ)| p̃

)

+
n∑

k=1

n∑

i=1

p̃gi2b̆ki dk |zk(t)| p̃−1

=
n∑

k=1

[

(ζk + d̃k |Jk |) p̃

+
n∑

i=1

(
d̄k Hi ăki ( p̃ − 1) + d̄i Hkăik + p̃hi ăki d̃k

+d̄kGi b̆ki ( p̃−1)+gi b̆ki d̃k( p̃−1)
)
− p̃�

]

|zk(t)| p̃

+
n∑

k=1

[ n∑

i=1

(
p̃hi2ăki dk+ p̃gi2b̆ki dk

)
− p̃η

]

|zk(t)| p̃−1

+
n∑

k=1

[ n∑

i=1

(
d̄i Gkb̆ik+gi b̆ki d̃k

)
− p̃γ

]

|zk(t−ρ)| p̃

−
n∑

k=1

p̃χ |zk(t)| p̃−�. (35)
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Using the inequality skill in [18, Theorem 1], one has

n∑

k=1

|zk(t)| p̃−�

=
n∑

k=1

1

(|zk(t)| p̃)
�− p̃
p̃

≥
n∑

k=1

1
( ∑n

k=1 |zk(t)| p̃
) �− p̃

p̃

= n

( n∑

k=1

|zk(t)| p̃
) p̃−�

p̃

. (36)

Let

�k = (ζk + d̃k |Jk |) p̃ +
n∑

i=1

(
d̄k Hi ăki ( p̃ − 1) + d̄i Hkăik

+ p̃hi ăki d̃k + d̄kGi b̆ki ( p̃ − 1) + gi b̆ki d̃k( p̃ − 1)
)
,

p̃η = max
1≤k≤n

{ n∑

i=1

(
p̃hi2ăki dk + p̃gi2b̆ki dk

)}

,

p̃γ = max
1≤k≤n

{ n∑

i=1

(
d̄i Gkb̆ik + gi b̆ki d̃k

)}

,

and

ς = − max
1≤k≤n

{�k} + p̃�.

From (35) and (36) one has

c
t0D

κ
t V̂p̃(t)

≤ (�k − p̃�)V̂p̃(t) − p̃χn

(
n∑

k=1

|zk(t)| p̃
) p̃−�

p̃

≤
(

max
1≤k≤n

{�k} − p̃�

)

V̂p̃(t) − p̃χnV̂
p̃−�
p̃

p̃ (t)

= −ς V̂p̃(t) − p̃χnV̂
− �− p̃

p̃
p̃ (t). (37)

It follows from Lemma 8 that the FODMCGNNs (3)
and (4) can be finite-time synchronized under the feed-
back controller (25) if the condition (26) is satisfied.
The settling time t∗ is evaluated as

t∗ ≤ t∗1 = t0 +
( −T ∗

1

ς�/ p̃

) 1
κ
,

where T ∗
1 is the unique root of the equation

Eκ(z) = p̃nχ

p̃nχ + ς V̂ �/ p̃
p̃ (t0)

.

The proof of Theorem 1 is completed. �

Especially, for � = p̃, the inequality (42) is reduced to
the inequality c

t0D
κ
t V̂p̃(t) ≤ −ς V̂p̃(t) − p̃nχ , which

has the same form with the inequality (21) in [31,
Lemma 5]. Using the similar skills in the proof of The-
orem 1, one has the following corollary.

Corollary 4 Under Assumptions 1–3 and the feedback
controller (25), the FODMCGNNs (3) and (4) can be
finite-time synchronized if

p̃nχ + ς V̂p̃(t0) > 0 and p̃ = �. (38)

The settling time t∗ is evaluated by

t∗ ≤ t∗2 = t0 +
(−T ∗

2

ς

) 1
κ
,

where T ∗
2 is the unique root of the equation

Eκ(z) = p̃nχ

p̃nχ + ς V̂p̃(t0)
.

Remark 7 In [16, Theorem 2], the fractional-order
derivative ofLyapunov functionV (t) = ∑n

k=1 |zk(t)| p̃
was estimated by the equality (13). However, the equal-
ity (13) may be not applicable and the corresponding
counterexample can be found in Remark 1. Therefore,
the FTS criterion in [16, Theorem 2] may also not be
feasible.

Remark 8 In [16, Theorem 1], the FTS of FODM-
CGNNs was discussed by the following inequality

Eκ(t) ≤ 1
κ
et

1
κ . However, this inequality may be not

applicable. For example, letting κ = 0.322, t = 3, one

has Eκ(t) − 1
κ
et

1
κ = 4.9297 > 0. Therefore, the FTS

criterion in [16, Theorem 1] may not be feasible.

Especially, for � = p̃ = 1, motivated by [20], the
following modified feedback controller with the sign
function is designed to realize the FTS between the
FODMCGNNs (3) and the FODMCGNNs (4):

ũk(t) = −γ sign(zk(t))|zk(t − ρ)| − �zk(t)

−ηsign(zk(t)), (39)

where k ∈ N
n
1, γ , �, η are positive constants. Similar to

the proof of Theorem 1, one has the following result.
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Theorem 2 Under Assumptions 1–3 and the feedback
controller (39), the FODMCGNNs (3) and (4) can be
finite-time synchronized if

ς V̂1(t0) + ω > 0, (40)

where

V̂1(t) =
n∑

k=1

|zk(t)|,

ς = − max
1≤k≤n

{�k} + �,

ω =
n∑

k=1

(η − �k) > 0,

�k = (ζk + d̃k |Jk |) +
n∑

i=1

(
d̄i Hkăik + hi ăki d̃k

)
,

�k =
n∑

i=1

(
hi2ăki dk + gi2b̆ki dk

)
,

γ = max
1≤k≤n

{ n∑

i=1

(
d̄iGkb̆ik + gi b̆ki d̃k

)}

.

The settling time t∗ is evaluated by

t∗ ≤ t∗3 = t0 +
(−T ∗

3

ς

) 1
κ
,

where T ∗
3 is the unique root of the equation

Eκ(z) = ω

ς V̂1(t0) + ω
. (41)

Proof Let

V̂1(t) =
n∑

k=1

|zk(t)|.

Similar to the proof of Theorem 1, one has

c
t0D

κ
t V̂1(t)

≤ (�k − �)V̂1(t) +
n∑

k=1

(�k − η)

+
n∑

k=1

[
n∑

i=1

(
d̄iGkb̆ik + gi b̆ki d̃k

)
− γ

]

|zk(t − ρ)|

≤
(

max
1≤k≤n

{�k} − �

)

V̂1(t) +
n∑

k=1

(�k − η)

= −ς V̂1(t) − ω. (42)

It follows from Corollary 1 that the FODMCGNNs (3)
and (4) can be finite-time synchronized under the feed-
back controller (39) if the condition (40) is satisfied.
The settling time t∗ is evaluated as

t∗ ≤ t∗3 = t0 +
(−T ∗

3

ς

) 1
κ

,

where T ∗
3 is the unique root of the equation

Eκ(z) = ω

ς V̂1(t0) + ω
.

�

From the proof of Theorem 2, one has the following
corollary in terms of Lemma 5.

Corollary 5 Under Assumptions 1–3 and the feedback
controller (39), the FODMCGNNs (3) and (4) can be
finite-time synchronized if

� > max
1≤k≤n

{�k} (43)

and

η > max
1≤k≤n

{ n∑

i=1

(
d̄i Gkb̆ik + gi b̆ki d̃k

)}

. (44)

The settling time t∗ is evaluated by

t∗ ≤ t∗4 = t0 +
(

�(1 + κ)V (t0)

ω

) 1
κ

.

4 Numerical examples

In this section, on the basis of predictor-corrector algo-
rithm [5], three examples are presented to demonstrate
the correctness and advantage of the obtained results.

Example 1 Consider the FODMCGNNs (3) and (4)
with the following parameters: κ = 0.95, n = 2, t0 =
0, ρ = 0.2, Jk = 0.01, dk(xk(t)) = 0.1 sin(xk(t)) +
0.2, ck(xk(t)) = 0.2 cos(xk(t)), hi (xi (t)) = 0.1
tanh(xi (t)), gi (xi (t − ρ)) = 0.1 tanh(xi (t − ρ)),

123



Novel methods of finite-time synchronization 18997

ψ1(t) = 0.1, ψ2(t) = −0.2, φ1(t) = −0.1, φ2(t) =
0.2, t ∈ [−0.2, 0], k, i ∈ N

2
1,

a11(x1(t)) =
{
1.0, |x1(t)| > 1,

1.3, |x1(t)| ≤ 1,

a12(x2(t)) =
{

−0.9, |x2(t)| > 1,

−1.2, |x2(t)| ≤ 1,

a21(x1(t)) =
{

−1.1, |x1(t)| > 1,

−0.3, |x1(t)| ≤ 1,

a22(x2(t)) =
{
1.7, |x2(t)| > 1,

1.5, |x2(t)| ≤ 1,

b11(x1(t − ρ)) =
{
3.1, |x1(t − ρ)| > 1,

2.2, |x1(t − ρ)| ≤ 1,

b12(x2(t − ρ)) =
{

−1.2, |x2(t − ρ)| > 1,

−1.4, |x2(t − ρ)| ≤ 1,

b21(x1(t − ρ)) =
{

−1.0, |x1(t − ρ)| > 1,

−1.1, |x1(t − ρ)| ≤ 1,

b22(x2(t − ρ)) =
{
2.3, |x2(t − ρ)| > 1,

2.1, |x2(t − ρ)| ≤ 1.

By a simple calculation, one has ă11 = 1.3, ă12 =
1.2, ă21 = 1.1, ă22 = 1.7, b̆11 = 3.1, b̆12 = 1.4, b̆21 =
1.1, b̆22 = 2.3. It is easy to verify that Assumptions 1–3
are satisfied. In addition, one can gain Hk = Gk = 0.1,
d̄k = 0.3, d̃k = 0.1, ζk = 0.06, h̄k = ḡk = 0.1.

In the following, we show the advantage of Theorem
1 in comparison with Corollary 4 when p̃ = 1. For the
controller parameters γ , �, η, χ given in Table1, by a
simple calculationonehas V̂p̃(0) = 0.6,ς = 0.8240. If
one chooses different parameters � = 1.1 and � = 1,
then one has p̃nχ + ς V̂ �/ p̃

p̃ (0) = 2.4698 > 0 and

p̃nχ +ς V̂p̃(0) = 2.4944 > 0, respectively. Hence, the
conditions (26) and (38) in Theorem 1 and Corollary 4
are satisfied, respectively. According to Theorem 1 and
Corollary 4, one both has the FODMCGNNs (3) and (4)
are finite-time synchronized, and the estimated settling
times are t∗1 = 0.2123 and t∗2 = 0.2463, respectively. It
is obvious that t∗1 in Theorem 1 is less than t∗2 in Corol-
lary 4. Therefore, for p̃ = 1 Theorem 1 obtained by
Lemma 8 is less conservative than Corollary 4 obtained
by [31, Lemma 5].

Similarly, we can illustrate the advantage of Theo-
rem 1 in comparison with Corollary 4 when p̃ > 1. For

Table 1 The comparisons among t∗1 and t∗2 in Example 1

Results p̃ � γ � η χ t∗i (i = 1, 2)

Theorem 1 1 1.1 0.171 1 0.42 1 t∗1 = 0.2123

Corollary 4 1 1 0.171 1 0.42 1 t∗2 = 0.2463

Table 2 The comparisons among t̃∗1 and t̃∗2 in Example 1

Results p̃ � γ � η χ t̃∗i (i = 1, 2)

Theorem 1 1.1 1.2 0.1555 1 0.42 1 t̃∗1 = 0.1728

Corollary 4 1.1 1.1 0.1555 1 0.42 1 t̃∗2 = 0.2001

the controller parameters p̃, γ , �, η, χ given in Table2,
by a simple calculation one has V̂p̃(0) = 0.5352,
ς = 0.8931. If one chooses different parameters � =
1.2 and � = 1.1, then one has p̃nχ + ς V̂ �/ p̃

p̃ (0) =
2.6516 > 0 and p̃nχ + ς V̂p̃(0) = 2.6780 > 0,
respectively. Hence, the conditions (26) and (38) in
Theorem 1 and Corollary 4 are satisfied, respectively.
According to Theorem 1 and Corollary 4, one both has
the FODMCGNNs (3) and (4) are finite-time synchro-
nized, and the estimated settling times are t̃∗1 = 0.1728
and t̃∗2 = 0.2001, respectively. It is obvious that t̃∗1 in
Theorem 1 is less than t̃∗2 in Corollary 4. Therefore, for
p̃ > 1 Theorem 1 obtained by Lemma 8 is less conser-
vative than Corollary 4 obtained by [31, Lemma 5].

To show the correctness of Theorem 1 for p̃ = 1
and p̃ > 1, synchronization errors of FODMCGNNs
(3) and (4)with different parameters p in Example 1 are
plotted in Figs. 1 and 2, respectively. One can observe
that synchronization is achieved at 0.1914 and 0.1664,
which are less than the estimated settling time t∗1 =
0.2123 and t̃∗1 = 0.1728, respectively. This validates
the correctness of Theorem 1 for p̃ = 1 and p̃ > 1.

Example 2 Consider the FODMCGNNs (3) and (4)
with the following parameters: κ = 0.98, n = 2, t0 =
0, ρ = 0.4, Jk = 0.02, dk(xk(t)) = 0.2 cos(xk(t)) +
0.1, ck(xk(t)) = 0.1 sin(xk(t)), hi (xi (t)) = 0.2
tanh(xi (t)), gi (xi (t − ρ)) = 0.2 tanh(xi (t − ρ)),
ψ1(t) = −0.2, ψ2(t) = 0.1, φ1(t) = 0.2, φ2(t) =
−0.1, t ∈ [−0.4, 0], k, i ∈ N

2
1,

a11(x1(t)) =
{
1.2, |x1(t)| > 1,

1.1, |x1(t)| ≤ 1,
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Fig. 1 Synchronization errors z1(t), z2(t) with p̃ = 1 in Exam-
ple 1

Fig. 2 Synchronization errors z1(t), z2(t) with p̃ = 1.1 in
Example 1

a12(x2(t)) =
{

−1.0, |x2(t)| > 1,

−1.1, |x2(t)| ≤ 1,

a21(x1(t)) =
{

−1.2, |x1(t)| > 1,

−0.5, |x1(t)| ≤ 1,

a22(x2(t)) =
{
1.5, |x2(t)| > 1,

1.7, |x2(t)| ≤ 1,

b11(x1(t − ρ)) =
{
2.1, |x1(t − ρ)| > 1,

1.2, |x1(t − ρ)| ≤ 1,

b12(x2(t − ρ)) =
{

−1.5, |x2(t − ρ)| > 1,

−1.2, |x2(t − ρ)| ≤ 1,

Table 3 The comparisons among t∗3 and t∗4 in Example 2

Results γ � η t∗i (i = 3, 4)

Theorem 2 1.0950 1 1.2740 t∗3 = 0.5787

Corollary 5 1.0950 1 1.2740 t∗4 = 0.5888

b21(x1(t − ρ)) =
{

−1.6, |x1(t − ρ)| > 1,

−1.2, |x1(t − ρ)| ≤ 1,

b22(x2(t − ρ)) =
{
2.5, |x2(t − ρ)| > 1,

2.2, |x2(t − ρ)| ≤ 1.

By a simple calculation, one has ă11 = 1.2, ă12 =
1.1, ă21 = 1.2, ă22 = 1.7, b̆11 = 2.1, b̆12 = 1.5, b̆21 =
1.6, b̆22 = 2.5. It is easy to verify that Assumptions 1–3
are satisfied. In addition, one can gain Hk = Gk = 0.2,
d̄k = 0.3, d̃k = 0.2, ζk = 0.03, h̄k = ḡk = 0.2.

In the following, we show the advantage of Theo-
rem2 in comparisonwithCorollary 5. For the controller
parameters γ , �, η given in Table 3, by a simple calcula-
tion one has V̂1(0) = 0.6, ς = 0.0535, andω = 1, then
one has ς V̂1(t0) + ω = 1.0321 > 0, 1.2740 = η >

max1≤k≤n

{ ∑n
i=1

(
d̄i Gkb̆ik + gi b̆ki d̃k

)}
= 1.0950,

and 1 = � > max1≤k≤n{�k} = 0.9465. Hence, the
conditions (40) and (43)–(44) in Theorem 2 and Corol-
lary 5 are satisfied, respectively. According to Theorem
2 and Corollary 5, one both has the FODMCGNNs (3)
and (4) are finite-time synchronized, and the estimated
settling times are t∗3 = 0.5787and t∗4 = 0.5888, respec-
tively. It is obvious that t∗3 in Theorem2 is less than t∗4 in
Corollary 5. Therefore, Theorem 2 obtained by Corol-
lary 1 is less conservative than Corollary 5 obtained by
Lemma 5.

To show the correctness of Theorem 2, synchroniza-
tion error of FODMCGNNs (3) and (4) in Example 2
are plotted in Fig. 3. One can observe that synchro-
nization is achieved at 0.2074, which is less than the
estimated settling time t∗3 = 0.5787. This validates the
correctness of Theorem 2.

Example 3 Consider the FODMCGNNs (3) and (4)
with the following parameters: κ = 0.97, n = 3, t0 =
0, ρ = 0.2, Jk = 0.015, dk(xk(t)) = 0.3 sin(xk(t)) +
0.2, ck(xk(t)) = 0.2 cos(xk(t)), hi (xi (t)) = 0.1
tanh(xi (t)), gi (xi (t − ρ)) = 0.1 tanh(xi (t − ρ)),
ψ1(t) = −0.1, ψ2(t) = 0.2, ψ3(t) = 0.15, φ1(t) =
0.1, φ2(t) = −0.2, φ3(t) = 0.25, t ∈ [−0.2, 0],
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Fig. 3 Synchronization errors z1(t), z2(t) in Example 2

k, i ∈ N
3
1,

a11(x1(t)) =
{
1.1, |x1(t)| > 1,

1.0, |x1(t)| ≤ 1,

a12(x2(t)) =
{

−1.1, |x2(t)| > 1,

−1.2, |x2(t)| ≤ 1,

a13(x3(t)) =
{

−5.0, |x3(t)| > 1,

−4.4, |x3(t)| ≤ 1,

a21(x1(t)) =
{

−1.3, |x1(t)| > 1,

−0.6, |x1(t)| ≤ 1,

a22(x2(t)) =
{
1.6, |x3(t)| > 1,

1.8, |x3(t)| ≤ 1,

a23(x3(t)) =
{

4.7, |x3(t)| > 1,

−6.1, |x3(t)| ≤ 1,

a31(x1(t)) =
{

−1.2, |x1(t)| > 1,

−0.5, |x1(t)| ≤ 1,

a32(x2(t)) =
{
1.5, |x2(t)| > 1,

1.7, |x2(t)| ≤ 1,

a33(x3(t)) =
{
2.3, |x3(t)| > 1,

2.5, |x3(t)| ≤ 1,

b11(x1(t − ρ)) =
{
2.2, |x1(t − ρ)| > 1,

1.3, |x1(t − ρ)| ≤ 1,

b12(x2(t − ρ)) =
{

−1.6, |x2(t − ρ)| > 1,

−1.3, |x2(t − ρ)| ≤ 1,

b13(x3(t − ρ)) =
{

−2.7, |x3(t − ρ)| > 1,

−4.1, |x3(t − ρ)| ≤ 1,

b21(x1(t − ρ)) =
{

−1.7, |x1(t − ρ)| > 1,

−1.3, |x1(t − ρ)| ≤ 1,

b22(x2(t − ρ)) =
{
2.7, |x2(t − ρ)| > 1,

2.4, |x2(t − ρ)| ≤ 1,

b23(x3(t − ρ)) =
{

−8.3, |x3(t − ρ)| > 1,

−7.6, |x3(t − ρ)| ≤ 1,

b31(x1(t − ρ)) =
{

−1.5, |x1(t − ρ)| > 1,

−1.1, |x1(t − ρ)| ≤ 1,

b32(x2(t − ρ)) =
{
2.6, |x2(t − ρ)| > 1,

2.2, |x2(t − ρ)| ≤ 1,

b33(x3(t − ρ)) =
{

−3.8, |x3(t − ρ)| > 1,

−4.4, |x3(t − ρ)| ≤ 1.

By a simple calculation, one has ă11 = 1.1, ă12 = 1.2,
ă13 = 5, ă21 = 1.3, ă22 = 1.8, ă23 = 6.1, ă31 = 1.2,
ă32 = 1.7, ă33 = 2.5, b̆11 = 2.2, b̆12 = 1.6, b̆13 = 4.1,
b̆21 = 1.7, b̆22 = 2.7, b̆23 = 8.3, b̆31 = 1.5, b̆32 = 2.6,
b̆33 = 4.4. It is easy to verify that Assumptions 1–3 are
satisfied. In addition, one can gain Hk = Gk = 0.1,
d̄k = 0.5, d̃k = 0.3, ζk = 0.1, h̄k = ḡk = 0.1.

In the following, we show the advantage of Theo-
rem 2 in comparison with Corollary 5. For the con-
troller parameters γ , �, η given in Table 4, by a simple
calculation one has V̂1(0) = 0.7, ς = 0.0535, and
ω = 0.3, then one has ς V̂1(t0) + ω = 0.3374 > 0,
1 = � > max1≤k≤n{�k} = 0.9465, and 1.8 = η >

max1≤k≤n

{ ∑n
i=1

(
d̄i Gkb̆ik + gi b̆ki d̃k

)}
= 1.0950.

Hence, the conditions (40) and (43)–(44) in Theorem 2
and Corollary 5 are satisfied, respectively. According
to Theorem 2 andCorollary 5, one both has the FODM-
CGNNs (3) and (4) are finite-time synchronized, and
the estimated settling times are t∗3 = 2.2286 and
t∗4 = 2.3649, respectively. It is obvious that t∗3 in The-
orem 2 is less than t∗4 in Corollary 5. Therefore, Theo-
rem 2 obtained by Corollary 1 is less conservative than
Corollary 5 obtained by Lemma 5.

To show the correctness of Theorem 2, synchroniza-
tion error of FODMCGNNs (3) and (4) in Example 3
are plotted in Fig. 4. One can observe that synchro-
nization is achieved at 0.1557, which is less than the
estimated settling time t∗3 = 2.8884. This validates the
correctness of Theorem 2.

123



19000 F. Du, J-G. Lu

Table 4 The comparisons among t∗3 and t∗4 in Example 3

Results γ � η t∗i (i = 3, 4)

Theorem 2 1.0950 1 1.8000 t∗3 = 2.2286

Corollary 5 1.0950 1 1.8000 t∗4 = 2.3649

Fig. 4 Synchronization errors z1(t), z2(t), z3(t) in Example3

5 Conclusions

The FTS has been investigated for a class of FODM-
CGNNs. Firstly, a novel fractional-order finite-time
inequality (see Lemma 8) has been developed; it gen-
eralizes the existing one and can be employed to
investigate the FTS of FODSs. More importantly, it
has been demonstrated theoretically that the estimated
settling time is more accurate than the existing one
(see Remark 5). Subsequently, based on this novel
inequality, the designed feedback controllers, and the
fractional-order power law inequality, two novel crite-
ria have been obtained to ensure the FTS of the FODM-
CGNNs. Finally, three examples have beenpresented to
illustrate the correctness and advantage of the derived
results.
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